
A Hierarchical Model for Fast Distributed Consensus
in Dynamic Networks

Timothy Castiglia, Colin Goldberg, and Stacy Patterson

I. INTRODUCTION

State machine replication is a foundational tool that is

used to provide availability and fault tolerance in distributed

systems. Safe replication requires a consensus algorithm

as a method to achieve agreement on the order of system

updates. Designing algorithms that are safe while retaining

high throughput is imperative for today’s systems. Two of the

most widely adopted consensus algorithms, Paxos [1] and

Raft [2], have received much attention and use in industry.

While both Paxos and Raft provide safe specification for

maintaining a replicated log of system updates, Raft aims

for ease of understandability and implementation.

Modern distributed systems are often large-scale, globally

distributed, and dynamic. Both Paxos and Raft require sev-

eral rounds of messaging between a leader and a majority

of sites, and message latency in a global system is too

high to support these message rounds while maintaining

high throughput. To mitigate this problem, variations on

Paxos, such as Fast Paxos [3], reduce the number of message

rounds if certain conditions, such as non-concurrent propos-

als, are met. These algorithms will suffer additional rounds

if conditions are not met. To address the dynamic nature of

networks, Raft [4] and Vertical Paxos [5] provide protocols

for membership reconfiguration. However, both rely on a

system administrator to ensure safe reconfiguration. In many

distributed systems, membership changes may be sudden,

and may occur silently.

To address the limitations of previous works, we design

Fast Raft. Fast Raft reduces message rounds similar to Fast

Paxos, while maintaining Raft’s understandability. Fast Raft

also handles dynamic membership without the need for an

external administrator. However, reducing message rounds is

often not enough to achieve high throughput in systems with

high message latency. Here, a hierarchical model where sites

are grouped into low latency clusters is beneficial. The bulk

of the computation is performed within each cluster, with

results combined globally at a lower frequency. For such

a model, we present C-Raft, a new algorithm that provides

multi-level consensus and improves throughput of replication

in globally distributed systems. We provide experimental

results of the performance of Fast Raft and C-Raft against

classic Raft. We find Fast Raft on average is twice as fast as

classic Raft when message loss is below 5%. C-Raft achieves

T. Castiglia, C. Goldberg, and S. Patterson are with the Depart-
ment of Computer Science, Rensselaer Polytechnic Institute, 110 8th
St, Troy, NY 12180, castit@rpi.edu, goldbc@rpi.edu,
sep@cs.rpi.edu. This work was supported in part by NSF grants
CNS-1553340 and CNS-1816307.

up to a 5x throughput increase over Raft in a globally

distributed system. For more details on the algorithms, see

our technical report [6].

II. FAST RAFT

In classic Raft, time is split into terms numbered in a

monotonically increasing manner. Sites take on one or more

roles in a term. In a typical term, one site is elected as the

leader. Proposers propose new entries to the leader. The

leader gathers proposals and appends the entries to its log.

The leader sends the entries to the followers, who append

the entries and send back an acknowledgement. Once the

leader receives a majority of acknowledgements, the entry is

considered committed, taking a total of 3 message rounds.

In Fast Raft it takes 2 message rounds to commit entries

when proposals are non-concurrent. Proposers send new

entries to followers first, then followers send proposal votes

to the leader. The leader gathers proposal votes for each log

index, and determines if an entry can be committed early.

This fast track can be taken if enough followers, a fast
quorum, has voted for it. Otherwise, the leader reverts to

classic Raft, the slow track.

With the addition of the fast track, Raft’s leader election

must be modified to maintain safety. In classic Raft, heartbeat

messages are used to determine if a leader has failed. If a

follower suspects the leader of failing, it will increment the

term number and request election votes from other sites. A

site will only vote for the follower if the follower’s log is

up-to-date, ensuring leader-completeness. In Fast Raft, the

definition of up-to-date is modified to only include slow

track entries to maintain safety. Once the most up-to-date

candidate is elected, Fast Raft runs a recovery algorithm to

evaluate whether it is safe to commit fast track entries.

To support dynamic membership, Raft defines a configu-

ration log entry that contains a list of all sites taking part

in consensus. Classic Raft assumes a system administrator

proposes configuration changes to the leader, and that only

one site is added or removed from the configuration at a time

to ensure safety. In Fast Raft, sites send join or leave requests

to the leader. It is the role of the leader to ensure that only

one site joins at a time. Unlike classic Raft, the Fast Raft

algorithm supports sites leaving the system silently, as sites

may not propose a leave request before leaving the system.

III. C-RAFT

The goal of C-Raft is to improve the throughput of con-

sensus in systems with high message latency between distant

sites. In our system model, sites form a set of clusters whose

1189

2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDCS47774.2020.00137

20
20

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
is

tri
bu

te
d

C
om

pu
tin

g
Sy

st
em

s (
IC

D
C

S)
 |

97
8-

1-
72

81
-7

00
2-

2/
20

/$
31

.0
0

©
20

20
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
C

S4
77

74
.2

02
0.

00
13

7

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on October 02,2021 at 23:35:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Average latency of committing entries in Raft and

Fast Raft with different percentages of message loss.

number and membership can change over time. We separate

the means of communication within clusters, intra-cluster,

and across clusters, inter-cluster. We assume that intra-

cluster communication is lower latency than inter-cluster.

Within each cluster, sites commit entries using Fast Raft

to a local log of that cluster. Periodically, a cluster leader

proposes a batch of local entries to other cluster leaders in

a global level of Fast Raft. These entries are committed to a

global log which maintains the total order of entries over all

sites and clusters. The hierarchical structure allows proposers

to have their entries replicated locally, with the guarantee that

the entries will eventually be replicated to other clusters and

totally-ordered in the global log. C-Raft utilizes this model

to improve throughput of consensus at the global scale.

During inter-cluster consensus, it is possible for a cluster

leader to fail and a new one be elected. The local log of

the cluster is used here to ensure a leader’s state for the

global log is passed on to new leaders. This is achieved

through intra-cluster consensus on a global state entry for

inter-cluster state replication.

IV. EXPERIMENTS

To showcase the performance of Fast Raft and C-Raft, we

performed experiments on Amazon Web Services (AWS). To

simulate clusters, instances were started in different regions

around the world. Sites in the same AWS region formed a

cluster. We implemented classic Raft, Fast Raft, and C-Raft

and compared their performance.
Classic Raft vs. Fast Raft: First, we compared the

commit latency of classic Raft and Fast Raft in a single

cluster. We chose a single site at random to be the proposer,

and measured the average latency for entries committed over

100 trials when using classic Raft and Fast Raft. In the

experiments, we had five sites in one region and varied the

message loss between 0% and 10%.

Figure 1 shows the results of the experiment. When

message loss is low, Fast Raft achieves about half the latency

as classic Raft. However, as message loss increased, Fast

Raft started to degrade in performance while classic Raft

maintained similar latency. As more messages are dropped,

the classic-track is used more in Fast Raft, causing it to face

an extra message round more often.

Fig. 2: Average throughput of 20 sites in classic Raft and

C-Raft. Each cluster is in a different AWS region.

Classic Raft vs. C-Raft: We compared the throughput

of Raft and C-Raft. We chose one proposer at random

per cluster. Each proposer waited until its last proposed

entry was committed before proposing another. We compared

throughput based on how many entries were committed to

the global log in classic Raft and C-Raft, averaged over five

3-minute trials.

For the C-Raft implementation, a cluster proposes a batch

of entries to the global log after ten entries are committed in

the local log. We tested with 20 sites total, split evenly over

varying number of clusters. Note, there were more proposers

in the system as the number of clusters increased for both

C-Raft and Raft. The results are shown in Figure 2. C-Raft

shows significant improvements over classic Raft, with a 5x
throughput increase for 10 clusters.

V. TAKEAWAY

Fast Raft is a variation on the Raft consensus algorithm

that speeds up consensus in typical operation, and C-Raft

defines a hierarchical model of Fast Raft consensus. Both

algorithms deal with membership changes in dynamic net-

works. Our experiments show that Fast Raft can achieve

half the latency of classic Raft when message loss is low,

and C-Raft can achieve a 5x throughput improvement over

classic Raft in a globally distributed scenario. In future work,

we plan to explore extending Fast Raft to support partially-

ordered log entries, similar to Generalized Paxos [7].

REFERENCES

[1] L. Lamport, “Paxos made simple,” ACM Sigact News, vol. 32, no. 4,
pp. 18–25, 2001.

[2] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference, 2014.

[3] L. Lamport, “Fast paxos,” Distributed Computing, vol. 19, no. 2, pp.
79–103, 2006.

[4] D. Ongaro, “Consensus: Bridging theory and practice,” Ph.D. disserta-
tion, Stanford University, 2014.

[5] L. Lamport, D. Malkhi, and L. Zhou, “Vertical paxos and primary-
backup replication,” in Proc. 28th ACM Symp. on Principles of Dis-
tributed Computing, 2009, pp. 312–313.

[6] T. Castiglia, C. Goldberg, and S. Patterson, “A hierarchical model
for fast distributed consensus in dynamic networks,” arXiv preprint
arXiv:2004.06215, 2020.

[7] L. Lamport, “Generalized consensus and paxos,” Technical Report
MSR-TR-2005-33, Microsoft Research, 2005.

1190

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on October 02,2021 at 23:35:58 UTC from IEEE Xplore. Restrictions apply.

