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Viewport-Adaptive Scalable Multi-User Virtual
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Abstract— Virtual reality (VR) holds tremendous potential to
advance our society, expected to make impact on quality of life,
energy conservation, and the economy. To bring us closer to this
vision, the present paper investigates a novel communications
system that integrates for the first time scalable multi-layer
360◦ video tiling, viewport-adaptive rate-distortion optimal
resource allocation, and VR-centric edge computing and caching,
to enable next generation high-quality untethered VR streaming.
Our system comprises a collection of 5G small cells that can pool
their communication, computing, and storage resources to col-
lectively deliver scalable 360◦ video content to mobile VR clients
at much higher quality. The major contributions of the paper
are the rigorous design of multi-layer 360◦ tiling and related
models of statistical user navigation, analysis and optimization
of edge-based multi-user VR streaming that integrates viewport
adaptation and server cooperation, and base station 360◦ video
packet scheduling. We also explore the possibility of network
coded data operation and its implications for the analysis,
optimization, and system performance we pursue in this setting.
The advances introduced by our framework over the state-
of-the-art comprise considerable gains in delivered immersion
fidelity, featuring much higher 360◦ viewport peak signal to noise
ratio (PSNR) and VR video frame rates and spatial resolutions.

Index Terms— Mobile virtual reality, scalable 360◦ video tiling,
mobile edge computing and streaming, resource allocation, 5G
small cell systems, statistical VR navigation analysis, multiple
knapsack problem with multiple constraints, branch-and-prune
fully-polynomial time approximation method.

I. INTRODUCTION

V IRTUAL reality holds tremendous potential to advance

our society. It is expected to make impact on quality

of life, energy conservation, and the economy [1], [2], and

reach a $162B market by 2020 [3]. As the Internet-of-Things

(IoT) is becoming a reality, modern technologists envision

transferring remote contextual and environmental immersion

experiences as part of an online VR session. However, two

main highly-intertwined challenges stand in the way of real-

izing this vision: VR requires (1) ultra-low latency high

data rate communications, and (2) highly data-intensive

computing. Neither of these challenges can be met by current

and upcoming traditional communications systems [4], [5],

as the content to be delivered is too voluminous and the

headsets’ computing/storage capabilities are insufficient within
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Fig. 1. System scenario under investigation.

an acceptable and wearable form factor. Hence, VR applica-

tions are presently limited to off-line operation, low-fidelity

graphics content, tethered high-end computing equipment,

and gaming/entertainment settings. 360◦ video is the first

actual-scene content format to enable remote VR immersion.

However, emerging 360◦ streaming practices are highly ineffi-

cient, which considerably degrades the quality of experience,

as explained in detail later.

To overcome these challenges, we investigate for the first

time a novel communications system that integrates scalable

multi-layer 360◦ video tiling, viewport-adaptive rate-distortion

optimal resource allocation, and VR-centric edge computing

and caching, to enable next generation high-quality untethered

on-demand VR streaming. Our system is illustrated in Figure 1

and comprises a collection of 5G small cells featuring a base

station and an edge server each, which pool their communica-

tion, computing, and storage resources to collectively deliver

scalable 360◦ video content to mobile VR clients, at much

higher quality. Cooperation among the small cells is enabled

via backhaul links that interconnect them, and the scalable

360◦ content featuring multiple layers L i of incrementally

increasing quality is initially delivered from a backend server,

as illustrated in Figure 1. Considerable advances in 360◦ video

quality, frame rate, and spatial resolution are enabled.

The rest of the paper is organized as follows. We first

provide some background on 360◦ video streaming and the

related challenges that arise therein. Overview of related work

is provided in Section III. The framework of our system is

then presented over the next three sections. The design of

multi-layer 360◦ tiling and formulation of related models of

statistical user navigation are carried out in Section IV. The

analysis of edge-based multi-user VR streaming that integrates

viewport adaptation and server cooperation is carried out in

Section V. Here, we also investigate the possibility of network

coded data operation and its implications for the analysis,

optimization, and system performance we pursue. Analysis of
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effective scheduling of buffered data packets at the small base

stations is carried out in Section VI. Finally, an experimental

evaluation of our framework is provided in Section VII and

the paper concludes in Section VIII.

II. 360◦ VIDEO VR STREAMING BACKGROUND

360◦ video is an emerging video format that is captured by

an omnidirectional camera that records incoming light rays

from every direction (see Figure 2 top left).

It enables a three dimensional 360◦ look-around of the

surrounding scene for a remote user, virtually placed at the

camera location, on his VR head-mounted display (HMD),

as illustrated in Figure 2 right. After capture, the spherical

360◦ raw video frames are first mapped to a wide equirectan-

gular panorama (illustrated in Figure 2, bottom left) and then

compressed using state-of-the-art (planar) video compression

such as HEVC. The former intermediate step is introduced,

as compression techniques operating directly on spherical data

are much less mature and performing relative to conventional

video compression operating on planar (2D) video frames.

For remote service, when the user and the stored 360◦

data are not collocated, the entire monolithic 360◦ panorama

is streamed to the user presently, leveraging state-of-the-art

video streaming (DASH - Dynamic Adaptive Streaming

over HTTP [6]). However, at any point of time, the user

experiences only a small portion of it denoted as Vc

(current viewport). This considerably penalizes the quality

of experience, due to the overwhelming volume of 360◦

data that needs to be delivered, which exceeds the available

network streaming bandwidth C by orders of magnitude.

Thus, only very low-quality low-resolution 360◦ videos can

be delivered online presently over the Internet. Similarly,

the streaming also lacks the ultra-low latency interactivity

required for truly immersive experiences, due to the use of

traditional server-client Internet architectures.

Moreover, in the wireless setting, the available data rates C

are even lower, and the VR headsets’ computing and storage

capabilities are insufficient within an acceptable and wearable

form factor, to enable independent untethered operation. The

same holds even when they are attached to a mobile device,

as the latter is also limited in terms of storage and computing

capabilities, e.g., high-end mobile GPUs lag their desktop

counterparts in computing power by a factor of ten and will not

have the required TFlops to provide the necessary rendering

computation for high-quality VR anytime soon [7].

The above challenges motivate novel communications

strategies and systems that synergistically integrate viewport-

adaptive 360◦ streaming, mobile edge computing and caching,

and scalable multi-layer 360◦ tiling, for next generation

untethered VR applications. This is the objective we pursue.

III. RELATED WORK

Cooperative edge-based multi-user mobile VR streaming

is a novel topic. Related areas include multi-camera wireless

sensing [8], immersive telecollaboration [9], [10], multi-view

video coding [11]–[13], and 360◦ Internet streaming [14], [15].

Similarly to our approach, a few existing studies of

single-user on-demand 360◦ Internet streaming [16]–[18]

considered splitting the 360◦ video into spatial tiles as part

of the encoding, using the tiling feature of the latest High

Fig. 2. 360◦ video capture and streaming, and user viewport Vc.

Efficiency Video Coding (HEVC) standard [19]. However,

their design choices are heuristic and lack analysis of the

fundamental trade-offs between delivered immersion fidelity,

user navigation patterns, coding efficiency, view switching

capability, and available system resources, as we carry

out. Moreover, our integration of scalability, edge-based

delivery, and formal 360◦ partitioning considerably enhances

the VR application interactivity, by reducing its streaming

latency, relative to these studies.

Existing work on wireless base station caching

includes [20], which considered the problem of estimating

the content popularity at a base station and minimizing

the total delay of content retrieval, formulating the latter

as a knapsack problem [21]. Similarly, [22] considered the

problem of reducing the delay of content delivery using

caching at wireless helper nodes, small-cell base stations that

have high storage capability and low coverage, differentiating

available helpers based on their proximity to the served node.

Moreover, [23] considered optimizing the parameters of a

single base station cache and [24], [25] studied hierarchical

caching in cellular back-haul networks. Information-theoretic

studies of hierarchical caching are carried out in [26], [27].

Joint caching and channel assignment in multi-cellular

systems is studied in [28], [29].

This paper has been inspired by a short preliminary study

we carried out earlier in [30]. The major technical novelties

the paper introduces relative to [30] include:

• Rigorous design/formulation of scalable multi-layer 360◦

tiling and related statistical models of VR user navigation.

• Viewport-adaptive analysis and optimization of the

rate-distortion trade-offs and resource allocation over the

360◦ video panorama that integrate the above advances,

for efficient single-user 360◦ video streaming.

• Edge-based multi-user VR streaming that integrates

server cooperation, VR edge computing/caching, and the

above advances, and introduces more general/accurate

system models, analysis, and optimization methods.

Thereby, the fundamental performance trade-offs between

system resources, cost, and delivered VR user immersion

fidelity that arise in this context are captured and under-

stood more precisely.

• Rigorous analysis of prospective networking coding data

packet operation in the above context and its implications

for the resource optimization and system performance.

• Effective small base station 360◦ video packet scheduling

to address prospective network transients and buffering.

• Comprehensive performance evaluation of our system fra-

mework and its major components demonstrating consid-

erable gains in delivered VR immersion fidelity, featuring
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Fig. 3. Example 6 × 4 spatial tiling of a 360◦ panorama.

much higher 360◦ viewport peak signal to noise ratio

(PSNR) and VR video frame rates and spatial resolutions.

IV. SCALABLE MULTI-LAYER 360◦ TILING

Tiling of a wide-panorama video has been introduced as an

option in HEVC [19], to facilitate parallel processing of the

tiled segments of the video in multi-core processor systems.

In our case, we leverage tiling of the 360◦ panorama, to capture

effectively the user viewport over time and exploit the uneven

rate-distortion trade-offs that arise across the spatial panorama.

Moreover, tiling the 360◦ panorama will also facilitate devel-

oping a statistical model of user navigation, as explained in

Section IV-B. These three aspects will then be integrated

effectively into an analysis that dynamically selects the amount

of resources allocated over space and time, for a 360◦ video as

it is being streamed to a user. An effective implementation of

the analysis is enabled via a scalable multi-layer 360◦ tiling.

The design of the scalable tiling and the respective analysis

are formulated in Section IV-D.

A. 360◦ Panorama Tiling

We partition each video frame of a 360◦ video into a set

of N × M spatial tiles, as illustrated in Figure 3, where the

first and second dimensions of the denoted tiling, (N, M),

parallel the horizontal and vertical spatial dimensions of the

360◦ video frames. Each tile is then independently encoded

and streamed to the user, according to our analysis and

optimization. In Figure 3, the tiles are indexed/labeled in a

raster fashion, top-to-bottom and left-to-right.

Denser tiling layouts increase the processing complexity and

reduce the compression efficiency, but, enable more precise

delineation of the user viewport and thus more efficient

viewport-aware resource allocation across the 360◦ panorama.

In our work, we have empirically observed that the 6 × 4

and 8×6 tiling options provide good performance in terms of

processing complexity and compression efficiency, as induced

by the selected tiling, for the 360◦ video spatial resolutions

available today (4K and 8K). Similar observation has been

made recently in [31] in the case of 4K 360◦ videos. Indepen-

dently, a VR spin-off reported using around 100 tiles for 8K

360◦ panoramas without severe compression inefficiency [32].

Selecting the optimal N × M tiling, where N and M can be

arbitrary integer numbers, is an N P hard problem, due to its

discrete combinatorial nature. Similarly, selecting the optimal

adaptive tiling, where the number and size of tiles across the

spatial panorama can be varied, akin to the selection of encod-

ing macro-block and block sizes in modern video encoders,

is also an N P hard problem [33]. Brute-force approaches of

evaluating a large number of prospective tiling options, in the

pursuit of this objective, with the prospective facility of large

deep neural networks, have been attempted in [33], however,

without clear evidence of convincing performance benefits to

justify the required huge investment in computing complexity.

B. 360◦ Navigation Data Capture

We have captured navigation data that characterizes how a

mobile VR user explores a 360◦ video over time. Specifically,

his VR head-mounted display (device) outputs the direction

of the current viewpoint of the user Vc on the 360◦ view

sphere up to 250 times per second (see Figure 2 right, for

an illustration). Formally, this is the surface normal of Vc

on the 360◦ sphere, which is uniquely characterized by the

azimuth and polar angles ϕ ∈ [0◦, 360◦] and θ ∈ [0◦, 180◦]

that it spans on the sphere, in a spherical coordinate system

with the 360◦ sphere center as its origin (see Figure 4, right).

These two angles are equivalently denoted as yaw and pitch

in the VR community, captured as rotation angles around the

Z and Y axes (see Figure 4, left). We recorded the (ϕ j , θ j )

pairs that coincided with the discrete temporal instances t j of

consecutive 360◦ video frames j from which the respective

viewport Vc is selected to be displayed to the user, as he

navigates the content. We leverage this data to formulate our

statistical analysis of user navigation in the next section.

C. Statistical Characterization of User Navigation

Let the set {(ϕ j , θ j )} denote a navigation trace for a given

360◦ video and VR user. Let S
Vc

j denote the set of pixels

in the 360◦ panorama occupied by the user viewport Vc at

time instance t j (temporal video frame j ). Similarly, let Snm
j

denote the set of pixels in the 360◦ panorama associated with

tile (n, m), for n = 1, . . . , N , and m = 1, . . . , M . Now, let

S
nm,Vc

j = S
Vc

j ∩ Snm
j denote the set of pixels in tile (n, m)

present in the user viewport at that time instance. That is,

S
nm,Vc

j represents the spatial area in the 360◦ panorama shared

by tile (n, m) and Vc at time t j .

We illustrate later that a user viewport may occupy very

different, in terms of shape and size, spatial areas of the 360◦

panorama, depending on its latitude (the polar angle θ on the

360◦ view sphere). To account for this, in developing our

statistical model of user navigation, we formulate next the

fractions of the spatial areas of every tile, present in the user

viewport Vc at t j , as follows:

wnm
j =

|S
nm,Vc

j |
∑

n,m |S
nm,Vc
j |

, (1)

where |S| denotes the size of a set S, in this case in number

of pixels. Thus, {wnm
j } represents the normalized distribution

of the spatial area of the user viewport across every tile in the

360◦ panorama, at time instance t j .

Given (1), we can formulate the probability (likelihood) of

the user navigating tile (n, m) over a time interval spanned by

the time instances [ti , t j ], as follows:

P
(ti ,t j )
nm =

∑ j
k=i wnm

k

j − i + 1
. (2)
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Fig. 4. 360◦ navigation data of current viewport Vc. Left: Rotation angles
yaw, pitch, and roll around the three coordinate axis. Right: Azimuthal and
polar angles (ϕ, θ) in spherical coordinates.

In other words, P
(ti ,t j )
nm indicates how often tile (n, m) appears

(at least in part) in the user viewport during navigation of

the 360◦ video from its temporal instance ti to t j , or the

popularity of the 360◦ scene content captured by the tile

for this user and time interval. For instance, if ti and t j

correspond to the first and last video frame of the 360◦ video,

then, P
(ti ,t j )
nm captures the navigation probability or popularity

of tile (n, m) across the entire video.

D. Viewport-Adaptive Space-Time Scalability

To enable an effective allocation of system resources across

a 360◦ video, we explore a scalable multi-layer tiling of a 360◦

panorama. In particular, for every tile (n, m) in the panorama,

we will construct L embedded layers of progressively increas-

ing signal fidelity. The multi-layer tiling construction is

illustrated in Figure 5. It can enable carrying out effective

trade-offs between delivered immersion fidelity and induced

data rate, spatiotemporally over the 360◦ content, in response

to the user navigation actions. This can be effectively accom-

plished by optimally selecting the number of layers lnm sent for

every tile (n, m) during a time interval, such that the expected

user viewport quality over that interval is maximized, given

the available network streaming bandwidth C .

We can formally capture this optimization as:

max
lnm

∑

nm

Pnm Qnm(lnm), subject to:
∑

nm

Rnm(lnm) ≤ C.

Here, Pnm denotes the likelihood of navigating tile tnm during

the time period under consideration, as introduced earlier.

Qnm(lnm) and Rnm(lnm) denote respectively the delivered

immersion fidelity and induced data rate associated with tile

tnm , given that its first lnm scalable layers are sent to a user.

Note that the proposed statistical analysis of user navigation

captures as navigation likelihoods the expected overlap of a tile

with the user viewport over a time interval, and the aspect that

equatorial tiles are more likely navigated than polar tiles. Thus,

our expected viewport quality formulation can correspond to

a tile-level WS-PSNR (Weighted Spherical PSNR) [34].

In our experimental evaluation, we facilitate the scal-

able extension of HEVC [35], to effectively implement our

multi-layer 360◦ tiling construction from Figure 5.

V. EDGE-BASED MULTI-USER VR STREAMING

A. System Modeling

We describe here in detail our system modeling associated

with the setting we investigate (see Figure 1). There is a set

Fig. 5. Scalable multi-layer 360◦ tiling.

of 360◦ videos served to mobile VR users at each small-base

station. Each 360◦ video comprises N × M tiles as introduced

earlier. To ease the notation and terminology that we will need

to resort to, we assign to every tile (n, m) of an entire 360◦

video a unique index j and denote it henceforth as video j .

We consider that each small base station i serves a set of

VR clients that collectively induce a popularity distribution Pi j

over the tile-videos, by their navigation actions, as introduced

earlier. A small base station can store a subset of the videos

at its edge server, to deliver them locally to its own users.

It can also serve one of its videos to a VR client at another

small base station via the backhaul links through which they

can cooperate, if this video is not stored locally at the edge

server of that small base station. If a requested video is not

available locally or from a neighboring small base station, it is

delivered remotely from the back-end server.

Let Y l
i j ∈ {0, 1} denote the decision for small base station

i to cache tile-video j comprising its first l scalable layers

(see Figure 5). Let X
l,k
i j ∈ {0, 1} denote the decision to deliver

video j comprising its first l scalable layers from base station

k to a VR user at base station i . If k = i , then X l,k
i j = 1

will denote the event of local delivery at base station i . If k is

greater than the number of small base stations in the system,

X l,k
i j will capture the decision to deliver video j comprising

its first l scalable layers remotely, from the back-end server,

as introduced earlier. Let Q j,l denote the delivered immersion

fidelity of tile-video j comprising its first l scalable layers.

Let C l,k
i j denote the cost of delivering tile video j compris-

ing its first l scalable layers to a VR user at small base station i

from the cache of small base station k. C l,k
i j captures the impact

of the relative distance between base stations i and k, and the

data volume B l
j of tile-video j featuring l scalable layers.

Similarly, let B̄ l
j denote the processing and rendering cost

associated with tile-video j featuring l scalable layers, induced

at a small base station. Let Z i and Z̄ i denote respectively the

storage and computing capabilities of the edge server at base

station i . In our experimental evaluation, we show that B̄ l
j can

be modeled as a polynomial function of the data volume of

tile-video j comprising l scalable layers.

We consider the possibility of having the data packets

associated with tile-video j encoded using network coding

or fountain codes [36], [37]. We explore the implications of

this option for our problem formulation and its optimiza-

tion solution in the next section. In essence, working with

such packets helps use system resources more efficiently and

reduce the system’s transmission scheduling complexity. These

advances stem from their construction which eliminates packet

duplication and thus enables working with fractional network

flows, instead of their discrete {0, 1} counterparts.

The method for constructing network coding packets we

pursue is illustrated in Figure 6. The bitstream representing the
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Fig. 6. Video tile layers to data packets to network coding packets.

TABLE I

MAJOR SYMBOLS USED IN THE SYSTEM MODELING

scalable compressed video tile layers is first packetized into

data packets pi . Network coding packets are then constructed

as weighted linear combinations of the data packets using
∑

i βi pi , where the weights βi are selected uniformly at

random from a Galois finite field. The arithmetic operation

of summation is performed over the same finite field.

Table I summarizes the main notation described herein.

B. Problem Formulation

We are interested in maximizing the immersion fidelity

delivered to the VR clients at the small base stations, while

minimizing the induced cost. We analytically formulate this

problem of interest as follows. Given a tile-video j featuring

l scalable layers and a small base station i , let Q j,l/C
l,k
i, j

denote the delivered immersion fidelity per unit cost, when this

content is delivered from small base station k. We recall that

in this case the decision variables Y l
kj and X l,k

i j would need

to be set to one. Now, let
∑

i, j,k,l Pi j X
l,k
i j Q j,l/C

l,k
i, j denote

the aggregate expected delivered immersion fidelity per unit

cost. Our objective is to maximize this quantity given various

system and problem formulation constraints that arise here.

We formally characterize our objective as:

max
Y l

i j ,X
l,k
i j

∑

i, j,k,l

Pi j X
l,k
i j Q j,l/C

l,k
i, j , (3)

s.t.: X
l,k
i j ≤ Y l

kj , ∀i, j, k, l,
∑

l

Y l
i j ≤ 1, ∀i, j, (4)

∑

k

X
l,k
i j ≤ 1, ∀i, j, l,

∑

j,l,k

X
l,k
i j B l

j ≤ Zbh, ∀i, (5)

∑

j,l

Y l
i j B l

j ≤ Z i , ∀i,
∑

j,l

Y l
i j B̄ l

j ≤ Z̄ i , ∀i, (6)

where the first constraint in (4) captures the notion that

tile-video j cannot be delivered from small base station k,

unless it is cached there. The second constraint in (4) captures

the condition that only one replica of tile-video j comprising l

scalable layers is stored at base station i . The first constraint in

(5) captures the notion that tile-video j comprising l scalable

layers is streamed to VR clients at small base station i from

the edge server of only one small base station k. The second

constraint in (5) ensures that the tile-video data streamed to

any small base station i does not exceed the transmission

capacity of the carrier backhaul links, denoted here as Zbh .

Finally, the two constraints in (6) capture the limited caching

and computing capabilities of the edge servers at every small

base station, as introduced earlier.

C. Analysis and Approximation

The problem (3) - (6) is discrete and has a combinatorial

nature. Thus, it is difficult to solve. We first show that this

problem is NP-complete. We then formulate a polynomial-time

approximation solution via dynamic programming. Finally,

we analyze the quality of the resulting approximation. The

analysis builds upon our preliminary work in [30] and

addresses the additional challenges introduced by the integra-

tion of scalable 360◦ tiled video data, limited edge computing

capabilities, and a more general problem formulation, explored

in the present paper. We conclude this section by analyzing

the impact of using network coding packets on the problem

formulation (3) - (6) and the resulting optimization methods

that it will require.

Showing that (3) - (6) is NP-complete requires showing that

any given solution can be verified quickly and that a known

NP-complete problem can be reduced to (3) - (6) [38]. We can

verify a given solution by checking its feasibility against the

constraints (4) - (6) in polynomial time. This meets the first

requirement. We meet the second requirement by mapping the

known NP-complete multi-knapsack problem [21] to (3) - (6).

The multiple knapsack problem comprises N items, char-

acterized with profit and weight factors αn and γn , and K

knapsacks, characterized with holding capacity factors ck . The

objective is to select K disjoint subsets of items such that their

aggregate profit is maximized and each can be assigned to a

knapsack k such that its aggregate weight does not exceed ck .

We extend this definition to include two weight factors per

item n, namely γ 1
n γ 2

n , and respectively two capacity factors

c1
k and c2

k per knapsack k. The NP-complete nature of the

problem remains under the extension. We map this problem

then to (3) - (6) as follows. First, we map each knapsack to

the edge server associated with one small base station, such

that Zk = c1
k and Z̄k = c2

k . Next, we map item n to tile

video j comprising l scalable layer such that Bl
j = γ 1

n and

B̄ l
j = γ 2

n , and
∑

i Pi j = αn . Finally, we set Q j,l/C l,k
i, j = 1,

∀i, j, l, k.

Given the above, the knapsack problem and the mapped

instance of our problem share a feasible solution with a

common objective function value. Moreover, we can carry out

the problem mapping reduction above in polynomial time. This

completes the verification that (3) - (6) is NP-complete.

To formulate an approximation solution to solve (3) - (6),

we note that given our system setting in Figure 1, the cost

factors C l,k
i, j will all be equal when streaming tile video j

featuring l scalable layers from any neighboring small base

station k 6= i , and smaller than the cost factor of delivering

this content from the remote back-end server. Thus, we can
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rewrite (3) - (6) as:

max
Yin ,Xk

in

∑

i,n

Pin X i
in Qn/C i

i,n +
∑

i,n,k 6=i

Pin Xk
in Qn/C̄n,

subject to: (4) − (6). (7)

To simplify the notation, we have mapped each original index

pair ( j, l) to a unique single variable n in the reformulation

above. C̄n denotes the common cost factor of delivering

content item n from any neighboring small base station k 6= i .

Let αin = Pin Qn/C i
i,n +

∑

k 6=i Pkn Qn/C̄n denote the

maximum prospective benefit of caching item n at small base

station i . We define V = {1, . . . , K } × {1, . . . , N} to be

the set representing the vector product of the sets of small

base stations and content items, where K and N denote their

respective sizes. Let v = (i, n) ∈ V denote a member of this

set. Facilitating V , we can solve (7) as a multiple knapsack

problem with multiple constraints associated with each small

base station k, as follows.

Using dynamic programming [39], we formulate the optimal

value function fv(·) associated with (7) as

fv (s1, s̄1, . . . , sK , s̄K )

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

maxxv∈{0,1}{αin xv + fv−1(. . . , si −B l
j xv , s̄i − B̄ l

j xv , . . . )},

if �v 0 <v : xv 0 =1 ∧ n0 =n ∧ si ≥ B l
j , s̄i ≥ B̄ l

j ,

maxxv∈{0,1}{(αin − Pin Qn/C̄n)xv

+ fv−1(. . . , si −B l
j xv , s̄i − B̄ l

j xv , . . . )},

if ∃v 0 <v : xv 0 =1 ∧ n0 =n, i 0 6= i ∧si ≥ B l
j , s̄i ≥ B̄ l

j ,

fv−1(s1, s̄1, . . . , sK , s̄K ),

if ∃v 0 <v : xv 0 =1∧n0 =n, i 0 = i ∨si < B l
j ∨ s̄i < B̄ l

j ,

for v = |V|, . . . , 1, where f0(·) = 0. The state variables si ∈

{0, . . . , Z i } and s̄i ∈ {0, . . . , Z̄ i } capture the slack caching and

computing capacity, respectively, at small base station i .

We develop the optimal value function fv (·) using the above

Bellman optimality condition recursion, in stages, iteratively,

starting from stage v = 1, . . . , |V|. Our objective is to deter-

mine f|V |(Z1, Z̄1, . . . , Z K , Z̄ K ), which corresponds to the

objective in (7) at the optimal solution {x∗
v }. The latter can then

be obtained by backtracking from f|V |(Z1, Z̄1, . . . , Z K , Z̄ K ).

Completing fv (·) requires a total running time of

O(|V|K M), where M = maxi {Z i , Z̄ i }. Thus, this approach

represents a pseudo-polynomial time algorithm for solving (7).

We proceed one step further to formulate a fully-polynomial

time approximation scheme [38] for solving (7) that will lever-

age the above development. The formulation will integrate an

efficient branch-and-prune methodology of keeping track of

only the optimal paths in a data tree structure capturing the

different stages of growing the optimal value function fv (·).

We conclude with a verification of the fully-polynomial time

nature of the formulated approximation scheme.

In particular, we first scale the benefit factors αin associated

with caching item n at small base station i , such that they are

all small numbers, polynomially bounded in |V|. Applying

dynamic programming via the optimal value function, as for-

mulated above, to the scaled instance of (7) would then result

in a polynomial running time (in |V|) solution strategy, with

an induced approximation factor ε. Moreover, we integrate a

Algorithm 1 Branch-and-Prune Approximation Scheme

desired ε into the scaling of the factors αin , so that this strategy

is fully-polynomial time, i.e., with respect to 1/ε, as well.

Let αmax = maxi,n αin denote a scaling factor we will use.

Let p = blog (εαmax/|V|)c capture the precision at which

we will approximate/quantize the benefit factors αin . Then,

we define αs
in = b

Pin Qn/C i
i,n

10p c +
∑

k 6=ib
Pkn Qn/C̄n

10p c.

Algorithm 1 outlines our efficient branch-and-prune algo-

rithmic implementation of the above strategy, as noted earlier.

In particular, Algorithm 1 leverages an efficient tree data

structure Qv that is dynamically updated during execution.

Member elements (T, Fv ) ∈ Qv comprise subsets T of size

≤ v, of the first v elements in V , such that they induce

the maximum achieved benefit (Fv ), given the constraints

(4) - (6). For every subsequent v, Algorithm 1 comprises an

expansion phase, where the optimal paths (subsets of cached

data) maintained in Qv−1 are branched out by considering the

next decision variable v (to cache item n at base station i ),

while observing constraints (4) - (6), and a pruning phase,

where only the optimal paths after the expansion are retained.

At completion of stage v = |V|, Algorithm 1 terminates by

selecting the caching configuration T∗ in Q|V | that exhibits

the maximum achieved benefit F∗
|V |

. Then, the corresponding

optimal streaming variables can be selected as follows. First,

∀ v ∈ T∗, we set X i
in = 1. Next, if ∃ i, k 6= i : X i

in = 1

∧ Xm
kn = 0,∀ m, we set X i

kn = 1. Last, if ∃ i : Xk
in = 0,∀ k,

we set X K+1
in = 1.

Finally, we verify the approximation guarantees of Algo-

rithm 1. Let OPT denote the optimal objective in (7) and

let {Xk
in}∗ denote the respective solution. We want to verify

that the solution {Xk
in}0 computed by Algorithm 1 satisfies

O({Xk
in}0) ≥ (1 − ε) · OPT, where O(·) denotes the objective
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Fig. 7. A small base station’s packet transmission system model.

function in (7). In particular, Algorithm 1 operates on scaled

benefit factors, where � = εαmax/|V| denotes the scaling

aspect. Thus, the benefit αs
in achieved by selecting item v in

the solution {Xk
in}0 will satisfy �αs

in ≤ αin . This implies that

the achieved benefit induced by {Xk
in}0 can drop at most �,

for every item v cached according to {Xk
in}∗. Hence, we can

bound the overall achieved benefit drop as O({Xk
in}∗) − � ·

O 0({Xk
in}∗) ≤ |V|�. Here, O 0 denotes the objective function

in (7) evaluated on the scaled benefit factors.

On the other hand, the solution {Xk
in}0 computed by Algo-

rithm 1 represents the optimal solution for the scaled instance

of the problem (7), (4) - (6). Thus, O 0({Xk
in}0) ≥ O 0({Xk

in}∗).

Leveraging these two inequality relationships, we can write

O({Xk
in}0) ≥ � · O 0({Xk

in}0) ≥ � · O 0({Xk
in}∗)

≥ O({Xk
in}∗) − |V|� (8)

= OPT − εαmax

≥ (1 − ε) · OPT (9)

where (8) follows from the first inequality relationship estab-

lished earlier and (9) holds as OPT ≥ αmax . This verifies the

desired approximation guarantees of Algorithm 1.

The running time of Algorithm 1 is polynomial in |V|, as it

corresponds to completing a table of at most |V|2bαmax/�c

entries. The scaling enables the running time of Algorithm 1

also to be polynomial in 1/ε, as |V|αmax/� = 1/ε.

D. Streaming Network Coding Packets

Using network coding packets reduces the complexity of

(3) - (6), as the decision variables Y l
kj and X l,k

i j can be contin-

uous in that case. Thus, (3) - (6) becomes linear programming,

which can be solved exactly in polynomial time [40].

In particular, relaxing Y l
kj , X l,k

i j ∈ [0, 1] to be fractional

will capture that now portions of the network coding packets

representing tile-video j featuring l scalable layers can be

cached at small base station k, and streamed from this base

station to users at small base station i , respectively. Hence,

the objective (3) will become a linear weighted-sum function

of continuous variables indicating the proportions of network

coding packets associated with a specific tile-video streamed

to users at a given small base station, from each base station.

Moreover, the constraints (4) - (6) will become linear functions

as well and will still hold after relaxing the original discrete

decision variables. Specifically, all constraints from (4) - (6)

will apply in a straightforward manner, with for instance Y l
kj B l

j

and X l,k
i j B l

j indicating in this case the data volumes associated

with the proportions of network coding packets representing

tile-video j comprising l scalable layers cached at small base

station k, and streamed from this small base station to users

at base station i , respectively.

Fig. 8. Acyclic graph of scalable 360◦ video packet dependencies.

We note that the constraint
∑

k X l,k
i j ≤ 1 in (5) requires

that tile-video j comprising l scalable layers be streamed to

users at small base station i , from at most one base station k,

in the original case of discrete decision variables, to avoid

duplicate delivery. Network coding packets ensure the latter

by design,1 thus requiring only for the same number packets

to be delivered on aggregate from across the entire set of small

base stations. That is, complementary subsets of packets can be

streamed from each base station k in parallel, thereby making

the streaming scheduling more efficient, with X l,k
i j indicating

the fraction each subset represents of the entire whole.

VI. BASE STATION 360◦ PACKET SCHEDULING

We explore rate-distortion-power optimized scheduling of

buffered packets at the base stations to overcome network

transients. In particular, a base station may experience transient

periods during which its actual transmission rate capacity

may be temporarily lower than its incoming rate of outbound

packets. This will necessitate buffering such packets and

effective scheduling of their outgoing transmissions. We will

explore this challenge via the setup illustrated in Figure 7.

We consider there are L packets in the transmission buffer of

a base station. The packets feature dependencies induced upon

them at encoding that can be characterized as an acyclic graph,

as illustrated in Figure 8. In particular, i → j (a directed edge

from node i to node j in the graph) indicates that packet j is

required to decode packet i . Similarly, j � l denotes all ances-

tors of data unit l in the coding hierarchy. We characterize

each packet l with a delivery deadline tl,d , size Bl in bytes, and

reduction in reconstruction error �Dl of the respective 360◦

video that l will contribute to, if received/decoded on time.

We characterize the forward/downlink channel with a packet

erasure probability ε � ε(h, c), where h denotes the current

channel state/quality, as informed by receiver feedback, and

c the selected transmit power, and transmission delay τ of

density pτ � pτ (h, c). Let π = (π1, . . . , πL) be the packet

transmission policy of the station, where πl ∈ {0, 1} indicates

the two possible choices of not sending or sending packet l at

present (current time t). Let c = (c1, . . . , cL) be its transmit

power policy. Finally, let ε(πl , cl) � P{τl > tl,d + α − t} be

the expected error of transmitting packet l under policy πl ,

where α captures the latency/interactivity requirements of the

VR application. We can formulate it as:

ε(πl, cl) =

{

1, if πl = 0,

εl + (1 − ε)
∫ ∞

tl,d +α−t pτ , if πl = 1.
(10)

Next, we formulate the problem of interest. Let D(π, c) =
∑

l �Dl
∏

j�l

(

1 − ε(π j , c j )
)

denote the aggregate expected

1Selecting the Galois field size to be large ensures linear independence of
the generated network coding packets [37].

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 10,2020 at 15:56:15 UTC from IEEE Xplore.  Restrictions apply. 



CHAKARESKI: VIEWPORT-ADAPTIVE SCALABLE MULTI-USER VR MOBILE-EDGE STREAMING 6337

Algorithm 2 Optimal Transmission Scheduling Policy

reconstruction error reduction over the 360◦ tile-videos associ-

ated with the buffered packets, given (π, c). We formulate the

respective transmit rate/power induced by them as RT (π) =
∑

l πl Bl and E(π, c) =
∑

l clπl Bl . We investigate the best

scheduling policy (π, c) via the optimization

max
π,c

D(π, c), subject to: RT (π)≤ R∗
i , E(π, c)≤ EB, (11)

where EB is the transmit power budget and C is the downlink

transmit rate capacity. We explore exact and approximate

lower-complexity techniques to solve (11).

In particular, facilitating the Generalized Lagrange multi-

plier method [41], we reformulate (11) as

min
π,c

J (π, c) = −D(π, c) + λ1 RT (π) + λ2 E(π, c), (12)

where λi > 0 denote the corresponding Lagrange multipli-

ers. Moreover, for mathematical convenience, we introduce a

minus sign in front of D(π, c) and replace the max operator

from (11) with a min operator. We then compute the optimal

policy via the Bellman optimality condition [39]:

(π∗, c∗)(qi) = arg min
πi ,ci

∑

qi+1

Pπ,c(qi+1|qi)Jπ∗,c∗(qi+1), (13)

where qi is a state in the joint policy space of (π, c),

uniquely captured by the actions π∗
1 , . . . , π∗

i and c∗
1, . . . , c∗

i .

Pπ,c(qi+1|qi ) are state transition probabilities induced by

(π, c), and Jπ∗,c∗(qi+1) is the optimal Lagrange cost that we

can backtrack with an equivalent equation.

Moreover, we study minimizing J (π, c) iteratively, one

policy pair (πl , cl) at a time. We note that (11) represents

a discrete optimization problem that is complex to solve,

due to its large state-space that requires an enumeration of

the 2L × |C|L choices that (π, c) can take on jointly. Thus,

we also design a faster iterative algorithm that computes an

approximate solution at lower complexity, as follows. Starting

from an initial solution for (π, c), we iteratively solve (12)

one variable pair (πl , cl) at a time, while keeping the others

((π j , c j ), for j 6= l) fixed, until convergence.

Concretely, let (π (0), c(0)) indicate an initial choice for the

joint transmission scheduling and power control policy. Let

n = 1, 2, . . . represent the iteration count. We select one

policy pair (π
(n)
l , c

(n)
l ) to optimize at iteration n, e.g., in a

round-robin fashion, for l = 1, . . . , L. We fix the remaining

policy pairs (π
(n)
j , c

(n)
j ) = (π

(n−1)
j , c

(n−1)
j ), for j 6= l, and

compute the values of (π
(n)
l , c

(n)
l ) that solve (12). We then

increment n and move on to the next l, until J (π (n), c(n)) =

J (π (n−1), c(n−1)).

By grouping terms in (12) associated with (πl , cl), we can

formulate the key step of the iterative optimization as

π
(n)
l , c

(n)
l = arg min

πl ,cl

S
(n)
l ε(πl) + λπl Bl, (14)

where λ = λ1 + λ2 c and S
(n)
l captures the overall impact

of packet l on the reconstruction error of its 360◦ video.

Similarly, we derive S
(n)
l from (12) as

S
(n)
l =

∑

j�l

�D j

∏

m� j

m 6=l

(1 − ε(π (n)
m )).

We formally summarize the optimization in Algorithm 2. Its

convergence is guaranteed, as the objective function J (π, c)

is bounded from below and is monotonically non-increasing

at every iteration.

VII. EXPERIMENTS

A. Experimentation Methodology and Data Characteristics

To evaluate the performance of our system framework,

we carry out comprehensive simulation experiments that inves-

tigate diverse performance aspects of the several major com-

ponents comprising it. To assist the experimental analysis,

we have implemented the scenario under consideration from

Figure 1 as follows. There are three small base stations and five

users assigned to each base station. The users are distributed

uniformly at random across the spatial area served by the

respective small cell. There are eight 360◦ videos available in

the system that the users can request for streaming. Following

earlier studies, we consider that the likelihood that a user

requests a specific video file can be modeled using a Zipf

distribution with a parameter γ set to 0.8 [42]. The 360◦

video content comprises popular sequences used in earlier

studies that feature diverse characteristics [14], [43]. These are

Coaster, Wingsuit, Paris, Basketball, Runner, Angel Falls, Kite

Flite, and Dolphins. They feature spatial 360◦ panorama reso-

lutions of 4K or 8K, and temporal frame rates of 30 or 60 fps.

We have implemented our novel multi-layer 360◦ tiling pro-

posed in Section IV using the scalable extension of the latest

video compression standard known as SHVC [35], to construct

the 360◦ content into L = 3 scalable layers, Group of

Pictures (GOP) size of 30 frames, and 6×4 spatial tiles. These

advances enabled us to collect the immersion fidelity factors

Q j,l introduced in Section V. All reference methods examined

in our evaluation use instead 360◦ video content corresponding

to the above sequences, compressed using HEVC into GOPs

of 30 frames, as in our case. We leveraged extensive 360◦

video user navigation traces that we have captured as part of

our ongoing work and data collection campaign [14], [15],

[44], [45], to enable our statistical models of user video tile

navigation formulated in Section IV-C.

We related the cost factors C l,k
i, j introduced in Section V to

the energy consumption of streaming the 360◦ content. Con-

cretely, if l scalable layers of tile-video j are cached locally at

small base station i , the energy consumption cost will reflect

the base station transmission only. If they are retrieved from

another base station k, the consumed energy will represent the

sum of the energy spent to move the content between i and

k, and the energy spent by i to transmit them. We considered

that the energy required to move content between small base

stations is proportional to the number of network hops between

them (in our case one). We alike accounted for the cost of

streaming l scalable layers of tile-video j from the back-end

server, assuming that the data will traverse 15 hops in this case,

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 10,2020 at 15:56:15 UTC from IEEE Xplore.  Restrictions apply. 



6338 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 9. Navigation probabilities for 360◦ tiles for Roller Coaster.

Fig. 10. Navigation probabilities for 360◦ video tiles for Wingsuit.

based on [46]. Finally, following [47], [48], we considered that

the energy per bit consumed by wireless transmission is 3.5 µJ

and that for wireline transmission is 0.5 µJ per hop.

B. Reference Methods

We have implemented several state-of-the-art reference

methods, to benchmark the performance of our system frame-

work and its major components against them, as part of

our evaluation. To examine the pure streaming performance

of our scalable multi-layer 360◦ tiling from Section IV

and the associated viewport-adaptive allocation of resources

suggested therein, we have implemented the state-of-the-art

video streaming standard MPEG-DASH [6], [31]. We examine

the trade-off between delivered 360◦ viewport quality and

available streaming data rate enabled by these two approaches.

We have also implemented the following two caching

techniques, Blasco2014 [20] and LRU (Least-Recently-Used),

to compare against our cooperative edge-based multi-user

VR streaming and the associated Algorithm 1 for optimal allo-

cation of storage and computing resources therein, proposed

in Section V. As introduced earlier, Blasco2014 implements a

caching policy that aims to minimize the aggregate delay of

content retrieval at a base station. Moreover, LRU is a very

popular method used in practice, which implements a caching

policy that evicts the least recently used cached items first,

when updating the stored content.

Finally, we have implemented two state-of-the-art methods

for transmission error control, to benchmark the efficiency of

Fig. 11. Viewport at (ϕ, θ) = (0◦, 0◦).

Fig. 12. Viewport at (ϕ, θ) = (120◦,−60◦).

our 360◦ packet scheduling proposed in Section VI to address

transient packet buffering at the base stations. These are

hybrid ARQ that combines Automatic Repeat reQuest (ARQ)

scheduling with efficient channel coding via Reed-Solomon

codes [49], to help address more effectively packet loss during

transmission, and the method proposed in [37] that introduces

unequal error protection in video delivery via network coding.

We denote the former reference method as HARQ and the

latter reference method as Thomos2011.

C. Ablation Evaluation

360◦ user viewport tile navigation probabilities. We have

constructed the statistical models of user navigation following

our approach proposed in Section IV-C. Here, we illustrate the

induced tile navigation probabilities for two video sequences

used in our evaluation. In particular, in Figure 9 and Figure 10

we show P
(ti ,t j )
nm defined in Section IV-C, for ti and t j

corresponding to the first and last video frame of a 360◦ video,

for Roller Coaster and Wingsuit, respectively.

We can observe from Figure 9 that in the case of Roller

Coaster, video tiles on the fringes of the 360◦ panorama

are rarely navigated by a user, i.e., they scarcely appear in

the user’s viewport, during a 360◦ video navigation session.

Conversely, video tiles indexed as (n, m) = (3,2), (4,2), (3,3),

and (4,3) are quite often navigated by the user, as noted by

their much higher navigation likelihoods shown in Figure 9.

We can observe from Figure 10 that the navigation proba-

bilities of 360◦ video tiles for the sequence Wingsuit, induced

by users experiencing the content, look fairly different. This

is due to the nature of this content and the induced specific

interests of the users, expressed when navigating it. In partic-

ular, we can see now that the typical user is predominantly

interested in navigating the southern hemisphere of the 360◦

panorama, as seen from the respective tile navigation proba-

bilities indicated by Figure 10 therein. The more dynamic and

interesting content of Wingsuit resides spatially in the southern

hemisphere of its 360◦ video sphere.
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Fig. 13. Required computing power vs. data volume of a 360◦ tile.

Fig. 14. 360◦ video transmission efficiency vs. MPEG-DASH.

In Section IV-C, we explained the need to normalize the

relative impact of the spatial area of a user viewport across

the video tiles (n, m) comprising the 360◦ panorama of a 360◦

video frame at time instance t j , as carried out in (1), when

formulating our statistical models of 360◦ user navigation.

We noted that this is due to the considerably uneven areas

occupied by diverse viewports, depending on their latitude on

the 360◦ sphere. We illustrate this aspect here, by visualizing

two such representative viewports in Figure 11 and Figure 12.

Due to applying the equirectangular projection to map

the 3D 360◦ sphere to a wide 2D panorama, as illustrated

in Figure 2 and explained in Section II, the shape of a viewport

considerably changes. In equatorial regions of the 2D 360◦

panorama, a projected viewport is smaller and more compact

(see Figure 11), while in polar regions a projected viewport

is spread over all polar tiles (see Figure 12) and occupies a

wider spatial area. Figure 5 can be referenced to understand

the spatial locations of these two viewports relative to the

underlying tiling of the respective 360◦ video.

Computing workload vs. tile data volume. To support our

optimization techniques, we investigated the computing work-

load imposed on a microprocessor when decoding compressed

video tiles and rendering the corresponding 360◦ panorama

image data they represent. In particular, we empirically char-

acterized the required number of CPU cycles to decompress

and render a 360◦ video tile, as a function of its data volume.

These finding are shown in Figure 13, where we can see that

the resulting dependency follows closely a polynomial model.

We leveraged this dependency to then develop a closed

form third order polynomial model that accurately captures

the computing workload induced on an edge server as a

Fig. 15. Energy consumption vs. storage capacity at base stations.

Fig. 16. Energy consumption vs. computing capacity at base stations.

function of the desired streaming data rate for a 360◦ video

tile. Finally, we integrated this model into our optimization

framework, to enable rigorous allocation of the computing

resources available at an edge server of a small base station.

Advantages of scalable tiling and user-viewport

adaptation. To examine the transmission efficiency of the

viewport-adaptive 360◦ space-time scalability investigated

in Section IV-D, which integrates our statistical models

of 360◦ VR user navigation, we carried out the following

experiment. A sender transmits 360◦ content to a VR client

over a network link of a given data rate, as highlighted by

Figure 2. We implemented the optimization we formulated in

Section IV-D to decide how the available network bandwidth

C should be allocated across the scalable tile layers associated

with the 360◦ content, in response to the navigation actions

of the user, and measured the resulting expected immersion

fidelity experienced by the user. We formally measure the

latter quantity as the luminance (Y) peak-signal-to-noise ratio

(Y-PSNR) of the 360◦ viewport video signal reconstructed on

the user’s VR device. This metric has multiple analysis and

implementation advantages, and correlates closely with other

metrics proposed before [50]. We vary the available network

bandwidth C and record the corresponding immersion fidelity

delivered to the user, enabled by our approach, in each case.

Simultaneously, we recorded the corresponding performance

of MPEG-DASH in the same context. Two 360◦ video

sequences from our data set, Wingsuit and Angel Falls, have

been used in this analysis.

We show the respective results in Figure 14. We can

see that our approach enables considerable benefits over

MPEG-DASH by integrating the user navigation actions

and the rate-distortion trade-offs across the 360◦ panorama,

in deciding how transmission resources should be allocated.
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Fig. 17. Delivered immersion fidelity across different 360◦ videos.

Approximately 6-7 dB of immersion fidelity improvement

have been enabled across both 360◦ sequences and all network

bandwidth values considered in Figure 14. These advances can

in turn enable much higher operational efficiency for a stream-

ing system for 360◦ video delivery that integrates our method-

ology from Section IV, as our subsequent results demonstrate.

End-to-end system performance. We first examine the

energy efficiency of our system framework, when streaming

the 360◦ content to the mobile VR users. In Figure 15,

we study the energy consumption of the several methods under

comparison, as a function of the available storage capacity of

the edge servers collocated with the small base stations. In this

evaluation, we set the computing capability (power) Z̄ i of the

edge server at each small base station i to 65W, following

commonly adopted values for present microprocessors [51].

We can see that our approach considerably outperforms

the two reference methods, demonstrating three to six times

lower energy consumption across the entire range of x-axis

values examined in Figure 15. These gains are enabled by our

optimization framework that can optimally pool and allocate

the transmission, storage, and computing resources available at

the small base stations. Moreover, our approach enables much

higher energy consumption versus storage capacity efficiency,

for low values of the latter, as observed in Figure 15.

As expected, the reference method Blasco2014 outperforms

the other reference method LRU due to the optimization it

implements, though its gains appear to be marginal. Finally,

we also evaluated the performance of our framework when

operating on network coding packets. We can see from

Figure 15 that this introduces further energy consumption

savings, as in this case the optimization (3) - (6) can be solved

exactly, as explained earlier. This then leads to even higher

utilization of the available system resources, as expected.

Next, in Figure 16, we study the energy consumption of the

several methods under comparison, as a function of the avail-

able computing capacity of the edge servers collocated with

the small base stations. In this evaluation, we set the storage

capacity Z i of the edge server at each small base station i

to 100 GB. We can see again that our approach considerably

outperforms the two reference methods, demonstrating three

to seven times lower energy consumption across the entire

range of x-axis values examined in Figure 16. These gains

are enabled by our optimization framework that can optimally

pool and allocate the transmission, storage, and computing

resources available at the small base stations, as explained

Fig. 18. Immersion fidelity reduction vs. network rate mismatch (%).

earlier. Moreover, our approach enables much higher energy

consumption versus computing capacity efficiency, for low

values of the latter, as observed in Figure 16.

Evaluating the performance of our framework on network

coding packets leads to further energy consumption savings,

as seen from Figure 16. This is an expected outcome equiva-

lent to that observed in the context of the evaluation and results

reported in Figure 15 earlier. These further benefits arise from

the possibility to solve the optimization (3) - (6) exactly,

thereby enabling even higher system resources’ utilization

efficiency, as explained before. The similar performance out-

comes observed in Figure 15 and Figure 16 demonstrate

the consistent benefits introduced by our framework against

diverse key system parameters.

Finally, we evaluated the delivered immersion fidelity

enabled by our approach across the different 360◦ videos

streamed to the mobile VR users in the setting under consider-

ation. These results are shown in Figure 17, which includes the

corresponding performance results for the reference method

Blasco2014. The equivalent findings for the second reference

method LRU are not included in the figure, as they are lower

than those for Blasco2014. We can see that across all five

360◦ videos considered in Figure 17 our approach enables

consistently significant gains in immersion fidelity delivered

to the mobile users, ranging between six to ten decibels of the

viewport Y-PSNR for a mobile VR user.

Moreover, our approach enabled delivering some

360◦ videos also at higher spatial resolutions or temporal

frame rates, thereby augmenting further the user’s immersion

quality of experience. In particular, the video Paris was

delivered at temporal frame rate of 60 fps by our approach,

as indicated in Figure 17, while the reference method

Blasco2014 could only stream it at 30 fps. Similarly, our

approach enabled delivering the videos Basketball and

Runner at higher 8K spatial resolution for the 360◦ panorama,

as indicated in Figure 17, while Blasco2014 could only

stream them at 4K spatial resolution.

Packet transmission scheduling utility. We carry out two

experiments to evaluate solely the efficiency of the 360◦ packet

scheduling, proposed in Section VI to address prospective

network transients at the small base stations, as described

therein. In the first evaluation, we measure the reduction in
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Fig. 19. Immersion fidelity reduction vs. packet loss rate ε (%).

delivered immersion fidelity when the compressed video pack-

ets of a 360◦ video to be transmitted are buffered at a small

base station, due to an insufficient transmission capacity, and

their outgoing transmissions need to be carefully scheduled.

We consider that the packet loss rate ε on the respective

downlink to the mobile VR user is zero in this evaluation.

In Figure 18, we show these results versus the respective

mismatch between the data rate required by the 360◦ content

and the actual available transmission capacity, expressed in

percent of the first quantity. First, we can see that for the

same set of buffered 360◦ packets, all three methods show no

reduction in delivered immersion fidelity, in the case of no mis-

match between the 360◦ content’s required data rate and the

available transmission capacity, as expected. However, once

the network data rate mismatch starts increasing, we can see

from Figure 18 that the performance of the reference methods

HARQ and Thomos2011 considerably decreases. On the other

hand, our approach enables robust and consistent performance

across the entire range of mismatch values evaluated, due to its

rate-distortion optimized design that integrates the importance

of every 360◦ packets for the immersion fidelity delivered to

the user, as formulated in Section VI.

Concretely, we observe a drop of close to seven decibels in

immersion fidelity for a mismatch of 6%, in the case of HARQ.

This outcome is expected as HARQ treats every packet equally,

when deciding on their transmissions, and thus it is oblivious

to the impact that omitting the transmission of a packet

may have on the resulting immersion fidelity experienced

by the respective mobile VR user. The second reference

method Thomos2011 offers a more graceful degradation in

performance, as the data rate mismatch increases, as evident

from Figure 18, due to the partial robustness it introduces.

However, the immersion fidelity reduction it demonstrates is

still considerable and reaches up to 4.2 decibels. On the other

hand, an immersion fidelity reduction of less than 0.5 decibels

is maintained by our approach throughout the entire range of

mismatch values examined in Figure 18.

In the second evaluation, we consider that there is no

mismatch between the required data rate for the buffered

packets and the available transmission capacity, however,

the respective downlink to the mobile VR user features

non-zero packet loss rate ε. Here, the three methods under

comparison need to decide the transmission scheduling of

the buffered 360◦ packets such that it includes prospective

retransmissions of those packets lost during their original

transmission. We measure the resulting reduction in delivered

immersion fidelity for each method against the packet loss

rate ε. These results are shown in Figure 19.

We can see that our approach again enables robust and

consistent performance across the entire range of loss rates

examined in the figure. This is due to its rate-distortion

optimized design that rigorously integrates the importance of

every 360◦ packets for the immersion fidelity delivered to

the user and the impact of prospective packet loss, when

scheduling the transmissions of outgoing packets. Thus, our

approach maintains an immersion fidelity reduction that does

not exceed 1.5 decibels, even at 6% downlink packet loss.

On the other hand, the performance of the reference meth-

ods HARQ and Thomos2011 considerably decreases, as the

packet loss rate increases, as seen from Figure 19. In particular,

we observe an immersion fidelity reduction of close to 14 dB

and 8.2 dB respectively for HARQ and Thomos2011, for

packet loss rate of six percent. The considerably degraded

performance of HARQ is due to the same reasons explained

earlier, and it features the well-known cliff effect of traditional

error protection (FEC) [52], as witnessed by Figure 19. The

error-adaptive design of Thomos2011 helps it provide more

graceful performance degradation relative to HARQ. However,

since its operation is data-agnostic, its performance is still

notably penalized over our approach.

VIII. CONCLUSION

We have explored a novel communications system that inte-

grates for the first time scalable multi-layer 360◦ video tiling,

viewport-adaptive rate-distortion optimal resource allocation,

and VR-centric edge computing and caching, to enable next

generation high-quality untethered VR streaming. Our system

comprises a collection of 5G small cells that can pool their

communication, computing, and storage resources to collec-

tively deliver scalable 360◦ video content to mobile VR clients

at much higher quality. The major contributions of the paper

are the rigorous design of multi-layer 360◦ tiling and related

models of statistical user navigation, analysis and optimization

of edge-based multi-user VR streaming that integrates view-

port adaptation and server cooperation, and base station 360◦

video packet scheduling. We also investigated the possibility

of network coded data operation and its implications for the

analysis, optimization, and system performance we pursue in

this setting. The advances introduced by our framework over

the state-of-the-art comprise considerable gains in delivered

immersion fidelity, featuring much higher 360◦ viewport peak

signal to noise ratio (PSNR) and VR video frame rates

and spatial resolutions. Integrating our advances in practice

represents prospective fruitful future work.
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