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A B S T R A C T

In this paper, geometrically nonlinear analysis of functionally graded beams using the dual mesh finite domain
method (DMFDM) and the finite element method is presented. The DMFDM makes use of a primal mesh of
finite elements and associated approximation for the variables of the formulation and a dual mesh of control
domains, which does not overlap the primal mesh, for the satisfaction of the governing equations. The dual
variables can be postcomputed uniquely and accurately at the control domain interfaces. The method is used
to obtain nonlinear (due to the von Kármán nonlinear strains) bending solutions of straight, through-thickness
functionally graded beams using the Euler–Bernoulli and the Timoshenko beam theories. Mixed models, which
contain displacements and the bending moment as degrees of freedom, and displacement models are developed.
Numerical results of linear and nonlinear analyses are presented to illustrate the methodology and a comparison
of the generalized displacements and bending moments obtained with the DMFDM and FEM models while
bringing out certain interesting features of functionally graded beams.
. Introduction

.1. Background

Numerical simulation of physical phenomena has dominated en-
ineering research and practice for the last several decades. Com-
utational engineering science — a phrase that is used for numer-
cal simulations of a variety of physical systems, is responsible for
he remarkable advances in transportation, communication, materials
rocessing, manufacturing, medicine, and biotechnology. The finite
lement method (FEM), a compute-oriented technique of solving dif-
erential equations [1,2], has emerged as a versatile and powerful
nalysis tool, and today it is the most commonly used computational
latform in a variety of industries. Despite its popularity in solid and
tructural mechanics field since early 1970’s, the method has not been
ble to compete with the finite volume method (FVM) in computa-
ional fluid dynamics applications [3–5]. This is largely due to two
rawbacks of the FEM. First, the unique feature of the FEM, namely
epresenting a system as a collection of connected subsystems, often
esults in discontinuous representation of the secondary (force-like)
ariables. Second, the weak-form Galerkin formulations, which satisfy
he governing differential equations in a weighted-integral sense, has
he tendency to smoothen the solution and thereby predicts a diffuse
olution.

In the FVM the governing differential equations are satisfied an
ntegral (not a weighted-integral) to derive the discretized equations.

∗ Corresponding author.
E-mail address: jnreddy@tamu.edu (J.N. Reddy).

The algebraic equations derived using a typical control volume involve
mesh point values from the neighboring control volumes (a notable
difference from FEM, where discrete equations are solely in terms of
the element degrees of freedom), and thereby naturally connecting
the control volumes without discontinuity of the variable or its dual.
However, the FVM also suffers from two drawbacks. First, there is no
explicit representation of the solution variables, making integration of
the expressions involving the variables arbitrarily evaluated. Second,
there is no unique methodology exists for the imposition of gradient
boundary conditions. The major advantage of the FVM is that they
satisfy the global form of the governing equations exactly.

Noting the limitations of the two most popular numerical methods,
Reddy [6] introduced a numerical approach termed the dual mesh finite
domain method (DMFDM) that uses the best features of the FEM and
FVM. In the DMFDM, the domain is represented with a mesh of finite
elements and a dual mesh is superimposed on the primal mesh such
that the nodes of the primal mesh are at the center of the dual mesh
of finite domains, except for the nodes on the boundary. Then the
governing equation is required to be satisfied in an integral sense over
the finite (control) domain. The second-order terms in the differential
equation are integrated-by-parts and expressed as dual variables on the
interfaces of the dual mesh. When the interfaces fall on the boundary,
either the dual variables or their counterparts (i.e., primary variables)
are known. The approach, by very construction of the discretization
procedure, does not involve isolating a finite element and satisfying
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the governing equations in weak sense (i.e., weighted-integral sense)
over the element and assembling element equations to obtain the
global equations. Instead, the DMFDM results directly in a set of global
equations in terms of the nodal values of the primary variables. Thus,
the DMFDM brings the best features of the FEM and the FVM and
makes use of the duality concept to implement physical boundary conditions.
The method is recently applied to single-variable linear differential
equations in one and two dimensions in [6] and to linear bending of
beams in [7].

1.2. The present study

In this paper, the DMFDM is extended to nonlinear differential
equations with multiple variables. In particular, we consider nonlinear
bending of functionally graded beams using the Euler–Bernoulli beam
theory (EBT) and the Timoshenko beam theory (TBT). The governing
equations are reformulated as second-order equations to facilitate the
application of the DMFDM. This naturally requires, in the case of the
EBT, to reformulate the fourth-order differential equation in terms
of the deflection and bending moment. Thus, mixed models of the
nonlinear equations of the FGM beams according to the EBT as well as
TBT are developed, and numerical examples are presented to illustrate
the application of the DMFDM to nonlinear problems. Numerical results
obtained with the DMFDM models are compared with those obtained
using the finite element models (displacement as well as mixed) to
assess the relative accuracy of both the primary variables (generalized
displacements) and the secondary variables (generalized forces).

Following this introduction, a review of the governing equations
of the Euler–Bernoulli and Timoshenko beam theories (see Reddy [8]
and Reddy and Srinivasa [9]) as applied to nonlinear bending of
functionally graded beams is presented in Section 2. Here two sets
of equations, one in terms of the generalized displacements and the
other in terms of the generalized displacements and bending moment
are developed as they are not readily available in the literature (see
Reddy and Nampally [7] for the linear case). The dual mesh finite
domain discretizations of the three models, namely, mixed model of
the EBT, mixed model of the TBT, and the displacement model of the
TBT are presented in Section 3. Then, in Section 4, numerical results
for the generalized displacements and generalized forces are presented
for various boundary conditions and loads. Finally, some remarks about
the DMFDM and its extensions are outlined in Section 5.

2. A review of beam theories

2.1. Functionally graded beams

Here we consider beams in which the two different material are
combined in a predetermined fashion to vary through the beam thick-
ness (only), while they remain the same along the length of the beam
(see, for example, [10–13]). The basic idea of gradation of material
properties through the thickness is to construct beam structures that
exhibit desired structural properties (e.g., thermal resistance, fracture
toughness, etc.) while avoiding abrupt change of material properties
(like in the layered beams), which produce residual stresses and stress
concentrations. Also, if two dissimilar materials are bonded together,
there is a very high chance that debonding will occur at the interface.
These problems can be resolved by gradually varying the volume
fraction of the constituents selected rather than abruptly changing them
over an interface. The gradual variation results in a very efficient
material tailored to suit the functionality of the structure.

A two-constituent functionally graded through-thickness materials
are characterized by a power-law variation of modulus of elasticity
while the Poisson ratio is kept constant. If the 𝑥-axis is taken along
the length of the beam and the 𝑧-coordinate is taken along the thick-

ness (the height) of the beam, the modulus 𝐸(𝑧) of an FGM beam is

2

Fig. 1. Geometry of a through-thickness functionally graded beam.

assumed to be represented by the simple power-law as (see Praveen
and Reddy [11] and Reddy [14])

𝐸(𝑧) =
(

𝐸1 − 𝐸2
)

𝑓 (𝑧) + 𝐸2, 𝑓 (𝑧) =
(1
2
+ 𝑧
ℎ

)𝑛
(1)

where 𝐸1 and 𝐸2 are the material properties of material 1 (at the top)
and material 2 (at the bottom face), respectively (see 1), and 𝑛 is the
power-law index. Note that when 𝑛 = 0, we obtain the single-material
structure (with modulus 𝐸1).

2.2. The Euler–Bernoulli beam theory (EBT)

The equations of equilibrium of the EBT, accounting for the von
Kármán nonlinear strain to account for moderate rotations, are given
by (see Reddy [8]):

−
𝑑𝑁𝑥𝑥
𝑑𝑥

− 𝑓 = 0 (2a)

𝑑2𝑀𝑥𝑥

𝑑𝑥2
− 𝑑
𝑑𝑥

(

𝑁𝑥𝑥
𝑑𝑤
𝑑𝑥

)

+ 𝑐𝑓𝑤 − 𝑞 = 0 (2b)

where 𝑓 (𝑥) and 𝑞(𝑥) axial and transverse distributed loads, respectively,
n the beam, 𝑐𝑓 is the modulus of the foundation on which the beam
ests, and 𝑁𝑥𝑥 and 𝑀𝑥𝑥 are the stress resultants defined by (and

expressed in terms of the generalized displacements 𝑢 and 𝑤, with
𝜃𝑥 = −𝑑𝑤∕𝑑𝑥):

𝑁𝑥𝑥 = ∫𝐴
𝜎𝑥𝑥 𝑑𝐴 = 𝐴𝑥𝑥𝜀

(0)
𝑥𝑥 + 𝐵𝑥𝑥𝜀

(1)
𝑥𝑥 (3a)

𝑥𝑥 = ∫𝐴
𝑧𝜎𝑥𝑥 𝑑𝐴 = 𝐵𝑥𝑥𝜀

(0)
𝑥𝑥 +𝐷𝑥𝑥𝜀

(1)
𝑥𝑥 (3b)

ere 𝜀(0)𝑥𝑥 and 𝜀(1)𝑥𝑥 denote the membrane and bending strains,

(0)
𝑥𝑥 (𝑥) =

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2
, 𝜀(1)𝑥𝑥 (𝑥) = −𝑑

2𝑤
𝑑𝑥2

(4)

and 𝐴𝑥𝑥, 𝐵𝑥𝑥, and 𝐷𝑥𝑥 are the extensional, extensional-bending, and
bending stiffness coefficients

(𝐴𝑥𝑥, 𝐵𝑥𝑥, 𝐷𝑥𝑥) = ∫𝐴
(1, 𝑧, 𝑧2)𝐸(𝑧) 𝑑𝐴 (5)

The form of the associated duality pairs are: (𝑢,𝑁𝑥𝑥), (𝑤, 𝑉𝑥), and
𝜃𝑥,𝑀𝑥𝑥), where

𝑥 ≡
𝑑𝑀𝑥𝑥
𝑑𝑥

+𝑁𝑥𝑥
𝑑𝑤
𝑑𝑥

(6)

We remark that there are two sources of coupling between the axial
displacement 𝑢 and the transverse displacement 𝑤 in FGM beams: first,
the coupling is due to the extensional-bending coefficient 𝐵𝑥𝑥, and it
is independent of the von Kármán nonlinear strain term; second, the
coupling is due to the von Kármán nonlinearity, which is independent
of the coupling coefficient 𝐵𝑥𝑥. Of course, the coefficient 𝐵𝑥𝑥 has a
stronger coupling in the presence of the von Kármán nonlinearity.

Eq. (2b), when expressed in terms of the displacement 𝑤, results
in a fourth-order differential equation, which is not suitable for the
application of the DMFDM. Therefore, we reformulate the governing
equations as second-order differential equations in terms of (𝑢,𝑤,𝑀 ).
𝑥𝑥
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Substitution of Eqs. (3a) and (3b) into Eqs. (2a) and (2b) gives the
following governing equations in terms of the displacements:

− 𝑑
𝑑𝑥

{

𝐴̄𝑥𝑥

[

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2]

+ 𝐵̄𝑥𝑥𝑀𝑥𝑥

}

= 𝑓

(7a)

𝑑2𝑀𝑥𝑥

𝑑𝑥2
− 𝑑
𝑑𝑥

{

𝐴̄𝑥𝑥
𝑑𝑤
𝑑𝑥

[

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2]

+ 𝐵̄𝑥𝑥
𝑑𝑤
𝑑𝑥

𝑀𝑥𝑥

}

+ 𝑐𝑓𝑤 = 𝑞

(7b)

−𝑑
2𝑤
𝑑𝑥2

−
𝑀𝑥𝑥
𝐷𝑥𝑥

+ 𝐵̄𝑥𝑥

[

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2]

= 0

(7c)

where

𝐷∗
𝑥𝑥 ≡ 𝐷𝑥𝑥𝐴𝑥𝑥 − 𝐵2

𝑥𝑥, 𝐴̄𝑥𝑥 ≡
𝐷∗
𝑥𝑥

𝐷𝑥𝑥
, 𝐵̄𝑥𝑥 ≡

𝐵𝑥𝑥
𝐷𝑥𝑥

(8)

e note that, for the nonlinear FGM beams, the axial force 𝑁𝑥𝑥 is
expressed in terms of the displacements (𝑢,𝑤) and moment (𝑀𝑥𝑥) as

𝑁𝑥𝑥 = 𝐴̄𝑥𝑥

[

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2]

+ 𝐵̄𝑥𝑥𝑀𝑥𝑥 (9)

2.3. The Timoshenko beam theory (TBT)

The equations of equilibrium of the Timoshenko beam theory are

−
𝑑𝑁𝑥𝑥
𝑑𝑥

− 𝑓 = 0 (10a)
𝑑𝑄𝑥
𝑑𝑥

− 𝑑
𝑑𝑥

(

𝑁𝑥𝑥
𝑑𝑤
𝑑𝑥

)

+ 𝑐𝑓𝑤 − 𝑞 = 0 (10b)

−
𝑑𝑀𝑥𝑥
𝑑𝑥

+𝑄𝑥 = 0 (10c)

he stress resultants (𝑁𝑥𝑥,𝑀𝑥𝑥, 𝑄𝑥) in the TBT can be expressed in
erms of the displacements as

𝑁𝑥𝑥 = 𝐴𝑥𝑥

[

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2]

+ 𝐵𝑥𝑥
𝑑𝜙𝑥
𝑑𝑥

(11a)

𝑥𝑥 = 𝐵𝑥𝑥

[

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2]

+𝐷𝑥𝑥
𝑑𝜙𝑥
𝑑𝑥

(11b)

𝑄𝑥 = 𝐾𝑠 ∫𝐴
𝜎𝑥𝑧 𝑑𝐴 = 𝑆𝑥𝑧

(

𝜙𝑥 +
𝑑𝑤
𝑑𝑥

)

(11c)

here 𝜙𝑥 denotes the rotation of the cross section about the 𝑦-axis, 𝐾𝑠
he shear correction factor, and 𝑆𝑥𝑧 is the shear stiffness coefficient

𝑥𝑧 =
𝐾𝑠

2(1 + 𝜈) ∫𝐴
𝐸(𝑧) 𝑑𝐴 (12)

The governing equations of the TBT are second order and can be
discretized using the DMFDM. To have a mixed model for comparison
with its EBT counterpart, we shall also develop equations suitable for
the mixed formulation of the TBT in terms of (𝑢,𝑤,𝑀 ) (i.e., eliminate
𝑥𝑥

3

Fig. 3. Control domain associated with an interior node 𝐼 . We note that each node has
three unknowns and the control domain connects nine nodal values (𝑈𝐼−1 ,𝑊𝐼−1 ,𝑀𝐼−1),
𝑈𝐼 ,𝑊𝐼 ,𝑀𝐼 ), and (𝑈𝐼+1 ,𝑊𝐼+1 ,𝑀𝐼+1) through the discretization of three governing
quations.

𝑥). The resulting equations are

− 𝑑
𝑑𝑥

{

𝐴̄𝑥𝑥

[

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2]

+ 𝐵̄𝑥𝑥𝑀𝑥𝑥

}

= 𝑓

(13a)

−
𝑑2𝑀𝑥𝑥

𝑑𝑥2
− 𝑑
𝑑𝑥

{

𝐴̄𝑥𝑥
𝑑𝑤
𝑑𝑥

[

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2]

+ 𝐵̄𝑥𝑥
𝑑𝑤
𝑑𝑥

𝑀𝑥𝑥

}

+ 𝑐𝑓𝑤 = 𝑞

(13b)

− 𝑑
𝑑𝑥

[

𝑑𝑤
𝑑𝑥

− 1
𝑆𝑥𝑧

𝑑𝑀𝑥𝑥
𝑑𝑥

]

+ 𝐵̄𝑥𝑥

[

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2]

− 1
𝐷𝑥𝑥

𝑀𝑥𝑥 = 0

(13c)

where the effective rotation 𝜙̂𝑥 is

𝜙̂𝑥 = −𝑑𝑤
𝑑𝑥

+ 1
𝑆𝑥𝑧

𝑑𝑀𝑥𝑥
𝑑𝑥

(14)

The displacement finite element models of the EBT and TBT are
available in the book by Reddy [2]. The mixed models of the EBT and
TBT for the FGM beams are not readily available; therefore they are
listed in Appendix.

3. Discretized equations using the DMFDM

3.1. The mixed Euler–Bernoulli beam model

The DMFDM is best suited to discretize second-order equations.
Therefore, we can only consider the mixed model of the EBT using
Eqs. (7a)–(7c). The domain 𝛺 = (0, 𝐿) divided into a set of 𝑁 finite
lements (can be a nonuniform mesh) separated by nodes, as shown
n Fig. 2, with each node having its own finite domain (a dual mesh)
round it. The first and last nodes have half control domains. The nodes
nd elements are numbered sequentially from the left to the right. We
onsider a typical interior node 𝐼 and the control domain associated

with that node (see Fig. 3) to discretize the equations.
In order to derive the discretized equations, we write the integral

statements of Eqs. (7a)–(7c) over the control domain and carry out
integration-by-parts of expressions which contain the second differen-
tial; that is, unlike in a weighted-residual method (or weak form), we
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Fig. 4. A typical control domain for the mixed model of the EBT.

eaken the differentiability by carrying out the integration-by-parts.
or example, considering Eq. (7a), we obtain

= ∫

𝐵

𝐴

{

− 𝑑
𝑑𝑥

[

𝐴̄𝑥𝑥

(

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2
)

+ 𝐵̄𝑥𝑥𝑀𝑥𝑥

]

− 𝑓

}

𝑑𝑥

=
[

𝐴̄𝑥𝑥

(

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2
)

+ 𝐵̄𝑥𝑥𝑀𝑥𝑥

]

𝑥(𝐼)𝑎

−
[

𝐴̄𝑥𝑥

(

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2
)

+ 𝐵̄𝑥𝑥𝑀𝑥𝑥

]

𝑥(𝐼)𝑏

− ∫

𝑥(𝐼)𝑏

𝑥(𝐼)𝑎
𝑓 𝑑𝑥 (15)

r

= −𝑁 (𝐼)
1 −𝑁 (𝐼)

2 − ∫

𝑥(𝐼)𝑏

𝑥(𝐼)𝑎
𝑓 𝑑𝑥 (16a)

here

(𝐼)
1 ≡ −

[

𝐴̄𝑥𝑥

(

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2)

+ 𝐵̄𝑥𝑥𝑀𝑥𝑥

]

𝑥(𝐼)𝑎

(16b)

(𝐼)
2 ≡

[

𝐴̄𝑥𝑥

(

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2)

+ 𝐵̄𝑥𝑥𝑀𝑥𝑥

]

𝑥(𝐼)𝑏

(16c)

ere points A and B refer to the left and right end locations of the
ontrol domain (associated with node 𝐼), which have the coordinates
(𝐼)
𝑎 and 𝑥(𝐼)𝑏 , respectively (note that point A is in element 𝛺(𝐼−1) and
oint B is in element 𝛺(𝐼); see Fig. 3); 𝑁 (𝐼)

1 and 𝑁 (𝐼)
2 denote the

econdary variables (in the present case, they are the axial forces) at
he left and right interfaces of the control domain centered at node 𝐼
see Fig. 4 for the nodal degrees of freedom). The minus sign in the
efinition of 𝑁 (𝐼)

1 indicates that it is a compressive force; both 𝑁 (𝐼)
1

nd 𝑁 (𝐼)
2 are axial forces in the positive 𝑥 direction.

Similarly, Eq. (7b) takes the form

= −𝑉 (𝐼)
1 − 𝑉 (𝐼)

2 + ∫

𝑥(𝐼)𝑏

𝑥(𝐼)𝑎
(𝑐𝑓𝑤 − 𝑞) 𝑑𝑥 (17a)

here 𝑉 (𝐼)
1 and 𝑉 (𝐼)

2 denote the secondary variables (shear forces acting
pward positive) at the left and right interfaces of the control domain
entered at node 𝐼 ,
(𝐼)
1 ≡ −

[𝑑𝑀
𝑑𝑥

+𝑁𝑥𝑥
𝑑𝑤
𝑑𝑥

]

𝑥(𝐼)𝑎
, 𝑉 (𝐼)

2 ≡
[𝑑𝑀
𝑑𝑥

+𝑁𝑥𝑥
𝑑𝑤
𝑑𝑥

]

𝑥(𝐼)𝑏
(17b)

nd 𝑁𝑥𝑥 is known in terms of the displacements (𝑢,𝑤) and bending
oment 𝑀𝑥𝑥 through Eq. (9).

The integral statement associated with Eq. (7c) is

= −𝛩(𝐼)
1 +𝛩(𝐼)

2 + ∫

𝑥(𝐼)𝑏

𝑥(𝐼)𝑎

[

− 1
𝐷𝑥𝑥

𝑀𝑥𝑥 + 𝐵̄𝑥𝑥

(

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2
)]

𝑑𝑥 (18a)

where 𝛩(𝐼)
1 and 𝛩(𝐼)

2 denote the secondary variables (rotations in coun-
terclockwise direction) at the left and right interfaces of the control
domain centered at node 𝐼 ,

𝛩(𝐼)
1 ≡

[

−𝑑𝑤
]

(𝐼) , 𝛩(𝐼)
2 ≡

[

−𝑑𝑤
]

(𝐼) (18b)

𝑑𝑥 𝑥𝑎 𝑑𝑥 𝑥𝑏

m

4

To complete the discretization, we invoke the finite element approx-
imations of (𝑢,𝑤,𝑀𝑥𝑥) over a typical finite element 𝛺(𝐼) = (𝑥𝐼 , 𝑥𝐼+1).

ere we use equal degree (Lagrange) interpolation of all three vari-
bles. For example, the finite element approximation of 𝑢(𝑥) over 𝛺(𝐼)

s

(𝑥̄) ≈ 𝑈𝐼𝜓
(𝐼)
1 (𝑥̄) + 𝑈𝐼+1𝜓

(𝐼)
2 (𝑥̄) (19)

here 𝑈𝐼 is the value of 𝑢 at node 𝐼 (i.e., 𝑈𝐼 ≈ 𝑢(𝑥𝐼 )) and 𝜓 (𝐼)
𝑖 (𝑥̄)

𝑖 = 1, 2) are linear finite element interpolation functions of element
(𝐼) for 𝐼 = 1, 2,… , 𝑁 written in terms of the local coordinate 𝑥̄ (𝑥̄ has

ts origin at the left node of each finite element; see Fig. 5):
(𝐼)
1 (𝑥̄) = 1 − 𝑥̄

ℎ𝐼
, 𝜓 (𝐼)

2 (𝑥) = 𝑥̄
ℎ𝐼

(20)

Hence, we can calculate the (𝑁 (𝐼)
1 , 𝑁 (𝐼)

2 ) in Eqs. (16b) and (16c),
(𝑉 (𝐼)

1 , 𝑉 (𝐼)
2 ) in Eq. (17b), and (𝛩(𝐼)

1 , 𝛩(𝐼)
2 ) in Eq. (18b) in terms of the

nodal values of (𝑢,𝑤,𝑀𝑥𝑥) using the interpolation of the type in
Eq. (19) for each of the dependent variable of the formulation, while
linearizing the nonlinear terms.

The linearization is a necessary to be able to solve the final algebraic
equations resulting from the application of a numerical method to dif-
ferential equations. The final algebraic equations (which are nonlinear
if the differential equations are nonlinear) obtained with the FEM, FVM,
or DMFDM has the form

𝐊(𝜟)𝚫 = 𝐅 (21)

where 𝐊 is the coefficient matrix (known in terms of 𝜟), 𝜟 is the column
vector of nodal unknowns, and F is the source vector (known). Eq. (21)
is solved using a successive approximation known as the direct iteration
method or the Picard iteration method. Suppose that we are at the end
of the 𝑟th iteration and seeking the (𝑟+1)st iteration solution. Then we
have

𝐊(𝜟𝑟)𝚫𝑟+1 = 𝐅 → 𝚫𝑟+1 = (𝐊𝑟)−1𝐅 (22)

here 𝐊𝑟 ≡ 𝐊(𝜟𝑟). The iteration is continued until the difference
etween two consecutive solutions (measured with a suitable measure)
s within a prescribed tolerance:

𝛿𝜟 ⋅ 𝛿𝜟
𝜟𝑟 ⋅ 𝜟𝑟

≤ 𝜖, 𝛿𝜟 ≡ 𝜟𝑟+1 − 𝜟𝑟 (23)

here 𝜖 denotes a preselected value of the error tolerance (say, 𝜖 =
0−3). In the beginning of the iteration, one must have a starting guess
ector 𝜟0; in the case of structural problems, we can take the initial
uess vector to be zero so that the first iteration solution is the linear
olution.

In the present case, the linearization amounts to calculating the
onlinear terms using the previous iteration solution. For example, we
an linearize (𝑑𝑤∕𝑑𝑥)2 and (𝑑𝑤∕𝑑𝑥)3 as

𝑑𝑤
𝑑𝑥

)2
≈
[𝑑𝑤
𝑑𝑥

]𝑟 𝑑𝑤
𝑑𝑥

;
(𝑑𝑤
𝑑𝑥

)3
≈
[

(𝑑𝑤
𝑑𝑥

)2]𝑟 𝑑𝑤
𝑑𝑥

where the term in the square bracket is evaluated using the known
solution from the 𝑟th iteration.
Discretization of Eq. (7a)

Returning to the DMFDM discretization of Eq. (16a), we first express
(𝑁 (𝐼)

1 , 𝑁 (𝐼)
2 ) in Eqs. (16b) and (16c) in terms of the nodal values of the

primary variables:

𝑁 (𝐼)
1 = −𝐴̄𝐼−1

𝑈𝐼 − 𝑈𝐼−1
ℎ𝐼−1

− 1
2
𝐴̄𝐼−1 𝛥𝑊 𝐼−1

𝑊𝐼 −𝑊𝐼−1

ℎ𝐼−1
− 𝐵̄𝐼−1

𝑀𝐼−1 +𝑀𝐼

2
(24a)

(𝐼)
2 = 𝐴̄𝐼

𝑈𝐼+1 − 𝑈𝐼
ℎ𝐼

+ 1
2
𝐴̄𝐼 𝛥𝑊 𝐼

𝑊𝐼+1 −𝑊𝐼

ℎ𝐼
+ 𝐵̄𝐼

𝑀𝐼 +𝑀𝐼+1

2
(24b)

where 𝐴̄𝐼−1 = 𝐴̄𝑥𝑥(𝑥
(𝐼)
𝑎 ) at the left interface and 𝐴̄𝐼 = 𝐴̄𝑥𝑥(𝑥

(𝐼)
𝑏 ) at the

ight interface of the finite domain centered around node 𝐼 . Similar
eaning applies to 𝐵̄ and 𝐵̄ ; 𝑊 and 𝑀 denote the nodal values
𝐼−1 𝐼 𝐼 𝐼
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of 𝑤 and 𝑀𝑥𝑥, respectively, at node 𝐼 , while 𝛥𝑊 𝐼 denotes the value of
𝑤∕𝑑𝑥 in element 𝛺(𝐼), based on the previous iteration solution.

Substituting the approximations (24a) and (24b) into Eq. (16a), we
btain (for 𝐼 = 2, 3,… , 𝑁)

−
𝐴̄𝐼−1
ℎ𝐼−1

𝑈𝐼−1 +
(

𝐴̄𝐼−1
ℎ𝐼−1

+
𝐴̄𝐼
ℎ𝐼

)

𝑈𝐼 −
𝐴̄𝐼
ℎ𝐼
𝑈𝐼+1

+ 0.5
[

−
𝐴̄𝐼−1𝛥𝑊 𝐼−1

ℎ𝐼−1
𝑊𝐼−1 +

(

𝐴̄𝐼−1𝛥𝑊 𝐼−1

ℎ𝐼−1
+
𝐴̄𝐼𝛥𝑊 𝐼

ℎ𝐼

)

𝑊𝐼 −
𝐴̄𝐼𝛥𝑊 𝐼

ℎ𝐼
𝑊𝐼+1

]

+ 0.5𝐵̄𝐼−1𝑀𝐼−1 + 0.5
(

𝐵̄𝐼−1 − 𝐵̄𝐼
)

𝑀𝐼 − 0.5𝐵̄𝐼𝑀𝐼+1 − 𝐹𝐼 = 0 (25)

where

𝐴̄𝐼−1 =
𝐷∗
𝑥𝑥

𝐷𝑥𝑥

|

|

|

|

|𝑥(𝐼)𝑎

, 𝐴̄𝐼 =
𝐷∗
𝑥𝑥

𝐷𝑥𝑥

|

|

|

|

|𝑥(𝐼)𝑏

, 𝐵̄𝐼−1 =
𝐵𝑥𝑥
𝐷𝑥𝑥

|

|

|

|

|𝑥(𝐼)𝑎

, 𝐵̄𝐼 =
𝐵𝑥𝑥
𝐷𝑥𝑥

|

|

|

|

|𝑥(𝐼)𝑏

𝑊 𝐼−1 =
𝑊̄𝐼 − 𝑊̄𝐼−1

ℎ𝐼−1
, 𝛥𝑊 𝐼 =

𝑊̄𝐼+1 − 𝑊̄𝐼
ℎ𝐼

, 𝐹𝐼 = ∫

𝑥(𝐼)𝑏

𝑥(𝐼)𝑎
𝑓 (𝑥) 𝑑𝑥 (26)

Here 𝑊̄𝐼 denotes the value of 𝑤 at node 𝐼 from the previous iteration
to solve the nonlinear algebraic equations. The integral of a function 𝑓
ver the control domain (𝑥(𝐼)𝑎 , 𝑥(𝐼)𝑏 ) can be evaluated using either exact
ntegration or numerical integration (e.g., one-third Simpson’s rule).

Next, we should obtain the discretized equation for the boundary
odes, node 1 and node 𝑁 + 1 (when there are 𝑁 linear elements in
he primal mesh). We note that at node 1, 𝑁 (1)

1 is the boundary axial
orce, which is known or its dual, 𝑈1, is known. Hence, we only evaluate
(1)
2 at ℎ1∕2. The discretized equations of the left boundary node is [see

ig. 6(a)]

= −𝑁 (1)
1 − 𝐴̄1

𝑈2 − 𝑈1

ℎ1
− 0.5𝐴̄1 𝛥𝑊 1

𝑊2 −𝑊1

ℎ1
− 𝐵̄1

𝑀2 +𝑀1

2
− ∫

0.5ℎ1

0
𝑓 𝑑𝑥

= −𝑁 (1)
1 +

𝐴̄1

ℎ1
𝑈1 −

𝐴̄1

ℎ1
𝑈2 + 0.5

𝐴̄1 𝛥𝑊 1

ℎ1
𝑊1 − 0.5

𝐴̄1 𝛥𝑊 1

ℎ1
𝑊2

− 0.5𝐵̄1𝑀1 − 0.5𝐵̄1𝑀2 − ∫

0.5ℎ1

0
𝑓 𝑑𝑥 (27)

Similarly, for the node on the right boundary [see Fig. 6(b)], we have

0 = −𝑁 (𝑁+1)
2 −

𝐴̄𝑁
ℎ𝑁

𝑈𝑁 +
𝐴̄𝑁
ℎ𝑁

𝑈𝑁+1 − 0.5
𝐴̄𝑁 𝛥𝑊 𝑁

ℎ𝑁
𝑊𝑁 + 0.5

𝐴̄𝑁 𝛥𝑊 𝑁

ℎ𝑁
𝑈𝑁+1

+ 0.5𝐵̄𝑁 𝑀𝑁 + 0.5𝐵̄𝑁 𝑀𝑁+1 − ∫

0.5ℎ𝑁

0
𝑓 𝑑𝑥̄ (28)

This completes the discretization of Eq. (7a).
Discretization of Eq. (7b)

The same procedure can be applied to Eq. (7b) to obtain the
discretized equations for the interior and boundary nodes. Discretized
values of (𝑉 (𝐼)

1 , 𝑉 (𝐼)
2 ) are

(𝐼) = −
𝑀𝐼 −𝑀𝐼−1 − 𝐴̄𝐼−1𝛥𝑊 𝐼−1

𝑈𝐼 − 𝑈𝐼−1 − 0.5𝐴̄𝐼−1(𝛥𝑊 )2
𝑊𝐼 −𝑊𝐼−1
1 ℎ𝐼−1 ℎ𝐼−1 𝐼−1 ℎ𝐼−1

5

− 0.5
[

𝐵̄𝐼−1 𝛥𝑊 𝐼−1
(

𝑀𝐼−1 +𝑀𝐼
)]

(29a)

𝑉 (𝐼)
2 =

𝑀𝐼+1 −𝑀𝐼

ℎ𝐼
+ 𝐴̄𝐼 𝛥𝑊 𝐼

𝑈𝐼+1 − 𝑈𝐼
ℎ𝐼

+ 0.5𝐴̄𝐼 (𝛥𝑊 )2𝐼
𝑊𝐼+1 −𝑊𝐼

ℎ𝐼
+ 0.5

[

𝐵̄𝐼𝛥𝑊 𝐼
(

𝑀𝐼 +𝑀𝐼+1
)]

(29b)

The integral of 𝑐𝑓 𝑤 over the control domain (𝑥(𝐼)𝑎 , 𝑥(𝐼)𝑏 ), for the linear
interpolation used, is

∫

𝑥(𝐼)𝑏

𝑥(𝐼)𝑎
𝑐𝑓𝑤𝑑𝑥 = 1

8
[

𝐶𝐼−1𝑊𝐼−1ℎ𝐼−1 + 3𝑊𝐼
(

𝐶𝐼−1ℎ𝐼−1 + 𝐶𝐼ℎ𝐼
)

+ 𝐶𝐼𝑊𝐼+1ℎ𝐼
]

(30)

here 𝐶𝐼 is the value of 𝑐𝑓 in element 𝐼 .
Substitution of the expressions from Eqs. (29a), (29b), and (30) into

q. (17a), we obtain

− 1
ℎ𝐼−1

𝑀𝐼−1 +
(

1
ℎ𝐼−1

+ 1
ℎ𝐼

)

𝑀𝐼 −
1
ℎ𝐼
𝑀𝐼+1 +

1
8
𝐶𝐼−1ℎ𝐼−1𝑊𝐼−1

+ 3
8
(

𝐶𝐼−1ℎ𝐼−1 + 𝐶𝐼ℎ𝐼
)

𝑊𝐼 +
1
8
𝐶𝐼ℎ𝐼𝑊𝐼+1 −

𝐴̄𝐼−1 𝛥𝑊𝐼−1

ℎ𝐼−1
𝑈𝐼−1

+
(

𝐴̄𝐼−1 𝛥𝑊𝐼−1

ℎ𝐼−1
+
𝐴̄𝐼 𝛥𝑊𝐼

ℎ𝐼

)

𝑈𝐼 −
𝐴̄𝐼 𝛥𝑊𝐼

ℎ𝐼
𝑈𝐼+1 − 0.5

𝐴̄𝐼−1 (𝛥𝑊 )2𝐼−1
ℎ𝐼−1

𝑊𝐼−1

+ 0.5

(

𝐴̄𝐼−1 (𝛥𝑊 )2𝐼−1
ℎ𝐼−1

+
𝐴̄𝐼 (𝛥𝑊 )2𝐼

ℎ𝐼

)

𝑊𝐼 − 0.5
𝐴̄𝐼 (𝛥𝑊 )2𝐼

ℎ𝐼
𝑊𝐼+1 −𝑄𝐼

+ 0.5
[

𝐵̄𝐼−1 𝛥𝑊𝐼−1𝑀𝐼−1 +
(

𝐵̄𝐼−1 𝛥𝑊𝐼−1 − 𝐵̄𝐼 𝛥𝑊𝐼
)

𝑀𝐼 − 𝐵̄𝐼 𝛥𝑊𝐼 𝑀𝐼+1
]

(31)

For the boundary nodes 1 and 𝑁 + 1, we have

= −𝑉 (1)
1 + 1

ℎ1
𝑀1 −

1
ℎ1
𝑀2 +

3ℎ1
8
𝐶1𝑊1 +

ℎ1
8
𝐶1𝑊2

+
𝐴̄1 𝛥𝑊1
ℎ1

(

𝑈1 − 𝑈2
)

+ 0.5
𝐴̄1 (𝛥𝑊 )21

ℎ1

(

𝑊1 −𝑊2
)

− 0.5𝐵̄1 𝛥𝑊1𝑀1 − 0.5𝐵̄1 𝛥𝑊1𝑀2 −𝑄1 (32a)

0 = −𝑉 (𝑁+1)
2 − 1

ℎ𝑁
𝑀𝑁 + 1

ℎ𝑁
𝑀𝑁+1 +

ℎ𝑁
8
𝐶𝑁𝑊𝑁 +

3ℎ𝑁
8

𝐶𝑁𝑊𝑁+1

+
𝐴̄𝑁 𝛥𝑊𝑁
ℎ𝑁

(

𝑈𝑁+1 − 𝑈𝑁
)

+ 0.5
𝐴̄𝑁 (𝛥𝑊 )2𝑁

ℎ𝑁

(

𝑊𝑁+1 −𝑊𝑁
)

+ 0.5𝐵̄𝑁 𝛥𝑊𝑁 𝑀𝑁 + 0.5𝐵̄𝑁 𝛥𝑊𝑁 𝑀𝑁+1 −𝑄𝑁+1 (32b)

where

𝑄𝐼 = ∫

ℎ𝐼−1

0.5ℎ𝐼−1
𝑞 𝑑𝑥̄ + ∫

ℎ𝐼

0
𝑞 𝑑𝑥̄, 𝑄1 = ∫

0.5ℎ1

0
𝑞 𝑑𝑥̄, 𝑄𝑁+1 = ∫

ℎ𝑁

0.5ℎ𝑁
𝑞 𝑑𝑥̄,

(33)

Discretization of Eq. (7c)
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Fig. 6. The (half) finite domains at the boundary nodes.
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𝜙

𝑁

𝑁

The discretized equations associated with Eq. (7c) are obtained sub-
stituting the following approximations for 𝛩(𝐼)

1 and 𝛩(𝐼)
2 and replacing

ther terms as before,

(𝐼)
1 =

𝑊𝐼−1 −𝑊𝐼
ℎ𝐼−1

, 𝛩(𝐼)
2 =

𝑊𝐼 −𝑊𝐼+1
ℎ𝐼

(34)

or an interior node, we obtain

− 1
ℎ𝐼−1

𝑊𝐼−1 +
(

1
ℎ𝐼−1

+ 1
ℎ𝐼

)

𝑊𝐼 −
1
ℎ𝐼
𝑊𝐼+1

− 1
8
ℎ𝐼−1
𝐷𝐼−1

𝑀𝐼−1 −
3
8

(

ℎ𝐼−1
𝐷𝐼−1

+
ℎ𝐼
𝐷𝐼

)

𝑀𝐼 −
1
8
ℎ𝐼
𝐷𝐼

𝑀𝐼+1

− 0.5𝐵̄𝐼−1 𝑈𝐼−1 + 0.5
(

𝐵̄𝐼−1 − 𝐵̄𝐼
)

𝑈𝐼 + 0.5𝐵̄𝐼 𝑈𝐼+1
− 0.25𝐵̄𝐼−1 𝛥𝑊𝐼−1𝑊𝐼−1 + 0.25

(

𝐵̄𝐼−1 𝛥𝑊𝐼−1 − 𝐵̄𝐼 𝛥𝑊𝐼
)

𝑊𝐼

+ 0.25𝐵̄𝐼 𝛥𝑊𝐼 𝑊𝐼+1 = 0 (35)

ere 𝐷𝐼 denotes the value of 𝐷𝑥𝑥 in element 𝐼 and 𝐵̄𝐼 denotes the
alue of 𝐵𝑥𝑥∕𝐷𝑥𝑥 in element 𝐼 . For the boundary nodes 1 and 𝑁 + 1,
e have

= −𝛩(1)
1 + 1

ℎ1
𝑊1 −

1
ℎ1
𝑊2 −

3
8
ℎ1
𝐷1

𝑀1 −
1
8
ℎ1
𝐷1

𝑀2

− 0.5𝐵̄1𝑈1 + 0.5𝐵̄1𝑈2 − 0.25𝐵̄1 𝛥𝑊1𝑊1 + 0.25𝐵̄1 𝛥𝑊1𝑊2 (36a)

= 𝛩(𝑁+1)
2 − 1

ℎ𝑁
𝑊𝑁 + 1

ℎ𝑁
𝑊𝑁+1 −

1
8
ℎ𝑁
𝐷𝑁

𝑀𝑁 − 3
8
ℎ𝑁
𝐷𝑁

𝑀𝑁+1 − 0.5𝐵̄𝑁𝑈𝑁

+ 0.5𝐵̄𝑁𝑈𝑁+1 − 0.25𝐵̄𝑁 𝛥𝑊𝑁 𝑊𝑁 + 0.25𝐵̄𝑁 𝛥𝑊𝑁 𝑊𝑁+1 (36b)

his completes the development of the discretized equations based on
he DMFDM for the mixed formulation of the Euler–Bernoulli beam
heory.

.2. Timoshenko beams

.2.1. Displacement model
Following the procedure describe in the previous section, we present

iscretized equations associated with Eqs. (10a)–(10c), with (𝑁𝑥𝑥,𝑀𝑥𝑥,
𝑥) replaced in terms of the displacements using Eqs. (11a)–(11c).
ig. 7 shows the nodal degrees of freedom for the displacement model
f the TBT. The integral statements (after the integration-by-parts) of
qs. (10a)–(10c) are:

= −𝑁 (𝐼)
1 −𝑁 (𝐼)

2 − ∫

𝑥(𝐼)𝑏

𝑥(𝐼)𝑎
𝑓 𝑑𝑥 (37a)

= −𝑉 (𝐼)
1 − 𝑉 (𝐼)

2 + ∫

𝑥(𝐼)𝑏

𝑥(𝐼)𝑎
(𝑐𝑓𝑤 − 𝑞)𝑑𝑥 (37b)

= −𝑀 (𝐼)
1 −𝑀 (𝐼)

2 +
𝑥(𝐼)𝑏

𝑆𝑥𝑧
(

𝜙𝑥 +
𝑑𝑤)

𝑑𝑥 (37c)
∫𝑥(𝐼)𝑎 𝑑𝑥

6

Fig. 7. A typical control domain for the displacement model of the TBT.

where

𝑁 (𝐼)
1 ≡ −

[

𝐴𝑥𝑥

(

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2
)

+ 𝐵𝑥𝑥
𝑑𝜙𝑥
𝑑𝑥

]

𝑥(𝐼)𝑎

(38a)

𝑁 (𝐼)
2 ≡

[

𝐴𝑥𝑥

(

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2
)

+ 𝐵𝑥𝑥
𝑑𝜙𝑥
𝑑𝑥

]

𝑥(𝐼)𝑏

(38b)

𝑉 (𝐼)
1 ≡ −

[

𝑆𝑥𝑧
(

𝜙𝑥 +
𝑑𝑤
𝑑𝑥

)

+𝑁𝑥𝑥
𝑑𝑤
𝑑𝑥

]

𝑥(𝐼)𝑎
(38c)

𝑉 (𝐼)
2 ≡

[

𝑆𝑥𝑧
(

𝜙𝑥 +
𝑑𝑤
𝑑𝑥

)

+𝑁𝑥𝑥
𝑑𝑤
𝑑𝑥

]

𝑥(𝐼)𝑏
(38d)

(𝐼)
1 ≡ −

[

𝐵𝑥𝑥

(

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2
)

+𝐷𝑥𝑥
𝑑𝜙𝑥
𝑑𝑥

]

𝑥(𝐼)𝑎

(38e)

𝑀 (𝐼)
2 ≡

[

𝐵𝑥𝑥

(

𝑑𝑢
𝑑𝑥

+ 1
2

(𝑑𝑤
𝑑𝑥

)2
)

+𝐷𝑥𝑥
𝑑𝜙𝑥
𝑑𝑥

]

𝑥(𝐼)𝑏

(38f)

The values of 𝑁 (𝐼)
𝑖 , 𝑉 (𝐼)

𝑖 , and 𝑀 (𝐼)
𝑖 (𝑖 = 1, 2) in Eqs. (38a)–(38f) can

e expressed in terms of the nodal values (𝑈𝐼 , 𝑊𝐼 , 𝛷𝐼 ) of (𝑢(𝑥), 𝑤(𝑥),
𝑥(𝑥)), respectively, as follows:

(𝐼)
1 = −𝐴𝐼−1

𝑈𝐼 − 𝑈𝐼−1
ℎ𝐼−1

− 1
2𝐴𝐼−1 𝛥𝑊 𝐼−1

𝑊𝐼 −𝑊𝐼−1
ℎ𝐼−1

− 𝐵𝐼−1
𝛷𝐼 −𝛷𝐼−1
ℎ𝐼−1

(39a)
(𝐼)
2 = 𝐴𝐼

𝑈𝐼+1 − 𝑈𝐼
ℎ𝐼

+ 1
2𝐴𝐼 𝛥𝑊 𝐼

𝑊𝐼+1 −𝑊𝐼
ℎ𝐼

+ 𝐵𝐼
𝛷𝐼+1 −𝛷𝐼

ℎ𝐼

𝑉 (𝐼)
1 = −𝑆𝐼−1

[

𝛷𝐼−1 +𝛷𝐼
2

+
𝑊𝐼 −𝑊𝐼−1

ℎ𝐼−1

]

(39b)

𝑉 (𝐼)
2 = 𝑆𝐼

[

𝛷𝐼 +𝛷𝐼+1
2

+
𝑊𝐼+1 −𝑊𝐼

ℎ𝐼

]

𝑀 (𝐼)
1 = −𝐵𝐼−1

𝑈𝐼 − 𝑈𝐼−1
ℎ𝐼−1

− 1
2
𝐵𝐼−1 𝛥𝑊 𝐼−1

𝑊𝐼 −𝑊𝐼−1

ℎ𝐼−1
−𝐷𝐼−1

𝛷𝐼 −𝛷𝐼−1

ℎ𝐼−1

(39c)

𝑀 (𝐼) = 𝐵𝐼
𝑈𝐼+1 − 𝑈𝐼 + 1𝐵𝐼 𝛥𝑊 𝐼

𝑊𝐼+1 −𝑊𝐼 +𝐷𝐼
𝛷𝐼+1 −𝛷𝐼
2 ℎ𝐼 2 ℎ𝐼 ℎ𝐼
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𝐸

𝜈

w
o
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i

∫

𝑥(𝐼)𝑏

𝑥(𝐼)𝑎
𝑆𝑥𝑧

(

𝜙𝑥 +
𝑑𝑤
𝑑𝑥

)

𝑑𝑥 = 1
4
𝑆𝐼−1

(

𝛷𝐼−1 +𝛷𝐼
)

ℎ𝐼−1 +
1
4
𝑆𝐼

(

𝛷𝐼 +𝛷𝐼+1
)

ℎ𝐼

+ 1
2
𝑆𝐼−1

(

𝑊𝐼 −𝑊𝐼−1
)

+ 1
2
𝑆𝐼

(

𝑊𝐼+1 −𝑊𝐼
)

(39d)

e note that in evaluating the integral in Eq. (39d), 𝜙𝑥 is treated as a
onstant to avoid shear locking.

With the relations in Eqs. (39a)–(39d), Eqs. (37a)–(37c) can be
xpressed as

= −
𝐴𝐼−1
ℎ𝐼−1

𝑈𝐼−1 +
(

𝐴𝐼−1
ℎ𝐼−1

+
𝐴𝐼
ℎ𝐼

)

𝑈𝐼 −
𝐴𝐼
ℎ𝐼
𝑈𝐼+1 + 0.5

[

−
𝐴𝐼−1𝛥𝑊 𝐼−1

ℎ𝐼−1
𝑊𝐼−1

+
(

𝐴𝐼−1𝛥𝑊 𝐼−1

ℎ𝐼−1
+
𝐴𝐼𝛥𝑊 𝐼

ℎ𝐼

)

𝑊𝐼 −
𝐴𝐼𝛥𝑊 𝐼

ℎ𝐼
𝑊𝐼+1

]

−
𝐵𝐼−1
ℎ𝐼−1

𝛷𝐼−1 +
(

𝐵𝐼−1
ℎ𝐼−1

+
𝐵𝐼
ℎ𝐼

)

𝛷𝐼 −
𝐵𝐼
ℎ𝐼
𝛷𝐼+1 − 𝐹𝐼 (40a)

= −
𝑆𝐼−1
ℎ𝐼−1

𝑊𝐼−1 +
(

𝑆𝐼−1
ℎ𝐼−1

+
𝑆𝐼
ℎ𝐼

)

𝑊𝐼 −
𝑆𝐼
ℎ𝐼
𝑊𝐼+1 + 0.125𝐶𝐼−1𝑊𝐼−1ℎ𝐼−1

+ 0.375
(

𝐶𝐼−1ℎ𝐼−1 + 𝐶𝐼ℎ𝐼
)

𝑊𝐼 + 0.125𝐶𝐼𝑊𝐼+1ℎ𝐼

+ 0.5𝑆𝐼−1𝛷𝐼−1 + 0.5
(

𝑆𝐼−1 − 𝑆𝐼
)

𝛷𝐼 − 0.5𝑆𝐼𝛷𝐼+1 −𝑄𝐼 (40b)

= −
𝐵𝐼−1
ℎ𝐼−1

𝑈𝐼−1 +
(

𝐵𝐼−1
ℎ𝐼−1

+
𝐵𝐼
ℎ𝐼

)

𝑈𝐼 −
𝐵𝐼
ℎ𝐼
𝑈𝐼+1

− 0.5
𝐵𝐼−1 𝛥𝑊𝐼−1

ℎ𝐼−1
𝑊𝐼−1 + 0.5

(

𝐵𝐼−1 𝛥𝑊𝐼−1

ℎ𝐼−1
+
𝐵𝐼 𝛥𝑊𝐼

ℎ𝐼

)

𝑊𝐼

− 0.5
𝐵𝐼 𝛥𝑊𝐼

ℎ𝐼
𝑊𝐼+1 − 0.5𝑆𝐼−1𝑊𝐼−1 + 0.5

(

𝑆𝐼−1 − 𝑆𝐼
)

𝑊𝐼 + 0.5𝑆𝐼𝑊𝐼+1

−
𝐷𝐼−1

ℎ𝐼−1
𝛷𝐼−1 +

(

𝐷𝐼−1

ℎ𝐼−1
+
𝐷𝐼

ℎ𝐼

)

𝛷𝐼 −
𝐷𝐼

ℎ𝐼
𝛷𝐼+1 + 0.25𝑆𝐼−1ℎ𝐼−1𝛷𝐼−1

+ 0.25
(

𝑆𝐼−1ℎ𝐼−1 + 𝑆𝐼ℎ𝐼
)

𝛷𝐼 + 0.25𝑆𝐼ℎ𝐼𝛷𝐼+1 (40c)

Next, we should obtain the discretized equations for the boundary
nodes. The discretized equations of the left boundary node are

0 = −𝑁 (1)
1 +

𝐴1

ℎ1

(

𝑈1 − 𝑈2
)

+
𝐵1

ℎ1

(

𝛷1 −𝛷2
)

+ 0.5
𝐴1 𝛥𝑊1

ℎ1

(

𝑊1 −𝑊2
)

− 𝐹1

(41a)

0 = −𝑉 (1)
1 +

𝑆1

ℎ1

(

𝑊1 −𝑊2
)

− 0.5𝑆1
(

𝛷1 +𝛷2
)

+
ℎ1
8
𝐶1

(

3𝑊1 +𝑊2
)

−𝑄1

(41b)

= −𝑀 (1)
1 −

𝐵1

ℎ1

(

𝑈2 − 𝑈1
)

+ 0.5𝑆1(𝑊2 −𝑊1) −
𝐷1

ℎ1

(

𝛷2 −𝛷1
)

+ 0.25𝑆1ℎ1
(

𝛷1 +𝛷2
)

− 0.5
𝐵1 𝛥𝑊1

ℎ1

(

𝑊2 −𝑊1
)

(41c)

or the node 𝑁 + 1 on the right boundary, we have

= −𝑁 (𝑁+1)
2 +

𝐴𝑁
ℎ𝑁

(

𝑈𝑁+1 − 𝑈𝑁
)

+
𝐵𝑁
ℎ𝑁

(

𝛷𝑁+1 −𝛷𝑁
)

+ 0.5
𝐴𝑁 𝛥𝑊𝑁

ℎ𝑁

(

𝑊𝑁+1 −𝑊𝑁
)

− 𝐹𝑁+1 (42a)

= −𝑉 (𝑁+1)
2 +

𝑆𝑁
ℎ𝑁

(

𝑊𝑁+1 −𝑊𝑁
)

+
ℎ𝑁
8
𝐶𝑁

(

𝑊𝑁 + 3𝑊𝑁+1
)

+ 0.5𝑆𝑁 (𝛷𝑁+1 +𝛷𝑁 ) −𝑄𝑁+1 (42b)

= −𝑀 (𝑁+1)
2 +

𝐵𝑁
ℎ𝑁

(

𝑈𝑁+1 − 𝑈𝑁
)

+ 0.5𝑆𝑁 (𝑊𝑁+1 −𝑊𝑁 ) +
𝐷𝑁

ℎ𝑁

(

𝛷𝑁+1 −𝛷𝑁
)

+ 0.25𝑆𝑁ℎ𝑁
(

𝛷𝑁 +𝛷𝑁+1
)

+ 0.5
𝐵𝑁 𝛥𝑊𝑁

ℎ𝑁

(

𝑊𝑁+1 −𝑊𝑁
)

(42c)

.3. Mixed model

Lastly, we develop the mixed DMFDM model of Eqs. (13a)–(13c).
ue to the close similarity between Eqs. (13a)–(13c) and Eqs. (7a)–(7c),

he discretized equations in Eqs. (25), (27), (28), (31), (32a), (32b),
35), (36a), and (36b), are valid here, with the additional contributions
o Eqs. (35), (36a), and (36b) due to the expression
[

1 𝑑𝑀𝑥𝑥
]𝑥(𝐼)𝑏

(43)

𝑆𝑥𝑧 𝑑𝑥 𝑥(𝐼)𝑎

L

7

he additional terms are:

Node 𝐼 : 1
ℎ𝐼−1

1
𝑆𝐼−1

𝑀𝐼−1 −
(

1
ℎ𝐼−1

1
𝑆𝐼−1

+ 1
ℎ𝐼

1
𝑆𝐼

)

𝑀𝐼 +
1
ℎ𝐼

1
𝑆𝐼
𝑀𝐼+1

(44a)

Node 1: 1
𝑆1

𝑀2 −𝑀1

ℎ1
(44b)

Node 𝑁 + 1: 1
𝑆𝑁ℎ𝑁

𝑀𝑁 − 1
𝑆𝑁ℎ𝑁

𝑀𝑁+1 (44c)

where 𝑆𝐼 is the value of 𝑆𝑥𝑧 in element 𝛺(𝐼).

4. Numerical results

In this section we consider applications of the methodology devel-
oped in the preceding sections. Numerical results obtained with the
FEM and DMFDM are compared in all cases. We use four beam models
of the FEM and three beam models of DMFDM, as designated here:

• FE-EB(D) - Displacement finite element model of the EBT
• FE-EB(M) - Mixed finite element model of the EBT
• FE-TB(D) - Displacement finite element model of the TBT
• FE-TB(M) - Mixed finite element model of the TBT
• DM-EB(M) - Mixed dual mesh finite domain model of the EBT
• DM-TB(D) - Displacement dual mesh finite domain model of the

TBT
• DM-TB(M) - Mixed dual mesh finite domain model of the TBT

Models FE-EB(D) and FE-TB(D) can be found in the book by
eddy [2] and they are summarized, along with FE-EB(M) and FE-
B(M) in Appendix for nonlinear FGM beams. The FE-EB(D) model
ses Hermite cubic interpolation of 𝑤(𝑥) and linear interpolation of
(𝑥), whereas all other elements are based on Lagrange interpolations of
ll variables. All finite element models other than FE-EB(D) can also use
uadratic or higher order interpolations, whereas the dual mesh finite
omain formulations presented herein are based on linear interpola-
ions. Thus, for consistency, all numerical results presented herein, with
he exception of FE-EB(D), are obtained with linear approximations of
ll field variables. During the course of this study the required nonlinear
inite element models of the FGM beams were also developed to have
eans to compare the numerical results but the details are not included
ere as the focus of the present study is on DMFDM.

Here we shall consider a functionally graded beam of length 𝐿 = 100
n (254 cm), height ℎ = 1 in (2.54 cm), and width 𝑏 = 1 in (2.54 cm).
nd subjected to uniformly distributed load of intensity 𝑞0 lb/in (1
b/in = 175 N/m). The FGM beam is made of two materials with the
ollowing values of the moduli, Poisson’s ratio, and shear correction
oefficient:

1 = 30 × 106 psi (210 GPa), 𝐸2 = 10 × 106 psi (21 GPa),

= 0.3, 𝐾𝑠 =
5
6

We shall investigate the parametric effects of the power-law index, 𝑛
and boundary conditions on the transverse deflection and stresses.

Load increments of 𝛥𝑞0 = 1.0 lb/in (175 N/m) and a tolerance of
𝜖 = 10−3 are used in the nonlinear analysis. The initial solution vector
is chosen to be 𝜟0 = 𝟎 so that the first iteration is the linear solution for
the first load step. The direct iteration scheme does not converge unless
an acceleration parameter, 𝛽, is used to evaluate the stiffness matrix,
𝐊𝑟 = 𝐊(𝜟̄𝑟), at each iteration (see Eq. (22)):

𝜟̄𝑟 = (1 − 𝛽)𝜟𝑟 + 𝛽𝜟𝑟−1, 0 ≤ 𝛽 ≤ 1 (45)

here 𝑟 denotes the iteration number. Thus, using a weighted average
f the last two iteration solutions to update the stiffness matrix accel-
rates the convergence. In the present case, a value of 𝛽 = 0.25 −−0.35
s used (after some study with varying 𝛽, starting with 𝛽 = 0).

inear analysis
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We consider functionally graded beams which are either pin-
supported at both ends (P–P) or clamped at both ends (C–C). Using
the symmetry about 𝑥 = 𝐿∕2, we use the left half of the beam as the
computational domain and investigate the effect of the power-law index
on the transverse deflections and bending moments. The boundary
conditions on the primarily variables in various models for P–P beams
are as follows:

Displacement models ∶ 𝑢(0) = 𝑤(0) = 𝑢(0.5𝐿) = 0, and
𝑑𝑤
𝑑𝑥

(𝐿2 ) = 0 or 𝜙(𝐿2 ) = 0

(46)
Mixed models ∶ 𝑢(0) = 𝑤(0) = 𝑢(0.5𝐿) = 0, 𝑀(0) = 0

The exact solutions of pinned–pinned functionally graded beams ac-
cording to the TBT, with the power-law given in Eq. (1), are given by
(see [15,16])

𝐷̄𝑥𝑥 𝑢(𝑥) =
𝑞0𝐿3

12
(

𝜉 − 3𝜉2 + 2𝜉3
)

𝐷̂𝑥𝑥𝑤(𝑥) =
𝑞0𝐿4

24
(

𝜉 − 2𝜉3 + 𝜉4
)

+ 𝐷̃𝑥𝑥
𝑞0𝐿4

2
𝜉(1 − 𝜉) − 𝐵̂𝑥𝑥

𝑞0𝐿4

24
𝜉(1 − 𝜉)

(47)

𝐷̂𝑥𝑥 𝜙𝑥(𝑥) = −
𝑞0𝐿3

24
(

1 − 6𝜉2 + 4𝜉3
)

+ 𝐵̂𝑥𝑥
𝑞0𝐿3

24
(1 − 2𝜉)

𝑀𝑥𝑥(𝑥) =
𝑞0𝐿2

2
𝜉(1 − 𝜉), 𝑄𝑥(𝑥) =

𝑑𝑀𝑥𝑥
𝑑𝑥

=
𝑞0𝐿
2

(1 − 2𝜉)

where 𝜉 = 𝑥∕𝐿 and

𝐷̂𝑥𝑥 =
𝐷∗
𝑥𝑥

𝐴𝑥𝑥
, 𝐷̄𝑥𝑥 =

𝐷∗
𝑥𝑥

𝐵𝑥𝑥
, 𝐵̂𝑥𝑥 =

𝐵2
𝑥𝑥

𝐷𝑥𝑥𝐴𝑥𝑥
, 𝐷̃𝑥𝑥 =

𝐷∗
𝑥𝑥

𝐴𝑥𝑥𝑆𝑥𝑧
(48)

he EBT solutions are obtained from Eq. (47) by setting 𝐷̃𝑥𝑥 = 0 and
eplacing 𝜙𝑥 with −𝑑𝑤∕𝑑𝑥. It is interesting to note that the bending
oment and shear force for the linear case do not depend on 𝐵𝑥𝑥.
owever, the nonlinear solutions show that the bending moment does
epend on 𝐵𝑥𝑥.

The boundary conditions on the primary variables in various models
or the C–C beams are as follows (replace 𝑑𝑤∕𝑑𝑥 with 𝜙𝑥 for the TBT):

isplacement models ∶ 𝑢(0) = 𝑤(0) = 0, 𝑑𝑤
𝑑𝑥

(0) = 0,

𝑢(𝐿∕2) = 𝑑𝑤
𝑑𝑥

(𝐿2 ) = 0

(49)
Mixed models ∶ 𝑢(0) = 𝑤(0) = 0, 𝑢(𝐿∕2) = 0

The exact solutions for clamped–clamped beams according to the TBT
are given by (𝜉 = 𝑥∕𝐿)

𝐷̄𝑥𝑥𝑢(𝑥) =
𝑞0𝐿3

12
(

𝜉 − 3𝜉2 + 2𝜉3
)

𝐷̂𝑥𝑥𝑤(𝑥) =
𝑞0𝐿4

24
𝜉2 (1 − 𝜉)2 + 𝐷̃𝑥𝑥

𝑞0𝐿4

2
(

𝜉 − 𝜉2
)

(50)

̂ 𝑥𝑥𝜙𝑥(𝑥) = −
𝑞0𝐿3

12
(

𝜉 − 3𝜉2 + 2𝜉3
)

, 𝑀(𝑥) = −
𝑞0𝐿2

12
(

1 − 6𝜉 + 6𝜉2
)

𝑄𝑥(𝑥) =
𝑞0𝐿
2

(1 − 2𝜉) (51)

Extensive numerical studies have been carried out with various
models, including mesh independency and value of the acceleration
parameter on the convergence, effect of the power-law index, and post-
computation of the secondary variables (either the bending moments
or the rotations). In all cases, both the DMFDM and FEM models, using
16 linear elements in the half beam, yield results that are indistinguish-
able in a graphical presentations. Based on the numerical studies, the
following observations are made.
8

Fig. 8. Linear dimensional deflection 𝑤 versus 𝜉 = 𝑥∕𝐿 curves for P–P beams. Different
power-law index (𝑛) values are used to show its effect on the dimensionless deflection.
The solutions predicted by various models of the FEM and DMFDM coincide with each
other and with the exact solutions.

(1) The nodal generalized displacements predicted by FE-EB(D)
match the exact EBT solutions.

(2) The nodal generalized displacements predicted by FE-TB(D) and
DM-TB(D) are the same.

(3) The nodal transverse displacements predicated by FE-EB(D) and
FE-EB(M) are the same.

(4) The nodal generalized displacements and post-computed bending
moments predicted by FE-TB(D) and DM-TB(D) are identical.

(5) The nodal bending moments predicated by FE-EB(M), FE-TB(M),
DM-EB(M), and DM-TB(M) are the same and match the exact
solution.

(6) The nodal transverse displacements predicated by FE-TB(M)
match the exact TBT solutions.

(7) The post-computed slopes in FE-TB(M), FE-EB(M), DM-EB(M),
and DM-TB(M) and the nodal slopes in FE-EB(D) and FE-TB(D)
are the same.

(8) The post-computed bending moments in FE-EB(D), FE-TB(D) ,
FE-EB(M), and FE-TB(M) are the same.

Fig. 8 contains plots of the deflections 𝑤(𝑥) predicted for P–P beams
by various models as a function of 𝑥∕𝐿 (see [7]). The deflections
predicted by all FE and DM models are essentially the same (i.e., the
differences cannot be seen in the graph); this also indicates that the
effect of shear deformation is negligible (because 𝐿∕ℎ = 100, a thin
beam). Similar results are presented for C–C beams (the deflection is
not dimensionless) in Fig. 9.

Fig. 10 shows the center deflection 𝑤 as a function of the power-
aw index 𝑛 for the P–P and C–C beams. It is interesting to note that
he rate of increase in the deflection has two different regions; the first
egion has a rapid increase of the deflection while the second region is
arked with a slow increase. This is primarily because of the fact that

he coupling coefficient 𝐵𝑥𝑥 varies with 𝑛 rapidly for the lower values
f 𝑛 followed by a slow decay after 𝑛 > 3.

It is remarkable to see that all of the models yield very accurate
olutions for the slope (in mixed models) and bending moment (in
isplacement models). Fig. 11 show plots of the nodal values and
ost-computed rotations (𝜙𝑥 or −𝑑𝑤∕𝑑𝑥) for the C–C beams for three

different values of 𝑛. The post-computed rotation values fall on the
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Fig. 9. Linear dimensional deflection 𝑤 versus 𝜉 = 𝑥∕𝐿 curves for C–C beams. Different
power-law index (𝑛) values are used to show its effect on the deflections. The solutions
predicted by various models of the FEM and DMFDM coincide with each other and with
the exact solutions.

Fig. 10. Linear deflection 𝑤 versus 𝑛 curves for C–C and P–P beams. The solutions
redicted by various models of the FEM and DMFDM coincide with each other and
ith the exact solutions, as indicated in the figure.

xact solutions along with the nodal values. Similar behavior is found
or the post-computed bending moments (but not reported here) for
oth types of boundary conditions.

onlinear analysis

The nonlinear analysis shows that all models yield solutions that
re indistinguishable in the graphs of dimensionless center deflection,
̄ = 𝑤(0.5𝐿)𝐷̂𝑥𝑥∕𝐿4 and bending moment 𝑀̄𝑥𝑥 = 𝑀𝑥𝑥(0.5)∕𝐿2 versus
he intensity of the uniformly distributed load, 𝑞0. Table 1 contains
he results obtained with various models with a uniform mesh of
inear approximations of all variables in the half beam (with the direct
9

Fig. 11. Linear rotation (−𝑑𝑤∕𝑑𝑥 or 𝜙𝑥) versus 𝜉 = 𝑥∕𝐿 curves for C–C beams. Different
power-law index (𝑛) values are used to show its effect on the rotations. The solutions
predicted by various models of the FEM and DMFDM coincide with each other and
with the exact solutions.

iteration scheme). Convergence is achieved with different number of
iterations for different load steps.

Figs. 12 and 13 contain plots of the center deflection 𝑤̄ versus
𝑞0 and the center bending moment 𝑀̄𝑥𝑥 vs. 𝑞0, respectively, for P–P
beams and for different values of 𝑛. The beams become stiffer as the
value of 𝑛 increases. This is due to the fact that the von Kármán
nonlinear strain has stiffening effect through the axial strain, which
is quadratically proportional to the gradient of the deflection. As 𝑛
increases, the beam becomes more flexible and experiences greater
bending, which contributes to the stiffening effect. This is similar to
the difference between C–C beams and S-S beams, where the S-S beams
will exhibit greater effect of the geometric nonlinearity by undergoing
larger deflection than a C–C beam. It is interesting to note that the
dimensionless bending moment of FGM beams has a cross-over of the
bending moment of the homogeneous beam for 𝑛 = 1 with an increase
load, although this is not exhibited for 𝑛 > 1. Results for 𝑛 > 1 and
𝑛 < 20 fall between the solutions for 𝑛 = 1 and 𝑛 = 20.

Figs. 14 and 15 contain plots of the center deflection 𝑤̄ vs. 𝑞0 and
the center bending moment 𝑀̄𝑥𝑥 vs. 𝑞0, respectively, for C–C beams and
for different values of 𝑛. As in the case of P–P beams, the beams become
stiffer but with less rate of increase of nonlinearity because C–C beams
are relative stiffer due to the fixed ends. Unlike the P–P beams, the C–C
beams do not exhibit the cross over of the bending moment.

5. Closing remarks

In this paper, the dual mesh finite domain method (DMFDM) is
introduced as a novel numerical method of solving nonlinear problems,
and nonlinear bending of two-constituent through thickness function-
ally graded Euler–Bernoulli beam theory (EBT) and Timoshenko beam
theory (TBT) are used as means. As a part of the present study, mixed
(i.e., models that use displacements and moments as nodal degrees
of freedom) nonlinear finite element models are also developed. The
displacement model of the EBT and displacement and mixed models of
the TBT are formulated using the DMFDM. The DMFDM does not suffer
from the interelement continuity requirements (of the derivatives) and
exact balance of forces as in the FEM, as there is no concept of element
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Table 1
Numerical results obtained by various models for the deflections 𝑤(𝐿∕2)×10 of a pinned–pinned homogeneous
beam under a uniformly distributed load. The deflections are given in inches and loads in lb/in.
𝑞0 FEM FDM

EB(D) TB(D) EB(M) TB(M) TB(D) EB(M) TB(M)

0.5 0.0564 0.0563 0.0564 0.0564 0.0563 0.0563 0.0563 (7)a

1 0.0922 0.0921 0.0921 0.0921 0.0921 0.0921 0.0921 (8)
2 0.1364 0.1364 0.1364 0.1364 0.1364 0.1364 0.1364 (13)
3 0.1664 0.1663 0.1664 0.1663 0.1663 0.1663 0.1663 (10)
4 0.1888 0.1888 0.1888 0.1888 0.1888 0.1888 0.1888 (14)
5 0.2078 0.2078 0.2078 0.2078 0.2078 0.2078 0.2078 (14)
6 0.2238 0.2237 0.2237 0.2237 0.2237 0.2237 0.2237 (11)
7 0.2387 0.2386 0.2386 0.2387 0.2386 0.2386 0.2386 (15)
8 0.2117 0.2516 0.2516 0.2516 0.2516 0.2516 0.2516 (15)
9 0.2635 0.2634 0.2634 0.2634 0.2634 0.2634 0.2634 (15)
10 0.2744 0.2743 0.2743 0.2743 0.2743 0.2743 0.2743 (15)
⋮
20 0.3550 (16) 0.3547 (16) 0.3547 (16) 0.3547 (16) 0.3547 (16) 0.3547 (16) 0.3547(16)

aNumber of iterations taken to converge (16 linear elements in the half beam); all models took the same
number of iterations when the acceleration parameter is taken to be 0.35.
Fig. 12. Nonlinear dimensionless center deflection 𝑤̄ versus 𝑞0 curves for P–P beams.
Different power-law index (𝑛) values are used to show its effect on the deflection. The
solutions predicted by various models of the FEM and DMFDM coincide with each
other in the graphs.

in the DMFDM. In contrast to the FVM, the DMFDM uses specific ap-
proximation of the dependent variables, removing the need for ad-hoc
use of Taylor’s series to represent the derivatives. Thus, the DMFDM
is endowed with the merits of both FEM (interpolation and imposition
of physical boundary conditions) and FVM method (satisfaction of the
global form of the governing equations and computation of the dual
variables).

Numerical results indicate that the DMFDM gives very accurate
results, especially for the bending moments. It is found that both FEM
and DMFDM have comparable accuracy, but DMFDM has less overhead
(formulative steps and computational expense). Although for the one-
dimensional problems considered here, this may not be a significant
factor, but for multidimensional problems of plates and shells, both
stress computation and savings in computational time become signif-
icant. Application of the DMFDM to higher-order differential equations
requires rewriting them as the first-order or second-order equations,
bringing additional unknowns, which are usually physical variables
of interest (like stresses or stress resultants). In fact, all equations of
mechanics when originally derived are either first order or second
10
Fig. 13. Nonlinear dimensionless center bending moment 𝑀̄𝑥𝑥 versus 𝑞0 curves for
P–P beams. Different power-law index (𝑛) values are used to show its effect on the
rotations. The solutions predicted by various models of the FEM and DMFDM coincide
with each other in the graphs.

order. Only by elimination of the variables (like stresses or stress
resultants expressed in terms of displacements), the order goes up.

Extensions of the DMFDM to nonlinear problems of inelasticity
and plasticity [17], plates and shells [18], and computational fluid
dynamics are expected highlight the advantages of DMFDM over the
competing methods like FEM and FVM.
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Fig. 14. Nonlinear dimensionless center deflection 𝑤̄ versus 𝑞0 curves for C–C beams.
Different power-law index (𝑛) values are used to show its effect on the deflection. The
solutions predicted by various models of the FEM and DMFDM coincide with each
other in the graphs.

Fig. 15. Nonlinear dimensionless center bending moment 𝑀̄𝑥𝑥 versus 𝑞0 curves for
C–C beams. Different power-law index (𝑛) values are used to show its effect on the
rotations. The solutions predicted by various models of the FEM and DMFDM coincide
with each other in the graphs.

carried with high performance research computing resources provided
by Texas A&M University (https://hprc.tamu.edu).

Appendix. Nonlinear finite element models of FGM beams

The Euler–Bernoulli beam elements
The displacement finite element model of the EBT is of the form

[

𝐊11 𝐊12

21 22

]{

𝐮
}

=
{

𝐅1

2

}

(A.1)
𝐊 𝐊 𝜟 𝐅

11
Fig. 16. Generalized nodal forces in the displacement model of the EBT.

where

𝐾11
𝑖𝑗 = ∫

𝑥𝑏

𝑥𝑎
𝐴𝑥𝑥

𝑑𝜓𝑖
𝑑𝑥

𝑑𝜓𝑗
𝑑𝑥

𝑑𝑥,

𝐾12
𝑖𝐽 = −∫

𝑥𝑏

𝑥𝑎
𝐵𝑥𝑥

𝑑𝜓𝑖
𝑑𝑥

𝑑2𝜑𝐽
𝑑𝑥2

𝑑𝑥 + 1
2 ∫

𝑥𝑏

𝑥𝑎
𝐴𝑥𝑥

𝑑𝑤
𝑑𝑥

𝑑𝜓𝑖
𝑑𝑥

𝑑𝜑𝐽
𝑑𝑥

𝑑𝑥

𝐹 1
𝑖 = 𝜓𝑖(𝑥𝑎)𝑄1 + 𝜓𝑖(𝑥𝑏)𝑄4

𝐾21
𝐼𝑗 = −∫

𝑥𝑏

𝑥𝑎
𝐵𝑥𝑥

𝑑2𝜑𝐼
𝑑𝑥2

𝑑𝜓𝑗
𝑑𝑥

𝑑𝑥 + ∫

𝑥𝑏

𝑥𝑎
𝐴𝑥𝑥

𝑑𝑤
𝑑𝑥

𝑑𝜑𝐼
𝑑𝑥

𝑑𝜓𝑗
𝑑𝑥

𝑑𝑥

𝐾22
𝐼𝐽 = ∫

𝑥𝑏

𝑥𝑎

(

𝐷𝑥𝑥
𝑑2𝜑𝐼
𝑑𝑥2

𝑑2𝜑𝐽
𝑑𝑥2

+ 𝑐𝑓𝜑𝐼𝜑𝐽

)

𝑑𝑥

+ ∫

𝑥𝑏

𝑥𝑎

[

1
2
𝐴𝑥𝑥

(𝑑𝑤
𝑑𝑥

)2 𝑑𝜑𝐼
𝑑𝑥

𝑑𝜑𝐽
𝑑𝑥

− 𝐵𝑥𝑥
𝑑𝑤
𝑑𝑥

(

1
2
𝑑2𝜑𝐼
𝑑𝑥2

𝑑𝜑𝐽
𝑑𝑥

+
𝑑𝜑𝐼
𝑑𝑥

𝑑2𝜑𝐽
𝑑𝑥2

)

]

𝑑𝑥

𝐹 2
𝐼 = ∫

𝑥𝑏

𝑥𝑎
𝜑𝐼𝑞 𝑑𝑥 + 𝜑𝐼 (𝑥𝑎)𝑄2 −

𝑑𝜑𝐼
𝑑𝑥

|

|

|

|

|𝑥𝑎

𝑄3 + 𝜑𝐼 (𝑥𝑏)𝑄5 −
𝑑𝜑𝐼
𝑑𝑥

|

|

|

|

|𝑥𝑏

𝑄6

(A.2)

and 𝑄𝑖 are the generalized nodal forces, as shown in Fig. 16, where
replace 𝜙𝑥 with −𝑑𝑤∕𝑑𝑥; 𝜑𝐼 are the Hermite cubic functions and 𝜓𝑖
are the linear Lagrange interpolation functions; u denotes the vector
of nodal displacements associated with the linear approximation of
𝑢(𝑥); and 𝜟 denotes the nodal displacements (transverse deflection and
rotation at each node) associated with the Hermite cubic interpolation
of 𝑤(𝑥).

The mixed finite element model of the EBT, based on the Lagrange
interpolation of all variables, is given by

⎡

⎢

⎢

⎣

𝐊11 𝐊12 𝐊12

𝐊21 𝐊22 𝐊23

𝐊31 𝐊32 𝐊33

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝐮
𝐰
𝐌

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

𝐅1

𝐅2

𝐅3

⎫

⎪

⎬

⎪

⎭

(A.3)

here

11
𝑖𝑗 = ∫

𝑥𝑏

𝑥𝑎

𝐷∗
𝑥𝑥

𝐷𝑥𝑥

𝑑𝜓 (1)
𝑖

𝑑𝑥

𝑑𝜓 (1)
𝑗

𝑑𝑥
𝑑𝑥, 𝐹 1

𝑖 = 𝜓 (1)
𝑖 (𝑥𝑎)𝑄1 + 𝜓

(1)
𝑖 (𝑥𝑏)𝑄4

12
𝑖𝑗 = 1

2 ∫

𝑥𝑏

𝑥𝑎

𝐷∗
𝑥𝑥

𝐷𝑥𝑥

𝑑𝑤
𝑑𝑥
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𝑖

𝑑𝑥

𝑑𝜓 (2)
𝑗

𝑑𝑥
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https://hprc.tamu.edu
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Fig. 17. Generalized nodal forces in the mixed model of the EBT.

Fig. 18. Generalized nodal forces in the mixed model of the EBT.

𝐾23
𝑖𝑗 = ∫
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𝑖 𝑞 𝑑𝑥 + 𝜓 (2)

𝑖 (𝑥𝑎)𝑄2 + 𝜓
(2)
𝑖 (𝑥𝑏)𝑄4, 𝐾31

𝑖𝑗 = ∫

𝑥𝑏

𝑥𝑎

𝐵𝑥𝑥
𝐷𝑥𝑥

𝜓 (3)
𝑖

𝑑𝜓 (1)
𝑗

𝑑𝑥
𝑑𝑥

𝐾32
𝑖𝑗 = ∫

𝑥𝑏

𝑥𝑎

(

𝑑𝜓 (3)
𝑖

𝑑𝑥

𝑑𝜓 (2)
𝑗

𝑑𝑥
+ 1

2
𝐵𝑥𝑥
𝐷𝑥𝑥

𝑑𝑤
𝑑𝑥

𝜓 (3)
𝑖

𝑑𝜓 (2)
𝑗

𝑑𝑥

)

𝑑𝑥

𝐾33
𝑖𝑗 = −∫

𝑥𝑏

𝑥𝑎

1
𝐷𝑥𝑥

𝜓 (3)
𝑖 𝜓 (3)

𝑗 𝑑𝑥, 𝐹 3
𝐼 = 𝜓 (3)

𝑖 (𝑥𝑎)𝑄3 − 𝜓
(3)
𝑖 (𝑥𝑏)𝑄6 (A.4)

Here (𝜓 (1)
𝑖 , 𝜓 (2)

𝑖 , 𝜓 (3)
𝑖 ) are the Lagrange interpolation functions used for

(𝑢,𝑤,𝑀𝑥𝑥), respectively. In general they are different from each other,
but here we took them to be the same for all variables (see Fig. 17).

The Timoshenko beam elements
The displacement finite element model of the TBT is of the form

⎡

⎢

⎢

⎣

𝐊11 𝐊12 𝐊13

𝐊21 𝐊22 𝐊23

𝐊31 𝐊32 𝐊33

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

𝐮
𝐰̄
𝐬

⎫

⎪

⎬

⎪

=

⎧

⎪

⎨

⎪

𝐅1

𝐅2

𝐅3

⎫

⎪

⎬

⎪

(A.5)
⎩ ⎭ ⎩ ⎭
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where (see Fig. 16)

𝐾11
𝑖𝑗 = ∫

𝑥𝑏

𝑥𝑎
𝐴𝑥𝑥

𝑑𝜓 (1)
𝑖

𝑑𝑥

𝑑𝜓 (1)
𝑗

𝑑𝑥
𝑑𝑥, 𝐾12

𝑖𝑗 = 1
2 ∫

𝑥𝑏

𝑥𝑎
𝐴𝑥𝑥

𝑑𝑤
𝑑𝑥

𝑑𝜓 (1)
𝑖

𝑑𝑥

𝑑𝜓 (2)
𝑗

𝑑𝑥
𝑑𝑥,

𝐾13
𝑖𝑗 = ∫

𝑥𝑏

𝑥𝑎
𝐵𝑥𝑥

𝑑𝜓 (1)
𝑖

𝑑𝑥

𝑑𝜓 (3)
𝑗

𝑑𝑥
𝑑𝑥, 𝐾21

𝑖𝑗 = ∫

𝑥𝑏

𝑥𝑎
𝐴𝑥𝑥

𝑑𝑤
𝑑𝑥

𝑑𝜓 (2)
𝑖

𝑑𝑥

𝑑𝜓 (1)
𝑗

𝑑𝑥
𝑑𝑥

𝐹 1
𝑖 = ∫

𝑥𝑏

𝑥𝑎
𝑓𝜓 (1)

𝑖 𝑑𝑥 + 𝜓 (1)
𝑖 (𝑥𝑎)𝑄1 + 𝜓

(1)
𝑖 (𝑥𝑏)𝑄4

22
𝑖𝑗 = ∫

𝑥𝑏

𝑥𝑎

[

𝑆𝑥𝑧
𝑑𝜓 (2)

𝑖

𝑑𝑥

𝑑𝜓 (2)
𝑗

𝑑𝑥
+ 𝑐𝑓𝜓

(2)
𝑖 𝜓 (2)

𝑗 + 1
2
𝐴𝑥𝑥

( 𝑑𝑤
𝑑𝑥

)2 𝑑𝜓 (2)
𝑖

𝑑𝑥

𝑑𝜓 (2)
𝑗

𝑑𝑥

]

𝑑𝑥

𝐾23
𝑖𝑗 = ∫

𝑥𝑏

𝑥𝑎

(

𝑆𝑥𝑧
𝑑𝜓 (2)

𝑑𝑥
𝜓 (3)
𝑗 + 𝐵𝑥𝑥

𝑑𝑤
𝑑𝑥

𝑑𝜓 (2)
𝑖

𝑑𝑥

𝑑𝜓 (3)
𝑗

𝑑𝑥

)

𝑑𝑥

𝐹 2
𝑖 = ∫

𝑥𝑏

𝑥𝑎
𝑞𝜓 (2)

𝑖 𝑑𝑥 + 𝜓 (2)
𝑖 (𝑥𝑎)𝑄2 + 𝜓

(2)
𝑖 (𝑥𝑏)𝑄5

31
𝑖𝑗 = ∫

𝑥𝑏

𝑥𝑎
𝐵𝑥𝑥

𝑑𝜓 (3)
𝑖

𝑑𝑥

𝑑𝜓 (1)
𝑗

𝑑𝑥
𝑑𝑥

𝐾32
𝑖𝑗 = ∫

𝑥𝑏

𝑥𝑎

(

𝑆𝑥𝑧𝜓
(3)
𝑖

𝑑𝜓 (2)
𝑗

𝑑𝑥
+
𝐵𝑥𝑥
2

𝑑𝑤
𝑑𝑥

𝑑𝜓 (3)
𝑖

𝑑𝑥

𝑑𝜓 (2)
𝑗

𝑑𝑥

)

𝑑𝑥

𝐾33
𝑖𝑗 = ∫

𝑥𝑏

𝑥𝑎

(

𝑆𝑥𝑧𝜓
(3)
𝑖 𝜓 (3)

𝑗 +𝐷𝑥𝑥
𝑑𝜓 (3)

𝑖

𝑑𝑥

𝑑𝜓 (3)
𝑗

𝑑𝑥

)

𝑑𝑥

𝐹 3
𝑖 = 𝜓 (3)

𝑖 (𝑥𝑎)𝑄3 + 𝜓
(3)
𝑖 (𝑥𝑏)𝑄6 (A.6)

The mixed finite element mode of the TBT has the same form as the
mixed finite element model of the EBT, Eq. (A.3), and the coefficients
𝐾𝛼𝛽
𝑖𝑗 and 𝐹 𝛼𝑖 (𝛼, 𝛽 = 1, 2, 3) also remain the same as those in Eq. (A.4),
xcept for the following coefficient (see Fig. 18):

33
𝑖𝑗 = −∫

𝑥𝑏

𝑥𝑎

⎛

⎜

⎜

⎝

1
𝐷𝑥𝑥

𝜓 (3)
𝑖 𝜓 (3)

𝑗 + 1
𝑆𝑥𝑧

𝑑𝜓 (3)
𝑖

𝑑𝑥

𝑑𝜓 (3)
𝑗

𝑑𝑥

⎞

⎟

⎟

⎠

𝑑𝑥 (A.7)
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