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1. Introduction

In this work, we summarize the main features of pfm-cracks,
our open-source advanced phase-field fracture framework originally
developed in [1] and further extended in [2]. Since 2015, pfm-cracks
has been used and further extended in mainly five groups in which the
authors and close collaborators have worked: Clemson University, UT
Austin, Florida State University, Radon Institute for Computational and
Applied Mathematics Linz, and Leibniz University Hannover.

The code is hosted at https://github.com/tjhei/cracks and is based
on the finite element library deal.Il [3,4]. The main features are:

1. Dimension-independent program allowing for 2D and 3D spatial
problems [1,5].

2. Quasi-monolithic formulation for a coupled two-component sys-
tem of displacements and a phase-field indicator variable [1].

3. An extrapolation technique to enforce a convex energy formula-
tion [1]; algorithms for improving the temporal accuracy due to
the extrapolation-time-lag are proposed in [6][Chapter 7].

4. A robust and efficient semi-smooth Newton algorithm [1].

. Adaptive predictor—corrector mesh refinement [1].

6. High performance and parallel implementation demonstrated on
up to 2048 cores and 100 million degrees of freedom [2].

9]

The purpose of these developments is to meet the need of today’s
interest in a robust, efficient, and accurate framework for computing
challenging fracture propagation problems using phase-field modeling.
Indeed, a simple Google scholar search ‘phase-field’ reveals 247,000
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Fig. 1. Illustration of the predictor—corrector mesh refinement algorithm: (1) Advance in time, crack leaves fine mesh (cells violating the refinement condition are marked in
purple). (2) Refine and go back in time (interpolate old solution). (3) Advance in time again on new mesh. Repeat until mesh does not change anymore. Refinement is triggered
for ¢ < C =0.2 (green contour line) here. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Source: This figure is a modified version from [1] used with permission from Elsevier.

entries and ‘phase-field fracture’ yields 23,700 entries by end of Oc-
tober 2020. Phase-field modeling is used for approximating interfaces
in multiphase flow, solidification problems, microstructure evolutions,
damage and fracture propagation. Therefore, this code may be adapted
to address problems other than fracture mechanics.

In the following, we briefly describe the physical system and the
principal algorithms and give some illustrative examples. After that,
we outline the impact of this work to date.

2. High-level functionality and purpose of pfm-cracks
2.1. Basic mathematical model

Let B be a domain with the boundary 0B := dQyp U 0Qpzy.
The unknown solution variables are: vector-valued displacements u :=
u(x,t) : Bx(0,T) — R?, where d is the spatial dimension; a smoothed
scalar-valued indicator phase-field function ¢ := @(x,7) : Bx(0,T) —
[0, 1]. The latter one describes the crack path in a smeared fashion.
Specifically: ¢ = 0 denotes the crack region; ¢ = 1 characterizes the
unbroken material; and 0 < ¢ < 1 are intermediate values constituting
a smooth transition zone dependent on the regularization parameter
£>0.

We impose 9,¢ < 0 to achieve crack irreversibility (the crack cannot
heal). The prototype problem reads as follows. Find a displacement
function # : B X (0,T) — R? and a phase-field indicator function
@ : Bx(0,T)— [0,1], such that

=V (g@ow) = f in Bx(0,T), (€8]

(1 =x)po(u) : e(u) —edp — %(1 —@)<0 in Bx(0,T), 2

0,9 <0 in Bx(0,7T), 3)

[(1 — K)po) © e(u) — eAp — é(l - (p)] 0,¢=0 in Bx(0,T), @

where ¢, k are small positive phase-field regularization parameters, and
the linear strain e(u) = %(Vu + VuT) and the stress tensor o(u) =
2ue(u) + Atr(e(u))I, where I is the unit second-order tensor, and u, A
the Lamé coefficients.

This system is complemented by the following boundary and initial
conditions:

u(x,t) = up(x,t) ondQypx(0,7),

@*Vu-n=0 on 02y X (0,7),
£0,0 =0 on B x (0,T),
@(x,0) = @ on B x {0},

with an initial fracture ¢,.

2.2. Pressurized fractures and stress splitting

In the previous system, we have not shown a stress-splitting of o(u)
according to [7,8], which distinguishes fracture propagation according
to tensile and compressive forces. Moreover, a given pressure p
Q2 x(0,T) —» R can be added according to model developed in [9,10].
Details of these modifications and algorithmic realizations can be found
in our original paper [1].
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time step 70

Fig. 2. Illustrative Examples from left to right, top to bottom (name to run the example in parenthesis): Multiple cracks in a heterogeneous medium (hetero), Multiple cracks
in a homogeneous medium (homo), Shear test (miehe_shear), 3D test with two fractures (see also Fig. 3), 3D Sneddon test (sneddon_3d), Tension test (niehe_tension),
Three-point bending test (threepoint), Coin-shaped pressurized crack in 2d (sneddon_2d).

2.3. Discretization, solution algorithms, and parallel framework

To solve the previous system, we first derive a weak formula-
tion and then apply Galerkin finite elements in space on quadrilater-
als/hexahedra, respectively. This coupled variational inequality system
is then treated in a monolithic fashion with a semi-smooth New-
ton method newton_active_set () that was developed for phase-
field fracture in [1] and combines two Newton methods: solving the
nonlinear problem and treating the irreversibility constraint.

The code is fully parallelized using MPI by building on the deal.II fi-
nite element library [4]. The adaptive meshes are handled by p4est [11]
and the linear algebra is built on Trilinos [12]. This parallel software
framework is discussed in [13]. From our original work [1], we ex-
tended the active set strategy with a method to detect and constrain
alternating active set indices to avoid cycles of the method similar
to [14].

2.4. Adaptive mesh refinement

The code supports various refinement strategies in the function
refine_mesh (). The most prominent is a predictor—corrector strat-
egy as displayed in Fig. 1 to enforce sufficient refinement in the crack
region to resolve the crack. Combinations with other strategies such as
a jump estimator for the displacements are available as well.

2.5. Evaluation of quantities of interest and benchmarking

The solution can be postprocessed by visualizing with the standard
VTK (visualization toolkit) format. Moreover, various quantities of
interest are evaluated such as point value evaluations, stress com-
putations over boundaries, crack opening displacements, total crack
volumes, and elastic/crack energies. The code was used for the Sneddon
2D benchmark [15] and Sneddon 2D/3D [2] in which several of these
quantities of interest are computed.
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Fig. 3. Heterogeneous 3d example with two initial cracks growing based on an increasing applied pressure in the crack region. Top: solutions at different time steps. Isosurface
of ¢ = 0.5 in white. Blue colors denote the local material property. Purple lines show the computational mesh on a slice in the middle of the domain. Bottom: Statistics (number
of linear and nonlinear iterations, number of degrees of freedom and cells) by computational step. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

2.6. Illustrative examples

The software includes a collection of test problems and benchmarks;
see Fig. 2 for a gallery of some of the numerical solutions. In addition,
we include a new computation for a heterogeneous three dimensional
pressurized fracture. Here, two small initial cracks (for that, see Fig. 2)
have an increasing pressure applied over time, so the cracks grow until
they finally merge. We plot various statistics and the solutions in Fig. 3.

3. Impact

Since its first publication on github accompanied to the paper [1],
pfm-cracks allowed us to address new scientific questions in both
engineering and numerical mathematics. According to Google scholar,
our software is cited by 180 documents; scopus: 126 citations; math-
scinet 55 citations. All indices were measured in October 2020. More-
over, Google scholar reports (referencing our first work [1]) that the
code is known in the United States, Europe, and Asia.

3.1. Research impact

The code is currently used and further developed at Center for
Subsurface Modeling UT Austin [16], Florida State University [16-
18], RICAM Linz [19,20], China University of Petroleum Beijing [21],
Clemson University [1,2,22], and Leibniz University Hannover.

Our own publications using this code (in part) or direct extensions
include our own key publications [1,2]. Moreover, the code plays an
important role in the recent monograph [6].

In addition, the further impact can be summarized as follows.
A crucial point in phase-field modeling is the relationship between
the model regularization parameters and the discretization. With our
code very fine ¢ studies and crack-oriented mesh refinement could
be carried out by us as shown in [1,2,5,16,17,23,24]. Extensions to
large-scale 3D simulations were done in [2,5,25] and comparison with
matrix-free multigrid solutions were undertaken in [19,20]. Challeng-
ing engineering applications were addressed in [5,16,18,25-30]. New
research questions have been enabled for fracture in incompressible
solids [31] (doctoral researcher Katrin Mang in collaboration with
the authors), and efficient multiphysics phase-field fracture simula-
tions [5,16,29]. Potential future work is in experimental verifications
and validations (very little work known to date), for instance several ex-
amples in elasticity are provided in [32] from which we have computed
some in [1]. Finally, the predictor—corrector methodology inspired an
adaptive non-intrusive global-local approach developed in [33,34].

3.2. Educational impact

We decided to keep the same structure as a typical deal.Il tutorial
step. Therefore, it is simple to learn as we have seen from the work
by current and past Ph.D. students Katrin Mang, Daniel Jodlbauer,
Nima Noii, and Meng Fan. Consequently, with basic training in deal.II,
pfm-cracks is relatively easy to use to address challenging phase-
field fracture applications. The code has also been used in education
in the lecture “Numerical methods for contact problems: application to
variational phase-field fracture propagation” (German winter semester
2018/2019, see also the lecture notes [35]).
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