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Abstract—We study diffusion and consensus dynamics in a
Network of Networks model. In this model, there is a collection
of sub-networks, connected to one another using a small number
of links. We consider a setting where the links between networks
have small weights, or are used less frequently than links within
each sub-network. Using spectral perturbation theory, we analyze
the diffusion rate and convergence rate of the investigated
systems. Our analysis shows that the first order approximation
of the diffusion and convergence rates is independent of the
topologies of the individual graphs; the rates depend only on the
number of nodes in each graph and the topology of the connecting
edges. The second order analysis shows a relationship between the
diffusion and convergence rates and the information centrality
of the connecting nodes within each sub-network. We further
highlight these theoretical results through numerical examples.

Index Terms—Distributed systems, gossip protocols, diffusion,
randomized consensus, perturbation analysis, network of net-
works.

I. INTRODUCTION

D IFFUSION and consensus dynamics play a fundamental
role in the coordination of many complex networks, from

networks of autonomous vehicles [1], to power grids [2],
to social networks [3], and beyond. As such, significant
research effort has been devoted to development of analytical
characterizations of the performance of diffusion processes and
consensus algorithms based on the network topology and the
node interactions.

The vast majority of this work has considered a single,
isolated network model. However, many complex networks
can be more accurately represented by a set of interacting
networks. For example, in vehicular ad-hoc networks, the
network topology often consists of clusters of sub-networks,
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made up of co-located vehicles, that periodically communicate
with one another [4]. A large-scale power network can also
be viewed as a composition of subsystems which represent
“areas” of the network, where the dynamics in each sub-
system operates at a faster time-scale than the network-wide
dynamics [5]–[7]. Another example can be found in social
networks, where people are often clustered into communities;
interaction within communities is frequent, and interaction
across communities less so [8]. These examples motivate the
Network of Networks (NoN) model, where multiple individual
networks, or subgraphs, are connected using a set of links to
form a connected network.

To differentiate an NoN model from a general graph, addi-
tional restrictions on the connecting graph or the subgraphs
are often imposed to characterize patterns of real NoNs
in different applications [9]–[12]. For example, to model a
networked system where multiple signal channels work in
parallel, an intensely studied model (multiplex networks) [13]–
[15] assumes that the number of nodes in each subgraph
is the same, and the links between any two subgraphs are
given by an identity map. And, the graph Cartesian product
generates NoNs with replicated subgraphs connected by inter-
layer identity maps [16]. However, in the aforementioned
examples of vehicular ad-hoc networks, power networks, and
social networks, nodes in different subgraphs cannot be viewed
as copies of the same set of nodes. In such NoNs, subgraphs
may have different number of nodes and topologies. Further,
the inter-network connections are often sparse [17] and weakly
coupled, and are often established between gateway nodes.

We study an NoN model where inter-network edges have
small weights, and each subgraph has only one node con-
necting to other subgraphs. Using this model, we can ex-
plicitly characterize the relationship between the subgraph
topologies, the connecting graph topology, and the selection
of the connecting nodes. We analyze the diffusion rate of the
considered NoN model and the convergence rate of consensus
algorithms in such a model using spectral perturbation theory-
based methods. For the diffusion process in an NoN, we study
a system in which all weights between subgraphs are multi-
plied by a small parameter ε. This setting captures diffusion
processes in many complex network systems, for example,
social networks with weak inter-community links. RC-circuits
and their analogs are well characterized by these diffusion
dynamics [5]. The linearization of the electromechanical swing
dynamics of power systems can also be viewed as an extension
of a diffusion process in an NoN [7], [18].

In a consensus network, we consider a setting where the
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links between subgraphs may be costly to use, and so they
are used sparingly in the consensus algorithm. We model
this setting using a stochastic system where links that con-
nect subgraphs are active in each iteration with some small
probability p. This setting applies to architectures like vehicle
networks and the Internet of Things, where nearby nodes can
communicate using free local communication, e.g., Bluetooth,
but where distant nodes must communicate using potentially
costly cellular or satellite communication.

We show that the diffusion rate is directly related to the
convergence rate of the expected system of the stochastic
consensus network. Our analytical results show that up to
first order in ε, the diffusion rate depends on the generalized
Laplacian matrix of the connecting graph, which is determined
by the number of nodes in each subgraph and the topology of
the interconnecting links. The rate does not depend on the
topologies of the individual subgraphs nor on which nodes
are used to connect the subgraphs to one another. The first-
order approximations are accurate when ε is sufficiently small.
The second order perturbation analysis, however, shows that
choosing nodes with the largest information centrality [19] as
connecting nodes maximizes the diffusion rate up to second
order in ε. We also study the mean square convergence
rate of the consensus network, which includes an additional
variance term. The analysis gives similar results. In addition,
we conduct experiments to show that our analysis accurately
captures the behavior of the studied dynamics for small values
of ε or p.

Related work: Several previous papers have studied the
diffusion process in various NoN models. [13] provides an
upper bound for the diffusion rate of a NoN where each layer
of subgraph has the same number of nodes and the inter-
network links between any two adjacent layers of networks
are restricted to be an identity map. [14] studies the same
model as [13] using perturbation theory. [20] studies optimal
weights for inter-layer links in the case where intra-layer
network may be directed. [15] also studies same model as [13]
and derives relationships between λ2 of the supra-Laplacian
and topological properties of the subgraphs. We note that all
these works are based on the homogeneous one-to-one inter-
layer connection assumption made in [13], which limits the
application of these models. In addition, [16] studies diffusion
in Cartesian product of graphs as a model of NoN and gives
some analysis based on numerical experiments. In contrast to
these models, subgraphs can be arbitrary in our model, and
the subgraphs are loosely coupled, both in the number and
strength of the links between them.

As for discrete-time consensus dynamics, there has been
a significant amount of work devoted to the analysis of
distributed consensus algorithms in time-varying networks and
stochastic networks, e.g., [21]–[26]. In this work, we employ a
model similar to that studied in [27]–[29], which all study the
convergence rate of the mean-square deviation from consensus
in a stochastic network. [27] presents bounds based on the
spectrum of the expected weight matrix, whereas [28] and
[29] give analytical expressions for the convergence rate itself.
None of these works considered an NoN model.

The NoN consensus model was introduced in [12] and [30],

where they measure network performance by analyzing its ro-
bustness against random node failures. More recent work [31]
considers an NoN model with noisy consensus dynamics
and proposes methods to identify the optimal interconnection
topology. And, in [32], the authors consider a similar NoN
model, but with slightly different dynamics. They show that
interconnection between the nodes of subgraphs with the high-
est degree maximizes the robustness of the NoN. Conditions
for controllability of NoN models have also been studied
recently [33], [34]. While these works focus on robustness
and controllability of an NoN, our work in contrast, focuses
on the rate at which nodes reach consensus, and in particular,
how this rate relates to the topologies of the interconnecting
network and the subgraphs.

A clustering based order reduction method has been used
to model dynamics in power networks [5]–[7]. In these works
the dynamics is decomposed into fast local motions and slow
network-wide motion, where the slow motion is characterized
by variables obtained by collapsing the subgraphs. A major
difference of our work is that our aim is to study the roles
of the connecting graph, the subgraphs, and the positions of
the connecting nodes, from a network design point of view,
rather than to reduce the order of the system. We directly
analyze the spectrum of the Laplacian matrix of the network.
This enables us to track every eigenvalue of the system up to
its second order approximation, which reveals the impact of
all the aforementioned factors. Our analysis directly implies a
heuristic algorithm for choosing the optimal connecting nodes.

We note that the problem of designing network structure
to improve the algebraic connectivity in a general undirected
graph has been proven to be NP-hard [35]. As for a variation
of such a problem in directed graphs, only special families of
graphs have been studied [36].

A preliminary version of this work appeared in [37]. This
conference paper presented first-order perturbation analysis
only. Further, this analysis was restricted to consensus algo-
rithms, In this paper, we study both diffusion and consensus
dynamics, and more significantly, we include second-order
perturbation analysis.

Outline: Section II describes our system model and the
problem formulation. Section III provides background on spec-
tral perturbation analysis. In Section IV, we present analysis
of the diffusion and convergence rates in an NoN, including
its first- and second-order behaviors. In Section V, we present
our analysis of the mean square convergence of consensus al-
gorithms for a special case of stochastic dynamics. Section VI
gives numerical evaluations that highlight key results of our
theoretical analysis, followed by the conclusion and discussion
in Section VII.

II. SYSTEM MODEL

A. Diffusion Dynamics in Network of Networks

We consider a system of D disjoint graphs Gi = (Vi, Ei, wi),
i = 1, . . . , D. Each graph Gi is weighted, undirected, and
connected. We call these graphs the subgraphs of the NoN.
The set Vi denotes the node set of Gi, with |Vi| = Ni, and Ei
is the set of links. We let N =

∑D
i=1Ni be the total number
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of nodes in the network. An edge between node r ∈ Vi and
s ∈ Vi is denoted by e(r, s), and Ni(j) denotes the neighbor
set of node j in subgraph Gi. The function wi : Ei 7→ R+

defines a non-negative weight wi(r, s) for each edge e(r, s) ∈
Ei. Let Li be the weighted Laplacian matrix of subgraph Gi:

Li(r, s) =

{ ∑
k∈Ni(r) wi(r, s) for r = s

−wi(r, s) otherwise.

Further, we define Lsub to be the N×N block diagonal matrix
with blocks Li, i = 1 . . . D.

We construct an NoN by connecting the D subgraphs with
a small number of edges. The set V is the NoN vertex set,
V =

⋃D
i=1 Vi, with |V| = N . Without loss of generality,

we identify the nodes in V as 1, 2, . . . , N . The NoN edge
set E consists of all edges in E1 ∪ . . . ∪ ED, as well as a
set of undirected connecting edges Econ = {e(r, s) | r ∈
Gi, s ∈ Gj , i 6= j}. We call the nodes u ∈ V that are
adjacent to some edge in Econ connecting nodes, and we
denote the set of connecting nodes by Vcon. We assume that
there is only one connecting node si in each subgraph Gi. The
connecting graph is defined as Gcon = (V, Econ, wcon), where
wcon : Econ 7→ R+ is a function that defines a non-negative
weight wcon(r, s) for each edge e(r, s) ∈ Econ. The weighted
Laplacian matrix of the connecting graph is denoted by an
N ×N matrix Lcon. For a matrix Q, we use the symbol Q̂ to
denote the principle submatrix of Q whose rows and columns
correspond to vertices in Vcon. For example, L̂con is the D×D
weighted Laplacian of the graph Ĝcon = (Vcon, Econ, wcon).
We assume Ĝcon is connected, and therefore, L̂con has a single
zero eigenvalue.

With these definitions, the NoN is thus formally defined as
G = (V, E , w), where w(r, s) = wi(r, s) for r, s ∈ Vi and
w(r, s) = wcon(r, s) for r ∈ Vi, s ∈ Vj , i 6= j. We further
define the strength of a node r as ∆r =

∑
s∈N (r) w(r, s),

where N (r) denotes the neighbor set of node r in graph G.
We study diffusion dynamics in this NoN where there is

weak coupling between subgraphs. This weak coupling is
enforced both by limiting the number of connecting nodes in
each subgraph to one and by selecting a small inter-subgraph
diffusion coefficient. For each subgraph Gi, every node r ∈ Vi
has a scalar-valued state denoted by xr. Its dynamics is:

ẋr =
∑

s∈Ni(r)

w(r, s)(xs − xr) + ε
∑

e(r,u)∈Econ

w(r, s)(xu − xr),

where ε is the diffusion coefficient between subgraphs. Let
xi denote the vector of node states for graph Gi, and let
x denote the states of all nodes in the system, i.e., x =
[xT1 xT2 . . . xTD]T . The dynamics of the entire NoN is:

ẋ = −(Lsub + εLcon)x. (1)

The matrix L = Lsub + εLcon is called the supra-Laplacian
of the NoN.

We investigate the smallest non-zero eigenvalue of the
Laplacian matrix L, which decides the rate of diffusion in
(1). It is also called the spectral gap of L.

Definition II.1. The spectral gap of L is defined as the
smallest non-zero eigenvalue of L, denoted as α(L).

The spectral gap determines the slowest speed that the
diffusion process (1) converges to its steady state from any
initial state and therefore is also referred to as the diffusion
rate. Since L is positive semi-definite and has eigenvalue zero
with multiplicity 1 for any connected graph G, we know that
α(L) > 0. In particular, we study how the spectral gap α(L) is
related to matrix Lsub and matrix Lcon. We recall that Lcon is
decided by the set of connecting nodes Vcon and the structure
of the connecting graph, characterized by L̂con. Further, we
show how are analysis can be used to select connecting nodes
within the subgraphs that maximize the spectral gap.

B. Connection to Consensus in Stochastic Networks

There is a close relationship between α(L) the conver-
gence rate of discrete-time consensus dynamics in stochastic
networks. Through this relationship, we identify an alternate
interpretation of α(L). We consider a consensus network
where links within each subgraph are always active, e.g., due
to the proximity of agents within the subgraph to one another.
Since subgraphs may be separated spatially, communication
between subgraphs may be infrequent and/or lossy. We model
this by activating the connecting edges in Econ each time step
` with some small probability p. One can define the dynamics
as a consensus network with stochastic communication links.
For a node r ∈ Vi,

xr(`+ 1) = xr(`)−
∑

v∈Ni(r)

w(r, v)
(
xr(`)− xv(`)

)
− β

∑
e(r,s)∈Econ

δrs(`)w(r, s)(xr(`)− xs(`)).

We assume that for all r ∈ G, r ∈ Gi,
∑
v∈Ni(r) w(r, v) < 1.

In addition, we assume β ≤ 1
2∆ , where ∆ = max(∆i) is the

maximal node strength of G.

δrs(`) =

{
1 with probability p
0 with probability 1− p

where δrs(`) are Bernoulli random variables that are not
necessarily mutually independent. We note that all δrs(`) are
independent of x(`).

1) Convergence Rate of Expected System: Let A be the
block diagonal matrix A = I−Lsub. We also define an N×N
matrix Brs = β · w(r, s) · brsbTrs, where brs is a binary N -
vector with the rth element equal to 1, the sth element equal
to -1, and the remaining elements equal to 0. The dynamics
of the stochastic NoN can then be written as

x(`+ 1) = Ax(`)−
∑

e(r,s)∈Econ

δrs(`)Brsx(`). (2)

We further let x̄(`) = E [x(`)] and B =
∑
e(r,s)∈Econ Brs.

By taking expectation of both sides of (2), we obtain

x̄(`+ 1) = Ax̄(`) , (3)

where A = A−pB is the expected weight matrix. The equality
follows from the fact that δrs(`) is independent of x(`).

Definition II.2. The convergence rate of the expected system
of (3), denoted ρess(A), is defined as the second largest
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eigenvalue of A, also called the essential spectral radius of
A.

Given the condition
∑
v∈Ni(r) w(r, v) < 1, the matrix

Ai := I − Li has 1 as a simple eigenvalue with eigenvector
1 for all subgraph Gi, then matrix A has eigenvalue 1 with
multiplicity D. Since Gcon is connected, the matrix A has
eigenvalue 1 with multiplicity 1, and its corresponding eigen-
vector is 1. Under the assumption β ≤ 1

2∆ , the convergence
rate of the expected system (3) is characterized by the second
largest eigenvalue of A [38].

Next, noting that A− pB = I− (Lsub + pβLcon), we state
a simple relationship between α(L) and ρess(A).

Proposition II.3. The spectral gap α(L), where L = Lsub +
εLcon, and the essential spectral radius ρess(A), where A =
A − pB, as given by Definitions II.1 and II.2, respectively,
satisfy

ρess(A− pB) = 1− α(Lsub + pβLcon) . (4)

2) Mean-Square Convergence Rate: We also study the
mean square convergence rate of the stochastic NoN in (3).
Let x̃(`) = Px(`) be the deviation from average vector,
where P is the projection matrix, P = (IN − 1

N 11T ). If
limt→∞ E [‖x̃(`)‖2] = 0, we say the system converges in mean
square.

We start by investigating the case where all edges in Gcon
are activated together with some probability p in each time step
t. We include the discussion of the i.i.d. case in a technical
report [39].

Assumption II.4. All edges in Gcon are online or offline with
probability p and 1− p at time step `, decided by a Bernoulli
random variable δ(`).

We define the autocorrelation matrix of x̃(`) by Σ(`) =
E
[
x̃(`)x̃(`)T

]
and note that Σ(`) = E

[
Px(`)x(`)TP

]
. Using

a similar method to that in [40], it can be shown that Σ(`)
satisfies the matrix recursion

Σ(`+ 1) = (PĀP)Σ(`)(PĀP) + σ2BΣ(`)B. (5)

where the zero-mean random variable µ(`) is defined as
µ(`) = δ(`) − p, and σ2 = var [µ(`)]. The errors E[x̃r(`)

2]
are given by the diagonal of Σ(`), and we are interested in
how they evolve. We define the matrix-valued operator

A(X) = (PĀP)X(PĀP) + σ2BXB , (6)

and note that Σ(`+ 1) = A(Σ(`)). The rate of decay of the
entries of Σ(`) is given by the spectral radius of A, denoted
by ρ(A) [40].

Definition II.5. The mean square convergence rate of the
system (2), under Assumption II.4, is defined as ρ(A).

III. BACKGROUND ON SPECTRAL PERTURBATION THEORY

Our analytical approach is based on spectral perturbation
analysis [41], [42], especially the analysis where repeated
eigenvalues are considered [42]. Here, we provide a brief
overview of this material.

Let M(ε,X) be a symmetric vector-valued (or matrix-
valued operator) of a real parameter ε and a variable X of
the form

M(ε,X) =M0(X) + εM1(X) + ε2M2(X) (7)

and let (γ(ε),W (ε)) be an eigenvalue-eigenvector (or
eigenvalue-eigenmatrix) pair of M(ε, .), as a function of ε

M(ε,W (ε)) = γ(ε)W (ε).

According to spectral perturbation theory, the functions γ and
W are well-defined and analytic for small values of ε. The
power series expansion of γ is

γ(p) = λ(M0) + C(1)ε+ C(2)ε2 + · · · (8)

where λ(M0) is an eigenvalue of the operator M0, and
C(1) and C(2) are coefficients for the first and second order
correction terms.

Let eigenvalue λ(M0) have multiplicity K, and let Wi,
i = 1 . . .K, be K orthonormal eigenvectors (or eigenmatrices)
ofM0 that form a basis for the eigensubspace of λ(M0). We
form the K ×K matrix F = [fi,j ], with entries defined by

fij =
〈Wi,M1(Wj)〉
〈Wi,Wi〉

. (9)

When M is a vector-valued operator, the inner product is
the standard vector inner product (for M a matrix-valued
operator, the matrix inner product is 〈X,Y〉 := tr (X∗Y)).
Let ν1, ν2, . . . , νK be the eigenvalues of F, with repetition.
Then, the K first-order perturbation constants are C(1)

i = νi,
for i = 1 . . .K.

We also study the second order perturbation terms C(2).
According to [41], [42], for an eigenvalue λ(M0) with mul-
tiplicity K > 1, when F is diagonal, the second order terms
C

(2)
i , i = 1 . . .K, are

C
(2)
i =

∑
λm(M0)6=λ(M0)

〈Wi,M1(Wm)〉2

λ(M0)− λm(M0)
(10)

where Wi is the ith eigenvector (or eigenmatrix) ofM0 with
eigenvalue λ, for i = 1 . . .K, and (λm(M0),Wm) is an
eigenpair of M0 with λm(M0) 6= λ(M0).

IV. ANALYSIS

In this section, we use spectral perturbation analysis to study
α(L) and ρess(A).

A. The Spectral Gap in Diffusion Dynamics

We first study the convergence of system (1), assuming
the diffusion coefficient ε between subgraphs is small. The
dynamics in (1) can be expressed using a vector-valued
operator of the form given by (7) as ẋ = M(ε,x), where
Mo(x) = Lsubx, M1(x) = Lconx, and M2(x) = 0.

We note that Lsub is the Laplacian matrix of a graph with
D connected components (the subgraphs). Thus, it has an
eigenvalue of 0 with multiplicity D. However, since Ĝcon
is connected, L has an eigenvalue of 0 with multiplicity 1.
The smallest D − 1 nonzero eigenvalues of L correspond to

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on October 02,2021 at 23:31:14 UTC from IEEE Xplore.  Restrictions apply. 



2325-5870 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2021.3077648, IEEE
Transactions on Control of Network Systems

YI et al.: DIFFUSION AND CONSENSUS IN A WEAKLY COUPLED NETWORK OF NETWORKS 5

the perturbed 0 eigenvalue of Lsub. Therefore we study the
perturbations to the 0 eigenvalue of Lsub.

We begin by defining the generalized Laplacian matrix of
the connecting graph Ĝcon [43].

Definition IV.1. Let r = [N1 N2 . . . ND]T , and let R
be the D × D diagonal matrix with diagonal entries r. The
generalized Laplacian matrix of Ĝcon is M̂ = R−

1
2 L̂conR−

1
2 .

Note that M̂ is symmetric positive semidefinite. It has
an eigenvalue of 0 with eigenvector r1/2, and if Ĝcon is
connected, its second smallest eigenvalue λ2(M̂) is greater
than 0. We now give a relationship between this eigenvalue
and the spectral gap.

Theorem IV.2. The spectral gap of the matrix L = Lsub +
εLcon, up to first order in ε, is

α(L) = ελ2(M̂) ,

in which λ2(M̂) is the smallest nonzero eigenvalue of M̂.

Proof: We determine the perturbation coefficients by
forming the matrix F in (9). To do so, we must find an
orthonormal set of eigenvectors for D zero eigenvalues of
Lsub, denoted as {v1, . . . ,vD}.

Let u1, . . . ,uD be orthonormal eigenvectors of M̂, and let
λ1(M̂) ≤ λ2(M̂) ≤ . . . ≤ λD(M̂) be the corresponding
eigenvalues. We define the eigenvectors vi, i = 1 . . . D, to be
vi = [θ

(1)
i 1TN1

θ
(2)
i 1TN2

. . . θ
(D)
i 1TND ]T , with

θ
(j)
i =

1√
Nj

uij (11)

where uij denotes the jth component of the eigenvector
ui. We observe that the eigenvectors vi, i = 1 . . . D, are
orthonormal. We now find the entries of the D × D matrix
F defined by (9). For fij , we have

fij = 〈vi,Lconvj〉 = uTj R−
1
2 L̂conR−

1
2 ui

= uTj M̂ui = λi(M̂)uTi uj . (12)

The equalities follow by the definition of vi, M̂, and ui. If
i 6= j, then because ui and uj are orthonormal, fij = 0. Thus
F is a diagonal matrix, and its eigenvalues are

C
(1)
i = λi(M̂), i = 1 . . . D. (13)

This completes the proof.
Theorem IV.2 shows that the diffusion rate, up to first

order in ε, is decided by an expression that depends on the
smallest nonzero eigenvalue of M̂. We note that M̂ depends
on the topology and edge weights of the connecting graph, as
well as the number of vertices in each subgraph. However,
M̂ does not depend on the topology or edge weights of
the subgraphs. Further, it does not depend on the choice of
connecting node in each subgraph. An intuition for this result
is that the connecting link is a bottleneck in the diffusion
process. The diffusion rate within each graph is much faster
than the diffusion rate across the connecting link. The role
of the connecting link is to transfer information between the
two graphs, and the amount of information that needs to

be exchanged is proportional to the sizes of the graphs. It
has been shown that λi(M̂) also determines the convergence
rate of load balancing diffusion algorithms in heterogeneous
systems [43]. Following this analogy, we can view just the
edges in Gcon as executing a load balancing algorithm. The
role of the connecting graph is to transfer load (i.e., node
state) between the subgraphs, and the load that needs to be
transferred out of each subgraph to balance the system is be
proportional to the number of nodes in that subgraph.

Then we study the diffusion rate of (1) upto second order
of ε. We note that it is decided by the spectral gap of L.

Theorem IV.3. The spectral gap of the matrix L = Lsub +
εLcon, up to second order in ε, is

α(L) = ελ2(M̂)− ε2((λ2(M̂))2(u∗2Ŝu2) , (14)

where λ2(M̂) is the smallest nonzero eigenvalue of M̂, and u2

is its corresponding eigenvector. The D ×D diagonal matrix
Ŝ has diagonal entries Ŝ(k, k) := Nk · L†k(sk, sk). L†k is the
Moore-Penrose inverse of Lk, sk is the connecting node in
graph Gk, and L†k(sk, sk) is the diagonal entry of L†k that
corresponds to node sk.

Proof: In order to study second order perturbation coef-
ficients using (10), we need to find all N eigenvectors of the
matrix Lsub.

We recall that the eigenvectors of Lsub
corresponding to zero eigenvalues are defined as
vi = [θ

(1)
i 1TN1

θ
(2)
i 1TN2

. . . θ
(D)
i 1TND ]T , where θ

(1)
i is

defined by (11), for i = 1 . . . D.
We define the remaining eigenvectors of Lsub as fol-

lows. Consider the Laplacian matrix Li for subgraph i,
and let piψ , ψ = 1 . . . Ni, be a set of Ni orthonormal
eigenvectors of Li. Since Gi is connected, its 0 eigen-
value has multiplicity 1. We let piψ , ψ = 2 . . . Ni, be the
eigenvectors associated with nonzero eigenvalues. Then we
define the remaining vm, m = (D + 1) . . . N , to be
vm = [0TN1

. . .0TNk−1
pTm 0TNk+1

. . . 0TND ]T , where pm ∈
{piψ : i ∈ [D] and ψ ∈ {2, . . . , Ni}}.

By applying (10) we attain

C
(2)
i =

∑
λm(Lsub) 6=0

v∗iLconvmv∗mLconvi
0− λm(Lsub)

=
∑

λm(Lsub)6=0

v̂∗i L̂conv̂mv̂∗mL̂conv̂i
0− λm(Lsub)

We recall that sk is the vertex index of the connecting node
in subgraph Gk. Then

C
(2)
i =

D∑
k=1

∑
m:

supp(vm)⊂Vk

v̂∗i L̂con(p2
m,sk

Ek)L̂conv̂i

−λm(Lk)

=
D∑
k=1

v̂∗i L̂conR−
1
2

 ∑
m:

supp(vm)⊂Vk

p2
m,sk

R
1
2 EkR

1
2

−λm(Lk)

R−
1
2 L̂conv̂i

=
D∑
k=1

v̂∗i L̂conR−
1
2

 ∑
m:

supp(vm)⊂Vk

rkk · p2
m,sk

Ek

−λm(Lk)

R−
1
2 L̂conv̂i ,

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on October 02,2021 at 23:31:14 UTC from IEEE Xplore.  Restrictions apply. 



2325-5870 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2021.3077648, IEEE
Transactions on Control of Network Systems

6 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS

where Ek is a D × D matrix with only one non-zero entry
Ek,k = 1. pm,sk is the entry of pm associated with the
connecting node sk. We can further derive

C
(2)
i = −u∗iR

− 1
2 L̂conR−

1
2 ŜR−

1
2 L̂conR−

1
2 ui

= −u∗i M̂ŜM̂ui = −(λi(M̂))2(u∗i Ŝui) , (15)

where the D×D diagonal matrix Ŝ has its entries Ŝ(k, k) :=
rkk · L†k(sk, sk). From (8) we attain the result.

We further obtain the following corollary for all the eigen-
values of L up to first order and second order in ε.

Corollary IV.4. For any nonzero eigenvalue λi(L), i =
2, . . . , D in the studied network of networks system (2), the
first order approximation of λi(L) is independent of the
choices of connecting nodes, the second order approximation
of λi(L) is maximized when each connecting node is chosen
as the one with maximum information centrality in each
subgraph.

Proof: By Theorem IV.2, the first order approximation of
λi(L) does not depend on the choice of the connecting nodes.

Then we take into account the second order perturbation
terms given by (15). We note that once the structure and the
weight function of the connecting graph are fixed, λi(M̂) and
ui are determined for all i. As long as the choice of connecting
nodes is concerned, C(2)

i is maximized when Ŝ is minimized
in the Loewner order. This is achieved when the diagonal
entries Ŝ(k, k) are all minimized simultaneously. This is then
achieved when each bridge node is chosen as the node with
maximum information centrality [19] in that subgraph, because
rk,k = Nk is the same for any choice in that subgraph.

Corollary IV.4 shows that the second-order perturbation
terms are affected by the choice of connecting node in each
subgraph. The second-order approximations of all eigenvalues
are maximized simultaneously when each connecting node is
chosen as the node with maximum information centrality in
the subgraph. This result naturally decouples the optimiza-
tion problem into independent subproblems, which can be
addressed in parallel.

B. Analytical Examples

1) Analysis for D = 2: For an NoN consisting of two
subgraphs G1 and G2, the backbone graph Gcon is an edge.

Corollary IV.5. In an NoN where two subgraphs G1 and G2

are connected by a single edge, the spectral gap α(L), up to
first order in ε, is α(L) = εN/(N1N2).

Proof: The generalized Laplacian matrix M̂ is given by
M̂ = [1/

√
N1 (−1/

√
N2)]>[1/

√
N1 (−1/

√
N2)]. M̂ has two

eigenvalues, λ1(M̂) = 0 and λ2(M̂) = 1
N1

+ 1
N2

. Their
corresponding eigenvectors are u1 = 1√

N
[
√
N1

√
N2]T and

u2 = 1√
N

[
√
N2 (−

√
N1)]T . Applying the definition for F (1)

i

in (13), we obtain the result in Corollary IV.5.
This theorem shows that the first order approximation of

α(L) depends on the number of nodes in each subgraph. The
first order approximation does not depend on the structures
of the subgraphs or the choice of bridge node within each

subgraph, as we have observed in Theorem IV.2. We can also
observe from Corollary IV.5 that when N1 = N2 = N

2 , the
first order approximation of α(L) is minimized.

2) Analysis for D > 2 with Equally Sized Graphs: We next
consider the case where N1 = N2 = . . . = ND = N

D , i.e., all
subgraphs have the same number of nodes.

Corollary IV.6. Consider a composite system consisting of D
subgraphs G1, . . . ,GD, each with N

D nodes, and a backbone
graph Gcon. The spectral gap α(L), up to first order in ε,
is α(L) = ε

(
D
N

)
λ2(L̂con), where λ2(L̂)con is the second

smallest eigenvalue of L̂con.

Proof: Given N1 = N2 = . . . = ND = N
D , we attain

M̂ = D
N L̂con. Then we obtain the result in Corollary IV.6 by

applying Theorem IV.2.
As with the case where D = 2, up to the first order

approximation, the convergence factor is independent of the
topology of the subgraphs, and it is independent of the choice
of connecting nodes. The diffusion rate depends on λ2(L̂con),
also called the algebraic connectivity of the backbone graph.
If Gcon is not connected, then λ2(L̂con) = 0, meaning, as
expected, the system does not converge. The diffusion rate
increases as the algebraic connectivity of Gcon increases.

C. Convergence Rate of the Expected Consensus Network

Next we study the convergence rate of the the expected
consensus network (3). By using the analytic results we
developed in IV-A, as well as the connection between the
spectral gap of L and the essential spectral radius of A, we
obtain the following corollary.

Corollary IV.7. The essential spectral radius of the expected
weight matrix A, up to first order in p, is

ρess(A) = 1− pβλ2(M̂);

the essential spectral radius, upto second order in p, is

ρess(A) = 1− pβλ2(M̂) + p2β2((λ2(M̂))2(u∗2Ŝu2).

We omit the proof of Corollary IV.7 because the results
follow straightforwardly from Proposition II.3, Theorem IV.2,
and Theorem IV.3.

According to Proposition II.3 and Corollary IV.4, we con-
clude that the first order approximation of ρess(A) is inde-
pendent of the choices of connecting nodes; the second order
approximation shows that choosing nodes with maximum
information centrality as the connecting node in each subgraph
leads to the fastest convergence rate for the expected system.

V. ANALYSIS OF MEAN SQUARE CONVERGENCE RATE

We now use spectral perturbation analysis to study the mean
square convergence rate of an NoN in which all edges in Econ
are activated together with small probability p.
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A. Mean Square Perturbation

We write the operator in (6) as a matrix-valued operator
A(X, p) of both a matrix X and the small probability p in the
form (7), with

A0(X) = ÃXÃ (16)

A1(X) = −BXÃ− ÃXB + BXB (17)
A2(X) = BXB−BXB = 0 , (18)

where Ã = PAP. Recall that A = I − Lsub. Given the
assumption that for all r ∈ G, r ∈ Gi,

∑
v∈Ni(r) w(r, v) <

1, then for each subgraph Gi, Li has a single 0 eigenvalue.
Then the matrix Lsub has eigenvalue 0 with multiplicity D,
it follows that Ã = P− L has eigenvalue 1 with multiplicity
D−1. Therefore, the operator A0 has an eigenvalue of 1 with
multiplicity (D− 1)2. When the system is perturbed by pA1,
these 1 eigenvalues are perturbed. The perturbed eigenvalue
with largest magnitude is ρ(A).

For any pair of eigenvectors wi and wj of the matrix
Ã, Wij := wiw

∗
j is an eigenmatrix of A0 with eigenvalue

λij(A0) = λi(Ã)λj(Ã). Because Ã = P − L is symmetric,
its left and right eigenvectors satisfy w∗iwi = 1 for i ∈ [N ]
and w∗iwj = 0 for any i, j ∈ [N ], i 6= j.

Lemma V.1. Let G = (V, E) be an NoN with the dynamics
as defined in (2). There exists a set of vectors {wi : i =
2, . . . , D} and an induced set of matrices {Wij = wiw

∗
j :

i, j ∈ {2, . . . , D}} such that

A0(Wij) = Wij , ∀i, j ∈ {2, . . . , D} , (19)
w∗iwi = 1, ∀i, {2, . . . , D} , (20)
w∗iwj = 0, ∀i, j ∈ {2, . . . , D}, i 6= j (21)

w∗i 1 = 0, ∀i ∈ {2, . . . , D} , (22)
w∗iBwj = 0, ∀i, j ∈ {2, . . . , D}, i 6= j (23)

The mean square convergence rate of system (2) satisfy-
ing Assumption II.4, up to first order in p, is ρ(A) =

maxij

(
1 + pf

(1)
ij

)
, in which

f
(1)
ij = −w∗iBwi −w∗jBwj + (w∗iBwi)

(
w∗jBwj

)
. (24)

Proof: Let Mij = mim
∗
j , i, j ∈ {2 . . . D} be any set

of (mutual) orthonormal eigenmatrices of A0 associated with
eigenvalue 1. The vectors mi, i = 2 . . . D are eigenvectors
of Ã such that Ãmi = mi; further, they are mutually
orthonormal and are all orthogonal to the vector 1.

We define a matrix H whose entries are defined as hij =
m∗iBmj . Let U be the matrix whose columns are mi, i ∈
{2 . . . D}. Then it is clear that H = U∗BU. Let H = SΛS∗

be the spectral decomposition of H. S is an unitary matrix,
si is the ith column of S. Therefore B = USΛS∗U∗. We
define wi := Usi, for all i ∈ {2 . . . D}. It is easy to verify
that the vectors in {wi : i = 2, . . . , D} satisfy the properties
(19)-(23) stated in the lemma. We note that by (20) and (21),
〈Wij ,Wij〉 = 1 for all i, j ∈ {2 . . . D}; 〈Wij ,Wpq〉 = 0 for

all i 6= p or j 6= q. Therefore, we consider the entries of the
(D − 1)2 × (D − 1)2 matrix F:

fij,pq = 〈wiw
∗
j ,A1(wpw

∗
q)〉

= tr
(
wjw

∗
i

(
−Bwpw

∗
qÃ− Ãwpw

∗
qB + Bwpw

∗
qB
))

= −tr
(
wjw

∗
iBwpw

∗
q

)
− tr

(
wjw

∗
iwpw

∗
qB
)

+ tr
(
wjw

∗
iBwpw

∗
qB
)

(25)

where the last equality holds since Ãwp = wp and similarly,
w∗qÃ = w∗q . the expression can further be written as

fij,pq =−w∗iBwpw
∗
qwj −w∗iwpw

∗
qBwj

+ (w∗iBwp)
(
w∗jBwq

)
.

If i = p and j = q, then noting that w∗iwp = 1 and w∗jwq =
1, it follows that

f
(1)
ij := fij,ij = −w∗iBwi −w∗jBwj + (w∗iBwi)

(
w∗jBwj

)
.

Furthermore, since w∗iBwj = 0 for any i 6= j, all off diagonal
entries are zeros.

We next use this lemma to characterize the convergence
factor in two classes of NoNs.

B. Analysis for Special Cases

We give results for the mean square convergence rate for
the two cases which we have discussed in Section IV.

Corollary V.2. For an NoN consisting of two subgraphs G1

and G2, with the dynamics (2) satisfying Assumption II.4, the
mean square convergence rate, up to first order in p, is

ρ(A) =1− 2pβN/(N1N2) + pβ2 (N/(N1N2))
2
. (26)

Proof: We define the vector w2 = [θ(1)1TN1
θ(2)1TN2

]T ,

where θ(1) =
√

N2

N ·N1
and θ(2) = −

√
N1

N ·N2
. It is easily

observed that w2 is an eigenvector of Ã with eigenvalue 1,
and w2 is orthogonal to 1. When D = 2, the matrix F consists
of a single element. Applying the definition for f (1)

22 in (24),

f
(1)
22 = −2β(θ(1) − θ(2))2 + β2(θ(1) − θ(2))4

= −2β (N/(N1N2)) + β2 (N/(N1N2))
2
.

From (26) we observe that given N , the magnitude of ρ(A)
is maximized when the graphs are of the same size, i.e.,
N1 = N2. It is minimized when N1 = 1, N2 = N − 1 or
N2 = 1, N1 = N − 1. This means that the speed of conver-
gence is slower between balanced subgraphs. By comparing
(26) to Corollary IV.5 we note that for two subgraphs, both
ρess(A) and ρ(A) are determined by the strength (activation
probability) of the connecting graph and the number of nodes
in both subgraphs.

Corollary V.3. For an NoN consisting of D subgraphs
G1, . . . ,GD, each with N

D nodes, with the system dynamics
(2) satisfying Assumption II.4, the mean square convergence
factor, up to first order in p, is

ρ(A)=1−p
(

2β (D/N)λ2(L̂con)−β2 (D/N)
2

(λ2(L̂con))2
)
.

where λ2(Lcon) is the second smallest eigenvalue of Lcon.
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Proof: We obtain this result by defining the D−1 eigen-
vectors of Ã with eigenvalue 1 as follows. Let u1, . . . ,uD
be an orthonormal set of eigenvectors of the D × D matrix
L̂con with eigenvalues 0 = λ1(L̂con) ≤ . . . ≤ λD(L̂con). Let
u1 = (1/

√
D)1, and thus Lconu0 = 0. The ith eigenvector of

Ã, i = 2 . . . D, is wi = [θ
(1)
i 1TN1

θ
(2)
i 1TN2

. . . θ
(D)
i 1TND ]T

with θ
(j)
i = (

√
D/N)uij , where uij denotes the jth com-

ponent of the eigenvector ui, j = 1 . . . D. Therefore, the
first order perturbation term of the eigenvalue corresponds to
eigenmatrix Wij = wiw

∗
j is f (1)

ij = −β
(
D
N

)
(λi(L̂con) +

λj(L̂con)) + β2
(
D
N

)2
λi(L̂con)λj(L̂con). By Lemma V.1,

ρ(A) = max
i,j∈{2,...,D}

1− p
(

2β (D/N)
(
λi(L̂con) + λj(L̂con)

)
− β2 (D/N)

2
λi(L̂con)λj(L̂con)

)
. (27)

The maximum node degree of any node v ∈ Vcon is D − 1;
thus, the eigenvalues of L̂con are in the interval [0, 2∆] [44].
Since β < 1

2∆ , we have βλj(L̂con) ∈ [0, 1) for j = 2 . . . D.
Further we attain that 2β(DN ) − β2(DN )2λj(L̂con) > 0 for
j = 2 . . . D. Thus, the right hand side of expression (27) is
maximized when λi(L̂con) is minimized. The same analysis
holds for λj(L̂con). So the right hand side of expression (27)
is maximized when both λi(L̂con) and λj(L̂con) are equal to
λ2(L̂con), which proves the theorem.

We observe from Corollary V.3 and Corollary IV.6 that for
subgraphs with the same number of nodes, both ρess(A) and
ρ(A) are determined by the coupling strength, the algebraic
connectivity of the connecting graph, as well as the number
of nodes in each subgraph.

We note that the second-order perturbation analysis similar
to Corollary IV.4 can also be applied to the analysis of mean-
square convergence rate of (3) satisfying Assumption II.4. We
leave the related discussion to a technical report [39].

VI. NUMERICAL RESULTS

We give some numerical examples to support our analytic
results. Edges are weighted 1 in these examples unless other-
wise specified. All experiments were done in MATLAB.

First, we investigate the spectral gap of the supra-Laplacian
matrix in the diffusion dynamics. In Fig. 1, we compare
the spectral gap estimated by first order perturbation analysis
(labeled ‘SPA’) and second order perturbation analysis (labeled
‘SPA2’) to the spectral gap directly computed using L (labeled
‘Exact’) for various ε. Each figure shows plots for different
numbers of subgraphs, D = 2, D = 4, and D = 8, as the sizes
of the subgraphs increase. Each subgraph is an Erdős Rényi
(ER) graph with connecting probability 0.6. In each NoN, all
subgraphs have the same number of nodes. The connecting
graph Gcon is a complete graph, and the connecting node is
chosen uniformly at random in each subgraph.

As expected, the spectral gap decreases as the sizes of
the individual subgraphs increase. Also, in general, we see
the trend that when ε is held constant, with larger values of
D, the spectral gap is higher. We explore this phenomenon
further in subsequent experiments. We observe that the spectral
gap generated by first- and second-order perturbation analysis

closely approximates the exact diffusion rate for ε = 0.001 to
ε = 0.01. This is in accordance with spectral perturbation
theory. The result given by SPA diverges from the exact
diffusion rate for a larger value ε = 0.1. However, SPA2 still
gives good approximation for the spectral gap when ε = 0.1.

In Fig. 2, we show results using the same network scenarios
as in Fig. 1, with the exception that the connecting graphs
Gcon are path graphs. To make the experiment homogeneous,
the connecting nodes are selected as end nodes of each path
graph. Again, we note the spectral gap decreases as the size
of individual subgraphs increase for all ε. The results of SPA
and SPA2 closely approximate the exact spectral gap for ε =
0.001. The result of SPA2 still well approximates the spectral
gap for ε = 0.01, though with less accuracy than in Fig. 1.
Both SPA and SPA2 fail to approximate the spectral gap for
ε = 0.1. Thus, we observe that the accuracy of the spectral
perturbation analysis depends on the network topology. For
each topology, there is some threshold for which, when ε is
smaller than this threshold, the approximations are accurate.
However, this threshold varies for different topologies.

We also note that, in comparing Fig. 1 and Fig. 2, it can
be observed that the diffusion rate given by SPA coincide for
networks of the same size. This conforms with our analysis
that the first-order approximation of convergence factor of
the NoN obtained from spectral perturbation analysis only
depends on the sizes of the subgraphs and not on their
individual topologies.

In Fig. 3 we study the dependency of the spectral gap
on the topology of Gcon as the number of subgraphs varies.
Each subgraph is an ER graph with edge probability 0.6. All
subgraphs have 10 nodes. We let ε = 0.01, and we compute
the diffusion rates when Gcon is a complete graph or a ring.

We observe that, when Gcon is complete, the spectral gap of
L, in Exact, SPA , and SPA2, increases with the increase in the
number of subgraphs. To better understand this phenomenon,
let us assume all subgraphs are of the same size Φ. For Gcon
a complete graph, Lcon has one eigenvalue of 0 and D − 1
eigenvalues equal to D. For the SPA diffusion rate given in
Theorem IV.2, we know that up to first order in ε, ρ(A) =
ε
(
D
N

)
λ2(L̂con) = ε

(
D
Φ

)
. Since Φ and ε are held constant,

with the increase in D, the diffusion rate increases. We also
note that the diffusion rate when Gcon is a ring graph is smaller
than the diffusion rate when Gcon is a complete graph. This can
be explained in part by the fact that the algebraic connectivity
of a ring graph decreases as its number of nodes increases.

In Fig. 4 and Fig. 5 we show the exact diffusion rates (given
by α(L)) and the mean square convergence rates (given by
ρ(A)) of systems with different connecting nodes. In both
examples we have two ER subgraphs connected by a single
edge. The probability that two nodes in the same subgraph are
connected is set to 0.2. And both subgraphs are connected.
For the diffusion dynamics, we set ε = 0.1. For the consensus
dynamics, we let p = 0.1 and β = 1

21 , and w = 1
21 for all

edges in both subgraphs. In the proposed heuristic, we choose
the bridge nodes as the ones with maximum information
centrality in each subgraph. We compare the results with the
true optimum given by brute-force search, as well as the result
of a random choice. The results show that our strategy hits
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Fig. 1: Spectral gap of the supra-Laplacian matrix, Exact and predicated by perturbation analysis (SPA and SPA2), for composite
graphs as the sizes of the individual graphs increase, for various ε. The individual graphs are ER graphs with connecting
probability 0.6, and the connecting graph Gcon is a complete graph.
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Fig. 2: Spectral gap of the supra-Laplacian matrix, Exact and evaluated by perturbation analysis (SPA and SPA2), for composite
graphs as the sizes of the individual graphs increase, for various values of ε. The individual graphs are path graphs, and the
connecting graph Gcon is a complete graph.
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graphs are ER graphs each with 10 nodes. ε is set to 0.01.
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Fig. 4: Diffusion rates for the system consists of two subgraphs
connected by an edge with bridge nodes selected by different
strategy. Subgraphs are ER graphs with connecting probability
0.2. The diffusion coefficient ε is set to 0.1.

optimal solutions in all occasions, and evidently outperforms
the random strategy. We have shown in Theorem IV.4 that the
second-order approximation of spectral radius of the supra-
Laplacian is maximized when connecting nodes are chosen
as the ones with largest information centrality. In Fig. 4, we
show that by using this result we actually obtain an optimal
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Fig. 5: Mean square convergence rates for the system consists
of two subgraphs connected by an edge with bridge nodes
selected by different strategy. Subgraphs are ER graphs with
connecting probability 0.2. The activation probability of edges
in Econ is p = 0.1. β takes the value of 1/21.

connecting node in each subgraphs. In Fig. 5, similar results
are observed. Therefore, empirically speaking, this approach
can also be used as a heuristic to find connecting nodes that
lead to a good mean square convergence rate.

Finally, we apply our algorithm to an NoN with subnetworks
obtained from the University of Illinois’ Power System Test
Cases [45]. We choose five networks from the data set and
use them as subgraphs, which are connected by a path graph
or a complete graph using only one connecting node for each
subgraph. For the path connecting graph, the subgraphs are
connected in the order G9, G24, G39, G30, G14, where the
subscripts indicate the sizes of the corresponding subgraphs.

Table I shows the actual diffusion rate of the system in
which connecting nodes are chosen as the nodes with optimal
information centrality or as random nodes, for the two different
connecting graphs. The results show that our algorithm picks
better connecting nodes than random choices. We note that the
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TABLE I: Diffusion Rates for Different Connecting Graphs.

Connecting Gaph InfoCent Random
Path 0.2311 0.2253

Complete Graph 1.2609 1.0594

improvement is more significant when the connecting graph
is a complete graph.

VII. CONCLUSION AND DISCUSSION

We have investigated the rate of diffusion in an NoN model,
as well as the convergence rate in a consensus NoN with
a stochastically switching connecting graph. We showed that
the first-order perturbation term is determined by the spectral
gap of the generalized Laplacian matrix of the connecting
network. In addition, using second-order perturbation analysis,
we showed the connection between information centrality
and the optimal connecting nodes in subgraphs. Finally, we
presented numerical results to substantiate our analysis.

We note that the application of algebraic connectivity is not
limited to diffusion and consensus processes. For example,
it also determines the mixing time of a Markov chain. In
addition, the whole spectrum of the graph can be approximated
using the perturbation theory approach. Therefore, properties
related to robustness, such as the H2 norm of the system, can
be analyzed. Further, local behaviors of nonlinear systems can
be linearized and approximated using this approach.

In future work, we plan to extend our analysis to more
general models of NoNs. One can apply similar analysis
to a model with multiple bridge nodes in each subgraph.
By defining the condensed graph as a graph generated from
the connecting graph by collapsing all nodes in the same
subgraph into a single node, one can show that the first order
perturbation term is determined by the spectral gap of the
generalized Laplacian matrix of the condensed graph. The
second order perturbation analysis will require more analytical
expressions to uncover the roles of the subgraphs and the
connecting nodes in such a model.
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