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Nonlinear analysis of the axisymmetric bending of circular plates, accounting for through‐thickness power‐law
variation of a two‐constituent material and the von Kármán nonlinearity is presented using the dual mesh con-
trol domain methods (DMCDM). The classical and first‐order shear deformation theory kinematics are used and
displacement and mixed models are developed using the DMCDM. The DMCDM predicts displacements as
accurate as the finite element method (FEM), but has the advantage of predicting the stress resultants more
accurately than the FEM. The developed computational models are used to determine the effect of the geomet-
ric nonlinearity and power‐law index on the bending deflections and stress resultants of functionally graded
circular and annular plates with different boundary conditions. It is found that the power‐law index, which dic-
tates the material distribution through the thickness, has two different regions of response, one with steep
increase in deflections followed by relatively slow increase with respect to the power‐law index.
� �n

1. Background

1.1. Functionally graded materials

The last two decades have witnessed investigators exploring the
possibility of using functionally graded materials (FGMs) as a promis-
ing alternative to conventional homogenous coatings (see Koizumi
[1]). FGMs comprise of at least two constituents that are synthesized
in such a way that the volume fractions of the constituents vary contin-
uously along any desired spatial direction, resulting in materials hav-
ing smooth variation of mechanical properties. Such property
enhancements endow FGMs with material properties such as the resi-
lience to fracture. FGMs promise attractive applications in a wide vari-
ety of wear coating and thermal shielding problems such as gears,
cams, cutting tools, high temperature chambers, furnace liners, tur-
bines, micro‐electronics and space structures (see, e.g., Reddy and
his colleagues [2–12] for the analysis of through‐thickness, two‐
constituent FGM beams and plates). The vast majority of two‐
constituent FGM studies employed either a power‐law or exponential
distribution of the materials. In the power‐law model, which is more
commonly used in bending, vibration, and buckling studies, the mod-
ulus of elasticity E, for example, is assumed to vary through the thick-
ness according to the formula (see [2])
E zð Þ ¼ E1 � E2ð Þf zð Þ þ E2; f zð Þ ¼ 1
2
þ z
h

ð1Þ

where E1 and E2 are the Youngs moduli of the top (material 1) and bot-
tom (material 2) faces of the plate, respectively and n is the volume
fraction exponent. The exponential model, which is often employed
in fracture studies, is based on the formula (see [13,14])

E zð Þ ¼ E1 exp �α
1
2
� z
h

� �� �
; α ¼ log

E1

E2

� �
ð2Þ

With the progress of technology and fast growth of the use of
nanostructures, FGMs have found potential applications in micro and
nano scales in the form of shape memory alloy thin films (see Lü
et al. [15]), atomic force microscopes (AFMs) (see Kahrobaiyan et al.
[16]), electrically actuated actuators (see Zhang and Fu [17]), and
microswitches (see Shariat et al. [18]), to name a few. Arbind and
Reddy [10] and Arbind, Reddy, and Srinivasa [11] accounted for the
von Kármán nonlinear strains to develop nonlinear finite element
models for functionally graded classical and first‐order shear deform-
able beams. The von Kármán nonlinearity may have significant contri-
bution to the response of micro‐ and nano‐scale devices such as
biosensors and atomic force microscopes (see, for example, Li et al.
[19], and Pei et al. [20]).
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1.2. The dual mesh control domain method

The finite element method (FEM) as an analysis tool has dominated
the solid and structural mechanics field, while the finite volume
method (FVM) witnessed tremendous growth and applications as
applied to heat transfer and fluid mechanics fields. These methods
are fundamentally different in arriving at the final discretized equa-
tions associated with a differential equation. The FEM is endowed with
three basic features that no other method has (see Reddy [21]): (1)
division of the domain into subdomains, called finite elements that
allow unique derivation of interpolations functions used for the
approximation of the geometry as well as the dependent unknowns,
(2) derivation of the discretized equations, called the finite element
model, over a typical element, using a method of approximation
(e.g., Ritz, Galerkin, least‐squares, subdomain, and so on; see Reddy
[22]), and (3) assembly of the elements, using continuity and balance
conditions, to obtain the discretized equations of the whole domain.
We remark that families of interpolation functions on various geome-
tries existed long before the FEM came into existence. Thus, calling
these geometries as finite elements is appropriate only when they
are used in the FEM; otherwise, they are just what they are geometri-
cally – triangles, quadrilaterals, tetrahedrals, bricks, and so on. The
FVM (see [23–25]) also represents the domain as a collection of subdo-
mains with mesh points, and then a second mesh is placed over the
first mesh such that the mesh points are in the interior of the second
mesh. The subdomains of the second mesh are called control volumes,
over which global form of the governing equations is satisfied. In the
conventional FVM, the derivatives of the dependent variable at the
interfaces of the control volumes are expressed in terms of the values
of the variables at the mesh points using Taylor’s series. In recent
years, some FVM researchers have started using the first mesh to be
one composed of triangles, rectangles, tetrahedrals, etc. In the FVM,
the discretized equations consist of values of the unknowns at all mesh
points connected to the control volume through the first mesh, result-
ing in a finite‐difference‐like stencil at the mesh point. The stencil is
used repeatedly to obtain equations at all mesh points of the domain
and the boundary.

Every engineering system has duality pairs – cause and effect,
sometimes more than one pair, depending on the phenomena being
modeled. Examples of the duality pairs are provided by (displace-
ment, force) and (temperature, heat/flux). One must know one of
the quantities of each pair at all mesh points (in some cases, a rela-
tion between them is known without having the knowledge of either
quantity). In the FEM, the discretized equations often represent the
algebraic relations among the nodal values of the duality pairs. Con-
sequently, the imposition of boundary conditions in the FEM –

whether one quantity or the other in the duality pair is known –

are physical, and one does not replace the derivative at a boundary
point in terms of the variable at the point. This concept of “duality”
is not used in the FVM.

Recently, Reddy [26] introduced a numerical approach termed the
dual mesh control domain method (DMCDM), previously called the dual
mesh finite domain method, which utilizes the desirable features of the
FEM and FVM. In the DMCDM, the domain is represented with a pri-
mal mesh of finite elements (i.e., define the approximations used for
the unknowns), which allows a unique representation of the depen-
dent unknowns, and a dual mesh is superimposed on the primal mesh
such that the nodes of the primal mesh are in the interior of the dual
mesh of control domains. Then the governing equation is satisfied in
an integral sense over the control domain, similar to the FVM. The
approach does not involve isolating a finite element domain and satis-
fying the governing equations in a weak sense over it and assembling
element equations to obtain the global equations. Instead, the DMCDM
results, much like in the FVM, directly in a set of global equations in
terms of the nodal values of the primary variables. Thus, the DMCDM
brings the desirable features of the FEM and the FVM, and comes clo-
2

ser to the FVM, where the first mesh is composed of the standard finite
elements (geometry as well as approximation functions).

The major merits of the DMCDM are that the method inherits the
desirable aspect of the FVM (in satisfying the global form of the gov-
erning equations over the control domains) and overcomes the disad-
vantage of the discontinuity of the secondary variables at the
interfaces of the finite elements by calculating them at the boundaries
of the control domains, where they are continuous (i.e., uniquely
defined). The concept of duality and secondary variables are used to
implement specified boundary conditions in the same way as in the
FEM. The DMCDM has been domonstrated to yield accurate solutions
for beams [27,28], axisymmetric circular plates [29], and heat transfer
and fluid mechanics [30,31].

1.3. Present study

In the present study, the DMCDM has been extended to geometri-
cally nonlinear analysis of axisymmetric bending of functionally
graded circular and annular plates. Mixed formulation of the classical
plate theory (CPT) and the displacement formulation of the first‐order
shear deformation plate theory (FSDT) are developed and their dis-
cretizations using the DMCDM are outlined. For comparison purposes,
the mixed and displacement finite element models of the nonlinear
bending of axisymetric circular plates are used, although their theoret-
ical developments are not included here (see Reddy et al. [12] for the
displacement model and [29] for the mixed model). These formula-
tions account for through‐thickness power‐law variation of a two‐
constituent material and the von Kármán nonlinear strains. Since
nanoscale devices may involve circular plate elements that may be
functionally graded and undergo moderately large rotations, the newly
developed computational models can be used to determine response of
circular plates. Moreover, the bending‐extensional coupling is cap-
tured in the presence of the von Kármán nonlinear strains.

2. Governing equations

2.1. Preliminary comments

We consider a two‐constituent functionally graded circular plate of
outside radius R, inside radius a, and total thickness h. The r‐
coordinate is taken radially outward from the center the plate, z‐
coordinate along the thickness of the plate, and the θ‐coordinate is
taken along a circumference of the plate. We assume that the material
of the plate is isotropic but varies from one kind of material at the bot-
tom, z ¼ �h=2, to another material at the top, z ¼ h=2, so that the
modulus E zð Þ of the material of the plate varies through the plate
thickness according to the power‐law in Eq. (1) (see Fig. 1). Poisson’s
ratio ν will be assumed to be constant throughout. When n ¼ 0, we
obtain the single‐material plate (with the property of material 1).

2.2. Classical plate theory

2.2.1. Displacement formulation
The equations of equilibrium of the CPT are (see Reddy [35,36])

1
r

� d
dr

rNrrð Þ þ Nθθ

� �
¼ 0 ð3Þ

�1
r

d
dr

rVrð Þ � q ¼ 0 ð4Þ

where Vr is the effective transverse shear force acting on the rz‐plane

Vr ¼ 1
r

d
dr

rMrrð Þ �Mθθ þ rNrr
dw
dr

� �
ð5Þ

and Nrr ;Nθθ;Mrr , and Mθθ are the stress resultants, which can be
expressed in terms of the displacements (u;w) according to following
the relations (assuming that Hooke’s law holds)



Fig. 1. Geometry and coordinate system for an axisymmetric bending of an
FGM solid circular plate.
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Nrr ¼
Z h

2

�h
2

σrr dz ¼ A ɛ̂ 0ð Þ
rr þ B ɛ̂ 1ð Þ

rr ð6aÞ

Nθθ ¼
Z h

2

�h
2

σθθ dz ¼ A ɛ̂ 0ð Þ
θθ þ Bɛ̂ 1ð Þ

θθ ð6bÞ

Mrr ¼
Z h

2

�h
2

σrrz dz ¼ B ɛ̂ 0ð Þ
rr þ D ɛ̂ 1ð Þ

rr ð6cÞ

Mθθ ¼
Z h

2

�h
2

σθθz dz ¼ B ɛ̂ 0ð Þ
θθ þ D ɛ̂ 1ð Þ

θθ ð6dÞ

Here A;B, and D denote the extensional, extensional‐bending, and
bending stiffness of the plate:

A;B;Dð Þ ¼ 1
1� ν2ð Þ

Z h
2

�h
2

E zð Þ 1; z; z2
� �

dz ð7Þ

and ɛ̂ are the effective strains

ɛ̂ 0ð Þ
rr ¼ du

dr
þ 1
2

dw
dr

� �2

þ ν
u
r

" #
; ɛ̂ 1ð Þ

rr ¼ � d2w
dr2

þ ν

r
dw
dr

� �
ð8aÞ

ɛ̂ 0ð Þ
θθ ¼ u

r
þ ν

du
dr

þ ν

2
dw
dr

� �2
" #

; ɛ̂ 1ð Þ
θθ ¼ � ν

d2w
dr2

þ 1
r
dw
dr

� �
ð8bÞ

The boundary conditions of the CPT involve specifying one element
of each of the following duality pairs:

u; rNrrð Þ; w; rVrð Þ; � dw
dr

; rMrr

� �
ð9Þ
2.3. Mixed formulation

To reduce the order of the differential equations expressed in terms
of the generalized displacements, from the fourth‐order to the second‐
order differential equations, in the case of the shear‐constrained plate
theory (i.e., classical plate theory), here we reformulate the governing
equations of the classical plate theory as a set of second‐order differen-
tial equations terms of the displacements (u;w) and the bending
moment (Mrr). Such formulations are known as mixed formulations
(i.e., mixing displacement variables with force variables). Rewriting
Eq. (8a) for the effective strains ɛ̂ 0ð Þ

rr and ɛ̂ 1ð Þ
rr and Eq. (8b) for the effec-

tive strains ɛ̂ 0ð Þ
θθ and ɛ̂ 1ð Þ

θθ in terms of the stress resultants Nrr and Mrr , we
have

ɛ̂ 0ð Þ
rr ¼ 1

D� DNrr � BMrrð Þ; ɛ̂ 1ð Þ
rr ¼ 1

D� �BNrr þ AMrrð Þ ð10aÞ

ɛ̂ 0ð Þ
θθ ¼ 1

D� DNθθ � BMθθð Þ; ɛ̂ 1ð Þ
θθ ¼ 1

D� �BNθθ þ AMθθð Þ ð10bÞ
3

A series of algebraic manipulations of Eqs. (10a) and (10b) to
rewrite the stress resultants in terms of (u;w;Mrr) results in

Nrr ¼ Aɛ̂ 0ð Þ
rr þ BMrr ¼ A

du
dr

þ 1
2

dw
dr

� �2

þ ν
u
r

" #
þ BMrr ð11aÞ

Mrr ¼ �D
d2w
dr2

þ ν

r
dw
dr

� �
þ DB

du
dr

þ 1
2

dw
dr

� �2

þ ν
u
r

" #
ð11bÞ

Mθθ ¼ νMrr þ 1� ν2
� �

B
u
r
� 1� ν2
� �

D
1
r
dw
dr

ð11cÞ

Nθθ ¼ A ν
du
dr

þ 1
2
ν

dw
dr

� �2

þ u
r

" #
þ 1

r
1� ν2
� �

B Bu� dw
dr

� �
þ νBMrr ð11dÞ

where

D� ¼ DA� B2; A ¼ D�

D
¼ A� BB; B ¼ B

D
ð12Þ

The two equilibrium equations, Eqs. (3) and (4), when Nrr ;Nθθ, and
Mθθ are expressed in terms of u;w, and Mrr , along with Eq. (11b) pro-
vide the three required equations of the mixed formulation:

� 1
r

d
dr

rA
du
dr

þ 1
2

dw
dr

� �2

þ ν
u
r

" #
þ rBMrr

( )

þ 1
r
A ν

du
dr

þ ν

2
dw
dr

� �2

þ u
r

" #
þ 1

r
1� ν2
� �

B B
u
r
� 1

r
dw
dr

� �
þ 1

r
νBMrr ¼ 0

ð13Þ

� 1
r

d
dr

r
dMrr

dr
þ 1� νð ÞMrr � 1� ν2

� �
D B

u
r
� 1

r
dw
dr

� �� �

� 1
r

d
dr

rA
dw
dr

du
dr

þ 1
2

dw
dr

� �3

þ ν
dw
dr

u
r

" #
þ rB

dw
dr

Mrr

( )
� q ¼ 0

ð14Þ

� 1
r

d
dr

r
dw
dr

� �
þ 1� νð Þ1

r
dw
dr

þ B
du
dr

þ 1
2

dw
dr

� �2

þ ν
u
r

" #
� 1
D
Mrr ¼ 0

ð15Þ
2.4. First-order shear deformation plate theory

The first‐order shear deformation plate theory (FSDT) (see Reddy
[35]) is the simplest theory that accounts for a nonzero transverse
shear strain. The equations of equilibrium of the FSDT are

1
r

� d
dr

rNrrð Þ þ Nθθ

� �
¼ 0 ð16Þ

� 1
r

d
dr

rVrð Þ � q ¼ 0 ð17Þ
1
r

� d
dr

rMrrð Þ þMθθ

� �
þ Qr ¼ 0 ð18Þ

The effective shear force Vr is defined by

Vr ¼ Qr þ Nrr
dw
dr

ð19Þ

and Qr is shear stress resultant. The stress resultants in the first‐order
plate theory can be expressed in terms of the generalized displacements
(u;w;ϕ) as

Nrr ¼
R h

2
�h
2
σrr dz ¼ A du

dr þ 1
2

dw
dr

� �2 þ ν u
r

h i
þ B dϕ

dr þ ν
r ϕ

� �
Nθθ ¼

R h
2
�h

2
σθθ dz ¼ A u

r þ ν du
dr þ ν

2
dw
dr

� �2h i
þ B ν dϕ

dr þ 1
r ϕ

� �
Mrr ¼

R h
2
�h
2
σrrz dz ¼ B du

dr þ 1
2

dw
dr

� �2 þ ν u
r

h i
þ D dϕ

dr þ ν
r ϕ

� �
Mθθ ¼

R h
2
�h
2
σθθz dz ¼ B u

r þ ν du
dr þ ν

2
dw
dr

� �2h i
þ D ν dϕ

dr þ 1
r ϕ

� �
Qr ¼ Ks

R h
2
�h
2
σrz dz ¼ Srz ϕþ dw

dr

� �

ð20Þ
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where A;B, and D are the stiffnesses defined in Eq. (7), and Srz is the
shear stiffness

Srz ¼ Ks

2 1þ νð Þ
Z h

2

�h
2

E zð Þdz ð21Þ

The boundary conditions involve specifying one element of each of
the following duality pairs:

u; rNrrð Þ; w; rVrð Þ; ϕ; rMrrð Þ ð22Þ
Fig. 2. A primal mesh of finite elements and dual mesh of control domains
shown for a typical radial line of a circular plate. The Ith finite element is
denoted by Ω Ið Þ

f . We note that the boundary nodes have only half control
domains whereas the internal nodes have full control domains. Also, each
control domain connects two neighboring finite elements, one on the left and
the other on the right. The Ith control domain, which houses the Ith node, is
denoted by Ω Ið Þ

c . The control domain Ω Ið Þ
c associated with an interior node I is

isolated to discuss the discretization. Every interior control domain connects
three nodes (nine nodal degrees of freedom) through the discretization of the
governing equation, whereas the boundary nodes connect two adjacent nodes.
3. The dual mesh control domain models

3.1. Introduction

The displacement and mixed finite element models of CPT and the
displacement model of the FSDT can be found in [28,29]. Therefore,
these models are not discussed here. Instead, a detailed discussion of
the DMCDM is presented.

Reddy [26] introduced a numerical approach termed the dual mesh
finite domain method, which uses ideas from both the FEM and FVM
to solve second‐order equations (thus, higher‐order equations must be
expressed as a system of first‐ and second‐order equations). In the
DMCDM, the domain is represented with a primal mesh of finite ele-
ments, and a dual mesh is superimposed on the primal mesh such that
the nodes of the primal mesh are inside the dual mesh (if the mesh is
uniform, they will be at the center of the control domains) of finite/-
control domains, except for the nodes on the boundary. Then the gov-
erning equation is required to be satisfied in an integral sense (not in a
weighted‐integral sense, [35]) over the finite domain. The second‐
order terms in the differential equation are integrated by parts and
expressed as dual variables on the interfaces of the dual mesh. When
the interfaces fall on the boundary, either the dual variables or their
counterparts (i.e., primary variables) are known and thereby the
derivatives are not replaced at the boundary nodes, eliminating the
need for the so‐called zero‐thickness control volumes or fictitious con-
trol volumes. The DMCDM brings the best features of the FEM, namely,
the interpolation of the variables and imposition of physical boundary
conditions, and of the FVM in satisfying the actual balance equations
over the control domain. The major merits of the DMCDM are that
the method inherits the desirable aspect of the FVM (in satisfying
the global form of the governing equations over the finite domains)
and overcomes the disadvantage of the discontinuity of the secondary
variables at the interfaces of the finite elements by calculating them at
the boundaries of the control domains, where they are continuous (i.e.,
uniquely defined).

In the following discussion, we consider circular plates with
axisymmetric conditions (i.e., material properties, boundary condi-
tions, and loads are independent of the circumferential coordinate).
Consequently, we can use any radial line as the domain of any circular
plate problem (see Fig. 2). The domain is divided into a set of N non‐
overlapping but connected subintervals, which we term “finite ele-
ments” (i.e., line elements with interpolation functions), much like
in the finite element method (but we do not use the finite element
method to obtain the discretized equations). This mesh of finite ele-
ments will be called the primal mesh. The connecting points of the pri-
mal mesh will be termed “nodes.” For now, we assume that each
element has two nodes (i.e., linear approximation), positioned at the
ends of the line element. Then, we identify a second mesh, called
the dual mesh, of line elements which covers the whole domain and
bisect the elements of the primal mesh on either side of the nodes
(i.e., the interfaces of the line elements of the dual mesh are at the cen-
ter of the finite elements of the primal mesh), as shown in Fig. 2. The
line elements of the dual mesh are called control domains. Every control
domain contains a node of the primal mesh. We then isolate a typical
line element of the dual mesh and satisfy the integral statements of the
4

governing equations. Since the control domain spans two adjacent ele-
ments, the satisfaction of the governing equations automatically
relates the nodal values of the dependent unknowns at three consecu-
tive nodes.

In the following subsections, we detail the discretization process for
the mixed model of the CPT and the displacement model of the FSDT.
For the purpose of readily seeing the meaning of the dual variables, we

write the governing equations in terms of the strains ɛ̂ 0ð Þ
rr ; ɛ̂

0ð Þ
θθ ; ɛ̂

1ð Þ
θθ , and

Mrr . Ultimately, all equations expressed in terms of the unknowns of
the model and the unknowns are approximated using linear finite ele-
ment interpolation functions. For example, a typical unknown u is

approximated over a typical finite element Ω Jð Þ
f ¼ rJ ; rJþ1ð Þ (the ele-

ment Ω Jð Þ
f is on the right side of the node J) by

u rð Þ≈UJψ
Jð Þ
1 rð Þ þ UJþ1ψ

Jð Þ
2 rð Þ ð23Þ

where UJ is the value of u at node J (i.e., UJ≈u rJð Þ) and ψ Jð Þ
i rð Þ (i ¼ 1;2)

are linear finite element interpolation functions of element Ω Jð Þ
f for

J ¼ 1;2; . . . ;N, expressed in terms of the coordinate r (r has its origin
at the center of the plate):

ψ Jð Þ
1 rð Þ ¼ rJþ1 � r

hJ
; ψ Jð Þ

2 rð Þ ¼ r � rJ
hJ

ð24Þ

Similar approximations are used for other dependent unknowns. When
the integral statements are evaluated at a boundary node, either the
secondary variable or the corresponding primary variable is known
at the node and, therefore, one need not express the secondary vari-
ables in terms of the gradients of the primary variables and approxi-
mate them in terms of the nodal values of the primary variables. In
the interior of the domain, the secondary variables appearing in the
integral statements for an interior node I are replaced in terms of the
nodal values of the dependent unknowns using the finite element
approximation of the form in Eq. (23), while linearizing the nonlinear
terms. In this study, we assume that all of the stiffness coefficients A;B,
and D are constant (i.e., independent of position). The details are pre-
sented next.



Fig. 3. The control domain Ω Ið Þ
c associated with an interior node I, the nodal

coordinates, coordinates of the control volume interfaces, and the nodal
degrees of freedom (3 degrees of freedom per node).
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3.2. Mixed model of the CPT

The dual mesh finite domain statements of Eqs. (13)–(15) are
obtained as follows:

0¼�
Z r Jð Þ

B

r Jð Þ
A

1
r

d
dr

rAɛ̂ 0ð Þ
rr þ rBMrr

� ��A ɛ̂ 0ð Þ
θθ �Bɛ̂ 1ð Þ

θθ

� �
rdr

¼� rAɛ̂ 0ð Þ
rr þ rBMrr

� 	r Jð Þ
B

r Jð Þ
A

�
Z r Jð Þ

B

r Jð Þ
A

A ɛ̂ 0ð Þ
θθ þBɛ̂ 1ð Þ

θθ


 �
dr¼�N Jð Þ

1 �N Jð Þ
2

�
Z r Ið Þ

B

r Jð Þ
A

A ɛ̂ 0ð Þ
θθ þBɛ̂ 1ð Þ

θθ


 �
dr

ð25Þ

0¼�
Z r Jð Þ

B

r Jð Þ
A

1
r
d
dr

d
dr

rMrrð Þ�B ɛ̂ 0ð Þ
θθ �D ɛ̂ 1ð Þ

θθ þAr
dw
dr

ɛ̂ 0ð Þ
rr þBr

dw
dr

Mrr

� �
þq

� 

rdr

¼� d
dr

rMrrð Þ�B ɛ̂ 0ð Þ
θθ �D ɛ̂ 1ð Þ

θθ þAr
dw
dr

ɛ̂ 0ð Þ
rr þBr

dw
dr

Mrr

� �r Jð Þ
B

r Jð Þ
A

�
Z r Jð Þ

B

r Jð Þ
A

qrdr¼�V Jð Þ
1 �V Jð Þ

2 �
Z r Jð Þ

B

r Jð Þ
A

qrdr

ð26Þ

0 ¼
Z r Jð Þ

B

r Jð Þ
A

�1
r

d
dr

r
dw
dr

� �
þ 1� νð Þ1

r
dw
dr

þ B
� du

dr
þ 1
2

dw
dr

� �2

þ ν
u
r

" #
� 1
D
Mrr

( )
rdr

¼ � r
dw
dr

� �r Jð Þ
B

r Jð Þ
A

þ
Z r Jð Þ

B

r Jð Þ
A

1� νð Þ dw
dr

þ r B
� du

dr
þ 1
2

dw
dr

� �2

þ νu

" #
� r
D
Mrr

( )
dr

¼ �Θ Jð Þ
1 � Θ Jð Þ

2 þ
Z r Jð Þ

B

r Jð Þ
A

1� νð Þ dw
dr

þ r B
� du

dr
þ 1
2

dw
dr

� �2

þ νu

" #
� r
D
Mrr

( )
dr

ð27Þ

where the secondary variables N;V, and Θ are defined by

N Jð Þ
1 ¼ � rNrrð Þjr Jð Þ

A
;N Jð Þ

2 ¼ rNrrð Þjr Jð Þ
B

ð28aÞ

V Jð Þ
1 ¼ � rVrð Þjr Jð Þ

A
;V Jð Þ

2 ¼ rVrð Þjr Jð Þ
B

ð28bÞ

Θ Jð Þ
1 ¼ � r

dw
dr

� �
jr Jð Þ

A
;Θ Jð Þ

2 ¼ r
dw
dr

� �
jr Jð Þ

B
ð28cÞ

For a typical interior node I, the secondary variables in Eqs. (28a)–
(28c) can be expressed in terms of the nodal values of u;w,
and Mrr :

N Ið Þ
1 ¼ �A r Ið Þ

A
UI � UI�1

hI�1
þ 0:5r Ið Þ

A δWI�1
WI �WI�1

hI�1
þ ν

UI þ UI�1

2

� �

� r Ið Þ
A B

MI þMI�1

2

ð29aÞ

N Ið Þ
2 ¼ A r Ið Þ

B
UIþ1 � UI

hI
þ 0:5r Ið Þ

B δWI
WIþ1 �WI

hI
þ ν

UIþ1 þ UI

2

� �

þ r Ið Þ
B B

MIþ1 þMI

2

ð29bÞ

V Ið Þ
1 ¼ � r Ið Þ

A
MI �MI�1

hI�1
þ 1� νð ÞMI þMI�1

2
þ r Ið Þ

A BδWI�1
MI þMI�1

2

�

� 1� ν2
� �

D B
UI þ UI�1

2r Ið Þ
A

�WI �WI�1

hI�1r
Ið Þ
A

 !#

� AδWI�1 r Ið Þ
A
UI � UI�1

hI�1
þ 0:5r Ið Þ

A δWI�1
WI �WI�1

hI�1
þ ν

UI þ UI�1

2

� �

ð29cÞ
5

V Ið Þ
2 ¼ r Ið Þ

B
MIþ1 �MI

hI
þ 1� νð ÞMIþ1 þMI

2

�

� 1� ν2
� �

D B
UIþ1 þ UI

2r Ið Þ
B

�WIþ1 �WI

hIr
Ið Þ
B

 !#

þ AδWI r Ið Þ
B
UIþ1 � UI

hI
þ 0:5r Ið Þ

B δWI
WIþ1 �WI

hI
þ ν

UIþ1 þ UI

2

� �

þ r Ið Þ
B BδWI

MIþ1 þMI

2

Θ Ið Þ
1 ¼ �r Ið Þ

A
WI �WI�1

hI�1
; Θ Ið Þ

2 ¼ r Ið Þ
B
WIþ1 �WI

hI
ð29eÞ

where the superscript Ið Þ refers to the control domain Ω Ið Þ
c , the subscript

I refers to the element number Ω Ið Þ
f (the control domain Ω Ið Þ

c partially

occupies finite element Ω I�1ð Þ
f on the left and finite element Ω Ið Þ

f on
the right), and

δWI�1 ¼ WI �WI�1

hI�1
; δWI ¼ WIþ1 �WI

hI
ð29fÞ

and WI�1 and WI are the nodal value of w from the previous iteration.
To obtain the discretized equations associated with Eqs. (25)–(27),

we use the relations in Eqs. (29a)–(29e). With the relations in Eqs.
(51a)‐(51j), the discretized form of Eqs. (25)–(27) can be expressed
in the form (we note that these are global equations and contain coef-
ficients of nine variables associated with three consecutive nodes; the
number of degrees of freedom per node is 3):

0 ¼ KI
I�3ΔI�3 þ KI

I ΔI þ KI
Iþ3ΔIþ3 þ KI

I�2ΔI�2 þ KI
Iþ1ΔIþ1

þ KI
Iþ4ΔIþ4 þ KI

I�1ΔI�1 þ KI
Iþ2ΔIþ2 þ KI

Iþ5ΔIþ5 ð30Þ
0 ¼ KIþ1

I�3ΔI�3 þ KIþ1
I ΔI þ KIþ1

Iþ3ΔIþ3 þ KIþ1
I�2ΔI�2 þ KIþ1

Iþ1ΔIþ1

þ KIþ1
Iþ4ΔIþ4 þ KIþ1

I�1ΔI�1 þ KIþ1
Iþ2ΔIþ2 þ KIþ1

Iþ5ΔIþ5 � FIþ1
Iþ1 ð31Þ

0 ¼ KIþ2
I�3ΔI�3 þ KIþ2

I ΔI þ KIþ2
Iþ3ΔIþ3 þ KIþ2

I�2ΔI�2 þ KIþ2
Iþ1ΔIþ1

þ KIþ2
Iþ4ΔIþ4 þ KIþ2

I�1ΔI�1 þ KIþ2
Iþ2ΔIþ2 þ KIþ2

Iþ5ΔIþ5 ð32Þ
for I ¼ 4;7; 10; . . . ; 3N, where N is the number of elements (or N þ 1 is
the number of nodes) in the mesh. Here Δ is the vector of global pri-
mary degrees of freedom (see Fig. 3):

ΔI�3 ¼ UJ�1; ΔI ¼ UJ ; ΔIþ3 ¼ UJþ1

ΔI�2 ¼ WJ�1; ΔIþ1 ¼ WJ ; ΔIþ4 ¼ WJþ1

ΔI�1 ¼ MJ�1; ΔIþ2 ¼ MJ ; ΔIþ5 ¼ MJþ1

ð33Þ

and KI
K ¼ KIK are the stiffness coefficients presented in Appendix A.1

[see Eqs. (13)–(15)].For boundary node 1, the discretized equations are

0 ¼ �N 1ð Þ
1 þ K1

1Δ1 þ K1
4Δ4 þ K1

2Δ2 þ K1
5Δ5 þ K1

3Δ3 þ K1
6Δ6 ð34Þ

0 ¼ �V 1ð Þ
1 þ K2

1Δ1 þ K2
4Δ4 þ K2

2Δ2 þ K2
5Δ5 þ K2

3Δ3 þ K2
6Δ6 � F2 ð35Þ

0 ¼ �Θ 1ð Þ
1 þ K3

1Δ1 þ K3
4Δ4 þ K3

2Δ2 þ K3
5Δ5 þ K3

3Δ3 þ K3
6Δ6 ð36Þ
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where the coefficients KI
J are defined in Appendix B.1. Similar relations

can be written for node N þ 1.

3.3. Displacement model of the FSDT

The dual mesh finite domain statements of Eqs. (16)–(18), with the
stress resultants defined by Eq. (20), are obtained as follows:

0 ¼
Z r Jð Þ

B

r Jð Þ
A

1
r

� d
dr

rNrrð Þ þ Nθθ

� �� 

rdr ¼ �N Jð Þ

1 � N Jð Þ
2 þ

Z r Jð Þ
B

r Jð Þ
A

Nθθ dr ð37Þ

0 ¼
Z r Jð Þ

B

r Jð Þ
A

�1
r

d
dr

rVrð Þ � q
� �

rdr ¼ �V Jð Þ
1 � V Jð Þ

2 �
Z r Jð Þ

B

r Jð Þ
A

rq rð Þdr ð38Þ

0 ¼
Z r Jð Þ

B

r Jð Þ
A

1
r

� d
dr

rMrrð Þ þMθθ

� �
þ Qr

� 

rdr ¼ �M Jð Þ

1 �M Jð Þ
2

þ
Z r Jð Þ

B

r Jð Þ
A

Mθθ þ rQrð Þdr ð39Þ

where the secondary variables N;V, and M are defined by

N Jð Þ
1 ¼ � rNrrð Þjr Jð Þ

A
; N Jð Þ

2 ¼ rNrrð Þjr Jð Þ
B

ð40aÞ
V Jð Þ

1 ¼ � rVrð Þjr Jð Þ
A
; V Jð Þ

2 ¼ rVrð Þjr Jð Þ
B

ð40bÞ
M Jð Þ

1 ¼ � rMrrð Þjr Jð Þ
A
; M Jð Þ

2 ¼ rMrrð Þjr Jð Þ
B

ð40cÞ

For a typical interior node I, the secondary variables in Eqs. (40a)–
(40c) can be expressed in terms of the nodal values of u;w, and ϕ:

N Ið Þ
1 ¼ �A r Ið Þ

A
UI � UI�1

hI�1
þ 0:5r Ið Þ

A δWI�1
WI �WI�1

hI�1
þ ν

UI þ UI�1

2

� �

� B r Ið Þ
A
ΦI �ΦI�1

hI�1
þ ν

ΦI þΦI�1

2

� �
ð41aÞ

N Ið Þ
2 ¼ A r Ið Þ

B
UIþ1 � UI

hI
þ 0:5r Ið Þ

B δWI
WIþ1 �WI

hI
þ ν

UIþ1 þ UI

2

� �

þ B r Ið Þ
B
ΦIþ1 �ΦI

hI
þ ν

ΦIþ1 þΦI

2

� �
ð41bÞ

V Ið Þ
1 ¼ � r Ið Þ

A Srz
ΦI þΦI�1

2
þWI �WI�1

hI�1

� ��

þ δWI�1 r Ið Þ
A
UI � UI�1

hI�1
þ 0:5r Ið Þ

A δWI�1
WI �WI�1

hI�1
þ ν

UI þ UI�1

2

� �

þ BδWI�1 r Ið Þ
A
ΦI �ΦI�1

hI�1
þ ν

ΦI þΦI�1

2

� �

ð41cÞ

V Ið Þ
2 ¼ r Ið Þ

B Srz
ΦI þ ΦIþ1

2
þWIþ1 �WI

hI

� ��

þ AδWI r Ið Þ
B
UIþ1 � UI

hI
þ 0:5r Ið Þ

B δWI
WIþ1 �WI

hI
þ ν

UI þ UIþ1

2

� �

þBδWI r Ið Þ
B
ΦIþ1 � ΦI

hI
þ ν

ΦI þ ΦIþ1

2

� �

ð41dÞ

M Ið Þ
1 ¼ �B r Ið Þ

A
UI � UI�1

hI�1
þ 0:5r Ið Þ

A δWI�1
WI �WI�1

hI�1
þ ν

UI þ UI�1

2

� �

� D r Ið Þ
A
ΦI � ΦI�1

hI�1
þ ν

ΦI þ ΦI�1

2

� �
ð41eÞ

M Ið Þ
2 ¼ B r Ið Þ

B
UIþ1 � UI

hI
þ 0:5r Ið Þ

B δWI
WIþ1 �WI

hI
þ ν

UIþ1 þ UI

2

� �

þ D r Ið Þ
B
ΦIþ1 � ΦI

hI
þ ν

ΦIþ1 þ ΦI

2

� �
ð41fÞ

The discretized form of Eqs. (37)–(39) can be expressed in the same
form as Eqs. (30)–(32), with Δ defined by

ΔI�3 ¼ UJ�1; ΔI ¼ UJ ; ΔIþ3 ¼ UJþ1

ΔI�2 ¼ WJ�1; ΔIþ1 ¼ WJ ; ΔIþ4 ¼ WJþ1

ΔI�1 ¼ ΦJ�1; ΔIþ2 ¼ ΦJ ; ΔIþ5 ¼ ΦJþ1

ð42Þ
6

The coefficients KI
K ¼ KIK for this model are defined in Appendix

A.2. For boundary node 1, the discretized equations are

0 ¼ �N 1ð Þ
1 þ K1

1Δ1 þ K1
4Δ4 þ K1

2Δ2 þ K1
5Δ5 þ K1

3Δ3 þ K1
6Δ6 ð43Þ

0 ¼ �V 1ð Þ
1 þ K2

1Δ1 þ K2
4Δ4 þ K2

2Δ2 þ K2
5Δ5 þ K2

3Δ3 þ K2
6Δ6 � F2 ð44Þ

0 ¼ �M 1ð Þ
1 þ K3

1Δ1 þ K3
4Δ4 þ K3

2Δ2 þ K3
5Δ5 þ K3

3Δ3 þ K3
6Δ6 ð45Þ

where KI
J are defined in Appendix B.2. Similar expressions can be writ-

ten for node N þ 1.

4. Numerical results

Here we present numerical results obtained with various finite ele-
ment (FEM) and dual mesh control domain (DMCDM) models devel-
oped in the preceding sections. Numerical results obtained with the
FEM and DMCDM are compared in all cases. We use three models of
the FEM and two models of the DMFDM, as designated here:

• FE‐CP(D) – Displacement finite element model of the CPT
• FE‐CP(M) – Mixed finite element model of the CPT
• FE‐FS(D) – Displacement finite element model of the FSDT
• DM‐CP(M) – Mixed dual mesh finite domain model of the CPT
• DM‐FS(D) – Displacement dual mesh finite domain model of the
FSDT

The FE‐CP(D) model uses Hermite cubic interpolation of w rð Þ and
linear interpolation of u rð Þ, whereas all other elements are based on
Lagrange interpolations of all variables. All finite element models
other than FE‐CP(D) can also use quadratic or higher order interpola-
tions, whereas the dual mesh control domain formulations presented
herein are based on linear interpolations. Thus, for consistency, all
numerical results presented herein, with the exception of FE‐CP(D),
are obtained with linear approximations of all field variables. In
obtaining the numerical solutions, we shall consider functionally
graded circular plates of radius R ¼ 10 in (25.4 cm) and thickness
h ¼ 0:1 in (0.254 cm), and subjected to uniformly distributed load of
intensity q0 lb/in (1 lb/in = 175 N/m). The FGM beam is made of
two materials with the following values of the moduli, Poisson’s ratio,
and shear correction coefficient:

E1 ¼ 30� 106 psi 207 GPað Þ; E2 ¼ 3� 106 psi 21 GPað Þ; ν ¼ 0:3;

Ks ¼ 5
6

We shall investigate the parametric effects of the power‐law index,
n, and boundary conditions on the linear and nonlinear transverse
deflections and bending moments.

4.1. Linear analysis

Here we consider functionally graded circular plates which are
either pinned or clamped at the (outer) edge. The boundary conditions
on the primary variables (M ¼ Mrr) in various models for the pinned
case are as follows:

Displacementmodels : u 0ð Þ ¼ 0; and
dw
dr

¼ 0 or ϕ 0ð Þ ¼ 0 at r ¼ 0;

u Rð Þ ¼ w Rð Þ ¼ 0 ð46aÞ
Mixedmodels : u 0ð Þ ¼ 0; u Rð Þ ¼ w Rð Þ ¼ M Rð Þ ¼ 0 ð46bÞ

The exact solution for the transverse deflection of pinned function-
ally graded circular plates according to the FSDT, with the power‐law
given in Eq. (1) [B– 0;D� ¼ DA� B2; see Eqs. (7) and (12)], are given
by (see [34,33])



Fig. 4. Plots of the center deflection of pinned circular plates as functions of
the normalized radial coordinate, r=R, for various value of the power-law
index, n. The solid lines correspond to the analytical solutions and symbols to
the numerical solutions.
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u rð Þ ¼ Bq0R
3

16D� �ξþ ξ3
� � ð47aÞ

w rð Þ ¼ Aq0R
4

64D� ξ4 � 2
3þ ν

1þ ν

� �
ξ2 þ 5þ ν

1þ ν
þ 4B2

DA 1þ νð Þ ξ2 � 1
� �� �

þ q0R
2

4Srz
1� ξ2
� �

ð47bÞ

ϕ rð Þ ¼ Aq0R
3

16D� � 2B2

DA 1þ νð Þ ξþ
3þ νð Þ
1þ νð Þ ξ� ξ3

� �
ð47cÞ

Mrr rð Þ ¼ 3þ νð Þq0R2

16
1� ξ2
� � ð47dÞ

where ξ ¼ r=R. The CPT solutions are given by setting 1=Srz to zero, and
the solutions for homogeneous plates are obtained by setting B ¼ 0.

The boundary conditions on the primary variables in various mod-
els for the clamped circular plate are as follows (replace dw=dr with ϕ
for the FSDT):

Displacementmodels : u 0ð Þ ¼ 0;
dw
dr

0ð Þ ¼ 0; u Rð Þ ¼ w Rð Þ ¼ dw
dr

Rð Þ ¼ 0

ð48aÞ
Mixedmodels : u 0ð Þ ¼ 0; u Rð Þ ¼ w Rð Þ ¼ 0 ð48bÞ

The exact solution for the transverse deflection of functionally
graded clamped circular plate according to the FSDT is

u rð Þ ¼ Bq0R
3

16D� �ξþ ξ3
� � ð49aÞ

w rð Þ ¼ Aq0R
4

64D� 1� ξ2
� �2 þ q0R

2

4Srz
1� ξ2
� � ð49bÞ

ϕ rð Þ ¼ Aq0R
3

16D� ξ� ξ3
� � ð49cÞ

Mrr rð Þ ¼ q0R
2

16
1þ νð Þ � 3þ νð Þξ2� 	 ð49dÞ
Fig. 5. Plots of the post-computed and nodal values of the bending moment Mrr

coordinate, r=R. The solid lines correspond to the analytical solutions and symbol
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Extensive numerical studies have been carried out with various
models (also see [29]), including mesh Independence and value of
the acceleration parameter on the nonlinear convergence, effect of
the power‐law index, and post‐computation of the stress resultants (ei-
ther the bending moments or the rotations). In all cases, both the
DMCDM and FEM models, using 16 linear elements, yield results that
are indistinguishable in a graphical presentations. Most interestingly,
it is found that the post‐computed rotations (in mixed models) and
bending moments (in displacement models) are very accurate (one
cannot distinguish between the exact and numerical solutions), except
at r ¼ 0. Based on the numerical studies, the following observations
are made concerning the linear solutions.

(1) The nodal generalized displacements predicted by FE‐CP(D)
match the exact CPT solutions for the pinned and clamped plates.
(2) The post‐computed shear forces in DM‐FS(D) and DM‐CP(M)
match the exact solution for the pinned and clamped plates.

Fig. 4 contains plots of the deflections w 0ð Þ predicted for the
pinned plates and clamped plates as a function of the normalized
radial coordinate, r=R. The deflections predicted (shown by symbols)
by all FEM and DMCDM models are essentially the same (i.e., the dif-
ferences cannot be seen in the graph) and match with the analytical
solutions (shown as lines); this also indicates that the effect of shear
deformation is negligible (because R=h ¼ 100, a thin plate). The
post‐computed and nodal values of the bending moment Mrr are plot-
ted as functions of the normalized radial coordinate, r=R in Fig. 5.
Except for the value at r ¼ 0 the results match with the exact solution
for both pinned and clamped plates.

Fig. 6 shows the center deflection w 0ð Þ and rotation �dw=dr at
r ¼ 0:5265R as functions of the power‐law index n for the pinned
and clamped circular plates. We note that the rate of increase of the
deflection has two different regions; the first region has a rapid
increase of the deflection while the second region is marked with a rel-
atively slow increase. This is primarily because of the fact that the cou-
pling coefficient Bxx varies with n rapidly for the smaller values of n
followed by a slow decay after n > 3. The rate of increase in the deflec-
tion or slope in the second part is less for clamped plates than for the
pinned plates. The reason is the fact that the clamped plate is relatively
stiffer than the pinned plate.

4.2. Nonlinear analysis

The resulting nonlinear equations after discretization can be solved
using either direct iteration or Newton’s iteration schemes (see Reddy
[32]). It is found that the direct iteration scheme does not converge
even after 50 iterations in some cases, especially for FGM plates. On
of pinned and clamped circular plates as functions of the normalized radial
s to the numerical solutions. The results are independent of the n.



Fig. 6. Plots of the center deflection w 0ð Þ and �dw=dr at r ¼ 0:5625R of pinned and clamped circular plates as a function of the power-law index, n.

Fig. 7. Plots of the normalized center deflection �w ¼ w 0ð Þ=h versus the load
parameter P ¼ q0R

4=E1h
4 for pinned circular plates, for various value of the

power-law index, n.

Fig. 8. Plots of the normalized center deflection �w ¼ w 0ð Þ=h versus the load
parameter P ¼ q0R

4=E1h
4 for clamped circular plates, for various value of the

power-law index, n.

Fig. 9. Plots of the normalized deflection �w ¼ w að Þ=h versus the load
parameter P ¼ q0R

4=E1h
4 for pinned (at the outer rim) annular plates, for

various value of the power-law index, n; a ¼ 0 for solid circular plates and
a ¼ 0:2R for annular plates.

Fig. 10. Plots of the normalized deflection �w ¼ w Rð Þ=h versus the load
parameter P ¼ q0R

4=E1h
4 for annular plates clamped at the inner edge

(r ¼ a; a ¼ 0:2R;0:5R), for various value of the power-law index, n.
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the other hand, the Newton iteration scheme converges for less than
10 iterations (most often for less than 4 iterations). The Newton itera-
tion scheme requires the calculation of the so‐called tangent coeffi-
cient matrix, which is the sum of the original matrix and their
derivatives with respect to the nodal values Δ2

i ¼ wi. A detailed calcu-
lation for the FEM models is presented in [32]. The same ideas are
used in the DMCDM to compute the tangent matrix coefficients.

Load increments of Δq0 ¼ 1:0 lb/in (175 N/m) and a tolerance of
ε ¼ 10�3 are used in the nonlinear analysis. The initial solution vector
is chosen to be Δ0 ¼ 0 so that the first iteration of the first load step
yields the linear solution. The direct iteration scheme does not con-
verge in most cases unless an acceleration parameter, β, is used to eval-
uate the stiffness matrix, Kr ¼ K �Δrð Þ, at each iteration:

�Δr ¼ 1� βð ÞΔr þ βΔr�1; 0 ⩽ β ⩽ 1 ð50Þ
where r denotes the iteration number. Thus, using a weighted average
of the last two iteration solutions to update the stiffness matrix acceler-
ates the convergence. In the present case, a value of β ¼ 0:25–0.35 is
used (after some study with varying β, starting with β ¼ 0). In some
cases, even this strategy does not help to achieve convergence, forcing
us to use the Newton iteration scheme.

The nonlinear analysis results for deflections and bending moment
obtained by various models are also indistinguishable in the graphs of
dimensionless center deflection, �w ¼ w 0ð Þ=h versus the load parame-
ter, P ¼ q0R

4=E1h
4, as shown in Figs. 7 and 8 for pinned and clamped

plates, respectively. The dual mesh control domain method gives
essentially the same results as the finite element method, except that
the former method has less computational effort due to the computa-
tion of the global stiffness matrix and force vector directly, without
computing local matrices and assembling.

Plots of the normalized deflection versus the load parameter
�w ¼ w að Þ=h versus the load parameter P ¼ q0R

4=E1h
4 for pinned (at

the outer rim) annular plates (a ¼ 0:2R) are presented in Fig. 9; again,
all models yield solutions that are indistinguishable in the graphs. The
deflections of the annular plates will be higher than the solid circular
plates due to the fact that annular plates have less stiffness compared
to the solid circular plates for the same boundary conditions. The dif-
ference between the deflections of annular plates and solid plates is
bigger than that is shown in the plots because the deflections of the
solid circular plates (shown in solid lines) are at the center of the plate
while those of the annular plate (shown in broken lines) are at
r=R ¼ 0:2. Finally, Fig. 10 contains plots of the normalized deflection
�w ¼ w Rð Þ=h for annular plates with internal edge clamped. As the
internal radius of the annular plate increases from a ¼ 0:2R to
a ¼ 0:5R, the deflection of the outer edge decreases substantially
because of the reduction in free span of the plate.

5. Summary and conclusions

In this paper the classical (CPT) and first‐order (FSDT) plate theo-
ries for axisymmetric bending of circular plates, accounting for
through‐thickness power‐law variation of a two‐constituent material
and the von Kármán nonlinear strains, are presented, and mixed and
displacement models using the dual mesh finite domain are created.
Numerical results are presented for pinned and clamped solid circular
and pinned annular plates, showing the effect of the power‐law index
on the load–deflection behavior. In all cases, the results predicted by
all computational models gave essentially the same results.

With the developed programs for the five models presented here, a
number of other problems with a variety of boundary conditions may
be analyzed. For example, circular plates with spring (extensional as
well as torsional) supports and annular plates with a combination of
9

boundary conditions at the inner and outer edges, and for different
material distributions, can be readily analyzed. Extension of the
DMCDM method to problems of plane elasticity, plate bending, cou-
pled elasticity and diffusion (thermal and moisture) and others are
waiting attention.
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Appendix A. Appendix A

A.1. The mixed model of the CPT

The following formulas are used in the development of the dis-
cretized equations (see Nampally and Reddy [29]):

u rð Þ½ �r
Ið Þ
B

r Ið Þ
A

¼ 1
2

UIþ1 �UI�1ð Þ ð51aÞ

u rð Þ½ �r¼0:5h1 ¼
1
2

U1 þU2ð Þ; u rð Þ½ �r¼R�0:5hN ¼ 1
2

UN þUNþ1ð Þ ð51bÞ

r
du
dr

� �r Ið Þ
B

r Ið Þ
A

¼ r Ið Þ
A

hI�1

 !
UI�1 � r Ið Þ

A

hI�1
þ r Ið Þ

B

hI

 !
UI þ r Ið Þ

B

hI

 !
UIþ1 ð51cÞ

r
du
dr

� �
r¼0:5h1

¼ 1
2

U2 �U1ð Þ; r
du
dr

� �
r¼R�0:5hN

¼ R� 0:5hNð Þ
hN

UNþ1 �UNð Þ

ð51dÞ

ru rð Þ½ �r
Ið Þ
B

r Ið Þ
A

¼� r Ið Þ
A

2

 !
UI�1 þ r Ið Þ

B � r Ið Þ
A

2

 !
UI þ r Ið Þ

B

2

 !
UIþ1 ð51eÞ

ru rð Þ½ �r¼0:5h1 ¼
h1
4

U1 þU2ð Þ; ru rð Þ½ �r¼R�0:5hN ¼ R� 0:5hNð Þ
2

UNþ1 þUNð Þ

ð51fÞ

r2u rð Þ� 	r Ið Þ
B

r Ið Þ
A

¼� r Ið Þ2
A

2
UI�1 þ r Ið Þ2

B � r Ið Þ2
A

2

 !
UI þ r Ið Þ2

B

2
UIþ1 ð51gÞ

r2u rð Þ� 	
r¼0:5h1

¼ h21
8

U1 þU2ð Þ;

r2u rð Þ� 	
r¼R�0:5hN

¼ R� 0:5hNð Þ2
2

UN þUNþ1ð Þ ð51hÞ

r2
du
dr

� �r Ið Þ
B

r Ið Þ
A

¼ r Ið Þ2
A

hI�1
UI�1 � r Ið Þ2

B

hI
þ r Ið Þ2

A

hI�1

 !
UI þ r Ið Þ2

B

hI
UIþ1 ð51iÞ

r2
du
dr

� �
r¼0:5h1

¼ h1
4

U2 � U1ð Þ;

r2
du
dr

� �
r¼R�0:5hN

¼ R� 0:5hNð Þ2
hN

UNþ1 � UNð Þ ð51jÞ

The stiffness coefficients are defined by
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KI
I�3 ¼ A r dψ J�1ð Þ

1
dr þ νψ J�1ð Þ

1

� �
r¼r Ið Þ

A

þ A
R rI
r Ið Þ
A

ν
dψ J�1ð Þ

1
dr þ 1

r ψ
J�1ð Þ
1

� �
dr

þBB 1� ν2ð Þ R rI
r Ið Þ
A

1
r ψ

J�1ð Þ
1 dr

KI
I ¼ A r dψ J�1ð Þ

2
dr þ νψ J�1ð Þ

2

� �
r¼r Ið Þ

A

þ A
R rI
r Ið Þ
A

ν
dψ J�1ð Þ

2
dr þ 1

r ψ
J�1ð Þ
2

� �
dr

þBB 1� ν2ð Þ R rI
r Ið Þ
A

1
r ψ

J�1ð Þ
2 dr � A r dψ Jð Þ

1
dr þ νψ Jð Þ

1

� �
r¼r Ið Þ

B

þA
R r Ið Þ

B
rI

ν
dψ Jð Þ

2
dr þ 1

r ψ
Jð Þ
2

� �
dr þ BB 1� ν2ð Þ R r Ið Þ

B
rI

1
r ψ

Jð Þ
2 dr

KI
Iþ3 ¼ �A r dψ Jð Þ

2
dr þ νψ Jð Þ

2

� �
r¼r Ið Þ

B

þ A
R r Ið Þ

B
rI

ν
dψ Jð Þ

2
dr þ 1

r ψ
Jð Þ
2

� �
dr

þBB 1� ν2ð Þ R r Ið Þ
B

rI
1
r ψ

Jð Þ
2 dr

KI
I�2 ¼ 1

2A rδWJ�1
dψ J�1ð Þ

1
dr

� �
r¼r Ið Þ

A

þ ν
2A
R rI
r Ið Þ
A
δWJ�1

dψ J�1ð Þ
1
dr dr

�B 1� ν2ð Þ R rI
r Ið Þ
A

1
r

dψ J�1ð Þ
1
dr dr

KI
Iþ1 ¼ 1

2A rδWJ�1
dψ J�1ð Þ

2
dr

� �
r¼r Ið Þ

A

þ ν
2A
R rI
r Ið Þ
A
δWJ�1

dψ J�1ð Þ
2
dr dr

�B 1� ν2ð Þ R rI
r Ið Þ
A

1
r

dψ J�1ð Þ
2
dr dr � 1

2A rδWJ
dψ Jð Þ

1
dr

� �
r¼r Ið Þ

B

þ ν
2A
R r Ið Þ

B
rI

δWJ
dψ Jð Þ

1
dr dr � B 1� ν2ð Þ R r Ið Þ

B
rI

1
r
dψ Jð Þ

1
dr dr

KI
Iþ4 ¼ � 1

2A rδWJ
dψ Jð Þ

2
dr

� �
r¼r Ið Þ

B

þ ν
2A
R r Ið Þ

B
rI

δWJ
dψ Jð Þ

2
dr dr

�B 1� ν2ð Þ R r Ið Þ
B

rI
1
r

dψ Jð Þ
2

dr dr

KI
I�1 ¼ B rψ J�1ð Þ

1

h i
r¼r Ið Þ

A

þ ν
R rI
r Ið Þ
A
ψ J�1ð Þ

1 dr
� 


KI
Iþ2 ¼ B rψ J�1ð Þ

2

h i
r¼r Ið Þ

A

þ ν
R rI
r Ið Þ
A
ψ J�1ð Þ

2 dr� rψ Jð Þ
1

h i
r¼r Ið Þ

B

þ ν
R r Ið Þ

B
rI

ψ Jð Þ
1 dr

� 


KI
Iþ5 ¼ B � rψ Jð Þ

2

h i
r¼r Ið Þ

B

þ ν
R r Ið Þ

B
rI

ψ Jð Þ
2 dr

� 


KIþ1
I�3 ¼� 1� ν2ð ÞDB 1

r ψ
J�1ð Þ
1

h i
r¼r Ið Þ

A

þA δWJ�1 r dψ J�1ð Þ
1
dr þ νψ J�1ð Þ

1

� �� �
r¼r Ið Þ

A

KIþ1
I ¼� 1� ν2ð ÞDB 1

r ψ
J�1ð Þ
2

h i
r¼r Ið Þ

A

þA δWJ�1 r dψ J�1ð Þ
2
dr þ νψ J�1ð Þ

2

� �� �
r¼r Ið Þ

A

þ 1� ν2ð ÞDB 1
r ψ

Jð Þ
1

h i
r¼r Ið Þ

B

�A δWJ r dψ Jð Þ
1

dr þ νψ Jð Þ
1

� �� �
r¼r Ið Þ

B

KIþ1
Iþ3 ¼ 1� ν2ð ÞDB 1

r ψ
Jð Þ
2

h i
r¼r Ið Þ

B

�A δWJ r dψ Jð Þ
2

dr þ νψ Jð Þ
2

� �� �
r¼r Ið Þ

B

KIþ1
I�2 ¼ 1� ν2ð ÞD 1

r
dψ J�1ð Þ

1
dr

� �
r¼r Ið Þ

A

� 1
2A δWJ�1ð Þ2r dψ J�1ð Þ

1
dr

� �
r¼r Ið Þ

A

KIþ1
Iþ1 ¼ 1� ν2ð ÞD 1

r
dψ J�1ð Þ

2
dr

� �
r¼r Ið Þ

A

� 1
2A δWJ�1ð Þ2r dψ J�1ð Þ

2
dr

� �
r¼r Ið Þ

A

� 1� ν2ð ÞD 1
r
dψ Jð Þ

1
dr

� �
r¼r Ið Þ

B

� 1
2A δWJð Þ2r dψ Jð Þ

1
dr

� �
r¼r Ið Þ

B

KIþ1
Iþ4 ¼� 1� ν2ð ÞD 1

r
dψ Jð Þ

2
dr

� �
r¼r Ið Þ

B

� 1
2A δWJð Þ2r dψ Jð Þ

2
dr

� �
r¼r Ið Þ

B

KIþ1
I�1 ¼ r dψ J�1ð Þ

1
dr þ 1� νð Þψ J�1ð Þ

1 �BrδWJ�1ψ
J�1ð Þ
1

� �
r¼r Ið Þ

A

KIþ1
Iþ2 ¼ r dψ J�1ð Þ

2
dr þ 1� νð Þψ J�1ð Þ

2 �BrδWJ�1ψ
J�1ð Þ
2

� �
r¼r Ið Þ

A

� r dψ Jð Þ
1

dr þ 1� νð Þψ Jð Þ
1 þBrδWJ ψ

Jð Þ
1

� �
r¼r Ið Þ

B
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KIþ1
Iþ5 ¼ � r dψ Jð Þ

2
dr þ 1� νð Þψ Jð Þ

2 þ BrδWJ ψ
Jð Þ
2

� �
r¼r Ið Þ

B

KIþ2
I�3 ¼ B

R rI
r Ið Þ
A

r dψ J�1ð Þ
1
dr þ νψ J�1ð Þ

1

� �
dr

KIþ2
I ¼ B

R rI
r Ið Þ
A

r dψ J�1ð Þ
2
dr þ νψ J�1ð Þ

2

� �
dr þ B

R r Ið Þ
B

rI
r dψ Jð Þ

1
dr þ νψ Jð Þ

1

� �
dr

KIþ2
Iþ3 ¼ B

R r Ið Þ
B

rI
r dψ Jð Þ

2
dr þ νψ Jð Þ

2

� �
dr

KIþ2
I�2 ¼ r dψ J�1ð Þ

1
dr

� �
r¼r Ið Þ

A

þ R rI
r Ið Þ
A

1� νð Þ dψ J�1ð Þ
1
dr þ 1

2BrδWJ�1
dψ J�1ð Þ

1
dr

� �
dr

KIþ2
Iþ1 ¼ r dψ J�1ð Þ

2
dr

� �
r¼r Ið Þ

A

þ R rI
r Ið Þ
A

1� νð Þ dψ J�1ð Þ
2
dr þ 1

2BrδWJ�1
dψ J�1ð Þ

2
dr

� �
dr

� r dψ Jð Þ
1

dr

� �
r¼r Ið Þ

B

þ R r Ið Þ
B

rI
1� νð Þ dψ Jð Þ

1
dr þ 1

2BrδWJ
dψ Jð Þ

1
dr

� �
dr

KIþ2
Iþ4 ¼ � r dψ Jð Þ

2
dr

� �
r¼r Ið Þ

B

þ R r Ið Þ
B

rI
1� νð Þ dψ Jð Þ

2
dr þ 1

2BrδWJ
dψ Jð Þ

2
dr

� �
dr

KIþ2
I�1 ¼ � 1

D

R rI
r Ið Þ
A
rψ J�1ð Þ

1 dr; KIþ2
Iþ5 ¼ � 1

D

R r Ið Þ
B

rI
rψ Jð Þ

2 dr

KIþ2
Iþ2 ¼ � 1

D

R rI
r Ið Þ
A
rψ J�1ð Þ

2 dr þ R r Ið Þ
B

rI
rψ Jð Þ

1 dr
� �

FIþ1 ¼ R rI
r Ið Þ
A
rq rð Þdr þ R r Ið Þ

B
rI

rq rð Þdr

ð52Þ

Here the superscripts and subscripts J � 1ð Þ and J (J ¼ 2;3; . . . ;N) refer
to the element numbers on the left and right, respectively, of the node
number J. The coefficients appearing in the node 1 equations are

K1
1 ¼ �A r dψ 1ð Þ

1
dr þ νψ 1ð Þ

1

� �
r¼0:5h1

þ A
R 0:5h1
0 ν

dψ 1ð Þ
1

dr þ 1
r ψ

1ð Þ
1

� �
dr

þBB 1� ν2ð Þ R 0:5h1
0

1
r ψ

1ð Þ
1 dr

K1
4 ¼ �A r dψ 1ð Þ

2
dr þ νψ 1ð Þ

1

� �
r¼0:5h1

þ A
R 0:5h1
0 ν

dψ 1ð Þ
2

dr þ 1
r ψ

1ð Þ
2

� �
dr

þBB 1� ν2ð Þ R 0:5h1
0

1
r ψ

1ð Þ
2 dr

K1
2 ¼ � 1

2A rδW dψ 1ð Þ
1

dr

� �
r¼0:5h1

þ ν
2A
R 0:5h1
0 δW dψ 1ð Þ

1
dr dr

�B 1� ν2ð Þ R 0:5h1
0

1
r
dψ 1ð Þ

1
dr dr

K1
5 ¼ � 1

2A rδW dψ 1ð Þ
2

dr

� �
r¼0:5h1

þ ν
2A
R 0:5h1
0 δW dψ 1ð Þ

2
dr dr

�B 1� ν2ð Þ R 0:5h1
0

1
r
dψ 1ð Þ

2
dr dr

K1
3 ¼ �B rψ 1ð Þ

1

h i
r¼0:5h1

þ ν
R 0:5h1
0 ψ 1ð Þ

1 dr
� 


K1
6 ¼ �B rψ 1ð Þ

2

h i
r¼0:5h1

þ ν
R 0:5h1
0 ψ 1ð Þ

2 dr
�

K2
1 ¼ 1� ν2ð ÞDB 1

r ψ
1ð Þ
1

h i
r¼0:5h1

� A δW r dψ 1ð Þ
1

dr þ νψ 1ð Þ
1

� �� �
r¼0:5h1

K2
4 ¼ 1� ν2ð ÞDB 1

r ψ
1ð Þ
2

h i
r¼0:5h1

� A δW r dψ 1ð Þ
2

dr þ νψ 1ð Þ
2

� �� �
r¼0:5h1

K2
2 ¼ � 1� ν2ð ÞD 1

r
dψ 1ð Þ

1
dr

� �
r¼0:5h1

� A δWð Þ2r dψ 1ð Þ
1

dr

� �
r¼0:5h1

K2
5 ¼ � 1� ν2ð ÞD 1

r
dψ 1ð Þ

2
dr

� �
r¼0:5h1

� A δWð Þ2r dψ 1ð Þ
2

dr

� �
r¼0:5h1

K2
3 ¼ � r dψ 1ð Þ

1
dr þ 1� νð Þψ 1ð Þ

1 þ BrδW ψ 1ð Þ
1

� �
r¼0:5h1

K2
6 ¼ � r dψ 1ð Þ

2
dr þ 1� νð Þψ 1ð Þ

2 þ BrδW ψ 1ð Þ
2

� �
r¼0:5h1
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K3
1 ¼ B

R 0:5h1
0 r dψ 1ð Þ

1
dr þ νψ 1ð Þ

1

� �
dr; K3

4 ¼ B
R 0:5h1
0 r dψ 1ð Þ

2
dr þ νψ 1ð Þ

2

� �
dr

K3
2 ¼ � r dψ 1ð Þ

1
dr

� �
r¼0:5h1

þ R 0:5h1
0 1� νð Þ dψ 1ð Þ

1
dr þ 1

2BrδW
dψ 1ð Þ

1
dr

� �
dr

K3
5 ¼ r dψ 1ð Þ

2
dr

� �
r¼0:5h1

þ R 0:5h1
0 1� νð Þ dψ 1ð Þ

2
dr þ 1

2BrδW
dψ 1ð Þ
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dr

� �
dr

K3
3 ¼ � 1

D

R 0:5h1
0 rψ 1ð Þ

1 dr; K3
6 ¼ � 1

D

R 0:5h1
0 rψ 1ð Þ

2 dr

F2 ¼ R 0:5h1
0 rq rð Þdr þ R 0:5h1

0 rq rð Þdr; δW ¼ W2�W1
h1

ð53Þ

Similar expressions for node N þ 1 can be written.

A.2. The displacement model of the FSDT

The stiffness coefficients of the displacement model of the FSDT are

KI
I�3 ¼ A r dψ J�1ð Þ

1
dr þ νψ J�1ð Þ
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� �
r¼r Ið Þ
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� �
dr

KI
I ¼ A r dψ J�1ð Þ

2
dr þ νψ J�1ð Þ

2

� �
r¼r Ið Þ

A

þ A
R rI
r Ið Þ
A

ν
dψ J�1ð Þ

2
dr þ 1

r ψ
J�1ð Þ
2

� �
dr

�A r dψ Jð Þ
1

dr þ νψ Jð Þ
1

� �
r¼r Ið Þ

B

þ A
R r Ið Þ

B
rI

ν
dψ Jð Þ

1
dr þ 1

r ψ
Jð Þ
1

� �
dr

KI
Iþ3 ¼ �A r dψ Jð Þ

2
dr þ νψ Jð Þ

2

� �
r¼r Ið Þ

B

þ A
R r Ið Þ

B
rI

ν
dψ Jð Þ

2
dr þ 1

r ψ
Jð Þ
2

� �
dr

KI
I�2 ¼ 1

2A rδWJ�1
dψ J�1ð Þ

1
dr

� �
r¼r Ið Þ

A

þ ν
2A
R rI
r Ið Þ
A
δWJ�1

dψ J�1ð Þ
1
dr dr

KI
Iþ1 ¼ 1

2A rδWJ�1
dψ J�1ð Þ

2
dr

� �
r¼r Ið Þ

A

þ ν
2A
R rI
r Ið Þ
A
δWJ�1

dψ J�1ð Þ
2
dr dr

� 1
2A rδWJ

dψ Jð Þ
1

dr

� �
r¼r Ið Þ

B

þ ν
2A
R r Ið Þ

B
rI

δWJ
dψ Jð Þ

1
dr dr

KI
Iþ4 ¼ � 1

2A rδWJ
dψ Jð Þ

2
dr

� �
r¼r Ið Þ

B

þ ν
2A
R r Ið Þ

B
rI

δWJ
dψ Jð Þ

2
dr dr

KI
I�1 ¼ B r dψ J�1ð Þ

1
dr þ νψ J�1ð Þ

1

� �
r¼r Ið Þ

A

þ B
R rI
r Ið Þ
A

ν
dψ J�1ð Þ

1
dr þ 1

r ψ
J�1ð Þ
1

� �
dr

KI
Iþ2 ¼ B r dψ J�1ð Þ

2
dr þ νψ J�1ð Þ

2

� �
r¼r Ið Þ

A

þ B
R rI
r Ið Þ
A

ν
dψ J�1ð Þ

2
dr þ 1

r ψ
J�1ð Þ
2

� �
dr

�B r dψ Jð Þ
1

dr þ νψ Jð Þ
1

� �
r¼r Ið Þ

B

þ B
R r Ið Þ

B
rI

ν
dψ Jð Þ

1
dr þ 1

r ψ
Jð Þ
1

� �
dr

KI
Iþ5 ¼ �B r dψ Jð Þ

2
dr þ νψ Jð Þ

2

� �
r¼r Ið Þ

B

þ B
R r Ið Þ
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Here the superscripts and subscripts J � 1ð Þ and J (J ¼ 2;3; . . . ;N) refer
to the element numbers on the left and right, respectively, of the node
number J. Node 1 equations are
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