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Viewport-Adaptive Scalable Multi-User Virtual
Reality Mobile-Edge Streaming

Jacob Chakareski

Abstract— Virtual reality (VR) holds tremendous potential to
advance our society, expected to make impact on quality of life,
energy conservation, and the economy. To bring us closer to this
vision, the present paper investigates a novel communications
system that integrates for the first time scalable multi-layer
360° video tiling, viewport-adaptive rate-distortion optimal
resource allocation, and VR-centric edge computing and caching,
to enable next generation high-quality untethered VR streaming.
Our system comprises a collection of 5G small cells that can pool
their communication, computing, and storage resources to col-
lectively deliver scalable 360° video content to mobile VR clients
at much higher quality. The major contributions of the paper
are the rigorous design of multi-layer 360° tiling and related
models of statistical user navigation, analysis and optimization
of edge-based multi-user VR streaming that integrates viewport
adaptation and server cooperation, and base station 360° video
packet scheduling. We also explore the possibility of network
coded data operation and its implications for the analysis,
optimization, and system performance we pursue in this setting.
The advances introduced by our framework over the state-
of-the-art comprise considerable gains in delivered immersion
fidelity, featuring much higher 360° viewport peak signal to noise
ratio (PSNR) and VR video frame rates and spatial resolutions.

Index Terms— Mobile virtual reality, scalable 360° video tiling,
mobile edge computing and streaming, resource allocation, 5G
small cell systems, statistical VR navigation analysis, multiple
knapsack problem with multiple constraints, branch-and-prune
fully-polynomial time approximation method.

I. INTRODUCTION

IRTUAL reality holds tremendous potential to advance
Vour society. It is expected to make impact on quality
of life, energy conservation, and the economy [1], [2], and
reach a $162B market by 2020 [3]. As the Internet-of-Things
(IoT) is becoming a reality, modern technologists envision
transferring remote contextual and environmental immersion
experiences as part of an online VR session. However, two
main highly-intertwined challenges stand in the way of real-
izing this vision: VR requires (1) ultra-low latency high
data rate communications, and (2) highly data-intensive
computing. Neither of these challenges can be met by current
and upcoming traditional communications systems [4], [5],
as the content to be delivered is too voluminous and the
headsets’ computing/storage capabilities are insufficient within
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Fig. 1. System scenario under investigation.

an acceptable and wearable form factor. Hence, VR applica-
tions are presently limited to off-line operation, low-fidelity
graphics content, tethered high-end computing equipment,
and gaming/entertainment settings. 360° video is the first
actual-scene content format to enable remote VR immersion.
However, emerging 360° streaming practices are highly ineffi-
cient, which considerably degrades the quality of experience,
as explained in detail later.

To overcome these challenges, we investigate for the first
time a novel communications system that integrates scalable
multi-layer 360° video tiling, viewport-adaptive rate-distortion
optimal resource allocation, and VR-centric edge computing
and caching, to enable next generation high-quality untethered
on-demand VR streaming. Our system is illustrated in Figure 1
and comprises a collection of 5G small cells featuring a base
station and an edge server each, which pool their communica-
tion, computing, and storage resources to collectively deliver
scalable 360° video content to mobile VR clients, at much
higher quality. Cooperation among the small cells is enabled
via backhaul links that interconnect them, and the scalable
360° content featuring multiple layers L; of incrementally
increasing quality is initially delivered from a backend server,
as illustrated in Figure 1. Considerable advances in 360° video
quality, frame rate, and spatial resolution are enabled.

The rest of the paper is organized as follows. We first
provide some background on 360° video streaming and the
related challenges that arise therein. Overview of related work
is provided in Section III. The framework of our system is
then presented over the next three sections. The design of
multi-layer 360° tiling and formulation of related models of
statistical user navigation are carried out in Section IV. The
analysis of edge-based multi-user VR streaming that integrates
viewport adaptation and server cooperation is carried out in
Section V. Here, we also investigate the possibility of network
coded data operation and its implications for the analysis,
optimization, and system performance we pursue. Analysis of
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effective scheduling of buffered data packets at the small base
stations is carried out in Section VI. Finally, an experimental
evaluation of our framework is provided in Section VII and
the paper concludes in Section VIII.

II. 360° VIDEO VR STREAMING BACKGROUND

360° video is an emerging video format that is captured by
an omnidirectional camera that records incoming light rays
from every direction (see Figure 2 top left).

It enables a three dimensional 360° look-around of the
surrounding scene for a remote user, virtually placed at the
camera location, on his VR head-mounted display (HMD),
as illustrated in Figure 2 right. After capture, the spherical
360° raw video frames are first mapped to a wide equirectan-
gular panorama (illustrated in Figure 2, bottom left) and then
compressed using state-of-the-art (planar) video compression
such as HEVC. The former intermediate step is introduced,
as compression techniques operating directly on spherical data
are much less mature and performing relative to conventional
video compression operating on planar (2D) video frames.

For remote service, when the user and the stored 360°
data are not collocated, the entire monolithic 360° panorama
is streamed to the user presently, leveraging state-of-the-art
video streaming (DASH - Dynamic Adaptive Streaming
over HTTP [6]). However, at any point of time, the user
experiences only a small portion of it denoted as V.
(current viewport). This considerably penalizes the quality
of experience, due to the overwhelming volume of 360°
data that needs to be delivered, which exceeds the available
network streaming bandwidth C by orders of magnitude.
Thus, only very low-quality low-resolution 360° videos can
be delivered online presently over the Internet. Similarly,
the streaming also lacks the ultra-low latency interactivity
required for truly immersive experiences, due to the use of
traditional server-client Internet architectures.

Moreover, in the wireless setting, the available data rates C
are even lower, and the VR headsets’ computing and storage
capabilities are insufficient within an acceptable and wearable
form factor, to enable independent untethered operation. The
same holds even when they are attached to a mobile device,
as the latter is also limited in terms of storage and computing
capabilities, e.g., high-end mobile GPUs lag their desktop
counterparts in computing power by a factor of ten and will not
have the required TFlops to provide the necessary rendering
computation for high-quality VR anytime soon [7].

The above challenges motivate novel communications
strategies and systems that synergistically integrate viewport-
adaptive 360° streaming, mobile edge computing and caching,
and scalable multi-layer 360° tiling, for next generation
untethered VR applications. This is the objective we pursue.

III. RELATED WORK
Cooperative edge-based multi-user mobile VR streaming
is a novel topic. Related areas include multi-camera wireless
sensing [8], immersive telecollaboration [9], [10], multi-view
video coding [11]-[13], and 360° Internet streaming [14], [15].
Similarly to our approach, a few existing studies of
single-user on-demand 360° Internet streaming [16]—[18]
considered splitting the 360° video into spatial tiles as part
of the encoding, using the tiling feature of the latest High
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360° video capture and streaming, and user viewport V.

Efficiency Video Coding (HEVC) standard [19]. However,
their design choices are heuristic and lack analysis of the
fundamental trade-offs between delivered immersion fidelity,
user navigation patterns, coding efficiency, view switching
capability, and available system resources, as we carry
out. Moreover, our integration of scalability, edge-based
delivery, and formal 360° partitioning considerably enhances
the VR application interactivity, by reducing its streaming
latency, relative to these studies.

Existing work on wireless base station caching
includes [20], which considered the problem of estimating
the content popularity at a base station and minimizing
the total delay of content retrieval, formulating the latter
as a knapsack problem [21]. Similarly, [22] considered the
problem of reducing the delay of content delivery using
caching at wireless helper nodes, small-cell base stations that
have high storage capability and low coverage, differentiating
available helpers based on their proximity to the served node.
Moreover, [23] considered optimizing the parameters of a
single base station cache and [24], [25] studied hierarchical
caching in cellular back-haul networks. Information-theoretic
studies of hierarchical caching are carried out in [26], [27].
Joint caching and channel assignment in multi-cellular
systems is studied in [28], [29].

This paper has been inspired by a short preliminary study
we carried out earlier in [30]. The major technical novelties
the paper introduces relative to [30] include:

« Rigorous design/formulation of scalable multi-layer 360°
tiling and related statistical models of VR user navigation.

o Viewport-adaptive analysis and optimization of the
rate-distortion trade-offs and resource allocation over the
360° video panorama that integrate the above advances,
for efficient single-user 360° video streaming.

o Edge-based multi-user VR streaming that integrates
server cooperation, VR edge computing/caching, and the
above advances, and introduces more general/accurate
system models, analysis, and optimization methods.
Thereby, the fundamental performance trade-offs between
system resources, cost, and delivered VR user immersion
fidelity that arise in this context are captured and under-
stood more precisely.

o Rigorous analysis of prospective networking coding data
packet operation in the above context and its implications
for the resource optimization and system performance.

o Effective small base station 360° video packet scheduling
to address prospective network transients and buffering.

o Comprehensive performance evaluation of our system fra-
mework and its major components demonstrating consid-
erable gains in delivered VR immersion fidelity, featuring
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Fig. 3.

Example 6 x 4 spatial tiling of a 360° panorama.

much higher 360° viewport peak signal to noise ratio
(PSNR) and VR video frame rates and spatial resolutions.

IV. SCALABLE MULTI-LAYER 360° TILING

Tiling of a wide-panorama video has been introduced as an
option in HEVC [19], to facilitate parallel processing of the
tiled segments of the video in multi-core processor systems.
In our case, we leverage tiling of the 360° panorama, to capture
effectively the user viewport over time and exploit the uneven
rate-distortion trade-offs that arise across the spatial panorama.
Moreover, tiling the 360° panorama will also facilitate devel-
oping a statistical model of user navigation, as explained in
Section IV-B. These three aspects will then be integrated
effectively into an analysis that dynamically selects the amount
of resources allocated over space and time, for a 360° video as
it is being streamed to a user. An effective implementation of
the analysis is enabled via a scalable multi-layer 360° tiling.
The design of the scalable tiling and the respective analysis
are formulated in Section IV-D.

A. 360° Panorama Tiling

We partition each video frame of a 360° video into a set
of N x M spatial tiles, as illustrated in Figure 3, where the
first and second dimensions of the denoted tiling, (N, M),
parallel the horizontal and vertical spatial dimensions of the
360° video frames. Each tile is then independently encoded
and streamed to the user, according to our analysis and
optimization. In Figure 3, the tiles are indexed/labeled in a
raster fashion, top-to-bottom and left-to-right.

Denser tiling layouts increase the processing complexity and
reduce the compression efficiency, but, enable more precise
delineation of the user viewport and thus more efficient
viewport-aware resource allocation across the 360° panorama.

In our work, we have empirically observed that the 6 x 4
and 8 x 6 tiling options provide good performance in terms of
processing complexity and compression efficiency, as induced
by the selected tiling, for the 360° video spatial resolutions
available today (4K and 8K). Similar observation has been
made recently in [31] in the case of 4K 360° videos. Indepen-
dently, a VR spin-off reported using around 100 tiles for 8K
360° panoramas without severe compression inefficiency [32].
Selecting the optimal N x M tiling, where N and M can be
arbitrary integer numbers, is an N P hard problem, due to its
discrete combinatorial nature. Similarly, selecting the optimal
adaptive tiling, where the number and size of tiles across the
spatial panorama can be varied, akin to the selection of encod-
ing macro-block and block sizes in modern video encoders,
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is also an NP hard problem [33]. Brute-force approaches of
evaluating a large number of prospective tiling options, in the
pursuit of this objective, with the prospective facility of large
deep neural networks, have been attempted in [33], however,
without clear evidence of convincing performance benefits to
justify the required huge investment in computing complexity.

B. 360° Navigation Data Capture

We have captured navigation data that characterizes how a
mobile VR user explores a 360° video over time. Specifically,
his VR head-mounted display (device) outputs the direction
of the current viewpoint of the user V. on the 360° view
sphere up to 250 times per second (see Figure 2 right, for
an illustration). Formally, this is the surface normal of V.
on the 360° sphere, which is uniquely characterized by the
azimuth and polar angles ¢ € [0°,360°] and 8 € [0°, 180°]
that it spans on the sphere, in a spherical coordinate system
with the 360° sphere center as its origin (see Figure 4, right).
These two angles are equivalently denoted as yaw and pitch
in the VR community, captured as rotation angles around the
Z and Y axes (see Figure 4, left). We recorded the (¢;,0;)
pairs that coincided with the discrete temporal instances ¢; of
consecutive 360° video frames j from which the respective
viewport V. is selected to be displayed to the user, as he
navigates the content. We leverage this data to formulate our
statistical analysis of user navigation in the next section.

C. Statistical Characterization of User Navigation

Let the set {(¢;,0;)} denote a navigation trace for a given
360° video and VR user. Let S]‘./" denote the set of pixels
in the 360° panorama occupied by the user viewport V. at
time instance ¢; (temporal video frame ;). Similarly, let S;”"
denote the set of pixels in the 360° panorama associated with
tile (n,m), forn =1,...,N,and m = 1,..., M. Now, let
S?m’v" = S}/" N S;?m denote the set of pixels in tile (n,m)
present in the user viewport at that time instance. That is,
§"™Ve represents the spatial area in the 360° panorama shared
by tile (n,m) and V. at time ¢;.

We illustrate later that a user viewport may occupy very
different, in terms of shape and size, spatial areas of the 360°
panorama, depending on its latitude (the polar angle 6 on the
360° view sphere). To account for this, in developing our
statistical model of user navigation, we formulate next the
fractions of the spatial areas of every tile, present in the user
viewport V. at ¢}, as follows:
|57
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where |S| denotes the size of a set S, in this case in number
of pixels. Thus, {w?m} represents the normalized distribution
of the spatial area of the user viewport across every tile in the
360° panorama, at time instance ;.

Given (1), we can formulate the probability (likelihood) of
the user navigating tile (n, m) over a time interval spanned by
the time instances [#;, ¢;], as follows:
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Fig. 4. 360° navigation data of current viewport V.. Left: Rotation angles
yaw, pitch, and roll around the three coordinate axis. Right: Azimuthal and
polar angles (¢, 6) in spherical coordinates.

In other words, P,f,t,",’tj ) indicates how often tile (n, m) appears
(at least in part) in the user viewport during navigation of
the 360° video from its temporal instance #; to t;, or the
popularity of the 360° scene content captured by the tile
for this user and time interval. For instance, if # and ¢;
correspond to the first and last video frame of the 360° video,
then, Pn(z,’tj ) captures the navigation probability or popularity
of tile (n, m) across the entire video.

D. Viewport-Adaptive Space-Time Scalability

To enable an effective allocation of system resources across
a 360° video, we explore a scalable multi-layer tiling of a 360°
panorama. In particular, for every tile (n, m) in the panorama,
we will construct L embedded layers of progressively increas-
ing signal fidelity. The multi-layer tiling construction is
illustrated in Figure 5. It can enable carrying out effective
trade-offs between delivered immersion fidelity and induced
data rate, spatiotemporally over the 360° content, in response
to the user navigation actions. This can be effectively accom-
plished by optimally selecting the number of layers /,,,,, sent for
every tile (n, m) during a time interval, such that the expected
user viewport quality over that interval is maximized, given
the available network streaming bandwidth C.

We can formally capture this optimization as:

subject to: Z Rum (lm) < C.

nm

ln m

max P Qnm (lum),
nm

Here, P, denotes the likelihood of navigating tile #,,, during
the time period under consideration, as introduced earlier.
Qum(lym) and Ry (1) denote respectively the delivered
immersion fidelity and induced data rate associated with tile
twm, given that its first /,,, scalable layers are sent to a user.

Note that the proposed statistical analysis of user navigation
captures as navigation likelihoods the expected overlap of a tile
with the user viewport over a time interval, and the aspect that
equatorial tiles are more likely navigated than polar tiles. Thus,
our expected viewport quality formulation can correspond to
a tile-level WS-PSNR (Weighted Spherical PSNR) [34].

In our experimental evaluation, we facilitate the scal-
able extension of HEVC [35], to effectively implement our
multi-layer 360° tiling construction from Figure 5.

V. EDGE-BASED MULTI-USER VR STREAMING
A. System Modeling

We describe here in detail our system modeling associated
with the setting we investigate (see Figure 1). There is a set
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of 360° videos served to mobile VR users at each small-base
station. Each 360° video comprises N x M tiles as introduced
earlier. To ease the notation and terminology that we will need
to resort to, we assign to every tile (rn, m) of an entire 360°
video a unique index j and denote it henceforth as video ;.
We consider that each small base station i serves a set of
VR clients that collectively induce a popularity distribution P;;
over the tile-videos, by their navigation actions, as introduced
earlier. A small base station can store a subset of the videos
at its edge server, to deliver them locally to its own users.
It can also serve one of its videos to a VR client at another
small base station via the backhaul links through which they
can cooperate, if this video is not stored locally at the edge
server of that small base station. If a requested video is not
available locally or from a neighboring small base station, it is
delivered remotely from the back-end server.

Let Yl.lj € {0, 1} denote the decision for small base station
i to cache tile-video i comprising its first [ scalable layers
(see Figure 5). Let X fj € {0, 1} denote the decision to deliver
video j comprising its first / scalable layers from base station
k to a VR user at base station i. If £k = i, then Xf’,k =1
will denote the event of local delivery at base station i. If k is
greater than the number of small base stations in the system,
Xf}.k will capture the decision to deliver video j comprising
its first / scalable layers remotely, from the back-end server,
as introduced earlier. Let Q;; denote the delivered immersion
fidelity of tile-video j comprising its first / scalable layers.

Let Cfik denote the cost of delivering tile video j compris-
ing its first / scalable layers to a VR user at small base station i
from the cache of small base station k. ij’.k captures the impact
of the relative distance between base stations i and k, and the
data volume B of tile-video j featuring [ scalable layers.

Similarly, let Bﬁ. denote the processing and rendering cost
associated with tile-video j featuring / scalable layers, induced
at a small base station. Let Z; and Z; denote respectively the
storage and computing capabilities of the edge server at base
station 7. In our experimental evaluation, we show that B can
be modeled as a polynomial function of the data volume of
tile-video j comprising [ scalable layers.

We consider the possibility of having the data packets
associated with tile-video j encoded using network coding
or fountain codes [36], [37]. We explore the implications of
this option for our problem formulation and its optimiza-
tion solution in the next section. In essence, working with
such packets helps use system resources more efficiently and
reduce the system’s transmission scheduling complexity. These
advances stem from their construction which eliminates packet
duplication and thus enables working with fractional network
flows, instead of their discrete {0, 1} counterparts.

The method for constructing network coding packets we
pursue is illustrated in Figure 6. The bitstream representing the
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TABLE I
MAIJOR SYMBOLS USED IN THE SYSTEM MODELING
Symbol Description
P;; Popularity of tile-video j at small base station (SBS)
Yil. Cache [ layers of tile-video j at SBS %
Xik Stream [ layers of tile-video j from SBS k to user at SBS ¢
Qi Immersion fidelity of [ layers of tile-video j
Ci}.k Cost to stream [ layers of tile-video j from SBS & to SBS ¢
B! Data volume of [ layers of tile-video j
BZ. Processing and rendering cost of [ layers of tile-video j
Ziy Ly Storage and computing capabilities of edge server at SBS 4

scalable compressed video tile layers is first packetized into
data packets p;. Network coding packets are then constructed
as weighted linear combinations of the data packets using
> Bipi, where the weights f; are selected uniformly at
random from a Galois finite field. The arithmetic operation
of summation is performed over the same finite field.

Table I summarizes the main notation described herein.

B. Problem Formulation

We are interested in maximizing the immersion fidelity
delivered to the VR clients at the small base stations, while
minimizing the induced cost. We analytically formulate this
problem of interest as follows. Given a tile-video j featurin%
[ scalable layers and a small base station i, let Qj;/ Cf”j
denote the delivered immersion fidelity per unit cost, when this
content is delivered from small base station k. We recall that
in this case the decision variables Y,fj and Xll.}.k would need
to be set to one. Now, let Zi,j,k,l P,-lel.}.ij,l/Cf”f denote
the aggregate expected delivered immersion fidelity per unit
cost. Our objective is to maximize this quantity given various
system and problem formulation constraints that arise here.

We formally characterize our objective as:

Lk Lk
max Pini} Qj,l/Ci’j, 3)
yl xbk < ’
ij>erij l,j,k,l
1k 1 .. 1 T
st XPE <YL Yk LY <1, Vi, )
1
1k .o Lk .
DX <, Vi gL Y X B < Ziw, Vi, (5)
k J,Lk
[ pl : I pl 7 ;
D YiB = Zi Vi) YiB<Z. Vi, ©)
il sl

where the first constraint in (4) captures the notion that
tile-video j cannot be delivered from small base station k,
unless it is cached there. The second constraint in (4) captures
the condition that only one replica of tile-video j comprising /
scalable layers is stored at base station i. The first constraint in
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(5) captures the notion that tile-video j comprising / scalable
layers is streamed to VR clients at small base station i from
the edge server of only one small base station k. The second
constraint in (5) ensures that the tile-video data streamed to
any small base station i does not exceed the transmission
capacity of the carrier backhaul links, denoted here as Zp,.
Finally, the two constraints in (6) capture the limited caching
and computing capabilities of the edge servers at every small
base station, as introduced earlier.

C. Analysis and Approximation

The problem (3) - (6) is discrete and has a combinatorial
nature. Thus, it is difficult to solve. We first show that this
problem is NP-complete. We then formulate a polynomial-time
approximation solution via dynamic programming. Finally,
we analyze the quality of the resulting approximation. The
analysis builds upon our preliminary work in [30] and
addresses the additional challenges introduced by the integra-
tion of scalable 360° tiled video data, limited edge computing
capabilities, and a more general problem formulation, explored
in the present paper. We conclude this section by analyzing
the impact of using network coding packets on the problem
formulation (3) - (6) and the resulting optimization methods
that it will require.

Showing that (3) - (6) is NP-complete requires showing that
any given solution can be verified quickly and that a known
NP-complete problem can be reduced to (3) - (6) [38]. We can
verify a given solution by checking its feasibility against the
constraints (4) - (6) in polynomial time. This meets the first
requirement. We meet the second requirement by mapping the
known NP-complete multi-knapsack problem [21] to (3) - (6).

The multiple knapsack problem comprises N items, char-
acterized with profit and weight factors a, and y,, and K
knapsacks, characterized with holding capacity factors c. The
objective is to select K disjoint subsets of items such that their
aggregate profit is maximized and each can be assigned to a
knapsack k such that its aggregate weight does not exceed cy.
We extend this definition to include two weight factors per
item n, namely y,! ynz, and respectively two capacity factors
c,l and c,% per knapsack k. The NP-complete nature of the
problem remains under the extension. We map this problem
then to (3) - (6) as follows. First, we map each knapsack to
the edge server associated with one small base station, such
that Z; = c,l and Z; = c,%. Next, we map item n to tile
video j comprising / scalable layer such that B; =y, and
Bj. =72, and X, P;j = a,. Finally, we set Qj,l/Cf,’f =1,
Vi, j, 1, k.

Given the above, the knapsack problem and the mapped
instance of our problem share a feasible solution with a
common objective function value. Moreover, we can carry out
the problem mapping reduction above in polynomial time. This
completes the verification that (3) - (6) is NP-complete.

To formulate an approximation solution to solve (3) - (6),
we note that given our system setting in Figure 1, the cost
factors Ci’]f will all be equal when streaming tile video j
featuring [ scalable layers from any neighboring small base
station k # i, and smaller than the cost factor of delivering
this content from the remote back-end server. Thus, we can
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rewrite (3) - (6) as:

ma)% ZPinX;:nQn/Cf,n+ Z Pian'{nQn/Cna
Yin, X5 7 . .
in>Rin jn 1,n,k7$l

subject to: (4) — (6). (7)

To simplify the notation, we have mapped each original index
pair (j,/) to a unique single variable n in the reformulation
above. C, denotes the common cost factor of delivering
content item n from any neighboring small base station k # i.

Let ain = PinQn/Cl, + >4z PinQn/Cy denote the
maximum prospective benefit of caching item n at small base
station i. We define V = {l,...,K} x {l,..., N} to be
the set representing the vector product of the sets of small
base stations and content items, where K and N denote their
respective sizes. Let v = (i,n) € V denote a member of this
set. Facilitating V, we can solve (7) as a multiple knapsack
problem with multiple constraints associated with each small
base station k, as follows.

Using dynamic programming [39], we formulate the optimal
value function f,(-) associated with (7) as

Sfo(s1,81,...,5k,5K)
maXxOE{O,l}{ainxu+fu—l(~-~,Si_B§xu, Ei_Béwi“)},
if o' <v:xy=1An"=n A sisz.,EizB;,
maxxve{(),l}{(ain — Py Qn/én)xu
= —i—fv_l(...,S,‘—B;xu,f,'—é;xu,...)},
if ' <v:xy=1 An/:n,i’yéiAsisz,EizL_?;,
So1(s1, 51, ..., 5k, 5K),
if ' <v:xy=1An"=n,i’"=iVvs; <B§v§i <B§.,

forv =1|V|,..., 1, where fo(-) = 0. The state variables s; €
{0,...,Z;}and 5; € {0, ..., Z;} capture the slack caching and
computing capacity, respectively, at small base station i.

We develop the optimal value function f; (-) using the above
Bellman optimality condition recursion, in stages, iteratively,
starting from stage v = 1,...,|V|. Our objective is to deter-
mine fjy|(Z1, Zi, . Zk, ZK), which corresponds to the
objective in (7) at the optimal solution {x}. The latter can then
be obtained by backtracking from fjy(Z1, Zl, .2k, ZK).

Completing f,(-) requires a total running time of
O(|V|K M), where M = max;{Z;, Z;}. Thus, this approach
represents a pseudo-polynomial time algorithm for solving (7).

We proceed one step further to formulate a fully-polynomial
time approximation scheme [38] for solving (7) that will lever-
age the above development. The formulation will integrate an
efficient branch-and-prune methodology of keeping track of
only the optimal paths in a data tree structure capturing the
different stages of growing the optimal value function f;,(-).
We conclude with a verification of the fully-polynomial time
nature of the formulated approximation scheme.

In particular, we first scale the benefit factors a;, associated
with caching item 7 at small base station i, such that they are
all small numbers, polynomially bounded in |V|. Applying
dynamic programming via the optimal value function, as for-
mulated above, to the scaled instance of (7) would then result
in a polynomial running time (in |)|) solution strategy, with
an induced approximation factor €. Moreover, we integrate a
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Algorithm 1 Branch-and-Prune Approximation Scheme
1 Tnitialize T =, Fy = 0, Qo = {(T, Fo)}
2: for Vv €V do
2: Expansion Phase
3: for V(T,P,—1) € Qu_1 do
4: Branch Qu, = Qu—1 U{(TU{v}, Fo—1 + aw)}

Subject to:
4: (D) Y perBu +Bn < ZiNY cqp Bu + B < Zi

i) Ifd' €T:n' =n,
Set a, = aj,
i) If ' € T:n =nAi #4,

Set oy = | PG| — | Phay/Cn
5: end for
5: Prunning Phase
5. if3(T,F), (T, F)) e Q.
Subject to:

(i) F, = F”, and
(i) Z’uET’ By > ZvET” B"/\ZvET’ By > ZvET” By,

or
(ii) ZUET/ B > ZUGT” Bn/\Z’UET/ By > ZUET” B”’

6: then prune Q, = Q, \ {(T', F))}

7:  end if

8: end for

9: Select (T*, F}y,)) : ), = argmaxr, {(T, Fly|) € Qv}

desired € into the scaling of the factors a;,, so that this strategy

is fully-polynomial time, i.e., with respect to 1/€, as well.
Let o™ = max; , a;, denote a scaling factor we will use.

Let p = llog(ea™/|V])| capture the precision at which

we will approximate/quantize the benefit factors o;,. Then,
we define o = L%J + Zk# L%’}/C" )

Algorithm 1 outlines our efficient branch-and-prune algo-
rithmic implementation of the above strategy, as noted earlier.

In particular, Algorithm 1 leverages an efficient tree data
structure Q, that is dynamically updated during execution.
Member elements (T, F,) € Q, comprise subsets T of size
< v, of the first » elements in V), such that they induce
the maximum achieved benefit (F,), given the constraints
(4) - (6). For every subsequent v, Algorithm 1 comprises an
expansion phase, where the optimal paths (subsets of cached
data) maintained in Q,_; are branched out by considering the
next decision variable v (to cache item n at base station i),
while observing constraints (4) - (6), and a pruning phase,
where only the optimal paths after the expansion are retained.

At completion of stage v = ||, Algorithm 1 terminates by
selecting the caching configuration T* in Q) that exhibits
the maximum achieved benefit Fl*;; . Then, the corresponding
optimal streaming variables can be selected as follows. First,
Yo € T*, we set X! = 1. Next, if 3i,k #i : X! =1
AXE =0,¥m, we set Xj = 1. Last, if 3i : X5 =0,Vk,
we set Xilfl“ =1.

Finally, we verify the approximation guarantees of Algo-
rithm 1. Let OPT denote the optimal objective in (7) and
let {Xf.‘n}* denote the respective solution. We want to verify
that the solution {Xf.‘n}’ computed by Algorithm 1 satisfies
O({Xf.‘n}/) > (1 —€) - OPT, where O(-) denotes the objective
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function in (7). In particular, Algorithm 1 operates on scaled
benefit factors, where A = ea™¥*/|V| denotes the scaling
aspect. Thus, the benefit a, achieved by selecting item v in
the solution {Xll.‘n}/ will satisfy Aaj, < a;,. This implies that
the achieved benefit induced by {Xf.‘n}’ can drop at most A,
for every item » cached according to {X l’.‘n}*. Hence, we can
bound the overall achieved benefit drop as O({Xl].‘n}*) —A-
O’({Xf.‘n}*) < |V|A. Here, O’ denotes the objective function
in (7) evaluated on the scaled benefit factors.

On the other hand, the solution {X l{‘n}/ computed by Algo-
rithm 1 represents the optimal solution for the scaled instance
of the problem (7), (4) - (6). Thus, O'({XX }) = O'({X¥ }*).
Leveraging these two inequality relationships, we can write

OUXEY) = A-0'({XE)Y) = A-0'(1XE )
> 0((XE 1) —viA - (8)
= OPT — €™
> (1 —¢)-OPT )

where (8) follows from the first inequality relationship estab-
lished earlier and (9) holds as OPT > a™2*, This verifies the
desired approximation guarantees of Algorithm 1.

The running time of Algorithm 1 is polynomial in |V, as it
corresponds to completing a table of at most |V|>[a™* /A |
entries. The scaling enables the running time of Algorithm 1
also to be polynomial in 1/¢, as [V]a™* /A = 1/e.

D. Streaming Network Coding Packets

Using network coding packets reduces the complexity of
(3) - (6), as the decision variables Y,ﬁj and X fjk can be contin-
uous in that case. Thus, (3) - (6) becomes linear programming,
which can be solved exactly in ?olynomial time [40].

In particular, relaxing Y,fj,Xi}.k e [0, 1] to be fractional
will capture that now portions of the network coding packets
representing tile-video j featuring / scalable layers can be
cached at small base station k, and streamed from this base
station to users at small base station i, respectively. Hence,
the objective (3) will become a linear weighted-sum function
of continuous variables indicating the proportions of network
coding packets associated with a specific tile-video streamed
to users at a given small base station, from each base station.
Moreover, the constraints (4) - (6) will become linear functions
as well and will still hold after relaxing the original discrete
decision variables. Specifically, all constraints from (4) - (6)
will apply in a straightforward manner, with for instance Y, ,ﬁ ; B;

and X fjk Bﬁ. indicating in this case the data volumes associated
with the proportions of network coding packets representing
tile-video j comprising / scalable layers cached at small base
station k, and streamed from this small base station to users
at base station i, respectively.
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Fig. 8. Acyclic graph of scalable 360° video packet dependencies.

We note that the constraint >, Xll.’.k < 1 in (5) requires
that tile-video j comprising / scalable layers be streamed to
users at small base station i, from at most one base station k,
in the original case of discrete decision variables, to avoid
duplicate delivery. Network coding packets ensure the latter
by design,! thus requiring only for the same number packets
to be delivered on aggregate from across the entire set of small
base stations. That is, complementary subsets of packets can be
streamed from each base station k in parallel, thereby making
the streaming scheduling more efficient, with Xf]k indicating
the fraction each subset represents of the entire whole.

VI. BASE STATION 360° PACKET SCHEDULING

We explore rate-distortion-power optimized scheduling of
buffered packets at the base stations to overcome network
transients. In particular, a base station may experience transient
periods during which its actual transmission rate capacity
may be temporarily lower than its incoming rate of outbound
packets. This will necessitate buffering such packets and
effective scheduling of their outgoing transmissions. We will
explore this challenge via the setup illustrated in Figure 7.

We consider there are L packets in the transmission buffer of
a base station. The packets feature dependencies induced upon
them at encoding that can be characterized as an acyclic graph,
as illustrated in Figure 8. In particular, i — j (a directed edge
from node i to node j in the graph) indicates that packet j is
required to decode packet i. Similarly, j <[ denotes all ances-
tors of data unit / in the coding hierarchy. We characterize
each packet /[ with a delivery deadline # 4, size B; in bytes, and
reduction in reconstruction error A D; of the respective 360°
video that [ will contribute to, if received/decoded on time.

We characterize the forward/downlink channel with a packet
erasure probability € £ €(h, ¢), where & denotes the current
channel state/quality, as informed by receiver feedback, and
¢ the selected transmit power, and transmission delay 7 of
density p; £ p.(h,c). Let # = (x1,...,71) be the packet
transmission policy of the station, where z; € {0, 1} indicates
the two possible choices of not sending or sending packet / at
present (current time 7). Let ¢ = (cy, ..., cr) be its transmit
power policy. Finally, let e(x;, ¢) L Pl > t1q +o —t} be
the expected error of transmitting packet [ under policy 7,
where a captures the latency/interactivity requirements of the
VR application. We can formulate it as:

R if 7; =0,
a+ (=6 [ pe, ifm=1

Next, we formulate the problem of interest. Let D(x, c) =
2uAD]4 (1 — (), cj)) denote the aggregate expected

€(ny, ) = (10)

1Selecting the Galois field size to be large ensures linear independence of
the generated network coding packets [37].
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Algorithm 2 Optimal Transmission Scheduling Policy

Require: 771(0), 050)7 JO X1, A,n=0,0
1: repeat
22 mn=n+1;1=(n modL)

3 Solve (14) = 7™, ™

4: until convergence (J™=1 — J) < @)

reconstruction error reduction over the 360° tile-videos associ-
ated with the buffered packets, given (7, ¢). We formulate the
respective transmit rate/power induced by them as Ry (w) =
> mB and E(m,c) = >, cmB;. We investigate the best
scheduling policy (7, ¢) via the optimization

max D(z,c), subject to: Rr(x) <R}, E(z,c)<Ep, (11)
T,C

where Ep is the transmit power budget and C is the downlink
transmit rate capacity. We explore exact and approximate
lower-complexity techniques to solve (11).

In particular, facilitating the Generalized Lagrange multi-
plier method [41], we reformulate (11) as

minJ(z,c) = —D(n,c) + iR (x) + A2 E(x,c), (12)
T,C

where 1; > 0 denote the corresponding Lagrange multipli-
ers. Moreover, for mathematical convenience, we introduce a
minus sign in front of D(x, ¢) and replace the max operator
from (11) with a min operator. We then compute the optimal
policy via the Bellman optimality condition [39]:

(T*, ) (gi) = argmin D Pr o(qi11g0) Jns +(Gis1), (13)
TG gy
where ¢; is a state in the joint policy space of (=, c),
uniquely captured by the actions z{, ...,z and c},...,c}.
Py (gi+1lqi) are state transition probabilities induced by
(z,c), and Jr+ ¢+(qi+1) is the optimal Lagrange cost that we
can backtrack with an equivalent equation.

Moreover, we study minimizing J(z,c) iteratively, one
policy pair (7, ¢;) at a time. We note that (11) represents
a discrete optimization problem that is complex to solve,
due to its large state-space that requires an enumeration of
the 2© x |C|% choices that (7, c) can take on jointly. Thus,
we also design a faster iterative algorithm that computes an
approximate solution at lower complexity, as follows. Starting
from an initial solution for (z,c), we iteratively solve (12)
one variable pair (7, ¢;) at a time, while keeping the others
((mj,cj), for j #[) fixed, until convergence.

Concretely, let (z©, ¢(©) indicate an initial choice for the
joint transmission scheduling and power control policy. Let
n = 1,2,... represent the iteration count. We select one
policy pair (nl("),cl(")) to optimize at iteration n, e.g., in a
round-robin fashion, for [ = 1,..., L. We fix the remaining
policy pairs (nj(."),c(.")) = (nj(."_l),c(.n_l)), for j # [, and
compute the values of (nl(”) , cl(”)) that solve (12). We then
increment n and move on to the next /, until J (7 (”), c(”)) =
](7'[(”71), C(nfl)).

By grouping terms in (12) associated with (77, ¢;), we can
formulate the key step of the iterative optimization as

(n)

", cl(”) = argmin Sl(”)e(m) + Am By, (14)
T,Cl
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where 4 = 41 + 42 ¢ and Sl(") captures the overall impact
of packet [ on the reconstruction error of its 360° video.
Similarly, we derive Sl(") from (12) as

s => aD; [T —e@y.
j=l m=j
m#l
We formally summarize the optimization in Algorithm 2. Its
convergence is guaranteed, as the objective function J(x, ¢)
is bounded from below and is monotonically non-increasing
at every iteration.

VII. EXPERIMENTS
A. Experimentation Methodology and Data Characteristics

To evaluate the performance of our system framework,
we carry out comprehensive simulation experiments that inves-
tigate diverse performance aspects of the several major com-
ponents comprising it. To assist the experimental analysis,
we have implemented the scenario under consideration from
Figure 1 as follows. There are three small base stations and five
users assigned to each base station. The users are distributed
uniformly at random across the spatial area served by the
respective small cell. There are eight 360° videos available in
the system that the users can request for streaming. Following
earlier studies, we consider that the likelihood that a user
requests a specific video file can be modeled using a Zipf
distribution with a parameter y set to 0.8 [42]. The 360°
video content comprises popular sequences used in earlier
studies that feature diverse characteristics [14], [43]. These are
Coaster, Wingsuit, Paris, Basketball, Runner, Angel Falls, Kite
Flite, and Dolphins. They feature spatial 360° panorama reso-
lutions of 4K or 8K, and temporal frame rates of 30 or 60 fps.

We have implemented our novel multi-layer 360° tiling pro-
posed in Section IV using the scalable extension of the latest
video compression standard known as SHVC [35], to construct
the 360° content into L = 3 scalable layers, Group of
Pictures (GOP) size of 30 frames, and 6 x 4 spatial tiles. These
advances enabled us to collect the immersion fidelity factors
Q.1 introduced in Section V. All reference methods examined
in our evaluation use instead 360° video content corresponding
to the above sequences, compressed using HEVC into GOPs
of 30 frames, as in our case. We leveraged extensive 360°
video user navigation traces that we have captured as part of
our ongoing work and data collection campaign [14], [15],
[44], [45], to enable our statistical models of user video tile
navigation formulated in Section IV-C.

We related the cost factors Cllf introduced in Section V to
the energy consumption of streaming the 360° content. Con-
cretely, if / scalable layers of tile-video j are cached locally at
small base station i, the energy consumption cost will reflect
the base station transmission only. If they are retrieved from
another base station k, the consumed energy will represent the
sum of the energy spent to move the content between i and
k, and the energy spent by i to transmit them. We considered
that the energy required to move content between small base
stations is proportional to the number of network hops between
them (in our case one). We alike accounted for the cost of
streaming [ scalable layers of tile-video j from the back-end
server, assuming that the data will traverse 15 hops in this case,
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based on [46]. Finally, following [47], [48], we considered that
the energy per bit consumed by wireless transmission is 3.5 uJ
and that for wireline transmission is 0.5 uJ per hop.

B. Reference Methods

We have implemented several state-of-the-art reference
methods, to benchmark the performance of our system frame-
work and its major components against them, as part of
our evaluation. To examine the pure streaming performance
of our scalable multi-layer 360° tiling from Section IV
and the associated viewport-adaptive allocation of resources
suggested therein, we have implemented the state-of-the-art
video streaming standard MPEG-DASH [6], [31]. We examine
the trade-off between delivered 360° viewport quality and
available streaming data rate enabled by these two approaches.

We have also implemented the following two caching
techniques, Blasco2014 [20] and LRU (Least-Recently-Used),
to compare against our cooperative edge-based multi-user
VR streaming and the associated Algorithm 1 for optimal allo-
cation of storage and computing resources therein, proposed
in Section V. As introduced earlier, Blasco2014 implements a
caching policy that aims to minimize the aggregate delay of
content retrieval at a base station. Moreover, LRU is a very
popular method used in practice, which implements a caching
policy that evicts the least recently used cached items first,
when updating the stored content.

Finally, we have implemented two state-of-the-art methods
for transmission error control, to benchmark the efficiency of
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Fig. 11. Viewport at (¢, 0) = (0°,0°).

Fig. 12.

Viewport at (¢, ) = (120°, —60°).

our 360° packet scheduling proposed in Section VI to address
transient packet buffering at the base stations. These are
hybrid ARQ that combines Automatic Repeat reQuest (ARQ)
scheduling with efficient channel coding via Reed-Solomon
codes [49], to help address more effectively packet loss during
transmission, and the method proposed in [37] that introduces
unequal error protection in video delivery via network coding.
We denote the former reference method as HARQ and the
latter reference method as Thomos2011.

C. Ablation Evaluation

360° user viewport tile navigation probabilities. We have
constructed the statistical models of user navigation following
our approach proposed in Section IV-C. Here, we illustrate the
induced tile navigation probabilities for two video sequences
used in our evaluation. In particular, in Figure 9 and Figure 10
we show P,l(,t,",’t') defined in Section IV-C, for f; and t;
corresponding to the first and last video frame of a 360° video,
for Roller Coaster and Wingsuit, respectively.

We can observe from Figure 9 that in the case of Roller
Coaster, video tiles on the fringes of the 360° panorama
are rarely navigated by a user, i.e., they scarcely appear in
the user’s viewport, during a 360° video navigation session.
Conversely, video tiles indexed as (n, m) = (3,2), (4,2), (3,3),
and (4,3) are quite often navigated by the user, as noted by
their much higher navigation likelihoods shown in Figure 9.

We can observe from Figure 10 that the navigation proba-
bilities of 360° video tiles for the sequence Wingsuit, induced
by users experiencing the content, look fairly different. This
is due to the nature of this content and the induced specific
interests of the users, expressed when navigating it. In partic-
ular, we can see now that the typical user is predominantly
interested in navigating the southern hemisphere of the 360°
panorama, as seen from the respective tile navigation proba-
bilities indicated by Figure 10 therein. The more dynamic and
interesting content of Wingsuit resides spatially in the southern
hemisphere of its 360° video sphere.
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In Section IV-C, we explained the need to normalize the
relative impact of the spatial area of a user viewport across
the video tiles (n, m) comprising the 360° panorama of a 360°
video frame at time instance t;, as carried out in (1), when
formulating our statistical models of 360° user navigation.
We noted that this is due to the considerably uneven areas
occupied by diverse viewports, depending on their latitude on
the 360° sphere. We illustrate this aspect here, by visualizing
two such representative viewports in Figure 11 and Figure 12.

Due to applying the equirectangular projection to map
the 3D 360° sphere to a wide 2D panorama, as illustrated
in Figure 2 and explained in Section II, the shape of a viewport
considerably changes. In equatorial regions of the 2D 360°
panorama, a projected viewport is smaller and more compact
(see Figure 11), while in polar regions a projected viewport
is spread over all polar tiles (see Figure 12) and occupies a
wider spatial area. Figure 5 can be referenced to understand
the spatial locations of these two viewports relative to the
underlying tiling of the respective 360° video.

Computing workload vs. tile data volume. To support our
optimization techniques, we investigated the computing work-
load imposed on a microprocessor when decoding compressed
video tiles and rendering the corresponding 360° panorama
image data they represent. In particular, we empirically char-
acterized the required number of CPU cycles to decompress
and render a 360° video tile, as a function of its data volume.
These finding are shown in Figure 13, where we can see that
the resulting dependency follows closely a polynomial model.
We leveraged this dependency to then develop a closed
form third order polynomial model that accurately captures
the computing workload induced on an edge server as a
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function of the desired streaming data rate for a 360° video
tile. Finally, we integrated this model into our optimization
framework, to enable rigorous allocation of the computing
resources available at an edge server of a small base station.

Advantages of scalable tiling and user-viewport
adaptation. To examine the transmission efficiency of the
viewport-adaptive 360° space-time scalability investigated
in Section IV-D, which integrates our statistical models
of 360° VR user navigation, we carried out the following
experiment. A sender transmits 360° content to a VR client
over a network link of a given data rate, as highlighted by
Figure 2. We implemented the optimization we formulated in
Section IV-D to decide how the available network bandwidth
C should be allocated across the scalable tile layers associated
with the 360° content, in response to the navigation actions
of the user, and measured the resulting expected immersion
fidelity experienced by the user. We formally measure the
latter quantity as the luminance (Y) peak-signal-to-noise ratio
(Y-PSNR) of the 360° viewport video signal reconstructed on
the user’s VR device. This metric has multiple analysis and
implementation advantages, and correlates closely with other
metrics proposed before [50]. We vary the available network
bandwidth C and record the corresponding immersion fidelity
delivered to the user, enabled by our approach, in each case.
Simultaneously, we recorded the corresponding performance
of MPEG-DASH in the same context. Two 360° video
sequences from our data set, Wingsuit and Angel Falls, have
been used in this analysis.

We show the respective results in Figure 14. We can
see that our approach enables considerable benefits over
MPEG-DASH by integrating the user navigation actions
and the rate-distortion trade-offs across the 360° panorama,
in deciding how transmission resources should be allocated.
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Approximately 6-7 dB of immersion fidelity improvement
have been enabled across both 360° sequences and all network
bandwidth values considered in Figure 14. These advances can
in turn enable much higher operational efficiency for a stream-
ing system for 360° video delivery that integrates our method-
ology from Section IV, as our subsequent results demonstrate.

End-to-end system performance. We first examine the
energy efficiency of our system framework, when streaming
the 360° content to the mobile VR users. In Figure 15,
we study the energy consumption of the several methods under
comparison, as a function of the available storage capacity of
the edge servers collocated with the small base stations. In this
evaluation, we set the computing capability (power) Z; of the
edge server at each small base station i to 65W, following
commonly adopted values for present microprocessors [51].

We can see that our approach considerably outperforms
the two reference methods, demonstrating three to six times
lower energy consumption across the entire range of x-axis
values examined in Figure 15. These gains are enabled by our
optimization framework that can optimally pool and allocate
the transmission, storage, and computing resources available at
the small base stations. Moreover, our approach enables much
higher energy consumption versus storage capacity efficiency,
for low values of the latter, as observed in Figure 15.

As expected, the reference method Blasco2014 outperforms
the other reference method LRU due to the optimization it
implements, though its gains appear to be marginal. Finally,
we also evaluated the performance of our framework when
operating on network coding packets. We can see from
Figure 15 that this introduces further energy consumption
savings, as in this case the optimization (3) - (6) can be solved
exactly, as explained earlier. This then leads to even higher
utilization of the available system resources, as expected.

Next, in Figure 16, we study the energy consumption of the
several methods under comparison, as a function of the avail-
able computing capacity of the edge servers collocated with
the small base stations. In this evaluation, we set the storage
capacity Z; of the edge server at each small base station i
to 100 GB. We can see again that our approach considerably
outperforms the two reference methods, demonstrating three
to seven times lower energy consumption across the entire
range of x-axis values examined in Figure 16. These gains
are enabled by our optimization framework that can optimally
pool and allocate the transmission, storage, and computing
resources available at the small base stations, as explained
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earlier. Moreover, our approach enables much higher energy
consumption versus computing capacity efficiency, for low
values of the latter, as observed in Figure 16.

Evaluating the performance of our framework on network
coding packets leads to further energy consumption savings,
as seen from Figure 16. This is an expected outcome equiva-
lent to that observed in the context of the evaluation and results
reported in Figure 15 earlier. These further benefits arise from
the possibility to solve the optimization (3) - (6) exactly,
thereby enabling even higher system resources’ utilization
efficiency, as explained before. The similar performance out-
comes observed in Figure 15 and Figure 16 demonstrate
the consistent benefits introduced by our framework against
diverse key system parameters.

Finally, we evaluated the delivered immersion fidelity
enabled by our approach across the different 360° videos
streamed to the mobile VR users in the setting under consider-
ation. These results are shown in Figure 17, which includes the
corresponding performance results for the reference method
Blasco2014. The equivalent findings for the second reference
method LRU are not included in the figure, as they are lower
than those for Blasco2014. We can see that across all five
360° videos considered in Figure 17 our approach enables
consistently significant gains in immersion fidelity delivered
to the mobile users, ranging between six to ten decibels of the
viewport Y-PSNR for a mobile VR user.

Moreover, our approach enabled delivering some
360° videos also at higher spatial resolutions or temporal
frame rates, thereby augmenting further the user’s immersion
quality of experience. In particular, the video Paris was
delivered at temporal frame rate of 60 fps by our approach,
as indicated in Figure 17, while the reference method
Blasco2014 could only stream it at 30 fps. Similarly, our
approach enabled delivering the videos Basketball and
Runner at higher 8K spatial resolution for the 360° panorama,
as indicated in Figure 17, while Blasco2014 could only
stream them at 4K spatial resolution.

Packet transmission scheduling utility. We carry out two
experiments to evaluate solely the efficiency of the 360° packet
scheduling, proposed in Section VI to address prospective
network transients at the small base stations, as described
therein. In the first evaluation, we measure the reduction in
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delivered immersion fidelity when the compressed video pack-
ets of a 360° video to be transmitted are buffered at a small
base station, due to an insufficient transmission capacity, and
their outgoing transmissions need to be carefully scheduled.
We consider that the packet loss rate € on the respective
downlink to the mobile VR user is zero in this evaluation.

In Figure 18, we show these results versus the respective
mismatch between the data rate required by the 360° content
and the actual available transmission capacity, expressed in
percent of the first quantity. First, we can see that for the
same set of buffered 360° packets, all three methods show no
reduction in delivered immersion fidelity, in the case of no mis-
match between the 360° content’s required data rate and the
available transmission capacity, as expected. However, once
the network data rate mismatch starts increasing, we can see
from Figure 18 that the performance of the reference methods
HARQ and Thomos2011 considerably decreases. On the other
hand, our approach enables robust and consistent performance
across the entire range of mismatch values evaluated, due to its
rate-distortion optimized design that integrates the importance
of every 360° packets for the immersion fidelity delivered to
the user, as formulated in Section VI.

Concretely, we observe a drop of close to seven decibels in
immersion fidelity for a mismatch of 6%, in the case of HARQ.
This outcome is expected as HARQ treats every packet equally,
when deciding on their transmissions, and thus it is oblivious
to the impact that omitting the transmission of a packet
may have on the resulting immersion fidelity experienced
by the respective mobile VR user. The second reference
method Thomos2011 offers a more graceful degradation in
performance, as the data rate mismatch increases, as evident
from Figure 18, due to the partial robustness it introduces.
However, the immersion fidelity reduction it demonstrates is
still considerable and reaches up to 4.2 decibels. On the other
hand, an immersion fidelity reduction of less than 0.5 decibels
is maintained by our approach throughout the entire range of
mismatch values examined in Figure 18.

In the second evaluation, we consider that there is no
mismatch between the required data rate for the buffered
packets and the available transmission capacity, however,
the respective downlink to the mobile VR user features
non-zero packet loss rate €. Here, the three methods under
comparison need to decide the transmission scheduling of
the buffered 360° packets such that it includes prospective
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retransmissions of those packets lost during their original
transmission. We measure the resulting reduction in delivered
immersion fidelity for each method against the packet loss
rate €. These results are shown in Figure 19.

We can see that our approach again enables robust and
consistent performance across the entire range of loss rates
examined in the figure. This is due to its rate-distortion
optimized design that rigorously integrates the importance of
every 360° packets for the immersion fidelity delivered to
the user and the impact of prospective packet loss, when
scheduling the transmissions of outgoing packets. Thus, our
approach maintains an immersion fidelity reduction that does
not exceed 1.5 decibels, even at 6% downlink packet loss.

On the other hand, the performance of the reference meth-
ods HARQ and Thomos2011 considerably decreases, as the
packet loss rate increases, as seen from Figure 19. In particular,
we observe an immersion fidelity reduction of close to 14 dB
and 8.2 dB respectively for HARQ and Thomos2011, for
packet loss rate of six percent. The considerably degraded
performance of HARQ is due to the same reasons explained
earlier, and it features the well-known cliff effect of traditional
error protection (FEC) [52], as witnessed by Figure 19. The
error-adaptive design of Thomos2011 helps it provide more
graceful performance degradation relative to HARQ. However,
since its operation is data-agnostic, its performance is still
notably penalized over our approach.

VIII. CONCLUSION

We have explored a novel communications system that inte-
grates for the first time scalable multi-layer 360° video tiling,
viewport-adaptive rate-distortion optimal resource allocation,
and VR-centric edge computing and caching, to enable next
generation high-quality untethered VR streaming. Our system
comprises a collection of 5G small cells that can pool their
communication, computing, and storage resources to collec-
tively deliver scalable 360° video content to mobile VR clients
at much higher quality. The major contributions of the paper
are the rigorous design of multi-layer 360° tiling and related
models of statistical user navigation, analysis and optimization
of edge-based multi-user VR streaming that integrates view-
port adaptation and server cooperation, and base station 360°
video packet scheduling. We also investigated the possibility
of network coded data operation and its implications for the
analysis, optimization, and system performance we pursue in
this setting. The advances introduced by our framework over
the state-of-the-art comprise considerable gains in delivered
immersion fidelity, featuring much higher 360° viewport peak
signal to noise ratio (PSNR) and VR video frame rates
and spatial resolutions. Integrating our advances in practice
represents prospective fruitful future work.
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