2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS) | 978-1-7281-7002-2/20/$31.00 ©2020 IEEE | DOI: 10.1109/ICDCS47774.2020.00137

2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)

A Hierarchical Model for Fast Distributed Consensus
in Dynamic Networks

Timothy Castiglia, Colin Goldberg, and Stacy Patterson

[. INTRODUCTION

State machine replication is a foundational tool that is
used to provide availability and fault tolerance in distributed
systems. Safe replication requires a consensus algorithm
as a method to achieve agreement on the order of system
updates. Designing algorithms that are safe while retaining
high throughput is imperative for today’s systems. Two of the
most widely adopted consensus algorithms, Paxos [1] and
Raft [2], have received much attention and use in industry.
While both Paxos and Raft provide safe specification for
maintaining a replicated log of system updates, Raft aims
for ease of understandability and implementation.

Modern distributed systems are often large-scale, globally
distributed, and dynamic. Both Paxos and Raft require sev-
eral rounds of messaging between a leader and a majority
of sites, and message latency in a global system is too
high to support these message rounds while maintaining
high throughput. To mitigate this problem, variations on
Paxos, such as Fast Paxos [3], reduce the number of message
rounds if certain conditions, such as non-concurrent propos-
als, are met. These algorithms will suffer additional rounds
if conditions are not met. To address the dynamic nature of
networks, Raft [4] and Vertical Paxos [5] provide protocols
for membership reconfiguration. However, both rely on a
system administrator to ensure safe reconfiguration. In many
distributed systems, membership changes may be sudden,
and may occur silently.

To address the limitations of previous works, we design
Fast Raft. Fast Raft reduces message rounds similar to Fast
Paxos, while maintaining Raft’s understandability. Fast Raft
also handles dynamic membership without the need for an
external administrator. However, reducing message rounds is
often not enough to achieve high throughput in systems with
high message latency. Here, a hierarchical model where sites
are grouped into low latency clusters is beneficial. The bulk
of the computation is performed within each cluster, with
results combined globally at a lower frequency. For such
a model, we present C-Raft, a new algorithm that provides
multi-level consensus and improves throughput of replication
in globally distributed systems. We provide experimental
results of the performance of Fast Raft and C-Raft against
classic Raft. We find Fast Raft on average is twice as fast as
classic Raft when message loss is below 5%. C-Raft achieves

T. Castiglia, C. Goldberg, and S. Patterson are with the Depart-
ment of Computer Science, Rensselaer Polytechnic Institute, 110 8th
St, Troy, NY 12180, castit@rpi.edu, goldbc@rpi.edu,
sep@cs.rpi.edu. This work was supported in part by NSF grants
CNS-1553340 and CNS-1816307.

up to a 5x throughput increase over Raft in a globally
distributed system. For more details on the algorithms, see
our technical report [6].

II. FAST RAFT

In classic Raft, time is split into ferms numbered in a
monotonically increasing manner. Sites take on one or more
roles in a term. In a typical term, one site is elected as the
leader. Proposers propose new entries to the leader. The
leader gathers proposals and appends the entries to its log.
The leader sends the entries to the followers, who append
the entries and send back an acknowledgement. Once the
leader receives a majority of acknowledgements, the entry is
considered committed, taking a total of 3 message rounds.

In Fast Raft it takes 2 message rounds to commit entries
when proposals are non-concurrent. Proposers send new
entries to followers first, then followers send proposal votes
to the leader. The leader gathers proposal votes for each log
index, and determines if an entry can be committed early.
This fast track can be taken if enough followers, a fast
quorum, has voted for it. Otherwise, the leader reverts to
classic Raft, the slow track.

With the addition of the fast track, Raft’s leader election
must be modified to maintain safety. In classic Raft, heartbeat
messages are used to determine if a leader has failed. If a
follower suspects the leader of failing, it will increment the
term number and request election votes from other sites. A
site will only vote for the follower if the follower’s log is
up-to-date, ensuring leader-completeness. In Fast Raft, the
definition of up-to-date is modified to only include slow
track entries to maintain safety. Once the most up-to-date
candidate is elected, Fast Raft runs a recovery algorithm to
evaluate whether it is safe to commit fast track entries.

To support dynamic membership, Raft defines a configu-
ration log entry that contains a list of all sites taking part
in consensus. Classic Raft assumes a system administrator
proposes configuration changes to the leader, and that only
one site is added or removed from the configuration at a time
to ensure safety. In Fast Raft, sites send join or leave requests
to the leader. It is the role of the leader to ensure that only
one site joins at a time. Unlike classic Raft, the Fast Raft
algorithm supports sites leaving the system silently, as sites
may not propose a leave request before leaving the system.

III. C-RAFT

The goal of C-Raft is to improve the throughput of con-
sensus in systems with high message latency between distant
sites. In our system model, sites form a set of clusters whose

2575-8411/20/$31.00 ©2020 IEEE 1189
DOI 10.1109/ICDCS47774.2020.00137

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on October 02,2021 at 23:35:58 UTC from IEEE Xplore. Restrictions apply.

Raft vs. Fast Raft
200
180

a
=

=)
=3

&'.

Throughtput (entries/sec)

%
S
\

Latency (ms)

-
A

=+-Raft

'S
S

#=Fast Raft

%)
o o

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Message Loss
Fig. 1: Average latency of committing entries in Raft and
Fast Raft with different percentages of message loss.

number and membership can change over time. We separate
the means of communication within clusters, intra-cluster,
and across clusters, inter-cluster. We assume that intra-
cluster communication is lower latency than inter-cluster.

Within each cluster, sites commit entries using Fast Raft
to a local log of that cluster. Periodically, a cluster leader
proposes a batch of local entries to other cluster leaders in
a global level of Fast Raft. These entries are committed to a
global log which maintains the total order of entries over all
sites and clusters. The hierarchical structure allows proposers
to have their entries replicated locally, with the guarantee that
the entries will eventually be replicated to other clusters and
totally-ordered in the global log. C-Raft utilizes this model
to improve throughput of consensus at the global scale.

During inter-cluster consensus, it is possible for a cluster
leader to fail and a new one be elected. The local log of
the cluster is used here to ensure a leader’s state for the
global log is passed on to new leaders. This is achieved
through intra-cluster consensus on a global state entry for
inter-cluster state replication.

I'V. EXPERIMENTS

To showcase the performance of Fast Raft and C-Raft, we
performed experiments on Amazon Web Services (AWS). To
simulate clusters, instances were started in different regions
around the world. Sites in the same AWS region formed a
cluster. We implemented classic Raft, Fast Raft, and C-Raft
and compared their performance.

Classic Raft vs. Fast Raft: First, we compared the
commit latency of classic Raft and Fast Raft in a single
cluster. We chose a single site at random to be the proposer,
and measured the average latency for entries committed over
100 trials when using classic Raft and Fast Raft. In the
experiments, we had five sites in one region and varied the
message loss between 0% and 10%.

Figure 1 shows the results of the experiment. When
message loss is low, Fast Raft achieves about half the latency
as classic Raft. However, as message loss increased, Fast
Raft started to degrade in performance while classic Raft
maintained similar latency. As more messages are dropped,
the classic-track is used more in Fast Raft, causing it to face
an extra message round more often.

Raft vs. C-Raft

=
=

]
S

°
S

®
=

=Y
=

=
=

%)
=

_u o ul

2 Clusters 5 Clusters 10 Clusters

Number of Clusters

Fig. 2: Average throughput of 20 sites in classic Raft and
C-Raft. Each cluster is in a different AWS region.

Classic Raft vs. C-Raft: We compared the throughput
of Raft and C-Raft. We chose one proposer at random
per cluster. Each proposer waited until its last proposed
entry was committed before proposing another. We compared
throughput based on how many entries were committed to
the global log in classic Raft and C-Raft, averaged over five
3-minute trials.

For the C-Raft implementation, a cluster proposes a batch
of entries to the global log after ten entries are committed in
the local log. We tested with 20 sites total, split evenly over
varying number of clusters. Note, there were more proposers
in the system as the number of clusters increased for both
C-Raft and Raft. The results are shown in Figure 2. C-Raft
shows significant improvements over classic Raft, with a 5z
throughput increase for 10 clusters.

V. TAKEAWAY

Fast Raft is a variation on the Raft consensus algorithm
that speeds up consensus in typical operation, and C-Raft
defines a hierarchical model of Fast Raft consensus. Both
algorithms deal with membership changes in dynamic net-
works. Our experiments show that Fast Raft can achieve
half the latency of classic Raft when message loss is low,
and C-Raft can achieve a 5z throughput improvement over
classic Raft in a globally distributed scenario. In future work,
we plan to explore extending Fast Raft to support partially-
ordered log entries, similar to Generalized Paxos [7].

REFERENCES

[1] L. Lamport, “Paxos made simple,” ACM Sigact News, vol. 32, no. 4,
pp. 18-25, 2001.

[2] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference, 2014.

[3] L. Lamport, “Fast paxos,” Distributed Computing, vol. 19, no. 2, pp.
79-103, 2006.

[4] D. Ongaro, “Consensus: Bridging theory and practice,” Ph.D. disserta-
tion, Stanford University, 2014.

[5] L. Lamport, D. Malkhi, and L. Zhou, “Vertical paxos and primary-
backup replication,” in Proc. 28th ACM Symp. on Principles of Dis-
tributed Computing, 2009, pp. 312-313.

[6] T. Castiglia, C. Goldberg, and S. Patterson, “A hierarchical model
for fast distributed consensus in dynamic networks,” arXiv preprint
arXiv:2004.06215, 2020.

[7] L. Lamport, “Generalized consensus and paxos,” Technical Report
MSR-TR-2005-33, Microsoft Research, 2005.

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on October 02,2021 at 23:35:58 UTC from IEEE Xplore. Restrictions apply.

