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Abstract—Low-resolution analog-to-digital converters (ADCs)
have been considered as a practical and promising solution for
reducing cost and power consumption in massive Multiple-Input-
Multiple-Output (MIMO) systems. Unfortunately, low-resolution
ADCs significantly distort the received signals, and thus make
data detection much more challenging. In this paper, we develop
a new deep neural network (DNN) framework for efficient
and low-complexity data detection in low-resolution massive
MIMO systems. Based on reformulated maximum likelihood
detection problems, we propose two model-driven DNN-based
detectors, namely OBMNet and FBMNet, for one-bit and few-bit
massive MIMO systems, respectively. The proposed OBMNet and
FBMNet detectors have unique and simple structures designed
for low-resolution MIMO receivers and thus can be efficiently
trained and implemented. Numerical results also show that
OBMNet and FBMNet significantly outperform existing detection
methods.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is con-
sidered to be a disruptive technology for 5G-and-beyond
networks [1]-[3]. Massive MIMO is capable of boosting the
throughput and energy efficiency by several orders of magni-
tude over conventional MIMO systems [4], [5]. A massive
MIMO system is equipped with a large number (tens to
hundreds) of antennas at the base station and thus requires
a large number of radio-frequency (RF) chains, resulting in
significant increases in the power consumption and hardware
complexity. A practical and promising solution for reducing
the power consumption and hardware complexity of such
systems is to use low-resolution analog-to-digital converters
(ADCs). This is due to the simple structure and low-power
consumption of low-resolution ADCs. For example, the sim-
plest architecture involving one-bit ADCs requires only one
comparator and does not require an automatic gain control
(AGC). Unfortunately, low-resolution ADCs make the system
severely nonlinear since the received signals are significantly
distorted. The data detection task with low-resolution ADCs
therefore becomes even much more challenging compared to
conventional full-resolution ADC systems.

There have been a lot of interest and numerous efforts
in addressing the data detection problem in massive MIMO
systems with low-resolution ADCs, e.g., [6]-[15]. Maximum-
likelihood (ML) detectors for one-bit and few-bit ADCs were
derived in [6] and [7], respectively. The authors of [6] also
proposed a so-called near-ML (nML) detection method for
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large-scale one-bit systems where ML detection is impractical.
The ML and nML methods are however non-robust at high
signal-to-noise ratios (SNRs) when the channel state informa-
tion (CSI) is not perfectly known. A one-bit sphere decoding
(OSD) technique was proposed in [8]. However, the OSD
technique requires a preprocessing stage whose computational
complexity is exponentially proportional to both the number
of receive and transmit antennas. The exponential computa-
tional complexity of OSD makes it difficult to implement in
large-scale MIMO systems. Generalized approximate message
passing (GAMP) and Bayes inference were exploited in [9],
but the resulting method is sophisticated and expensive to
implement. Different linear receivers based on the Bussgang
decomposition were proposed in [10] and [11] for one-
bit and few-bit ADCs, respectively. These linear receivers
have lower computational complexity, but often suffer from
high detection-error floors, especially with high-dimensional
constellations such as 16-QAM. Several other data detection
approaches have also been proposed in [12]-[15], but they are
only applicable in systems where either a cyclic redundancy
check (CRC) [12]-[14] or an error correcting code such as a
low-density parity-check (LDPC) code [15] is available.
Recently, machine learning for MIMO detection has also
gained a lot of attention and interest among engineers and
researchers. While the deep learning-based detectors in [16]—
[19] are designed for MIMO systems with full-resolution
ADC:s, the learning-based detectors in [20]-[22] are dedicated
to systems with low-resolution ADCs and are “blind” in the
sense that CSI is not required. However, these blind detection
methods are restricted to MIMO systems with a small number
of transmit antennas and only low-dimensional constellations.
More recently, support vector machines (SVM) were exploited
for one-bit MIMO detection and were shown to achieve better
performance than the linear and learning-based receivers [23].
Contributions: Motivated by the above discussion, in this
paper, we propose novel, efficient, and low-complexity de-
tectors based on deep neural networks (DNNs) for massive
MIMO systems with low-resolution ADCs. The proposed
DNN-based detectors are also applicable to large-scale systems
without the need for CRC or error correcting codes. We first
reformulate the ML detection problems by approximating the
cumulative distribution function (cdf) of a Gaussian random
variable with a Sigmoid activation function, which is a well-
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Fig. 1: Block diagram of a massive MIMO system with K single-
antenna users and an /N-antenna base station equipped with 2N low-
resolution ADCs.

known and widely-used activation function in machine learn-
ing. Numerical results confirm that the optimal solutions to
the reformulated ML detection problems achieve performance
that is nearly identical to the original ML detection problems.
Based on the reformulated ML detection problems, we then
propose model-driven DNN-based detectors, namely OBMNet
and FBMNet for one-bit and few-bit massive MIMO systems,
respectively. The proposed OBMNet and FBMNet detectors
have simple structures that can be implemented in an efficient
manner. While each layer of OBMNet has two weight matrices
and no bias vector, each layer of FBMNet has two weight
matrices and two bias vectors. These weight matrices and
bias vectors are adaptive to the channel and the received
signal, respectively. In other words, they do not need to be
trained and thus result in a much easier training process
with many fewer trainable parameters. Once trained, both
FMBNet and OBMNet can perform data detection with any
new channel realization. Numerical results also show that
the proposed OBMNet and FBMNet detectors significantly
outperform existing detection methods.

II. SYSTEM MODEL

We consider an uplink massive MIMO system as illustrated
in Fig. 1 with K single-antenna users and an /N-antenna
base station, where it is assumed that N > K. Let x =
[Z1,Z2,...,7x]T € CK denote the transmitted signal vector,
where Z, is the signal transmitted from the k™ user under the
power constraint E[|Z|?] = 1. The signal #, is drawn from
some known constellation M. Let H € CV*X denote the
channel, which is assumed to be block flat fading and perfectly
known. Let T = [Fy,7o,...,7x]|T € CV be the unquantized
received signal vector at the base station, which is given by

r=Hx+7, (1
where z = [21,%2,...,2x]|T € C¥ is a noise vector whose
elements are assumed to be independent and identically dis-
tributed (i.i.d.) as CN'(0, Ny), and Ny is the noise power. Each

analog received signal is then quantized by a pair of b-bit
ADCs. Hence, we have the received signal

Y = Qu(r) = Q (R{r}) + Qs (3{r}). )

The operator Q(+) is applied separately to every element of its
matrix or vector argument. The SNR is defined as p = 1/Nj.
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Fig. 2: Overall structure of the proposed OBMNet and FBMNet.

The considered system employs an ADC that performs
b-bit uniform scalar quantization. The b-bit ADC model is
characterized by a set of 2® — 1 thresholds denoted as
{m1,...,79s_1}. Without loss of generality, we can assume
—00 =T < T <...<To_3 < To =o00.Let A be the step
size, so the thresholds of the uniform quantizer are given by

= (2" DA, forle £L={1,...,2° -1}, (3)
The quantization output is defined as

ifre(n_1,n]withl € £
ifr e (Tgb_l,TQb].

4)

III. PROPOSED DNN-BASED DETECTORS

A. FBMNet Detector

In this section, we propose a DNN-based detector referred
to as FBMNet for few-bit (b > 1) massive MIMO systems.
The extreme case of 1-bit ADCs will be considered later,
and a special DNN-based detector for this case, referred
to as OBMNet, will be proposed. For convenience in later
derivations, we convert (1) and (2) into the real domain as
follows:

y =9 (Hx+2z), (5)
where
I A
oo [MHY —S{H}]
[%{H} R{H} }

Note that y € R?Y, x € R?K | z € R?Y, and H € R?2V*2K,
We also denote y = [y1,...,%2n]7 and H = [hy, ..., hoy]T.

Let t;* = v/2p(q;® — hI'x) and £V = \/2p(¢}°¥ — hTx),
where

A .
up Yi + 2 if Yi < Tob_q
7 - .
00 otherwise,
ow _ JYi— 5 ify;>7n
i = .
—00 otherwise.
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Fig. 3: Specific structure of layer ¢ of FBMNet. The weight matrices and the bias vectors are defined by the channel and the received signal,

respectively.

Hence, ¢;* and @°¥ are the upper and lower quantization
thresholds of the bin to which y; belongs. The likelihood

function of x given the received signal y can be written as [7]

P(x) = ﬁ (@)~ @ (6™))

i=1

up
7

(6)
where ®(t) = fioo \/%e’édT is the cdf of the standard
Gaussian random variable. The ML detection problem based
on the log-likelihood function is defined as follows:

2N
Xy = arg max Z log [‘I) (t?p) - (t'liowﬂ : Q)
xEMEK i=1

We note that an optimal solution for ML detection requires
an exhaustive search over M. In addition, there is no closed-
form expression for ®(-), which complicates the evaluation in
(7). Thus, we first exploit a result in [24], which shows that the
function ®(¢) can be accurately approximated by the Sigmoid
function o(t) = 1/(1 + e~ ). More specifically,

1
1+ ect’ ®
where ¢ = 1.702 is a constant. It was shown in [24] that
|®(t) — o(ct)] < 0.0095, ¥t € R. Then an approximate
version of the log-likelihood function of P(x) can be written
as follows:

O(t) ~ o(ct) =

1
14 e—cti™

) 2N
P(x) ~ Z log

i=1

2N
low u
= E [log (e_Ctio —e_Ct'ip)—
i=1

log (1 + e—cti'”) _log (1 + e—ct5°w) } (10)

The reformulated ML detection problem is thus

1
|:1 + e_ct?p - (9)

Xy = argmax P(x).
xEMK

Y

Note that an optimal solution to problem (11) still requires
an exhaustive search over M¥ . Thus, we relax the constraint
x € MX in (11) to x € CF and solve the following
optimization problem:

imize P(x).
maximize (x) (12)
The gradient of P(x) is
) 2N 1 1
VP(x) = c\/2ph; | 1 — = — 13
09 = evah (1= e e ) (1)

= ;\/%HT {1 —0 (C\/Tp (Hx — qup)) _
o (c\/% (Hx — qIOW)) } (14)

where g"? = [¢;",...,gon]T and qov = [¢°%, ..., awT.

Thus, an iterative gradient decent method for solving (12) can
be written as

x = x4 o, vP(x1), (15)

where «y is the step size of layer /.

In order to optimize the step sizes {cy}, we use the deep
unfolding technique [25] to unfold each iteration in (15) as
a layer of a deep neural network. The overall structure of
the proposed FBMNet is illustrated in Fig. 2, where there
are L layers and each layer takes a vector of 2/ elements
as the input and generates an output vector of the same
size. The specific structure for each layer ¢ of FBMNet is
illustrated in Fig. 3. It can be seen that the proposed layer
structure in Fig. 3 is different from that of conventional DNNS,
since it exploits the specific structure of the reformulated ML
detection problem. In particular, each layer of a conventional
DNN often contains a weight matrix and a bias vector to be
trained. However, due to the structure of the reformulated ML
detection problem, each layer of the proposed FBMNet has
two weight matrices H and H”, and two bias vectors q'P
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Fig. 4: Specific structure of layer ¢ of OBMNet. The weight matrices are defined by the channel and the received signal. There is no bias

vector.

and q'°V. These weight matrices and bias vectors are defined
by the channel and the received signal, respectively. Thus, they
do not need to be trained. The trainable parameters in FBMNet
are the L step sizes {aq,...,ar} and a parameter /3, which
acts as a scaling factor for the Sigmoid function. It should be
noted that the coefficient cy/2p is omitted in the proposed layer
structure of FBMNet since it is a constant through all layers
of the network. The trainable parameters take over the role of
this coefficient. Our experiments have shown that the omission
of ¢y/2p not only helps improve the detection performance but
also helps stabilize the convergence during training.

Since H € R2V*2K  the learning process for each layer
can be interpreted as first up-converting the signal x(*~) from
dimension 2K to dimension 2N using the weight matrix H to
obtain s~ = Hx“~1), then applying nonlinear activation
functions before down-converting the signal back to dimension
2K using the weight matrix H”. The activation function in
FBMNet is the Sigmoid function, which is also widely used
in conventional DNNs. Note that the use of the Sigmoid
activation function in FBMNet is not arbitrary but results from
the use of the approximation in (8) and the structure of the
reformulated ML detection problem. The objective function
for training FBMNet is [|x(*) — x||2, where x is the target
signal, i.e., the transmitted signal.

B. OBMNet Detector

In this section, we propose OBMNet for one-bit massive
MIMO systems. For the special case of 1-bit ADCs, the system
model can be written as

y = sign(Hx + z) (16)

where sign(-) represents the 1-bit ADC with sign(r) = +1 if
r > 0 and sign(r) = —1 if » < 0. The ML detection problem
of (16) is given by [6]

2N
Xy = arg max Z log ®(+/2py;h! %),

xeME i=1

7)

where h? is the i-th row of the channel matrix H. Let G =
[g1,...,gn]T = diag(y1,...,y2n)H and using the same
approximation in (8), the ML detection problem (17) can be
reformulated as

2N
Xy = arg min Z log (1 + e_c\/%g?x) .
XEMK 1

(18)

It is interesting to note that log(1 + €') is referred to as the
SoftPlus activation function in the machine learning literature.
Hence, the reformulated ML detection problem in (18) can be
interpreted as a minimization problem whose objective is a
sum of SoftPlus activation functions.

Let Pibit (x) be the objective function of (18). The gradient
of Pipit(x) is

2N

5 Z —CcV2p8i

Vplbit (X) = 1 C\/ﬁgrx
-1 Lte ‘

= —C@GTJ( - C\/%GX).

An iterative gradient decent method for solving (18) can also
be written as

x = x=D 0, VP (x71).

19)

(20)

Our proposed OBMNet approach for 1-bit massive MIMO
systems uses the same unfolding approach as FBMNet. The
overall structure of OBMNet is similar to that of FBMNet as
illustrated in Fig. 2. The specific layer structure of OBMNet
given in Fig. 4 is however simpler than the layer structure
of FBMNet. In particular, each layer of OBMNet contains
two adaptive weight matrices, but no bias vectors. Information
about the received signal is integrated directly into the weight
matrices. The number of Sigmoid functions in each layer of
OBMNet is only half of that in each layer of FBMNet. The
set of trainable parameters in OBMNet is similar to that of
FBMNet, i.e., L step sizes {ay} and a scaling parameter [3.
The objective function for training OBMNet is [|Xx—x||?, where
x = (VK/|[xP|)xL), and x is the target signal. Unlike
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TABLE I: Computational complexity comparison of data detection
methods: Ty is the data block length, x(-) is a super-linear function.

Method Preprocessing Detection Stage
BZF [10] O(K2N) O(KNTy)
BMMSE [10], [11] | O(max{K N2, N2-373})

BWZF [11] O(KN) O(K2NTy)
SVM-based [23] - O(KNK(N)Ty)
OBMNet, FBMNet - O(KNLTy)

the objective function in FBMNet, the objective function of
OBMNet involves the normalization of the output of the last
layer. Our simulations have shown that this normalization step
significantly improves the performance of OBMNet.

C. Computational Complexity Analysis

The computational complexity of both OBMNet and
FBMNet for detecting each received signal vector is of order
O(KNL), and thus scales linearly with the number of users,
the number of receive antennas, and the number of network
layers. A computational complexity comparison with other
existing methods is given in Table I.

IV. NUMERICAL RESULTS

This section presents numerical results to show the perfor-
mance of the proposed OBMNet and FBMNet detectors. The
channel elements are assumed to be i.i.d. and drawn from
the normal distribution CN(0,1). The training process for
both OBMNet and FBMNet is first accomplished offline. A
training sample can be obtained by randomly generating a
channel matrix H, a transmitted signal x, and a noise vector
z. The channel matrix H and the received signal y are used
to define the weight matrices in OBMNet, and the weight
matrices and the bias vectors in FBMNet. The transmitted
signal x is used as the target. After the offline training process,
the trained step sizes {ay} and the trained scaling parameter
[ are used for the online detection phase. Similar to DetNet
for unquantized MIMO detection [16], the proposed OBMNet
and FBMNet networks do not need to be retrained for a new
channel realization H. We use TensorFlow [26] and the Adam
optimizer [27] with a learning rate of 10~2. The size of each
training batch is set to 1000. The input signal is set to xy = 0.

First, we compare the performance of the original ML
detection approaches (7) and (17) with the reformulated ML
detection approaches (11) and (18). The BER performance is
calculated via an exhaustive search for the optimal solutions
and is shown in Fig. 5. It can be clearly seen that the
reformulated ML detection problems attain nearly identical
performance to the original ML detection problems. It is also
observed that there is a significant performance improvement
as the ADC resolution increases from 1-bit to 2-bits.

Fig. 6 provides a performance comparison between the
proposed OBMNet detector and the existing detection meth-
ods BMMSE and BZF in [10], and the SVM-based method
in [23]. The performance of OSD is comparable to that of the

—0O— Original ML
—+— Reformulated ML | |

b=1,2,3 bits

-10 -5 0 5 10 15 20 25 30
SNR in dB

Fig. 5: Performance comparison between the original ML and the
reformulated ML detection problems.
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Fig. 6: Performance comparison between the proposed OBMNet
detector and existing methods. The number of layers L in OBMNet is
set to be 10 and 15 for the case of QPSK and 16-QAM, respectively.

SVM-based approach but with a much higher computational
complexity. Since the SVM-based method also outperforms
other prior methods, we use it as a benchmark for OBMNet.
The results in Fig. 6 show that OBMNet and the SVM-based
method outperform the Bussgang-based linear receivers. At
high SNRs, the BER floor of OBMNet is slightly lower than
that of the SVM-based method. The complexity of the SVM-
based method is O(K Nk(N)), where x(N) is a super-linear
function of N [28]. Hence, OBMNet has lower complexity
compared to the SVM-based method.

Fig. 7 and Fig. 8 compare the proposed FBMNet detector
with two recent detection methods referred to as BMMSE
and BWZF [11]. The results in Fig. 7 and Fig. 8 show that
FBMNet significantly outperforms BWZF, especially with a
high-dimensional constellation like 16-QAM.

V. CONCLUSION

In this paper, we have proposed the novel, efficient, and
low-complexity DNN-based detectors OBMNet and FBMNet
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Fig. 7: Performance comparison with QPSK and N = 32.
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Fig. 8: Performance comparison with 16-QAM and N = 128.

for one-bit and few-bit massive MIMO systems, respectively.
These proposed DNN-based detectors are model-driven and

base

d on reformulated ML detection problems. The layered

structure of OBMNet and FBMNet is simple, unique, and
adaptive to the CSI and the received signals. Numerical results
show that the proposed networks significantly outperform
existing detection approaches.
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