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Shifting Opinions in a Social Network Through
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Abstract—We study the French–DeGroot opinion dynam-
ics in a social network with two polarizing parties. We
consider a network in which the leaders of one party are
given, and we pose the problem of selecting the leader set
of the opposing party so as to shift the average opinion
to a desired value. When each party has only one leader,
we express the average opinion in terms of the transition
matrix and the stationary distribution of random walks in
the network. The analysis shows the balance of influence
between the two leader nodes. We show that the problem
of selecting at most k absolute leaders to shift the average
opinion is NP-hard. Then, we reduce the problem to a prob-
lem of submodular maximization with a submodular knap-
sack constraint and an additional cardinality constraint,
and propose a greedy algorithm with upper bound search
to approximate the optimum solution. We also conduct ex-
periments in random networks and real-world networks to
show the effectiveness of the algorithm.

Index Terms—Approximation algorithm, balance of opin-
ions, French–DeGroot model, optimization, social network.

I. INTRODUCTION

SOCIAL networks have become increasingly influential in
shaping public opinions. Within this field, the problem of

designing mechanisms to effectively shift opinions in a social
network has received great interest in the last two decades [1]–
[6]. Much of the existing work studies the problem of choos-
ing individuals in the network to be opinion leaders so as to
maximize the influence of a particular opinion, i.e., to shift the
average opinion of the network to an extreme opinion. However,
fine-grained optimization of the average opinion has not been
well studied.

In this article, we study the problem of shifting the average
opinion of a network to a given value, which generalizes the
intensely studied influence maximization problem. We consider
a continuous-time French–DeGroot opinion model with two
polarizing parties. The French–DeGroot model [7], [8] is one of
the most popular models for opinion dynamics. In the model, the
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social network is represented by a graph, with nodes correspond-
ing to individuals. Each node has a real scalar-valued state that
represents the individual’s opinion. Each node updates its state
continuously by comparing its state with that of its neighbors.
We consider a variation on this model where the nodes consists
of leaders nodes, defined as the nodes with external reference
values, and follower nodes, defined as those without external
information.

We assume that there are two opposing sources of opinion, 1
and 0. These could represent, for example, support for Party A
(1) or Party B (0), or these sources could represent support and
opposition to an event or outcome. In the model we adopt, all
members of the social network take opinion values in the interval
[0,1]. A firm supporter of Party A (or proevent individual) has
an opinion close to 1, and an unquestioned supporter of Party B
(or antievent individual) holds an opinion close to 0. Individuals
with opinion 1/2 are considered as neutral.

Each party controls a set of nodes as their opinion leaders.
We consider two types of opinion leaders: absolute leaders and
influenced leaders. An absolute leader has a constant opinion (1
or 0) that represents its party which never changes. We call a
system with such leaders, an absolute leader system. An influ-
enced leader receives a constant input from the corresponding
party as a reference value, and it adjusts it’s state according to
the reference value and the states of it’s neighbors. One can think
of these leaders as being influenced through a relationship with
an individual that is a direct source of the opinion but is not a
part of the network, i.e., an external party leader. We refer to a
system with such leaders as an influenced leader system.

We consider two leader selection problems, one for each type
of system. In both cases, we assume that the network already has
a leader set for party 0, and our goal is to identify the leader set
for party 1 so as to shift the average opinion of the social network
toward a target value. In the absolute leader system, individuals
are selected in the network to act as absolute leaders, by hiring
them into the party. In the influenced leader system, relationships
are formed between the identified set of influenced leaders within
the network and an external party leader with opinion 1.

Our problem formulation is related to the well-studied prob-
lem of influence maximization [2]–[5], i.e., maximizing the
average opinion of the network by choosing leaders for party 1,
while the leaders for party 0 are fixed. Influence maximization
corresponds to the case in our problem where the target value
is 1. However, there are cases where maximizing the average
opinion is not beneficial. It has been observed that people can
form polarizing opinions through interactions in a social group,
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and the problem of depolarizing opinions has received interest
in social psychology [9]. If a social group has formed an extreme
opinion, one may seek to balance the network opinion around
a target value of 1

2 to encourage a balanced discussion on a
particular topic. Moreover, the opinion of an individual relates
to his or her behaviors [10], [11]. In particular, it can be viewed
as the probability that a user adopts a behavior. From this
perspective, party 1 can achieve a desired level of participation
in a voluntary activity in a large network by shifting the average
opinion to a certain target value.

We begin by analyzing the two proposed models, and we pro-
pose the concept of domination score to characterize the balance
of influence between leaders of two parties. This analysis relates
the models to properties of random walks in a network. We also
identify the optimal solution to the leader selection problem for
each model when a single leader is chosen for each party. Next,
we study the general problem of choosing a leader set for party
1 with a given cardinality, when the leader set for party 0 is
already identified. For absolute leader systems, we prove the
NP-hardness of the problem. Further, we propose an algorithm
for the leader selection problems with provable approximation
guarantees. Our algorithm finds an appropriate upper bound
for a greedy routine that approximately solves a submodular
cost submodular knapsack (SCSK) problem with an additional
cardinality constraint. We are not aware of any previous work
on SCSK problems with cardinality constraints.

Related Work: In the last two decades, many works con-
sidered the French–DeGroot model with leaders accessing the
same reference value [12]–[16]. In such systems, leader selection
problems have been formulated for different objectives such as
minimizing the convergence error [16] or minimizing the total
deviation from the reference value of the system in the presence
of additional noise on followers [13]–[15]. These combinatorial
optimization problems are often intractable. For example, the
leader selection problem proposed in [13] has been proven to be
NP-hard [17]. Various approaches have been proposed to address
these problems, including convex relaxation heuristics [14] and
greedy algorithms [16], [18] with constant approximation ratios.

Another line of works considers leaders with different ref-
erence values, in particular two groups of leaders with polar-
izing opinions. In this case, the steady-state opinions of all
nodes fall into the interval of leader states [19], [20]. In such
systems, different leader selection problems have also been
studied. The work [3] proposed a message passing algorithm
to place a single absolute leader to maximize its influence in
an undirected network. A recent paper [21] extended the results
to bidirectional networks with possibly nonsymmetric weights.
Grabisch et al. [22] studied a zero-sum game in which each party
strategically chooses an influenced leader.

Friedkin [1] studied the k absolute leader selection problem
with k > 1 and proved the submodularity of the average opinion
as a function of the leader set. The article [2] studied the influence
maximization problem in the Friedkin–Johnsen model, which
is related to a French–DeGroot opinion network with absolute
leaders in special cases but not equivalent, in general. This
work proved the submodularity of the average opinion and the
NP-hardness of the average opinion maximization problem. Mai

and Abed [5] studied the problem of maximizing influence
of the leader set in a French–DeGroot model where leaders
have specified stubbornness, and Hunter and Zaman [4] inves-
tigated a similar maximization problem. Both works proved
the monotonicity and submodularity of the average opinion
in a French–DeGroot opinion network with influenced leader
dynamics. Typical greedy algorithms were applied to these
problems due to submodularity of the objective functions. In
contrast, our work studies the problem of shifting the average
opinion of the network to any specified value. Our problem thus
includes the influence maximization problem as a special case. In
addition, we show that our problem cannot be directly treated as
submodular maximization problem with a cardinality constraint.
Thus, a more sophisticated optimization algorithm is needed.

Article Outline: The remainder of the article is organized as
follows. In Section II, we introduce basic notations and concepts.
In Section III, we present the system model and the problem
formulation. In Section IV, we give an explicit form of the
steady-state opinion vector using the Laplacian of an augmented
graph, and we show how this relates to the balance of the leader
nodes’ influence in a network. In Section V, we propose a greedy
algorithm with an upper bound search and provide provable
bounds on the approximation ratio of the algorithm. Section VI
presents experimental results. Finally, Section VII concludes this
article.

II. PRELIMINARIES

In this section, we introduce the notation of a graph and
its matrix representations. Further, we review the concepts of
hitting time, commute time, resistance distance, and information
centrality, which are used as analytical tools in this article.

Vectors and Matrices: We use eu to denote the uth canonical

basis vector of Rn. Vector bu,v is defined as bu,v
def
= eu − ev .

1n represents the all-one vector with length n, and 0n (0p×q)
represents the all-zero vector (or matrix) with length n (or size
p× q). We also use these notations without specifying the sizes
if they are implied in context. Apart from these exceptions (eu,
bu,v , 1n, and 0n), a vector or matrix with subscripts denotes
the vector or submatrix with indices specified by the subscripts.
For example, given a vector x, xi is its ith entry and xI is a
vector consisting of entries xi for all i ∈ I. For a matrix X ,
Xi,j is the (i, j)th entry of X and XI,J is the submatrix of X
consisting of the entries of X whose rows are in I and columns
are in J . In addition, we use I to denote the identity matrix, and
we use X† to denote the Moore Penrose pseudoinverse of the
matrix X .

Graphs and Their Matrix Representations: We denote a di-
rected graph as G = (V, E , w), where V and E are the node
set and edge set of the graph, respectively, with |V| = n and
|E| = m. An undirected graph can be viewed as a symmetrically
coupled bidirectional graph in this context. We let e = (u, v) ∈
E represent an edge from nodes u to node v, and w : E → R+

is the edge weight function. We denote N↓
v as the set of in-

neighbors of v (u ∈ N↓
v iff (u, v) ∈ E), and N↑

v as the set of
out-neighbors of v (u ∈ N↑

v iff (v, u) ∈ E). In addition, for a
graph G = (V, E , w), and a subset of nodes V ⊆ V , we denote
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the subgraph supported on V as G[V ] = (V,E, ω), where E =
{e = (u, v) ∈ E : u, v ∈ V } and ω(e) = w(e) for all e ∈ E.
Further, we define the plus operation on graphs as follows.
For two graphs G1 = (V1, E1, w1) and G2 = (V2, E2, w2), let
H = (U ,M, ω) = G1 + G2 be a new graph with U = V1 ∪ V2,
M = E1 ∪ E2, and ω : M → R+ the new edge weight func-
tion defined as ω(e) = w1(e) if e ∈ (E1\E2), ω(e) = w2(e) if
e ∈ (E2\E1), and ω(e) = w1(e) + w2(e) if e ∈ (E2 ∩ E1).

The weighted Laplacian matrix of a graph is defined as L
def
=

D −A, where A is the adjacency matrix with Au,v = w(e)
for e = (u, v) ∈ E and Au,v = 0 for (u, v) /∈ E , and D is
the out-degree diagonal matrix, where Du,u =

∑
v Au,v and

Du,v = 0 if u 	= v. From the definition, it is clear that L =∑
(u,v)∈E w(u, v)bu,ve



u .

For a matrix (vector, scalar) associated with a graph, we some-
times use a superscript to explicitly show that it corresponds to
the graph. For example, LG is the Laplacian matrix of graph G.

Random Walks on Graphs: We define W
def
= A
D−1 as the

random walk transition matrix of graph G. A random walker has
a probability W i,j =

Aj,i

Dj,j
to transition from vertex j to vertex

i. When the graph is strongly connected, there exists a positive
vector (unique up to scaling) such that π = Wπ. When the
vector is scaled such that

∑
v πv = 1, π is called the stationary

distribution of the random walk defined by W . We define Π as

a diagonal matrix in which Πv,v
def
= πv for all vertex v ∈ V . We

note that L = D(I −W
) and L1 = 0.
In a connected graph G, the hitting time from vertex u to v

is the expected number of steps that a random walker, starting
from vertex v, takes until it hits u for the first time. We denote
by Hu,v the hitting time from u to v.

Lemma II.1 (Hitting Time [23]): In a strongly connected
graph G

HG
u,v = b
u,v(I − (W )
)†Π−1(π − ev) .

If G is an undirected graph, HG
u,v = 2m · b
u,vL†(π − ev).

The commute time Cu,v is defined as Cu,v
def
= Hu,v +Hv,u.

Lemma II.2 (Commute Time [23]): In a strongly connected
graph G

CG
u,v = b
u,v(I − (W )
)†Π−1bu,v .

If G is an undirected graph, CG
u,v = 2m · b
u,vL†bu,v .

Effective Resistance and Information Centrality: Given an
undirected graph G, we define an electrical network G. In G,
every edge e of G is replaced by a resistor of resistance 1/w(e),
and the resistors are connected if the edges are incident. Then,
the effective resistance between node u and v in graph G (or
electrical graph G) is defined as the voltage difference between
vertices u and v in G when unit current is injected from u and
extracted from v. We recall the following lemma relating to
effective resistance.

Lemma II.3 (Effective Resistance [24]): In a connected
undirected electrical network defined by G = (V, E , w), the
effective resistance between nodes u and v is

RG
u,v = (L†)v,v − 2(L†)v,u + (L†)u,u .

Effective resistance is a global distance metric defined in
undirected networks for node pairs. RG

u,v > 0 if there is a path
between u and v. We further recall the definition of information
centrality.

Definition II.4 (Information Centrality): In a connected undi-
rected graph G = (V, E , w), the information centrality of a ver-
tex u is defined by

θG(u) =
n∑

v∈V RG
u,v

.

From Lemma II.3, we obtain∑
u∈V

RG
u,v = n · (L†)

v,v
+Tr

(
L†) .

Information centrality makes use of all paths between a node
and other nodes in a social network and give them relative
weighting [25].

III. PROBLEM FORMULATION

We consider a directed strongly connected graph
G = (V, E , w). Nodes represent individuals in the social
network, and an edge (u, v) ∈ E models a social link from
node u to node v, indicating that node u follows node v, or
node v exerts influence on node u. Edge weights represent the
strengths of the social links. Each node v has a scalar-valued
state xv ∈ R, which represents its opinion. The node set can
be divided into a leader set S and a follower set F . The set S
can be further divided into two disjoint sets S0 and S1, which
are sets of nodes controlled by two parties, namely party 0 and
party 1. All nodes in S0 have access to reference value 0, and
all nodes in S1 have access to reference value 1. Nodes in F
update their states according to a diffusion law.

A. System Dynamics

We consider the French–DeGroot opinion model with abso-
lute leaders and a variation of this model with influenced leaders
that are connected to external absolute sources of information.
The two models differ in how the leaders use their reference
values.

In the absolute leader system, leaders initialize their states
with 0 (for v ∈ S0) or 1 (for v ∈ S1), and their states remain
unchanged over time. The dynamics of a leader node v is
characterized by ẋv(t) = 0. A follower node v begins with an
arbitrary initial state xv(0) = x0

v , and it updates its state by the
dynamics

ẋv(t) = −
∑
u∈N↑

v

w(v, u) (xv(t)− xu(t)) .

We partition the state vector x as

x =
(
x

S x


F

)

where xS is associated with the leaders and xF is associated
with the followers. Similarly, we partition the Laplacian matrix
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LG and adjacency matrix A into blocks as

LG =

(
LS,S LS,F

LF,S LF,F

)
.

Then, the dynamics of the leaders and the followers can be
written as

ẋS(t) = 0 (1)

ẋF (t) = −LF,FxF −LF,SxS . (2)

In the system described by (1) and (2), the steady-state values
of the leader nodes are

x̂S = x0
S (3)

for v ∈ S. Since −LF,F is Hurwitz for a nonempty leader set
S [26], the system converges to a single stable steady state [27].
Letting ẋF (t) = 0, we obtain the steady state of the followers

x̂F = −(LF,F )
−1LF,Sx̂S . (4)

We note that LF,Sx̂S can be viewed as the sum of columns
of LF,S that correspond to 1-leaders (columns of 0-leaders are
weighted by 0).

In the influenced leader system, disjoint subsets of nodes S0

andS1 are influenced by two external party leaders with opinions
0 and 1, respectively. These external nodes are not part of the
graph G, and further, they do not change their opinions. Each
of the influenced leaders in S0 ∪ S1 updates its state according
to its current state, the states of its neighbors, and the reference
value from its external leader, 0 for nodes in S0 and 1 for nodes
in S1.

The system can start from any initial state and the dynamics
is given by

ẋv=−
∑
u∈N↑

v

w(v, u)(xv(t)− xu(t)) + κv (0− xv(t)), v ∈ S0

ẋv=−
∑
u∈N↑

v

w(v, u)(xv(t)− xu(t)) + κv (1− xv(t)), v ∈ S1

ẋv=−
∑
u∈N↑

v

w(v, u)(xv(t)− xu(t)), v ∈ F

where the value κv is the weight that the influenced leader puts
on its reference value. We also refer to it as the stubbornness of
the node. The dynamics can be expressed more compactly as

ẋ = − (LG +ESK
)
x+ES1K1 (5)

where ES is the diagonal matrix with ES
v,v = 1 for v ∈ S and

ES
v,u = 0 otherwise; ES1 is defined similarly with nonzero

entries for v ∈ S1. The matrix K is diagonal with Kv,v = κv ,
the stubbornness of vertex v if chosen as an influenced node.

For system (5), −(LG +ESK) is Hurwitz for a nonempty
leader set S, so the system converges to a single steady state.
We let ẋ(t) = 0 and obtain the steady-state values of all nodes

x̂ =
(
LG +ESK

)−1
ES1K1 . (6)

In this article, we study the average opinion of all nodes in the
network.

Definition III.1: In both the absolute and influenced leader
systems, given the leader set S0, the average opinion μ of a
network as a function of leader set S1 is defined as

μ(S1)
def
=

1

n

∑
v∈V

x̂v . (7)

Besides the above definition, μ(S1) has an interesting inter-
pretation in an opinion–behavior model based on the French–
DeGroot model. We can model the opinion–behavior linkage
in the system by treating x̂v as the success probability of a
Bernoulli random variableXv of taking the value 1. In the social
network, Xv = 1 indicates the event that node (individual) v
takes an action, and Xv = 0 indicates the event that v does not
take an action. We recall that n = |V| for both the absolute and
influenced leader systems. We then assume that after reaching a
steady state of opinions, nodes in the network choose their ac-
tions independently. Then, X1, X2, . . . , Xv, . . . , Xn are treated
as n mutually independent Bernoulli random variables associ-
ated with corresponding nodes in the network. In particular, Xv

is defined by

Pr (Xv = 1) = x̂v

Pr (Xv = 0) = 1− x̂v

for all v ∈ V , and therefore E[Xv] = x̂v .
We are interested in the fraction of nodes that take an action.

We define the random variable X := 1
n

∑
v Xv . Since Xv are

independent bounded random variables, X concentrates at

μ(S1) =
1

n

∑
v

x̂v. (8)

According to Hoeffding’s inequality,

Pr

(
|X − μ(S1)| ≥

√
lnn

n

)
≤ 2

n2
(9)

which indicates that μ(S1) determines the fraction of the popu-
lation that take an action in a large network, with a diminishing
error bound and a diminishing probability that this bound is
violated. Therefore, a party can control the fraction of population
that take part in an activity or event by shifting the average
opinion of the network to a certain value.

B. Leader Selection Problems

In a system where set S0 is given, we define the problem
of choosing at most k leaders for set S1, such that the average
opinion of all nodes (including leaders and followers) μ(S1)
is closest to a given value α. Specifically, we are interested in
minimizing the following objective function:

f(P, α)
def
= |μ(P )− α| . (10)

We first formally define the problem for the absolute leader
system.

Problem 1 (Absolute Leader Selection): In an absolute
leader system, given a strongly connected directed graph G =
(V, E , w), an opinion 0 absolute leader set S0 	= ∅, a specified
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Fig. 1. Example of constructing a leader-equivalent graph for an abso-
lute leader system. Nodes u and v in G become the leader s′0 in G′, and
nodes i and j in G become the leader s′1 in G′. Edges without labels are
weighted 1; otherwise, edges are labeled with their weights.

value α ∈ [0, 1], a candidate set Q ⊆ V\S0, |Q| = q, and an
integer 1 ≤ k ≤ q, find the node set S1 ⊆ Q, |S1| ≤ k such that

S1 ∈ arg min
P⊆Q,|P |≤k

f(P, α) . (11)

We define a similar problem for the influenced leader system.
Problem 2 (Influenced Leader Selection): In an influ-

enced leader system, given a strongly connected directed graph
G = (V, E , w), an opinion 0 leader set S0 	= ∅, a stubbornness
function of 0 leader nodes κ0 : S0 → R+, a specified value
α ∈ [0, 1], a candidate set Q ⊆ V\S0, |Q| = q, another stub-
bornness function κ1 : Q → R+, and an integer 1 ≤ k ≤ q, find
the node set S1 ⊆ Q, |S1| ≤ k such that

S1 ∈ arg min
P⊆Q,|P |≤k

f(P, α) . (12)

We note that for both Problems 1 and 2, influence maximiza-
tion corresponds to the degenerate case of α = 1.

IV. ANALYSIS

In this section, we give analytical solutions for Problems 1
and 2 for the case where k = 1. We also present hardness results
for the case where k > 1.

Our analysis utilizes a leader-equivalent graph to give an-
alytical expressions for the average opinion of the network.
Furthermore, for a network with a single leader for each party,
we express the average opinion using the transition matrix and
the stationary distribution of random walks in the network.

A. Opinions in Leader-Equivalent Systems

We note that the dynamics of both the absolute leader system
and the influenced leader system can be fully characterized
by a system defined in a leader-equivalent graph. For these
two different kinds of systems, we construct the corresponding
leader-equivalent graphs in different ways.

The system described by (1) and (2) is equivalent to a system in
which all nodes inS0 are identified as a single absolute leader s′0,
and all nodes inS1 are identified as a single absolute leader node
s′1. We denote the contracted graph by G′ = (V,′ E ,′ w′), where
V′ = F ∪ {s′0} ∪ {s′1}, E′ = {(u, v) : u, v ∈ F} ∪ {(u, s′0) :
(Nu ∩ S0) 	= ∅} ∪ {(u, s′1) : (Nu ∩ S1) 	= ∅}, and w′(u, v) =
w(u, v) if u, v ∈ F , w′(u, s′0) =

∑
v∈(S0∩Nu)

w(u, v), and
w′(u, s′1) =

∑
v∈(S1∩Nu)

w(u, v). In addition, we define
S ′ = {s′0, s′1} and F ′ = V′\S ′. Note that F ′ = F in this case.
Fig. 1 shows an example of constructing a leader-equivalent
graph for an absolute leader system.

Fig. 2. Example of constructing a leader-equivalent graph from an
influenced leader system.

We denote the Laplacian matrix of G′ as LG′
. Then, the

dynamics of F ′ in the system defined on the leader-equivalent
graph is expressed by

ẋF ′(t) = −LG′
F,′F ′xF ′ −LG′

F,′{s′1} . (13)

The influenced leader system described by (5) is equiv-
alent to a system in which two virtual absolute lead-
ers s′0 and s′1 are added to the graph, and all nodes in
the original network G are treated as followers. We de-
fine the augmented graph as G′ = (V,′ E ,′ w′), where V′ =
V ∪ {s′0} ∪ {s′1}, and E′ = E ∪ {(u, s′0) : u ∈ S0} ∪ {(u, s′1) :
u ∈ S1} ∪ {(s′0, u) : u ∈ S0} ∪ {(s′1, u) : u ∈ S1}, w′(u, v) =
w(u, v) if (u, v) ∈ E , w′(u, s′0) = w′(s′0, u) = κu if u ∈ S0,
and w′(u, s′1) = w′(s′1, u) = κu if u ∈ S1. We again define
S ′ = {s′0, s′1} and F ′ = V′\S ′; in this case, F ′ = V . Fig. 2
shows an example of constructing a leader-equivalent graph
for an influenced leader system. With this augmented graph,
the dynamics of the influenced leader system is also described
by (13).

By constructing the corresponding leader-equivalent graphs,
we can study both absolute and influenced leader systems using
a unified framework. We remark that this does not mean the
systems are equivalent. Choosing leaders in different system
models leads to different leader-equivalent graphs and hence
different steady states, although system (5) approaches system
(2) as Kv,v → +∞ for all v ∈ (S0 ∪ S1).

For both the absolute and influenced leader systems, the nodes
s′1 and s′0 are the only nodes that directly use reference values as
their states in the leader-equivalent graph. Their steady states are
xs′0 = 0 and xs′1 = 1. The steady states of all remaining nodes
satisfy

LG′
F,′F ′ x̂F ′ +LG′

F,′{s′1} = 0 . (14)

We note that the edges from s′0 or s′1 to other nodes are not
used according to the dynamics. We deliberately add these edges
to make the graph strongly connected, which facilitates our
analysis.

Let (AG′
)
(DG′

)−1 be the random walk matrix of a leader-
equivalent graph G′. Then, we define the following matrices for
G′:

LG′ def
= Π(I − (W G′

)
) (15)

RG′ def
= (I − (W G′

)
)†Π−1 . (16)

In general, (LG′
)† 	= RG′

, but for any p ⊥ 1, q ⊥ 1,
p
(LG′

)†q = p
RG′
q. For more details, we refer the readers

to [23]. For an undirected graph, LG′
= 1

2˜mLG′
.
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Proposition IV.1: For either an absolute leader system or
an influenced leader system, we consider its leader-equivalent
graph G′. For any node v ∈ V′, the steady state value x̂v is given
by

x̂v =
b
v,s′0R

G′
bs′1,s′0

b
s′1,s′0R
G′
bs′1,s′0

=
b
v,s′0(L

G′
)†bs′1,s′0

b
s′1,s′0(L
G′
)†bs′1,s′0

. (17)

When G is an undirected graph, the expression degenerates to

x̂v =
b
v,s′0(L

G′
)†bs′1,s′0

b
s′1,s′0(L
G′
)†bs′1,s′0

. (18)

The construction of solution (17) is given in Appendix B.
Since L and LT have different kernels, the construction of the
solution is different to the undirected case. The uniqueness of
the solution is guaranteed by the fact that LG′

F,′F ′ is full rank and

ES1K ′1 is nonzero.
The value of x̂v is, in fact, the escape probability of node v,

which is defined as the probability that a random walker starting
from vertex v, reaches node s′1 before it reaches node s′0. We note
that expression (18) was given in [20] in a different context. The
paper [20] studied an opinion dynamics model where the sum
of differences between the states of a node and its neighbors
is divided by the out-degree of the node before it is applied
as a negative feedback to the state of the node. If the leaders
take the same values, the system studied in [20] has a different
convergence rate than the absolute leader system but shares the
same steady-state values.

B. Single Leader for Each Party

For absolute leader systems, if |S1| = |S0| = 1, the leader-
equivalent graph G′ is the same as the original graph G. We let
the leaders in G be denoted s0 and s1 for parties with opinion 0
and 1, respectively. Then, by Proposition IV.1,

μ(S1) =
(L†)s0,s0 − (L†)s0,s1

(L†)s0,s0−(L†)s0,s1+(L†)s1,s1−(L†)s1,s0
. (19)

Intuitively, we can view this expression as the influence of
node s1 to node s0, normalized by the sum of their mutual influ-
ence. We quantify this influence with the following definition.

Definition IV.2: In a strongly connected directed graph G, the
domination score of node u over v is defined as

DG
u,v = (L†)v,v − (L†)v,u . (20)

We provide two physical interpretations for DG
u,v in special

cases. The first interpretation is that in a balanced regular
(directed or undirected) graph, DG

u,v is the hitting time HG
u,v .

A larger HG
u,v indicates that a random walker, starting from

node u, spends more time in the network before it reaches v,
therefore, exerting greater influence in the network. The second
interpretation is that in an undirected graph G and its induced
electrical network G, 1

2˜mDG
u,v is the average voltage value of

all nodes in the electrical network when unit current is injected
at u and extracted from v, and v is grounded (s0 has voltage 0).

From the definition of domination score and the expression
of commute time in Lemma II.2, we immediately obtain

μ(S1) =
DG

s1,s0

CG
s0,s1

=
DG

s1,s0

DG
s0,s1

+DG
s1,s0

. (21)

As for the deviation of the average opinion from the given value
α, we give its expression the following theorem.

Theorem IV.3: For absolute leader systems, if |S0| =
|S1| = 1,

f(S1, α) =

∣∣(1− α)DG
s1,s0

−αDG
s0,s1

∣∣
DG

s0,s1
+DG

s1,s0

. (22)

The proof of Theorem IV.3 follows directly from (19) and Def-
inition IV.2. The numerator is the absolute value of a weighted
average of DG

s1,s0
and −DG

s0,s1
. Therefore, Theorem IV.3 shows

a weighted balance between the domination score of s0 over
s1 and the domination score of s1 over s0, which decides the
deviation of the average opinion fromα. Theorem IV.3 indicates
that for Problem 1, if |S0| = |S1| = 1, given the leader s0, it
suffices to find a node s1 such that (1− α)DG

s1,s0
= αDG

s0,s1
to

shift the average opinion to α.
For influenced leader systems, the vector x̂ is given by (6).

We do not apply the leader-equivalent graph analysis in this
case because G′ 	= G. We instead interpret x̂ using properties
of G. Fortunately, when we choose one leader for each party,
ES1 is a rank-1 matrix, and ES = ES0 +ES1 is a rank-2
matrix. Applying the rank-1 update of matrices twice leads to
the following theorem.

Theorem IV.4: For influenced leader systems, if |S0| =
|S1| = 1, we obtain

f(S1, α) =

∣∣∣(1− α)(
ds0

κ0πs0
+DG

s1,s0
)− α(

ds1

κ1πs1
+DG

s0,s1
)
∣∣∣

(
ds0

κ0πs0
+DG

s1,s0
) + (

ds1

κ1πs1
+DG

s0,s1
)

where the entries of vector d are defined as dv = Dv,v, ∀v ∈ V .
We defer the proof of Theorem IV.4 to Appendix C. As

observed in Theorem IV.3 for absolute leader systems, for influ-
enced leader systems, Theorem IV.4 also shows the balancing
behavior of domination scores in the social network, which
decides the deviation of the average opinion from α. In addition,
Theorem IV.4 indicates that for Problem 2, if |S0| = |S1| = 1,
given the leader s0, it suffices to find a node s1 such that
(1− α)(

ds0

κs0
πs0

+DG
s1,s0

) = α(
ds1

κs1
πs1

+DG
s0,s1

) to shift the
average opinion to α. Assuming κ1 = κ2, and they both ap-
proach infinity, then the condition is the same as what we have
derived in the absolute leader system.

The balancing behaviors shown in Theorems IV.3 and IV.4
exhibit interesting results when G is undirected and α = 1/2. In
particular, Theorems IV.3 and IV.4 imply the following corol-
laries.

Corollary IV.5: For absolute leader systems, when G is undi-
rected, α = 1/2, and |S0| = |S1| = 1,

f(S1, 1/2) =

∣∣θG(s0)−1 − θG(s1)−1
∣∣

2RG
s0,s1

. (23)
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Corollary IV.6: For influenced leader systems, when G is
undirected, α = 1/2, and |S0| = |S1| = 1,

f(S1, 1/2)=

∣∣θG(s0)−1+ 1/κ0 − θG(s1)−1− 1/κ1

∣∣
2(RG

s0,s1
+ 1/κ0 + 1/κ1)

. (24)

These corollaries show the role of information centrality of
leader nodes in an undirected network when the objective is
to balance the opinions in the network. If s1 has the same
information centrality as s0 (assuming κ1 = κ0 for influenced
leader systems), then μ(S1) =

1
2 , and so the opinion network

is balanced. If there is no such s1, then it is beneficial to find
a node s1 such that |θG(s1)− θG(s0)| is small while RG

s0,s1
is

relatively large.

C. Hardness of Choosing Optimal k Leaders

Next, we show that Problem 1 is NP-hard. The hardness of
Problem 2 remains an open question.

Theorem IV.7: The Absolute Leader Selection problem for
shifting social opinion, described in Problem 1, is NP-hard.

The proof of Theorem IV.7 is given in a technical report [29].
We note that in both Problems 1 and 2, μ(S1), as a function of
S1, is monotone and submodular.

Theorem IV.8: For both absolute and influenced leader sys-
tems, the set function μ(S1) is monotone and submodular.

The monotonicity and submodularity of μ(S1) for absolute
leader systems is shown in [1]. The same properties for influ-
enced leader systems follow in a straightforward manner from
results in [4], [5].

V. ALGORITHM

In this section, we present an algorithm for selecting a set of
nodes to be leaders in S1, given set of leaders S0, to shift the
average opinion as close as possible to a given value α.

A. Algorithm Intuition

It is well known that greedy algorithms give a (1− 1/e) ap-
proximation for monotone submodular maximization problems
with cardinality constraints [30]. According to Theorem IV.8, for
either Problem 1 or 2, a greedy algorithm provides a (1− 1/e)
approximation for the problem when α = 1. However, for other
values ofα, the problems are not trivial to solve. We observe that
ifμ(S1) ≤ α always holds, we have a submodular maximization
problem with cardinality constraint; if μ(S1) ≥ α always holds,
the problem is a submodular minimization problem with the
same cardinality constraint. However, we do not know the value
of μ(S1) beforehand. Therefore, we need to design a more
sophisticated algorithm to approximately solve Problems 1 and
2.

The intuition behind our algorithm is to consider these prob-
lems as submodular cost submodular knapsack (SCSK) con-
straint maximization problems [32], [33]. An SCSK constrained
maximization problem is defined as

maximize f(X) subject to g(X) ≤ b.

for submodular functions f and g, and upper bound b ∈ R.
Problems 1 and 2 can be interpreted as special cases of SCSK
with additional cardinality constraints

maximize μ(S1)

subject to: S1 ⊆ Q,μ(S1) ≤ b, |S1| ≤ k. (25)

Our algorithm is motivated by an approach in [33] for the
general SCSK problem. We approximate the optimum μ(S1)
for Problem 1 or 2 by imposing an upper bound for the submod-
ular function μ and then applying a submodular maximization
algorithm to the bounded problem. Specifically, we find an ap-
propriate upper bound constraint μ(S1) ≤ b, such that a greedy
algorithm for maximizing μ(S1) with upper bound b leads to an
approximation algorithm for optimum solution S∗, where

S∗ ∈ arg min
P⊆Q,|P |≤k

|μ(P )− α|

is an optimal solution for Problem 1 or 2, respectively.
We apply a greedy algorithm to problem (25). For an upper

bound b, the algorithm Greedy returns a solution Sb. We can
compare different upper bounds by the solutionsGreedy returns.
The bound b1 is a better upper bound than b2 if |μ(Sb1)− α| <
|μ(Sb2)− α|. We further define the best upper bound input for
algorithm Greedy as b∗, or formally,

b∗ ∈ arg min
b∈[α,1]

|μ(Sb)− α|. (26)

We use a modified binary search to converge to the best upper
bound b∗ for Greedy. In the next section, we describe both the
bound search algorithm and the routine Greedy.

B. Bounded Search Approximation Algorithm

We first define the algorithm in terms of Problem 1. We
describe the changes of the algorithm in order to solve Problem 2
in the end of the section.

Our algorithm, BoundSearch, is given in Algorithm 1. Al-
gorithm takes as input a graph G, a candidate vertex set Q, an
objective opinion α, a cardinality constraint k, and a precision
parameter δ for binary search. It returns a set of nodes P , which
is a subset of Q satisfying |P | ≤ k.

The bound b̂ is initialized with value 1, and the algorithm
searches for b∗ in the interval [bmin, bmax] that might include
a better upper bound than b̌, the current best bound found by
the algorithm that leads to the smallest |μ(Sb)− α|. We update
bmin and bmax until bmin ≈δ bmax, and b∗, b̌, b̂ ∈ [bmin, bmax].
We obtain b̌ ≈δ b∗. Since b̌ is the current best upper bound found
by the algorithm, for any b /∈ [bmin, bmax], |Sb̌ − α| ≤ |Sb − α|.

Before analyzing Algorithm 1, we recall the concept of ε-
approximation [31]:

Definition V.1: Given two numbers a, b ∈ R, a, b ≥ 0, if

exp(−ε)a ≤ b ≤ exp(ε)a

then a is an ε-approximation of b, denoted by a ≈ε b.
Note that a ≈ε b if and only if b ≈ε a.
In Algorithm 2, we present the greedy routine P =

Greedy(G, Q, b̂, k) for the constrained submodular maximiza-
tion described in (25). The algorithm takes as input a graph G,

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on October 02,2021 at 23:33:52 UTC from IEEE Xplore.  Restrictions apply. 



YI et al.: SHIFTING OPINIONS IN A SOCIAL NETWORK THROUGH LEADER SELECTION 1123

a candidate set Q, an SCSK upper bound b̂, and an integer k for
the cardinality constraint. It returns a set of nodes P , which is
a subset of Q satisfying |P | ≤ k and μ(P ) ≤ b̂. The algorithm
chooses the node that most increases μ(P ) without violating the
upper bound from the candidate set in each iteration, deletes it
from the candidate set, and adds it to the current leader set.

To analyze Algorithm 2, we introduce the concept of the
minimum cover number.

Definition V.2: The minimum cover number kμ,b for set func-
tion μ(S), S ⊆ Q, and b ∈ R is defined as

kμ,b
def
= min{|S| : μ(S) ≥ b}

if there exists S satisfying μ(S) ≥ b, otherwise kμ,b
def
= +∞.

Then, we obtain the approximation ratio of BoundSearch.
Theorem V.3: Consider a graph G, a candidate set Q, an

objective α, a cardinality constraint |P | ≤ k, and a precision
parameter δ > 0. LetS∗ be an optimal solution for Problem 1 for

TABLE I
AVERAGE OPINION IN AN ABSOLUTE LEADER SYSTEM

Note: The graph is the Twitter retweet network rt-higgs with a fixed s0 and
a node s1 chosen via various methods.

these parameters. Algorithm P = BoundSearch(G, Q, α, k, δ)
returns a node set P such that μ(P ) ≈σ μ(S∗) , in which

σ = − ln(1− ζ) + δ, and ζ
def
= max(1/e, 1/kμ,α).

We defer the proof of Theorem V.3 to Appendix D.
The guarantee given in Theorem V.3 can also be written as

(1− ζ) e−δμ(S∗) ≤ μ(P ) ≤ (1− ζ)−1 eδμ(S∗) .

TheBoundSearch algorithm can be applied to Problem 2 with
the same approximation guarantee with the only difference that
the stubbornness function κ is an input of the algorithm. The
stubbornness function is also passed into Greedy to calculate
the average opinion. Theorem V.3 holds for the correspond-
ing algorithm P = BoundSearch(G, Q, α, k, κ, δ), which calls
Greedy(G, Q, b̂, k, κ).

C. Complexity Analysis

A naive implementation of the proposed algorithm runs in
O(kqn3 log 1

δ ) time, which is expensive for large graphs. Using
blockwise inversion and rank-1 update of matrices, we can
improve the running time of BoundSearch to O(n3 log 1

δ ).
Theorem V.4: There exists an implementation of Algorithm 1

for a graph with n nodes that has running time O(n3 log 1
δ ).

The proof of Theorem V.4 is given in Appendix 5.

VI. EXPERIMENTS

In this section, we present experiments to highlight the an-
alytical results and to show the effectiveness of the proposed
algorithm.

We first study the properties ofμ(S1)when |S0| = |S1| = 1 in
absolute and influenced leader systems for α = 0.25, 0.5, 0.75,
and 1. The leader s0 is chosen uniformly at random. We run
experiments on a directed and weighted social network. We
utilize the largest strongly connected component of the Twitter
retweet network with the keyword “higgs,” which we refer to as
rt-higgs [34]. The edges are weighted by the number of retweets
to a user. The network has 13 086 nodes and 63 537 edges.

For the absolute leader system, we find the average opinion
of the network for the optimal solution to Problem 1, i.e., the
optimal s1 as given by Theorem IV.3. We also show the average
opinion when s1 is chosen using heuristics motivated by the
theorem. The first heuristic, DS, is based on the domination
score; we find the s1 such that the resulting μ({s1}) minimizes
the numerator of (22). We also use a heuristic based on commute
time (CT); here, s1 is chosen so as to maximize the denominator
of (22). Finally, we compute the average opinion for a randomly
chosen s1. The results of this experiment are shown in Table I.

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on October 02,2021 at 23:33:52 UTC from IEEE Xplore.  Restrictions apply. 



1124 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 8, NO. 3, SEPTEMBER 2021

TABLE II
AVERAGE OPINION IN AN INFLUENCED LEADER SYSTEM.

Note: The Graph is the twitter retweet network rt-higgs with a fixed s0 and
a node s1 chosen via various methods.

Fig. 3. Average opinion of Optimum average opinion of BoundSearch
in an Erdős–Rényi graph with 30 nodes and connecting probability 0.1.
S0 leader sets are chosen randomly, and S1 leader sets are chosen by
brute-force search and BoundSearch with different k and α values. (a)
Absolute leader system. (b) Influenced leader system.

We also conduct an experiment for an influenced leader sys-
tem using the rt-higgs network. Influenced leaders have uniform
stubbornnessκ = 1, and the other parameters are the same as the
experiment for the absolute leader system. We find the optimal
s1 as well as the s1 chosen by heuristics motivated by the
numerator (DS&K) and denominator (CT) of the result given in
Theorem IV.4. We note that the s1 that minimizes denominator
of the result in Theorem IV.3 also minimizes denominator of the
result in Theorem IV.4. The results are shown in Table II.

Tables I and II show that when |S0| = |S1| = 1, the domi-
nation score well captures the behavior of μ({s1}). We have
observed similar results in various Erdős–Rényi graphs with
different choices of a single leader s0.

Next, to show the effectiveness of our leader selection algo-
rithm, we compare the result returned by our algorithm Bound-
Search with the optimal value returned by brute-force search.
We use an unweighted undirected Erdős–Rényi graph with 30
nodes and connecting probability 0.1. We choose an S0 leader
set of size 3 at random. We run the BoundSearch algorithm
for both absolute leader system and influenced leader systems
with α ∈ {0.25, 0.50, 0.75}. Influenced leaders use uniform
stubbornness κ = 1. The results are shown in Fig. 3. In all cases,
BoundSearch returns nearly optimal results.

We next run our leader selection algorithm on rt-higgs with
|S0| = 100 and k = 100. We compare the result produced by
our algorithm BoundSearch with a heuristic we call the Propo-
sitional Domination Score and with a randomly select set. To
calculate the Proposition Domination Score, for each leader in
S0, we choose a leader for S1 according to Theorem IV.3 for
absolute leaders and Theorem IV.4 for influenced leaders. For
all influenced leaders, κ = 1. Tables III and IV show that our
algorithm converges to the desired value and outperforms the
heuristic in all tested cases.

TABLE III
AVERAGE OPINION IN AN ABSOLUTE LEADER SYSTEM ON THE RT-HIGGS

NETWORK WITH |S0| = 100 AND k = 100

TABLE IV
AVERAGE OPINION IN AN INFLUENCED LEADER SYSTEM ON THE RT-HIGGS

NETWORK WITH |S0| = 100 AND k = 100

Fig. 4. Effect of varying δ on BoundSearch at α ∈ {0.20, 0.35, 0.50}.
Experiment uses the Haggle graph. (a) Absolute leader system.
(b) Influenced leader system.

Finally, we explore the effect of varying the δ parameter in
BoundSearch. We run BoundSearch on the Haggle [35] social
contact graph. The Haggle graph is a multigraph, which we turn
it into an undirected simple graph by deleting all duplicate edges.
We use the largest connected component of the graph that has
274 nodes and 2124 edges. All edges have unit edge weight. We
set k = 15 and α ∈ {0.2, 0.35, 0.5}. We vary δ from 0.0001 to
0.25. For the absolute leader system, we have |S0| = 80, and
for the influenced leader system, we have |S0| = 15. Influenced
leaders use uniform stubbornness κ = 1. The results are shown
in Fig. 4. We observe that as δ decreases, the results from
BoundSearch converge to a value close to α.

VII. CONCLUSION

We studied two French–DeGroot opinion dynamics models
where leaders have polarizing opinions. For both models, we
showed expressions for the steady-state opinion using the Lapla-
cian matrix of a leader-equivalent graph. For the single leader
case, we gave an explicit expression for the steady-state opinion
vector and analyzed the average opinion based on the expression.
Then, we studied the problem of shifting the average steady-state
opinion to a given value by selecting an opposing leader set
with a cardinality constraint. We gave both a hardness result
for this problem and an algorithm with provable approximation
ratio. We also presented experiments showing that our algo-
rithm returns results close to optimal in practice. Future work
will focus on algorithms with better approximation ratios and
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running time and the hardness of the influenced leader selection
problem.

APPENDIX

A. Some Useful Matrix Identities

We introduce some matrix identities. Proofs for the following
lemmas are given in our technical report [29].

Lemma A.1: For any p ⊥ 1, r ⊥ 1

p
L†r = p
Rr .

Lemma A.2:

I −LL† =
1

‖D−1π‖2D
−1ππ
D−1

I −L†L =
1

n
11
 .

Lemma A.3: For any p ⊥ 1, r ⊥ 1

p
L†DΠ−1r = p
L†r .

Lemma A.4: For any y ⊥ 1(
Π(I −W
)

) (
(I −W
)†Π−1

)
y =

(
I − 1

n
11


)
y .

B. Proof of Proposition IV.1

Proof: We can express (1) and (2) in the following form:(
ẋS(t)

ẋF (t)

)
= −

(
0 0

LF,S LF,F

)(
xS(t)

xF (t)

)
.

When the equilibrium is reached and(
0 0

LF,S LF,F

)(
x̂S(t)

x̂F (t)

)
= 0 .

Since L = D(I −W
), this is equivalent to solving(
0 0

[I −W
]F,S [I −W
]F,F

)(
x̂S(t)

x̂F (t)

)
= 0 .

When S0 = {s′0} and S1 = {s′1}, xS(t) = (1 0)
; it suffices to
solve⎛⎜⎝ 1 0 0

0 1 0

[xI−W
]F,s′0[I−W
]F,s′1[I−W
]F,F

⎞⎟⎠
⎛⎜⎝ 0

1

x̂F (t)

⎞⎟⎠=
⎛⎜⎝0

1

0

⎞⎟⎠ .

(27)

By solving

(I −W
)(z

S z


F )

 = (−π−1

s′0
π−1

s′1
0
)
 (28)

we obtain a zF that satisfies the latter n− 2 equations in (27).
We note that (28) has solutions because (−π−1

s′0
π−1

s′1
0
)
 ∈

ker(I −W
). Since the rank of (I −W
) is n− 1 and (I −
W
)1 = 0, for any z satisfying the system of equations (28),
y = z + γ1 also satisfies (28), where γ can be any real number.

We observe thatz = (I −W
)†Π−1bs′1,s′0 is a solution of (28).
This can be verified by plugging it into (28)

(I −W
)(I −W
)†Π−1bs′1,s′0

= Π−1
(
Π(I −W
)

) (
(I −W
)†Π−1

)
bs′1,s′0

= Π−1

(
I − 1

n
11


)
bs′1,s′0 = Π−1bs′1,s′0 .

The second equality follows from Lemma A.4. Then, we further
set z′ = z − zs′01 to make z′

s′0
= 0. Now, we have found z′

which satisfies (27) except for the second equation. We note
that by multiplying a factor β to z′, the other n− 1 equations
are still satisfied. So we let y′ = (zu − zv)

−1z′. Then, x̂ = y′

is the solution of (27). �

C. Proof of Theorem IV.4

Proof: According to the Sherman–Morrison formula

x̂v = e
v

(
(L+Es0κ0)

−1

− κ1 (L+Es0κ0)
−1 Es1 (L+Es0κ0)

−1

1 + κ1e
s1 (L+Es0κ0)
−1 es1

)
es1κ1 .

(29)

Let us then consider (L+Es0κ0)
−1. Since L is a singular

matrix, the Sherman–Morrison formula cannot be applied in
this case. Instead, we apply the rank-1 update given by [36,
Th. 1]. By further applying some matrix identities discussed in
Appendix 1, we obtain

(L+Es0κ0)
−1 = L†− 1

qs0

· (L†es0)q

− 1(e
s0L

†)

+ (1/κ0 + e
s0L
†es0) ·

1

qs0

· 1q
 (30)

where q = D−1π. Plugging (30) into (29), we arrive at

x̂v=

1
κ0qs0

+ b
v,s0L
†DΠ−1bs1,s0

1
κ0qs0

+ 1
κ1qs1

+ b
s1,s0L
†DΠ−1bs1,s0

. (31)

We further note that for any p ⊥ 1 and r ⊥ 1, p
L†DΠ−1r =
p
L†r (see Appendix 1 for details). Then, we obtain

μ(S1)=

1
κ0qs0

+ e
s0L†bs0,s1
1

κ0qs0

+ 1
κ1qs1

+ b
s1,s0L†bs1,s0

which directly leads to the desired result. �

D. Proof of Theorem V.3

Proof: We let b̌ be the best bound found by the algorithm
with the smallest |μ(Sb̌)− α|. And, Greedy with the best upper
bound b∗ returns the result μ(Sb∗). b∗ is given by (26).

If μ(P ∪ {s}) ≤ α is always satisfied during the execution,
then μ(P ∪ {s}) ≤ b̂ is also always satisfied. Then, the returned
Sb̌ is the same as what we get from a greedy algorithm that
adds the element with largest marginal gain to the current set
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in each iteration until the cardinality constraint is violated. We
further define S̃ ∈ arg maxT⊆Q, |T |≤kμ(T ); therefore, by the

result in [30], we obtain μ(S̃) ≥ μ(Sb̌) ≥ (1− 1
e )μ(S̃) .

If α ≥ μ(S̃), then μ(S̃) = μ(S∗), we attain the
guarantee μ(Sb̌) ≈γ μ(S̃), where e−γ = (1− 1/e). If
μ(Sb̌) ≤ α ≤ μ(S̃), thenμ(S∗) ∈ [μ(Sb̌), μ(S̃)], which implies
μ(Sb̌) ≈γ μ(S∗), where e−γ = (1− 1/e).

If μ(P ∪ {s}) ≤ α is first violated when we add the
(t+ 1)th node, we define Pt as the set of chosen nodes
of size t in Greedy; therefore, |Pt| = t. We further define
ρ(st+1) = μ(Pt ∪ {st+1})− μ(Pt). From the submodularity
of μ(S), we know that ρ(st+1) ≤ 1

t+1μ(Pt ∪ {st+1}) holds
for the Greedy algorithm. Then, μ(Pt) = μ(Pt ∪ {st+1})−
ρ(st+1) ≥ t

t+1μ(Pt ∪ {st+1}) ≥ kμ,α−1
kμ,α

μ(Pt ∪ {st+1}). By

letting b̄ = μ(Pt ∪ {st+1}) (then by definition b̄ = μ(Sb̄) =
μ(Pt ∪ {st+1})), we obtain μ(Sα) ≥ (1− 1

kμ,α
)μ(Sb̄). We

further attain μ(S∗), μ(Sb∗) ∈ [μ(Sα), μ(Sb̄)], and b∗ ∈ [α, b̄].
Since b̌, b∗ ∈ [bmin, bmax] and bmin ≈δ bmax, b̌ ≈δ b∗, we
obtain b̌ ∈ [α, eδ b̄], and therefore, μ(Sb̌) ∈ [μ(Sα), e

δμ(Sb̄)],
so μ(Sb̌) ≈γ μ(S∗), where e−γ = (1− 1/kμ,α)e

−δ .

E. Proof of Theorem V.4

Proof: We take the algorithm for the absolute leader selec-
tion problem as an example. In each execution of Line 3 of
Algorithm 2 , we need to calculate the sum of steady states
of followers given by −1
(LF,F )

−1LF,SxS , for all P ∪ {u},
u ∈ Q. P and Q are the current leader set of opinion 1 and the
current candidate set. Calculating (LF,F )

−1 when S1 = ∅ takes
O(n3) running time. LFF can be updated at iteration t+ 1 by
deleting the row and column associated with candidate node u.
From block matrix inversion, we obtain that its inverse can be
updated by(
L(F (t)\{u}),(F (t)\{u})

)−1
=

((
LF (t),F (t)

)−1

−
(
LF (t),F (t)

)−1
eue



u

(
LF (t),F (t)

)−1

e
u
(
LF (t),F (t)

)−1
eu

)
(F (t)\{u}),(F (t)\{u})

.

To calculate μ(Pt), we do not need to find
(L(F (t)\{u}),(F (t)\{u}))−1 explicitly. It suffices to compare
−1
(L(F (t)\{u}),(F (t)\{u}))−1L(F (t)\{u}),(S(t)∪{u})xS∪{u} ,
for all u in the current candidate set. We note that
eu (e
u ) takes a column (row) of (LF (t),F (t))

−1, and
L(F (t)\{u}),(S(t)∪{u})xS∪{u} is a column vector. By the
associative law, we compute the vector inner product first and
find the updated μ(S1) for at most n candidates in O(n2) total
running time. The operations of taking the submatrices do
not change the complexity because for any candidate u, these
operations only take O(|N ↑

u|+ |N ↓
u|) running time. So, in each

execution of Line 3 of Algorithm 2, these operations can be done
in O(m) total running time, where m is the number of edges in
the graph. After we find the best choice st+1 in step t+ 1, we
update (LF,F )

−1 explicitly, which takes additional O(n2) time.
Therefore, execution of Line 3 of Algorithm 2 takesO(n2) time.
By using this simple acceleration, the complexity of Algorithm 2

is improved to O(n3 + kn2) = O(n3). Algorithm 1 calls
Greedy O(log 1

δ ) times until bmax ≈δ bmin. Since bmax − bmin

decreases geometrically in Algorithm 1, the total running time
of BoundSearch is O(n3 log 1

δ ).
For the influenced leader selection problem, the rank-1 update

is obtained using the Sherman–Morrison formula. The running
time of the Greedy routine is also O(n3) by a similar imple-
mentation. We omit the details of the analysis. �
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