1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution reEuires IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX XX

FedPacket: A Federated Learning Approach to
Mobile Packet Classification

Evita Bakopoulou, Student Member, IEEE, Balint Tillman, and Athina Markopoulou, Fellow, IEEE

Abstract—In order to improve mobile data transparency, various approaches have been proposed to inspect network traffic generated
by mobile devices and detect exposure of personally identifiable information (Pll), ad requests, etc. State-of-the-art approaches use
features extracted from HTTP packets and train classifiers in a centralized way: users collect and label network packets on their mobile
devices, then upload data to a central server; the server uses the data contributed by all users to train a packet classifier. However,
training datasets from network traffic collected on user devices may contain sensitive information that users may not want to upload. In
this paper, we propose a federated learning approach to mobile packet classification, which enables devices to collaboratively train a
global model, without uploading the training data collected on devices. We apply our framework to two packet classification tasks (i.e.,
to predict Pll exposure or ad requests in individual packets) and we demonstrate its effectiveness in terms of classification
performance, communication and computation cost, using three real-world datasets. Methodological challenges we address in the
process include model and feature selection, as well as tuning the federated learning parameters specifically for our packet
classification tasks. We also discuss privacy limitations and mitigation approaches.

Index Terms—Federated learning, machine learning, mobile devices, packet classification, privacy

INTRODUCTION

1

HERE is recently increased public awareness and concern
T about how sensitive information available on mobile devices
is shared and tracked. In particular, mobile apps and third party
libraries (including developer, tracking and advertising libraries)
routinely send such information (i.e., personally identifiable infor-
mation or “PII”, sensory data, user activity) to servers, typically
without the user being aware or in control of this information
flow. Efforts to increase online data transparency include landmark
privacy laws (such as GDPR [1] and CCPA [2]) as well as
technical approaches (e.g., permissions [3], static and dynamic
analysis [4], [5], and network-based approaches [6], [7], [8], [9D).

In this paper, we focus on network-based approaches that
inspect packets transmitted out of mobile devices in order to detect
PII, tracking, ad requests, malware or other activities; an example
is depicted on Fig. [2| This information can then be used to take
action (e.g., block outgoing packets), to inform the user, or for
measurement studies. Early approaches (e.g., Haystack/Lumen [6]
and AntMonitor [8]) performed deep packet inspection (DPI) and
string matching to find PII in a network packet. Mobile browsers
[[10] use manually-curated filter-lists [[11] to match URI and other
information and block ad requests.

Machine learning approaches have been proposed to predict
PII 7], [9], [12], ad requests [13]] or tracking [[14] in outgoing
packets, based on features extracted from HTTP requests. These
classifiers are trained using labeled packet traces, obtained either
through manual/automatic testing of apps, or by devices labeling
packets from real user activity and uploading them to a server. Fig.
depicts the spectrum of approaches for training such models. At
one extreme, we have the the Local approach (Fig. [I{a)): mobile
users label packets on their device, train and apply their own

o All authors were with the University of California, Irvine when the work
was conducted. Bdlint Tillman is currently with Google, Mountain View.

E-mail: {ebakopou, tillmanb, athina} @uci.edu.
Manuscript received May 14, 2020; revised January 13, 2021.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

+

Bermission. See http://www.ieee.o
ownloaded on

classifier locally. In this case, users do not share any information
with untrusted servers or other users, thus preserving their privacy.
However, they do not benefit from the global training data that is
available on a large number of devices to generalize. At the other
extreme, we have the Centralized approach (Fig. b)): mobile
users upload their packet logs to a central server, which then
trains a global classifier and shares it with all users to apply on
their devices. However, network packet traces, collected on users’
devices, contain sensitive information (in the label, features, or
any part of the HTTP packet) that users may not want to share
with a server or other users, because it directly exposes sensitive
identifiers (GPS location, device ids) and can be used to infer
further sensitive information, such as browsing history.

In this paper, we propose FedPacket for federated mobile
packet classification, which combines the best of both worlds: it
allows devices to collectively train a global model, without sharing
their raw training data. The Federated Learning (FL) framework
was originally proposed to collaboratively train machine learning
models, for text and images, from mobile devices without sharing
raw training data [[15]. An overview is depicted on Fig. c). The
main idea is that mobile devices train a local model, and send only
model parameters to the server, instead of their raw training data;
the server aggregates the information from all users, and sends
the updated parameters of the global model to all devices, and the
process repeats until convergence. In this paper, we apply FL to
classify outgoing HTTP packets w.r.t. two specific tasks, namely
predicting whether an outgoing packet contains: (1) exposure of
Personally Identifiable Information, which we refer to as PII; or
(2) an Advertising (Ad) request, which typically results in an ad
being served in the HTTP response. Methodological challenges
we had to address include model and feature selection and tuning
the FL parameters, specifically for packet classification.

With respect to model selection, we had to bridge the gap
between the theory of federated learning (originally developed for
image classification using Stochastic Gradient Descent (SGD)-

g/
ctober 03,2(%2% at 01:27:34 UTC from IEEE Xplore. Restrictions apply.

ublications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

Transactions on Mobile Computing

2
U @ 1. Collect Training Data [1. All Devices send Local
- . 'g\ Training Data to Server
wE b 2.Train Local Model] \
—) @ —) N\ E /\D
= AN
282}/ 7 A
s _E

(a) Local: share nothing

i 2. Server Trains

3. Server sends Global
Model to all Devices

(b) Centralized: share training data

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX XX

0. Server & Devices agree on Model. Initialize Parameters
1. Each Device trains Local Model based on Local Data

L

2. Dev;
Ces senqg
o — — \LOCaI Parameye, @
= ==
D j$ <4._S'eEel:eH(-isvpa_akg - '%:

Global Model to all Devices
—=
—
= — 3. Zel;ver aggregtates 8f(
i —— updates parameters o:

Global Model

i global model
@ 8+: Repeat from step 1, until convergence

(c) Federated: share model parameters, not data

Fig. 1: Overview of general approaches to train machine learning models for packets from mobile devices.

“uri”:"/data.gif?aid=1234&uid=12345&cb=0.1234&rf=http%3A//mobile.nytimes.
com/comments/2015/05/24/opinion/sunday/maureen-dowd-driving-uber-
mad.html&rp_s=c&p_app.privacypolicy=1&p_device.os=Android&p_device.pixel
_ratio=3.5&p_device.connectiontype=3&androidid=5678&p_device.carrier=xxx
%20X%2C%20City_X&p_device.storerating=1.00&p_pos=btf&p_geo.consent=18&
p_geo.longitude=xxxxx&p_geo.latitude=xxxx&p_geo.type=2&p_geo.city=City_X
&p_geo.country=Country_X&p_screen_res=412x732"

Outgoing packet
> { Gail S0

Fig. 2: Example of an outgoing HTTP packet, sent from an app on the
mobile device to a remote server. The URI field alone reveals a lot of
information, including various identifiers, referred domain, location,
etc. that can be used for fingerprinting and tracking users.

facebook

based models, such as Deep Neural Networks (DNNs)) and the
practice in network packet classification (previously relying on
Decision Trees (DTs) [7]], [9], [13]], [14], whose rules have intu-
itive interpretation and can be implemented as regular expressions
to easily filter traffic on mobile devices). Unfortunately, DTs do
not naturally lend themselves to federation, because they are not
SGD-based. In this paper, we choose Federated SVM as the core
of our FedPacket framework, as discussed in detail in Section[3.3]

With respect to feature selection, we propose a feature space
based on HTTP keys that performs well for both classification
tasks (since PII exposure and Ad requests use the same fields to
profile users), while protecting sensitive information and reducing
the feature space. First, we observe that not only training data,
but also features can expose sensitive information; e.g., that would
be the case if some of the PII shown in Fig. 2| were selected
as features. Therefore, we use only HTTP Keys as features from
an HTTP packet, (i) keys from URI and Cookie fields (ii) custom
HTTP headers and (iii) the presence of a file request. We purposely
do not use neither destination domains or hostnames, nor any
information from the URI path (which could be sensitive itself if
a user visits a sensitive website with i.e., political, medical or reli-
gious content) but only the keys mentioned above. Prior work [7]],
[[13] used all the words from the HTTP packets after discarding
the most frequent ones and the rarest ones. Our choice of features
not only minimizes the sharing of sensitive information, but also
reduces the number of parameters that need to be updated. Second,
we observe that the size of the feature space depends on the mobile
apps and third-party libraries. For example, Webview apps can
access any domain, which leads to an explosion of feature space
size and wide variation across users; in contrast, non-Webview
apps have limited APIs and result in a small feature space, which
is the same across different users.

We evaluate our methodology and show that it achieves high

F1 score for both classification tasks (PII exposure and Ad
Request), with minimal computation and communication. To that
end, we use three real-world datasets: the publicly available
NoMoAds for Ad requests [13]], [[16] and AntShield for PII
exposures [12], [17]; and our in-house datasets collected from
real users. For the first two datasets, we create synthetic users
by splitting the data evenly or unevenly, and we evaluate how
it affects FL. We compare Federated to Centralized and Local
approaches w.r.t. the classification performance, communication
rounds and computation. We show that the Federated models are
superior to Local models and comparable to their corresponding
Centralized models, in terms of classification performance (they
achieve an F1 score above 0.90 for PII and above 0.84 for
Ad request prediction), without significant communication and
computation overhead per device. We also demonstrate the benefit
of crowdsourcing: a relatively small number of users is sufficient
to train a Federated model that generalizes well. Finally, we
evaluate different user selection strategies w.r.t. convergence and
show that random client selection performs well.

Finally, we address privacy considerations. FedPacket clearly
improves the privacy of mobile packet classification, by enabling
devices to collaboratively train a classifier, without uploading their
raw training data to a server. Although it significantly raises the
bar in the arm-race, federated packet classification is not immune
to inference attacks, which are inherent to any distributed learning
approach [[18], [[19], [20], [21], [22]. In Section@ we demonstrate
an attack by an honest-but-curious-server that uses the non-zero
gradient updates to infer the features of a target user, and we
evaluate its sensitivity to various FL parameters. Furthermore, we
show what additional sensitive information can be inferred, such
as predicting the websites that a user has visited. To the best of our
knowledge, this is the first time that such inference attacks have
been demonstrated on HTTP data, and are specific to our problem
setup. To mitigate these attacks, we show that Secure Aggregation
on top of FL [23], can provide effective protection against feature
leakage, essentially by anonymizing the gradient updates.

The rest of this paper is organized as follows. Section[2|reviews
related work. Section [3| presents our methodology for FedPacket.
Section [] describes the datasets used for evaluation. Section [3
presents various scenarios and provides insights along the way.
Section [6] presents privacy attacks and mitigation approaches spe-
cific to FedPacket. Section [7| concludes the paper and discusses
future work. The Appendix provides additional results.

2 RELATED WORK

There is increasing interest in understanding and controlling PII
exposure and user tracking on mobile devices. Proposed approa-

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution reEuires IEEE Bermission. See htt, ://www.ieeeor(%glublicationsﬁstandards/publications/ri hts/index.html for more information.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

ownloaded on

ctober 03,2 at 01:27:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

Transactions on Mobile Computing

BAKOPOULOU et al.: A FEDERATED LEARNING APPROACH FOR MOBILE PACKET CLASSIFICATION 3

ches include: permissions [3|], static analysis [4], dynamic analysis
[I5], and network-based approaches [24], [25], [26]; our work falls
within the latter which inspect mobile traffic for PII exposure, or
other information (i.e., tracking, malware, advertising). State-of-
the-art tools include Haystack/Lumen [6]], Antmonitor [[§] which
use string matching to detect PII in outgoing packets sent from
apps to remote destinations. The interception of mobile traffic is
not part of our contribution but it is orthogonal to our approach.
Ad and PII Detection via Machine Learning. There are
many approaches based on manually curated blacklists [[11], [27],
[28] of domains on which they decide to block the whole packet
destined to such domains or cookies from such domains [29].
Since blacklists are hard to maintain due to the ever-changing
advertising ecosystem, additional graph analysis [26], or machine
learning (ML) [13], [30] are used. NoMoAds [13] and NoMoATS
[[14] are state-of-the-art approaches for detecting Advertising and
Tracking requests, respectively. They train classifiers, based on
URL requests labeled by blacklists [|11], to detect advertising and
tracking; conversely, the classifiers trained this way can generalize,
complement and enhance blacklists’ manual curation. Recon [7]
and AntShield [9] use ML to detect PII exposure in outgoing
HTTP packets: they train (offline, and in a centralized fashion)
per-app/domain Decision Trees to detect PII exposures, based
on features extracted from HTTP packets. We build on top of
these ML approaches to introduce mobile packet classification
learning in a distributed way. A step towards a more privacy-
preserving PII detection is PrivacyProxy [31], which processes
user data locally and sends only hashed data to a server, however
it has to wait for enough data to be collected from other users in
order to detect PII. All these approaches are Centralized, as they
do not consider collaboration between users to leverage diverse
app usage behaviors that can generate PII or Ad requests. In this
work, we focus on two classification tasks: PII exposure and Ad
request detection because of the availability of labeled datasets
that support these per-packet classification tasks, but our federated
mobile classification approach can be used towards predicting
other tasks, i.e., fingerprinting [32], or tracking [14] detection.
Distributed & Federated Learning. The authors in [12]
showed that systematic crowdsourcing where users collaborate
with each other via data sharing helped to train better classifiers
to detect PII exposures. However, it is assumed that users are
willing to share their raw local data with a server and other
users, which poses privacy risks. To leverage crowdsourcing in a
more privacy-preserving way, we considered Distributed Learning.
An early version was proposed in [33]], where users trained
models locally and shared the Stochastic Gradient Descent (SGD)
updates of certain parameters with a server, which then updated
the global model. However, [33] had no averaging mechanism
and the evaluation was limited. The paper that coined the term
“Federated Learning” (FL) was introduced in [15], in order to
train text and image classifiers using training data available on
a large number of mobile devices. The idea is that devices train
SGD-based classifiers based on their local data and send updates
(model parameters) to a trusted server, which aggregates them
to update a global model. The main advantage of FL is that the
training data does not leave the device and thus, it is more privacy-
preserving than a centralized model. A secondary advantage is that
exchanging model parameters requires less communication (as-
suming fast convergence) than exchanging the raw training data,
but this communication saving comes at some computational cost
imposed on the devices to train models locally. Subsequent papers

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution reEuires IEEE lBermislsiordl. Sdee http://www.ieee.o:
ownloaded on

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

introduced optimizations in terms of communication efficiency,
scalability and convergence [34], [35], [36], [37], [38]. In contrast
to related work in the field that is using image classification or next
word prediction via word/character embeddings [15], we focus on
a problem where pre-trained word embeddings (i.e., Word2Vec
[39]) are not applicable due to non-dictionary words present in
HTTP packets. We apply FL in a setting where shallow models’
(i.e., SVM) performance is comparable to state-of-the-art methods,
this means that deep learning architectures (e.g., Convolutional
Neural Networks [|15]) are unnecessary. An earlier version of this
paper, appeared on ArXiv [40].

Dealing with Heterogeneity. Dealing with system and data
heterogeneity across different users, and the related notion of
personalization, are open problems in FL [41]. FedProx [42] adds
a proximal term to restrict the local model’s weights to be closer
to the global model. The Continual Learning (CL) literature can
tackle convergence in non-IID settings primarily for streaming
data, using methods such as: 1) Generative Replay/Memory Re-
hearsal [43], [44], [45], not applicable to FL due to the need
of data sharing; and 2) regularization-based methods [46], [47],
[48]] adapted to address differences between CL and FL (such
as: sequential vs. parallel tasks, one-pass of data vs. multiple
passes, etc.). These works aim to achieve better generalization
and tackle catastrophic forgetting [49] in non-convex settings
mainly by identifying parameters that are most informative for
each task and penalizing the changes to these when a new task
is being learned. In this work, we chose linear kernel SVM,
which has a convex loss function, and we show empirically that
it reaches convergence within tens of communication rounds in
various settings (IID and non-IID data); Sec. The CL methods
could further speed up convergence, but they would also add
computation and communication cost, i.e., tripling the size of the
model parameters exchanged [46], or the need of a proxy dataset
on the server [47]; these trade-offs are deferred to future work.

Privacy and Federated Learning. Several security and pri-
vacy attacks are known for machine learning systems; e.g., [[18],
500, [51], [52], [53]] which include membership inference attacks,
model inversion/extraction and model poisoning via malicious
clients/server. Although FL protects the training data of each
device and shares only model parameter updates, these updates
may themselves leak information, due to privacy vulnerabilities
of SGD [18], [19]. Examples of leakage include membership
inference of data points [|18], inference of certain property of train
data [|18] or reconstruction of train data [20], [21], [22], [51], [54],
[55]. Reconstruction of local data usually requires either training
auxiliary models (GANs) [51], [54] and/or having access to an
auxiliary dataset [18], however, recent works [20], [21], [22], [55]
introduced new methods for reconstructing local train data based
on gradient updates without the need of auxiliary data. To prevent
privacy attacks, additional mechanisms have been proposed on top
of FL, most notably, Secure Aggregation based on secure Multi-
Party Computation (MPC) [23] or Differential Privacy [56] to offer
privacy guarantees [[57], [58], [59] or both [60]. In this paper, we
consider such variants of FL, as orthogonal and out of scope. Our
focus in this paper is on the FL framework itself: how to adapt and
evaluate it specifically for mobile packet classification (as opposed
to the image/text classification that is most commonly used for).

In terms of privacy, we demonstrate a privacy attack by an
honest-but-curious server that uses non-zero gradients to recover
the features (shallow leakage) of a target user. In Sec. @ we
evaluate the sensitivity of the attack to various FL parameters.

rg/publications_standards/publications/ri;
ctober 03,2(%2% at 01:27:34 UTC from |IEEE Xpigore. Restrictions apply.

hts/index.html for more information.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX XX

Feature
=)

mm) | HTTP Packet

Model Decision](Random
selection:[Tree][Forest][DNN] =) Task A:
v Pl Exposure

o
_ _ > | Federated 4
|AII words: split packet into words K
Granularity Per Per App |General Recon words: limited words via oo .
bomain AN £ (Centralized v v v Vv Task B:
Users Real Synthetic - [Synthetic - HTTP keys: Only URI, cookie keys, © é
even split |uneven split] custom HTTP headers ﬁ Local v v v Vv Ad Request
Dataset Features Model Training

Fig. 3: Our pipeline for FedPacket. During fraining, the input is a packet trace with HTTP packets sent from mobile apps to remote destinations,
labeled for the Tasks (PII Exposure, Ad Request); the output is an ML model, which is trained in a local, centralized or federated way. During
testing, the input is an HTTP packet, and the output is a binary label (indicating the presence of PII or Ad request).

More specifically, we quantify the success of the attack in terms of
percentage of total features recovered in each FL round. Moreover,
we show what sensitive information can be inferred about a target
user, once the server has reconstructed all their local data based on
two different feature spaces (our proposed one and one baseline).
To the best of our knowledge, this is the first work to show what
information can be inferred in case of “leaked” HTTP packet
data in the context of mobile packet classification, as prior works
focused on reconstruction of input images [20], [21], [22], [55] or
text sentences [20]]. The above data reconstruction attacks in case
of federated packet classification are deferred to future work.

3 METHODOLOGY
3.1

Our goal is to train classifiers that use features extracted from
HTTP requests coming out of mobile devices, to predict whether
those packets contain information of interest, i.e., a PII exposure or
an Ad request In order to train such classifiers, we need training
data, i.e., packet traces and labels indicating whether a packet
contains the information of interest. We assume that training data
are crowdsourced, i.e., obtained and labeled on mobile devices and
sent to a server that aggregates them and trains classifiers. We also
assume that the devices do not trust the server or other devices
but they do want to contribute to the training and use the resulting
global classifier. Our goal is to provide a methodology that enables
devices to collaborate in training global classifiers, while avoiding
to upload training data or even sensitive features to the server.

We apply Federated Learning (FL), for the first time, to the
problem of mobile packet classification, which has some unique
characteristics and challenges. First, FL has been developed in
the context of either text classification (with dictionary words) or
image classification. However, the features extracted from packets
are non-dictionary words (URI keys are random combination of
letters as defined by API developers) and we cannot use well-
known pre-trained embeddings on NLP corpus. Second, state-of-
the-art on PII/Ad Request classification [7], [9], [13] trained DTs
in fully centralized way, and features e.g., words extracted from
packets) were fixed a priori. In our case, mobile devices must share
their feature space before they start FL, which poses both privacy
and scalability challenges. The privacy concerns go beyond the
usual ones in FL (i.e., sharing training data) since a value used
as feature may reveal sensitive information (thus we propose to
use only HTTP keys, not values, as features). W.r.t. scalability, the
union of features from all users may explode as more and more
users participate and share their feature space. This is especially
true for Webview apps, where users have completely different

Problem Setup

1. Being able to classify packets enables further action i.e., blocking the
packet or obfuscating sensitive information, which is out of scope here.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

Euires IEEE Bermission. See http://www.ieee.o
ownloaded on

browsing behaviors, thus URI keys. This combined with the lack
of well-known embedding for URL words, makes scalability a
unique challenge for federated packet classification setup, and one
we demonstrate for the first time here.

Federated Learning Approach. To achieve this goal, we
apply the FL framework (depicted on Fig. 1(c) and described
in Section [2) for the first time to the problem of mobile packet
classification. This requires addressing several challenges and
making design choices and optimizations, specific to our context,
such as the following.

Q1. What features can best predict the target label (i.e., PII
exposure or Ad request) in a packet? Section discusses how
we select HTTP Keys features from HTTP packets, to achieve
high classification performance while also meeting privacy and
other constraints.

Q2. What model should we train with FL? Section [3.3| com-
pares different models and proposes Federated SVM.

03. What datasets should we use to train and test those
classifiers? Our training dataset consists of HTTP packets sent by
mobile devices, labeled appropriately for each prediction task, i.e.,
with binary labels to indicate PII exposure or Ad requests in each
packet. Collection can be done using an existing VPN-based tool
for intercepting traffic on the mobile device [8], and labeling can
be done using DPI [7], [9], [12], blacklists [11] or other tools [|13].
Section [4] describes three real-world datasets used in this paper.

We focus on adapting and evaluating the FL framework specif-
ically for mobile packet classification. An overview of our pipeline
is provided on Fig.[3]and is described in the rest of this section.

3.2 HTTP Features

Feature extraction. We build on the Recon [[7] approach which
was used by follow-up classifiers [9]], [[12], [13]: every HTTP
packet is split into words based on delimiters; the resulting words
include keys and values from all HTTP packet headers. Fig. E]
shows an example HTTP packet from Bitmoji (mobile app that
creates personal avatars), which sends several identifiers (Android
Id, Advertiser Id and zip code) to an ad server. The question is
which words to select as features to predict the presence of PII
or Ad request in packets, while facilitating FL, preserving privacy
and meeting other constrains.

There are several challenges when defining this feature space.
First, we need to consider the trade-off between privacy and
classification performance. This implies that we may not use some
words that can help accurately classify packets, if these features
themselves expose sensitive information (e.g., part of URLs and
domains can contain sensitive information about user’s political
views, medical conditions or sexual orientation); to that end we
do not use any values as features, only keys. Second, the feature
space must have a small size (for high training speed, low memory

g/
ctober 03,2(%2% at 01:27:34 UTC from IEEE Xplore. Restrictions apply.

ublications_standards/publications/rights/index.html for more information.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

Transactions on Mobile Computing

BAKOPOULOU et al.: A FEDERATED LEARNING APPROACH FOR MOBILE PACKET CLASSIFICATION 5

{ "dst_ip": "216.58.219.34", "dst_port": 443,
"headers": {
"Host": "pubads.g.doubleclick.net",
"Bitmoji-User-Agent": "1|com.bitstrips.imoji|Android|7.0[Nexus
"user_agent": "CastSDK/10298430 (shamu NBD91Y)",
"Cookie": "datr=_oiKtX3v; m_user=0%3A0%2; ¢_user=10000; csm=2;
geoData=country X|D0000]city X|NA",
"X-afma-drt-cookie": "DSID=ADyxuksIQ7ICZpVkmrptPIBrO3RW"},

"uri": "/p/2c=sdk&gaid<12345Kmid=104&androidid=

&zipeode=00000!

}

HTTP Packet — JSON format

Parsed | pubads |doubleclick| bitmoji | Nexus || [URI key| ¢ | gaid | mid |androidid | zipcode
Words [m_user | city_X gaid sdk ﬁ°°k'e datr| csm |c_user| m_user |geoData
ey

Custom| p; ~ - -drt- i
CastSDK| androidid |zipcode R Bitmoji-User-Agent | X-afma-drt-cookie
Recon Words HTTP Keys
adid| c | gaid | mid | .. | zip | datr [csm | ... |Bitmoji-User-Agent|X-afma-drt ki
0|1 1 1 .| O 1 1 . 1 1

Multi-hot encoding using our feature space (HTTP Keys)

Fig. 4: An HTTP packet in JSON, where Android Id, Advertiser Id
and zipcode are sent by Bitmoji app to an ad server (doubleclick.net)
and thus, it would be labeled positive both for PII exposure and Ad
request. Our HTTP Keys features are highlighted in bold: these keys
are defined by the HTTP protocol and extracted from (1) the URI
query keys, (2) the Cookie keys and (3) custom HTTP headers (i.e.,
“Bitmoji-User-Agent”). Compared to baselines (All Words, Recon-
Words), HTTP Keys do not use sensitive information i.e., “city_X".

and computation overhead for updates) and be fixed and known to
all participating devices in the FL. Taking these constraints into
account, we consider three different feature spaces, two baselines
and our proposed one.

Baselines: All Words vs. Recon Words [7], [9], [12], [13].
Instead of considering the union of all words as the feature space
(All Words), Recon applied heuristics to remove the words that
appear rarely and the most frequent words (stopwords, which cor-
respond to common HTTP headers, common values such as values
parsed from the user_agent header). This results in removing some
but not all values from consideration. In particular, Recon discards
the values after the “=" delimiter, however certain values that do
not follow this syntax will not be removed from the feature space
and those might contain sensitive information. We refer to the
remaining features as Recon Words. The URI path also contains
potentially sensitive information and words from URI path are
also included in Recon Words. Fig. 4| shows an example HTTP
packet and a subset of the vocabulary from Recon Words, which
includes sensitive values such as “city_X”.

Our feature space: HTTP Keys. HTTP keys describe the
API calls made by an app or library to destination domains, and
they are common across all users of the app/library, as opposed to
values that may be specific to the users. For example, many apps
use advertising/tracking libraries, and will contain a key-value pair
“adid=1234" in the URI header of their outgoing HTTP packets.
All users will have the key “adid” in their URI and the presence
of such key indicates an ad request. In contrast, the value of each
user’s adid is specific to that particular user; if used as a feature
(1) it would lead to overfitting and (2) could be used as a sensitive
PIL In FL, first, all mobile devices and the server need to agree on
the model and features and then they exchange model parameters
updates. Both the features themselves and the parameter updates
can potentially contain sensitive information. To avoid that privacy
risk, we purposely limit our feature space to use only non-sensitive
keys from HTTP packets. In particular, we consider the structure
of HTTP packets and extract features from: (1) the URI query

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

Euires IEEE Bermission. See http://www.ieee.o
ownloaded on

keys, (2) the Cookie keys, and (3) custom HTTP headers; and (4)
whether or not there is a file request in the packet. We refer to this
set of features as HTTP Keys.

First, consider the URI: it typically contains a relative path on
a given domain and queries, usually built using key-value pairs
separated by “&”. Sensitive information in URI typically appears
in relative paths and query values, while query keys represent
API calls to the destination domain. We only use query keys
as features. We do not extract any features from the domain or
the URI path, as it may contain sensitive information about the
user. Second, we include keys from the Cookie field. Query keys
from these two fields are sufficient to extract features for most
packets in our datasets. Third, to differentiate more packets, we
extract custom HTTP headers, which are defined by apps and
can embed sensitive information about users. In recent years,
apps have started using custom headers to provide app specific
functionality. We remove the standard HTTP headers [61] from
all HTTP headers to retrieve the custom ones.

Finally, if a packet does not have any keys in the URI, Coo-
kie fields or custom HTTP headers, we include file request- a
Boolean feature that indicates the presence of a file request. This
case will be mainly a benign activity i.e., requesting static HTML
content. Packets that do not contain any of the four features, which
we refer to as keyless, are excluded from our pipeline.

Feature Space Size. Selecting HTTP Keys as features already
reduces the feature space. However, the feature space size varies
widely across apps and users. Various apps use various APIs
(which leads to different query keys and thus HTTP Keys) and
they may contact different domains. We differentiate between
two broad categories of apps based on the number of contacted
domains: apps with or without Webview. Webview apps can
contact any domain and present web content in the Webview
(i.e., browsers, social media apps like Facebook). Non-Webview
apps are more likely to only contact a small fixed set of domains,
e.g., back-end servers, analytic and advertisement services. Apps
with Webview present new challenges, as the feature space could
explode with hundreds of features from every new user, who visits
previously unseen domains. We discuss more about Webview apps
and their impact on the features in Sec. {4

Vocabularies. Vocabularies are used in ML models with non-
numerical features; in our case the vocabulary is the unique words
in the dataset. Throughout this paper, we refer to vocabulary and
feature space interchangeably. In this work, we use Multi-hot
encoding to represent the extracted words per packet, which is
a sparse binary vector with the length of the vocabulary such that
it has 1s at the locations of words in the vector; O otherwise.
An example is shown at the bottom of Fig. 4| We use the same
feature space for both classification tasks (Ad request and PII
exposure), because there is a relation between the two tasks: apps
use PII information for serving ads. In FL, the vocabulary must be
fixed and shared apriori between all mobile devices and the server.
Recon Words potentially expose sensitive information during the
construction of such shared feature space. Fixing a vocabulary
across various users is successful when the feature space is fixed
i.e., non-Webview apps. The intuition is that a single user might
not explore the entire API of a service, but across multiple users
this is more likely to happen.

3.3 Model Selection: Federated SVM

Once the feature space is fixed, our goal is to train a model
using FL. The first step is to select the classification model, e.g.,

g/
ctober 03,2(%2% at 01:27:34 UTC from IEEE Xplore. Restrictions apply.

ublications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

Transactions on Mobile Computing

6

Decision Tree (DT), Random Forest (RF), Deep Neural Networks
(DNNSs), Support Vector Machines (SVM), etc. Next, we train
that model in a Federated way (Fig. [I[c)) and compare it to
its Centralized (Fig. [I{b)) and Local versions (Fig. [Ifa)). The
choices we evaluate across these two dimensions (classification
model and degree of collaboration among users) are summarized
under “Model Training” on Fig.

Selecting SVM as the Classification Model. State-of-the-art
classifiers for mobile packets have trained DTs [7], [12], [13] to
predict PII exposure or Ad requests based on features extracted
from outgoing HTTP packets. DTs were chosen primarily due to:
(1) their interpretability (nodes in the trees are intuitive rules) for
small tree sizes, and (ii) their good classification performance and
efficiency for on-device prediction [9], [[12], [13] — they can be
implemented as regular expressions to filter traffic on the mobile
device. Unfortunately, DTs do not naturally lend themselves to
federation which has been developed for models based on Sto-
chastic Gradient Descent (SGD), and there is no framework for
“aggregating” multiple DTs collected from multiple devices at the
server in a federated way. In this paper, we choose Federated
SVM as the core of the FedPacket framework. We show that (i)
SVM performs similarly to DTs for our problem, (ii) Federated
SVM achieves similar F1 score to Centralized SVM, within few
communication rounds and with low computation cost per user,
and (iii) SVM can be as interpretable as DTs and we also discuss
knowledge transfer between the two (see Appendix [A.T).

Federated averaging uses models based on SGD, primarily
DNNs [15]. In SGD-based models, the mobiles and the server
exchange gradient updates, and the server simply averages the
local gradients to update the global model. Unfortunately, DNNs
require a large number of samples to train, which is costly
(in device resources and user experience) to obtain and train
on mobile devices. While FL is mostly used to train DNNs,
it applies to any SGD-based model. In this paper, we select
SVMs. Compared to DTs: SVMs are SGD-based (amenable to
federation), achieve similar F1 score (due to the simple binary
vector representation with multi-hot encoding) and interpretability
(via weight coefficients). Compared to DNNs: (1) SVMs use
fewer parameters which means less computation, communication
and faster training; (2) Linear Kernel SVMs have convex loss
functions where more principled guarantees can be provided for
convergence; (3) SVMs usually perform better than DNNs on
datasets with limited size; (4) SVMs are easier to interpret.

Federated SVM. In this paper, we use Federated SVM with
linear kernels. The linear kernel SVM minimizes the following
objective function, f, over weight vector w:

f(’lU,X7Y) :Zl(waxiuyi)+a|‘w||27 (1)

where z; is the feature vector (i.e., the Multi-hot encoding for a
packet), y; is the binary label, « is the regularization term and the
Hinge loss function: l(w, z,y) = max(0,1—y - (w - x)). Pegasos
[[62] applied the SGD algorithm for SVM, which we call “SVM
SGD”. The Hinge loss function is convex and has the necessary
sub-gradients, i.e., if y-w-x < 1, then Vi(w,z,y) = —y-x,
otherwise 0. This step is easily added to the SGD algorithm, but
more importantly to Federated Averaging [15].

Algorithm 1 shows the Federated SVM algorithm: we apply
the SVM-based gradient updates to the Federated Averaging [|15].
Federated SVM trains an SVM model distributively over K clients
(corresponding to mobile devices), where C' fraction of the clients

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution reEuires IEEE lBermislsiordl. Sdee http://www.ieee.o:
ownloaded on

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX XX

Algorithm 1: Federated SVM

Given K clients (indexed by k); B local minibatch size; E
number of local epochs; R number of global rounds; C
fraction of clients; ny is the training data size of client k; n
is the total data size from all users and 7 is learning rate.

Server executes:

Initialize wo
for each round t = 1,2, ... R do
m <+ max(C-K,1)
St < (random set of m clients)
for each client k € S; in parallel do
wf, | < ClientUpdate(k, w;)
Wit < Doy nTkwf+1

ClientUpdate(k, w):
By < (split of local data into batches of size B)
for each local epoch i from I to E do
for batch b € By, do
w — w — % ZieBk yi - i, when y; (w;x;) < 1
return w fo server

update their model in each round and all clients update the
global model by averaging their model parameters. A client update
consists of multiple local epochs E, and minibatch split of local
data into B batches similarly to standard SGD algorithm. Clients
compute the SGD updates based on the above Hinge loss.

Client Selection. To select the k clients in a round based on the
C fraction of users, we follow the original FL paper [15], where
users are chosen at random and uniformly. However, there is ongo-
ing research on how client selection affects convergence [41]. The
authors in [63] proposed selecting clients based on probabilities
proportionate to their train data size. In this work, we show in
Sec. [5.4|that the random client selection performs reasonably well
in comparison to two other client selection strategies based on
train data size. However, in practice the server might not be able
to select clients with these ideal conditions, but rather it depends
on how many users are connected to Wi-Fi, charging their device
and time of the day (e.g., night) [41], [64].

The Federated SGD algorithm is a special case of Federated
Averaging for C = 1, E = 1, B = oo [15] (i.e., use every client
in a round with a single pass on all their local data once). Usually,
we look to push more computation to the clients by setting &£ > 1
and B to a small number, and use a small fraction of clients C
in each global round. [15]] explores the trade-off between these
hyper-parameters and shows how to decrease the global rounds
R required to reach a target accuracy on the test sets for image
classification and next word prediction. The FL framework trains
a shared model, hence the feature space has to be fixed and shared
across multiple users. Moreover, the feature space size affects
parameter updates, and thus communication costs during training.

Federated vs. Centralized and Local models. Once we have
fixed the feature space and the underlying model (SVM with SGD
and linear kernel), we compare the Federated vs. Centralized and
Local models, as shown in the overview depicted in Fig.

o Local models are trained on data available on each device,
similarly to prior works [7], [9]], [12], [[13]. Devices share
nothing, thus preserving privacy but not prediction power.

o Centralized models: devices upload their training data to a
server, where a global model is trained, similarly to previous
works [[7]], [9]], [12], [[13]. This approach trains better classi-
fiers but shares potentially sensitive training data.

o Federated models: devices do not share training data with
the server, but send model parameter updates to the server,

rg/publications_standards/publications/ri;
ctober 03,2(%2% at 01:27:34 UTC from |IEEE Xpigore. Restrictions apply.

hts/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

Transactions on Mobile Computing

BAKOPOULOU et al.: A FEDERATED LEARNING APPROACH FOR MOBILE PACKET CLASSIFICATION 7
\ \ | Prior Work | HTTP Keys | |
#Features #URI #Cookie #Custom #File #Keyless #Dest.

Dataset | #Apps/Users #Packets #Ads/PII All/Recon Words | keys keys Headers Requests | POST Packets Domains
NoMoAds | 50/(synthetic) 15,351 4,866/4,427 12,511/6,743 2,580 216 204 3,342 2,334/2,123 366
AntShield | 297/(synthetic) 41,757 -/8,170 39,304/19,778 | 3,855 302 609 4,644 8,836/777 674
Igi}?gif: 1/8 real 84,716 -/3,424 40,936/22,714 | 7,573 3,591 47 12,903 13,786/153 1,607
In-house 1110 real 33,580 -11,347 11,921/6,718 | 4370 1,160 19 172 12/0 861
Facebook

TABLE 1: Summary of datasets: total features (our HTTP Keys vs. prior work), total packets, users, visited domains and classification labels.

which then aggregates, updates the global model and pushes
it to all devices; the process repeats until convergence.

4 DATASETS DESCRIPTION

We use three real-world datasets, summarized on Table to
evaluate the performance of our federated approach, w.r.t. two
packet classification tasks: PII exposures and Ad requests.

NoMoAds dataset [13], [16]. This dataset consists of HTTP
and unencrypted HTTPS packets, labeled with Ad requests and
PII exposures they may contain, from 50 most popular apps
in the Google Play Store. It contains state-of-the-art labels for
advertising and it was generated in 2017 via manual testing
(interacting with each app for 5 minutes) with test accounts (no
human subjects were involved).

AntShield dataset [9], [12], [17]. This dataset contains
HTTP(S) packets labeled to indicate if they contain a PII exposure
or not, (similarly to NoMoAds) but it is richer as it contains more
apps. The data was generated with manual and automated testing
in 2017, which we combine to a single dataset and consider the
297 apps out of 400, that generated HTTP/HTTPS traffic.

In-house Datasets with real users. We collected this dataset
in-house from 10 real users in 2015 who contributed their packet
traces for a period of 7 montth The packet traces were collected
by running Antmonitor [8] which intercepts outgoing network
traffic generated from each mobile app. These users installed
Antmonitor on their personal phones for 7 months and continued
to use their phone as usual — no restrictions there. An IRB was
put in place only for restricting what to record, not the usage.
In order to run our ML algorithms, we have preprocessed the
raw packet traces into JSON, by keeping only HTTP packet-
level information. We redacted all user sensitive information with
a prefix and the type of PII it contained (e.g., ANT_email) and
labeled the packets with exposures if they contained one of these
scrubbed PII exposures. To evaluate FL, we consider the two most
popular apps across all users: Chrome (8 users) and Facebook (10
users) and treat them as separate datasets.

Packet Classification Tasks. In all three datasets, a packet is
considered to have a PII exposure, if it contains some personally
identifiable information (PII), including the following, as defined
in prior work: (i) device identifiers, i.e., International Mobile
Equipment Identity (IMEI), Device ID, phone number, serial
number, Integrated Circuit Card ID (ICCID), MAC Address; (ii)
user identifiers i.e., first/last name, Advertiser ID, email, phone
number; (iii) Location: latitude and longitude, city, zipcode. Our
framework can be used to detect more PII types if the correspond-
ing labeled ground truth is provided. If a packet contains at least
one of these PII types, we assign label 1 to the packet, otherwise

2. The study was IRB approved in our institution.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution reEuires IEEE lBermislsiordl. Sdee http://www.ieee.o:
ownloaded on

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

0. For the ad prediction task, if a packet contains an Ad Request it
is labeled as 1, otherwise 0.

Summary of the Datasets. Table [I| summarizes the feature
space, as relevant to our federated learning framework, includ-
ing: number of unique features (URI keys, Cookie keys and
custom HTTP headers), number of packets, keyless packets and
how many of them were POST requests, packets that contain a
file request only but no other features, and unique destination
domains.We do not include HTTP POST packets in our training
or testing, or keyless packets, i.e., packets without any features
(query keys in the URI or Cookie field, custom HTTP headers, or
file request). There is no standardized syntax for the POST body
in order to obtain only the keys without parsing the values too.
Thus, for privacy reasons we decided to not parse them at all and
to discard such packets from our experiments.

The AntShield dataset contains the most apps and packets
with a PII exposure (8,170), while in-house Chrome contains the
most packets (84,716) and the highest number of unique domains
(1,607). In the NoMoAds dataset, the feature space has 12,511
features with All Words from the HTTP packet (including values)
and 6,743 using Recon Words. On the other hand, HTTP Keys
uses only 3,001 features (Table sum of URI, Cookie keys,
custom headers + 1 for file request), which is less than half
of the Recon Words. Similarly, in the AntShield dataset the
feature space increases from 4,767 with HTTP Keys, to 19,778
Recon Words and to 39,304 with All Words. This explosion of
feature space affects the training speed, the size of the trained
models and might expose sensitive information of user data (i.e.,
values to sensitive keys). The benefit of our HTTP Keys approach
is the following: (1) our significantly reduced feature space can de-
scribe both prediction tasks (Ads and PII), (2) users share limited
sensitive information, without sacrificing classification accuracy
and (3) the reduced number of features leads to smaller models
and faster training, which is important in mobile environments.

Webview vs. non-Webview apps. Webview is an Android
component that can be embedded into an app to view the web
(albeit more light-weight than a browser). We call “Webview-
apps” the apps that allow the user to browse the web, which
in turns leads to more unpredictable URLs and key-value pairs
(HTTP Keys). An example is Chrome which can visit unlimited
domains; each domain will have its own set of features (HTTP-
Keys). As more domains are seen, the feature space explodes. See
Table]2} where users had only 370 common keys for Chrome but if
we consider the union of visited domains from all users, the feature
space explodes to 11,212. We observe a similar explosion of the
feature space in our in-house Facebook data, which results in
only 14 common features out of 5,550 features across 10 users. In
contrast, a non-Webview app will, generally, have a fixed feature
space that includes keys corresponding to API calls of that app.
Overall, the feature space of Webview apps depends on the usage

rg/publications_standards/publications/ri;
ctober 03,2(%2% at 01:27:34 UTC from |IEEE Xpigore. Restrictions apply.

hts/index.html for more information.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX XX

8
Intersection Union #Packets #Domains
Chrome
features features
In-house 370 11,212 84,716 1,607
AntShield - 75 206 15
NoMoAds - - - -
Intersection Union #Packets #Domains
Facebook
features features
In-house 14 5,550 33,580 861
AntShield - 63 110 4
NoMoAds - 820 392 82

TABLE 2: Two Webview apps and comparison of their feature space
in our datasets. We present the intersection/union of features, number
of packets and domains across all datasets.

bbc.mobile.news.ww
fr.playsoft.vnexpress
tv.twitch.viewer
net.flixster

nytimes

sw.videob
zwanoo.speedtest -
myfitnesspal
andrewshu.reddit
reddit.news
facebook.katana
chrome

B Features
Domains

— 7
10’ 107 10° 10"

Fig. 5: Number of features and domains for the top 12 apps with most
features from our in-house dataset. The number of features correlates
with number of visited domains.

of each app, e.g., the duration (in terms of packets), user behavior
(in terms of domains visited). Fig. |5 shows the distribution of
features and domains for the top 12 apps with most features in
our in-house dataset. There is a positive correlation between the
number of features and visited domains for each app. This is not
surprising since the number of visited domains will increase the
total features. Webview apps, i.e., Facebook and Chrome, have the
most features, as expected.

In contrast, non-Webview apps have fewer features due to their
limited number of contacted domains. In this paper, we assume
that the datasets contain all possible visited domains and the
feature set is fixed. To do so, we extract the union of HTTP keys
from all users and we assume this global feature space is known
to the server and all users in advance when they are initializing
their corresponding models.

5 RESULTS

General Setup. For each scenario evaluated in this section,
we describe the evaluation setup, rationale and results in terms
of classification accuracy, communication and computation cost.
Table [3] lists the possible options for evaluation based on our
pipeline defined in Section |3} We compare the Federated model
to Local and Centralized models where the test data comes either
from a user or is the union of test data from all users.

We train only general and per-app models, but no per-domain
model (it would be impractical to train a model for each domain
since there are too many). We split the available data into 80%
train and 20% test data and compute F1 score on the positive class
(i.e., Ad request or PII exposure is detected). Before training, we
balance our dataset via down-sampling the majority class (non-
PII, non-Ad) so that it contains an even amount of positive and
negative examples to avoid training with a bias towards the most

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

Euires IEEE Bermission. See http://www.ieee.o
ownloaded on

Pipeline | Options

Dataset: NoMoAds AntShielg | \n-house Chrome
Facebook

. Even split | Uneven split

Users: Real users with k users | with k users

Classifier

Granularity: General Per App

Models: Federated SVM | Local SVM Centrghzed SVM
/baselines

Tasks: PII exposure Ad request | Domain

TABLE 3: Parameters of the Evaluation Setup.

frequent class. We chose down-sampling over oversampling the
minority class, as we did not want many users having the same
(over-sampled) datapoints from the minority classes which can
boost the classification performance. For each of the following
experiments we train and test five times each model (unless
mentioned otherwise) to obtain an average F1 score.

Creating synthetic users. The NoMoAds and AntShield
datasets do not come from real users, since they were produced
manually or automatically via Monkey [65] scripts. We create k
synthetic users by partitioning the available data via two different
approaches: a random split into equal amounts of data (even split)
and a random split of data with random sizes of sampled data
so that each user contains a different amount of packets (uneven
split). The synthetic users have Independent and Identically Dis-
tributed (IID) data since they are sampled/created from the same
overall distribution. The type of split (even or uneven) controls
how homogeneous/balanced the users are in terms of total amount
of data. This is different from the real users who are non-IID and
unbalanced, as their local data are not sampled from the same
distribution and they also differ in terms of data size. We test
both methods and show their results, since the advantage of FL is
that it can handle various distributions of data across participating
users. For both synthetic and real users, we apply the train and test
split per user to train Local, Centralized or Federated classifiers.
Moreover, we show in Sec. that training on a subset of users
can provide good classifiers for all users.

5.1

Setup 1. In this experiment, we use the following setup from
Table[3} Dataset: NoMoAds. Users: None. Classifier Granularity:
General. Models: Centralized SVM (linear and non-linear kernel,
SGD) and baselines (DT, RF). Tasks: PII exposure and Ad request.
The goal is to validate our choice of Federated model (SVM with
SGD) and feature space (HTTP Keys and file request) in the rest
of the paper.

Results 1a: HTTP Keys vs. Recon Words features. In
Table 4] we compare various Centralized models on 4 different
feature spaces: HTTP Keys (3,000 features), HTTP Keys with
file request, Recon Words (6,580 features), All Words (12,195
features). HTTP Keys with file request uses a smaller feature
space (3,001) but achieves an F1 score above 0.94 and 0.85 for
PII and Ads, respectively. Adding the file request feature includes
more packets which results in a classification loss of approxi-
mately 8% (Ads) and 3% (PII). The drop in performance is slightly
larger for Ad prediction, since our feature space does not include
information from domains that is important for this task as shown
in [13]. Prior work [7], (9], [12], [13]] uses domain information
in addition to other potentially sensitive features, and achieves

Scenario 1: Centralized Models

g/
ctober 03,2(%2% at 01:27:34 UTC from IEEE Xplore. Restrictions apply.

ublications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

Transactions on Mobile Computing

BAKOPOULOU et al.: A FEDERATED LEARNING APPROACH FOR MOBILE PACKET CLASSIFICATION 9

Feature Space (# Features) HTTP Keys (3000)

HTTP Keys + file request (3001) Recon Words (6,580) All Words (12,195)

Task Ads PII Ads PII Ads PII Ads PII
Centralized Classifier F1 score F1 score | F1 score F1 score F1 score F1 score | F1 score F1 score
Decision Tree (DT) 0.936 0.98 0.854 0.95 0.98 0.984 0.979 0.983
Random Forest (RF) 0.938 0.981 0.861 0.949 0.982 0.986 0.979 0.987
SVM with SGD 0.929 0.975 0.838 0.944 0.971 0.981 0.975 0.979
SVM linear kernel 0.933 0.979 0.857 0.952 0.984 0.984 0.981 0.984
SVM rbf kernel 0.706 0.762 0.625 0.744 0.785 0.756 0.761 0.719

TABLE 4: Results 1a and 1b. The performance of various ML models on the NoMoAds dataset for the two tasks: Ads and PII prediction. The
reported F1 score is averaged, after training and testing each model 5 times. We show that SVM with SGD performs as well as DT and RF.
We increase the feature space (packet information used) from left to right. HTTP Keys results in significant reduction in the number of features,
while achieving high F1 score for PII (0.94) and for Ads prediction (0.85).

0.98
0.96
20.94+
o
&
0.92 4
—
\ ® Ads
w
0.90 / Pll
0.88
More Privacy Less Privacy
T T T T
20 3000 6580 12195

of features
Fig. 6: Feature explosion and privacy vs. utility for top 20 important

HTTP Keys (from Fig. B}), HTTP Keys (3,000), Recon Words (6,580),
All Words (12,195) depicting Table [4}

0.9 URL host + path
URL host
,/ HTTP keys path fﬁe;s
o
508
O
1]
uo7
task
0.6 —— Ads
¢ Hostname al
2000 4000 6000 8000 10000
features

Fig. 7: Utility vs. privacy and feature explosion when using features
from different parts of the URI compared to HTTP Keys feature space.

higher F1 score. There is always a trade-off between privacy
and utility, however, our defined feature space and the distributed
framework are good steps towards private packet classification,
without sacrificing classification performance.

Fig. [6] depicts Table [d} we reduce features from All words
(12,195) to Recon words (6,580) and HTTP keys (3,000), and
finally to the 20 most important HTTP features (from Fig. |8) and
evaluate the F1 score. F1 score decreases but remains above 0.9
for HTTP keys, considering the 50% reduction from Recon words
to HTTP keys, which excludes sensitive information from packets,
i.e., values to sensitive identifiers or URI domain and path. This
balance of privacy vs. utility trade-off applies to both tasks.

Privacy-utility tradeoff. We show in Fig. [/ how the F1 score
is affected when we use different parts of the URI as features; 1)
URI domain only (or hostname), 2) URL host and URI path and 3)
full URL including keys but not values. For comparison, we add
a datapoint that corresponds to the performance with HTTP Keys.
The results show that features extracted only from hostnames are
not sufficient to achieve a high F1 score. Adding more information

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution reEuires IEEE lBermislsiordl. Sdee http://www.ieee.o:
ownloaded on

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

6 | predicted label
0

§2) -
5
g,
2
3
3 0
-2
T N N W O W S N SR S S
@, \\\oorch‘g\‘\%:“oc}\oc}\&«"ﬂ\o & @@\006 €>00 /&\'\OQ P
o e T @0 e
SN ® @0006\ &
& . _‘_,+I@° & * = custom header
.

Fig. 8: Top 10 negative and positive coefficients and the correspond-
ing features obtained from Centralized SVM with HTTP Keys for PII.

from the URI results in better F1 score, but is also more vulnerable
to privacy attacks that can infer sensitive information about user’s
train data, such as values to identiﬁer or user’s browsing history;
see Section[6] In contrast, the HTTP Keys feature space achieves
high F1 score while using limited sensitive information from users.
In addition to privacy risks, using more features results in models
with a large number of parameters, which in turn increases the
training time and the model size.

Results 1b: SVM with SGD performs similarly to Decision
Trees. Table || compares SVM with SGD to state-of-the-art
baseline models, such as Decision Tree (DT) and Random Forest
(RF) (used in prior work [7], [9], [13]) on the NoMoAds dataset.
For all feature spaces (i) the linear SVM and SVM with SGD
perform similarly to DT and RF; and (ii)) SVM with a non-linear
kernel (rbf) seems to not generalize well and it is likely to overfit.
In Appendix we show how SVM can be as interpretable as
DT by performing knowledge transfer between the two. Thus, we
select SVM with SGD as the basis of our FL framework.

Results 1c: SVM Parameter Tuning. After the comparison
of different kernels for SVM in Table |4] we tuned further the
SVM with SGD via Grid Search and Randomized Parameter Op-
timization. Grid Search exhaustively picks each parameter value
within a provided range [1075, 1] and evaluates its F1 score with
5-fold cross validation on hold-out data. Randomized Parameter
Optimization is similar but it samples 30 values randomly with a
Log Uniform distribution from [10~%, 1]. We used both methods
to tune the regularization term « as shown in Fig. [9] For the rest
of the experiments, we chose @ = 0.0001 which maximizes the
F1 score for both prediction tasks. Regarding the learning rate
7, we use the “optimal” 7 as defined by L. Bottou [66], [67]
throughout this paper unless mentioned otherwise. We discuss how

3. An example of sensitive identifiers is shown in Fig. |8|i.e., trace_id, adid
(advertiser id), and lat-long. The latter corresponds to precise location and it is
embedded in custom HTTP headers indicating even higher privacy risk.

rg/publications_standards/publications/ri;
ctober 03,2(%2% at 01:27:34 UTC from |IEEE Xpigore. Restrictions apply.

hts/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE
Transactions on Mobile Computing

10 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX XX
——- Uneven split - —— Even split
0.95 A _‘:ITK C B=wx B=10 B=c B=10
Z'Z: 7"5 ——- Ads Task: Ads with target F1 score = 0.85,E =1
%o.so \, 0.05 36.6 [24, 58] 22.4[11,29] 25[19,30] 33.4[25, 43]
2 075 ii},' 0.1 15[10,20] 15.21[9,24] 141[11,23] 231[13,34]
- iy ¥ 02 10[8, 13] 6.8[5,10] 8.6[7,14] 11]6,17]
. a0, =N
o Miad T 0.5 260241 302,41 44[3,6] 86 11]
065 L S S | 1.0 1.6[1,2] 24[1,4] 26[2,4] 48[4,6]
0.60 ——
00 02 04 06 08 10 Task: Ads with target F1 score = 0.85,E =5
regularization term alpha
. . . , 0.05 43.6 [40,48] 49 [27,75] 34.8[27,53] 48.8 [43, 63]
Fig. 9: Regularization term « and its effect on F1 score for Centralized 0.1 21.2[13,28] 20.8[17,26] 22.6[19,27] 22.4[18,27]

SVM with SGD for both tasks.

0.2 12]8, 15] 10 [7, 11] 9.2 [8, 12] 10.6 [10, 12]
0.5 3412,6] 4.2 [3, 5] 3.8 [3, 5] 5.6 [3, 11]
Uneven split Even split 1.0 1[1,1] 1.21[1,2] 2.8 [2, 6] 3.41(2,7]
F1 score F1 score N
Trained on Tested on Ads PII Ads PII Task: PII with target F1 score = 0.95,E =1
Federated userOtest 0.83 096 084 0.95 0.05 30[19,37] 28.8[21,40] 27.8 [21,33] 27.8 [23, 31]
Federated user Itest 092 096 081 095 0.1 14219, 18] 156 [12, 18] 164 [13, 19] 168 [16, 18]
0.2 7.414,9] 745,121 7.4716,9] 7.2 16, 10]
Federated user 2 test 0.86 0.95 0.84 0.95
Federated user3test 0.63 097 088 092 05 36[3,5] 360351 36,4 34[3,4]
Federated user4test 0.85 096 086 0.96 10 18[1,21 2[22] 2810231 26[23]
Federated all test data 0.84 0.96 0.85 0.95 Task: PII with target F1 score = 0.95,E =5
Local user 0 user O test 082 0.95 0.78 0.9 0.05 39.6 [32,44] 48.4 [35, 58] 34.6 [31,40] 39.2 [31, 44]
Local user 1 user 1 test 0.89 0.94 0.8 0.92 0.1 21.6[16,37] 20.2[14,27] 16.2[14,17] 20.2 [18, 22]
Local user 2 user 2 test 0.8 0.9 0.79 0.93 02 9.417, 14] 104 [8,16] 7.81[7, 8] 9.2 7, 11]
Local user 3 user 3 test 0.64 0.82 0.83 0.9 05 3.21[2, 5] 3.6 [3, 5] 3[3, 3] 3.2 3,411
Local user 4 user 4 test 0.77 0.87 0.81 091 1.0 1[L,1] 1.2[1, 2] 1.2 [1, 2] 11[1,1]
Centralized all test data 0.85 0.96 0.84 0.94

TABLE 5: Results 2a. Federated performs as well as Centralized and
outperforms Local models. We show the F1 score for each user, when
testing on their hold-out test set and on the union of all users test data.

7 affects convergence in the federated setting in Sec. and Fig.
and show that our chosen 7 speeds up convergence. We would
like to note that after choosing the best model parameters, we
apply the same set of parameters to all user models following the
original FL work [15], as the question of personalization in FL
[42] is still an open problem and out-of-scope in this paper.

5.2 Scenario 2: NoMoAds for Pll, Ad Request

Setup 2a. We use the following setup from Table |3} Dataset:
NoMoAds.Users: Even and Uneven split across 5 synthetic users;
Classifier Granularity: General. Models: Federated SVM vs.
Centralized SVM. Tasks: PII exposure and Ad request. We set
local epochs to X = 5, batch size to B = 10 and we use all users
by setting the fraction C' = 1.0, as we use only 5 synthetic users
due to the limited size of the dataset.

Results 2a: Federated vs. Centralized vs. Local. Table
shows the F1 score, where the Federated model performs as
well as the Centralized model and significantly outperforms the
Local models. In particular, Federated training performs similarly
to its centralized version trained on the union of all users’ data.
Moreover, the F1 score of the Federated model on each user’s test
data is slightly higher than their Local models, especially for the
uneven split. For uneven split, the average number of rounds (R)
required to reach the target F1 score = 0.96 for the Ads prediction
is 8.8, while for PII prediction 1 round was sufficient. For even
split, to reach the same F1 score, 2.6 rounds were required for Ad
prediction and 2.2 rounds for PII prediction.

Setup 2b. This is similar to Setup 2a with 20 synthetic users
instead of 5. For B = 0o, we use all available local data as a single

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution reEuires IEEE lBermislsiordl. Sdee http://www.ieee.o:
ownloaded on

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

TABLE 6: Results 2b. Impact of Federated parameters for NoMoAds
data with 20 synthetic users. All models are trained until they reach
a target F1 score (selected to match Centralized per task). We vary
the parameters C', B, E and we report the rounds R) until the target
F1 score is reached: average and [min, max] are reported over 5 runs.

minibatch, similarly to [[15]. We require all models to reach a
target F1 score on test set (0.85 for Ads, 0.95 for PII predictions),
chosen to match their Centralized F1 score as shown in Table 4]

Results 2b: Impact of Federated parameters. Table []
shows how the average number of rounds (R), until the models
reach a target F1 score, depends on the fraction of participating
clients (C), a different batch size (B) and local epochs (E). A
general trend is that increasing C, decreases R significantly and
the gap between min and max decreases. Moreover, increasing
B decreases R, as small B leads to faster convergence. These
observations apply to both uneven and even splits and to both
prediction tasks. In contrast, increasing F and pushing computa-
tion to users increases R, except for the case when C' = 1.0. The
reason for this is that our model is simple and more local epochs
lead to overfitting. In the context of packet classification, R is
much lower than observed in prior work [15] which used more
complex models.

5.3 Scenario 3: AntShield for Pll Prediction

Setup 3a. We use the following setup from Table (3| Dataset:
AntShield. Users: Even vs. Uneven split with 5 synthetic users.
Classifier Granularity: General. Models: Federated SVM vs.
Centralized SVM, Tasks: PII exposure. We set B = 10, F =
5,C = 1.0, similarly to Setup 2.

Results 3a. Table [7| shows the results. For even split of data,
the Federated model has an F1 score of 0.94 when it is tested on
the union of user test sets, while the corresponding Centralized

rg/publications_standards/publications/ri;
ctober 03,2(%2% at 01:27:34 UTC from |IEEE Xpigore. Restrictions apply.

hts/index.html for more information.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

Transactions on Mobile Computing

BAKOPOULOU et al.: A FEDERATED LEARNING APPROACH FOR MOBILE PACKET CLASSIFICATION 11

Trained on Tested on Uneven split Even split
F1 score F1 score
Federated user O test 0.91 0.93
Federated user 1 test 0.94 0.95
Federated user 2 test 0.95 0.94
Federated user 3 test 0.95 0.91
Federated user 4 test 0.93 0.93
Federated all test data 0.93 0.93
Local user 0 user O test 0.92 0.89
Local user 1 user 1 test 091 091
Local user 2 user 2 test 0.93 0.92
Local user 3 user 3 test 0.87 0.87
Local user 4 user 4 test 0.85 0.89
Centralized all test data 0.94 0.94

TABLE 7: Results 3a. AntShield dataset for predicting PII exposures,
for 5 synthetic users created with uneven and even split of data. The
F1 score is averaged from 5 runs for C = 1.0, B =10, E = 5.

model has an F1 score = 0.96, achieved within 5.8 rounds on
average. For the uneven split of data among users, the Federated
model achieves the same F1 score = 0.94, but slightly slower (in
6.6 rounds). We observe that some users achieve lower F1 score on
their corresponding Local models, which is expected as these users
have much less data and especially positive examples, because of
the skewness of data in the uneven split. In summary, we show
that even with a different dataset, our FedPacket approach still
performs well when compared to its Centralized model for both
types of splits, with a small difference in communication rounds
to achieve the same F1 score.

Setup 3b. We use the same setup as Setup 3a but with 100
users instead of 10. The goal is to evaluate convergence with more
users who have few train data points (most of the users have 20-30
datapoints and only 3 users have more than 500 datapoints).

Results 3b. Fig. shows the convergence in terms of F1-
score across the rounds for AntShield with 100 users with uneven
split. We observe that even if most users have few datapoints, the
Federated model reaches the Centralized F1 score within less
than 10 rounds. We also evaluated the average F1 score (from 5
runs) when we test the Federated model on each user’s test data
and the lowest F1 score for a user was 0.70 and only 20% of them
had 0.90 or lower F1 score. To conclude, we showed that even if
most users have few local data points, the Federated model will
not overfit due to lack of training data. Moreover, we show the
regularization effect of the Federated Averaging algorithm when
varying the C' parameter of participating users within each round.
When C' = 0.5 there is a regularization effect similar to dropout
in DNNgs, since only the parameters from half the clients are being
averaged in each round which results in slightly more stable (less
variance and higher) F1 score after round 10.

5.4 Scenario 4: In-house Datasets for Pll Prediction

Setup 4. We use the following setup from Table 3} Dataset:
In-house Chrome, Facebook. Users: 10 real users. Classifier
Granularity: Per App. Models: Federated SVM vs. Centralized
SVM. Tasks: PII exposure. The goal is to evaluate our FedPacket
framework (1) on real user activity (instead of systematic tests
of apps) and (2) over a longer time period (7 months instead
of five/ten minutes). Fig. shows the distribution of Chrome
and Facebook packets (including labels) present across the 10 real
users in our in-house dataset.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

Euires IEEE Bermission. See http://www.ieee.o
ownloaded on

centralized=0.94 ~-—=—= e sa SRS, N T)

0.90
% 0.85
L
c
©0.80
=
0.75
— C=10
070 -~ —— C=0.5
0 10 20 30 40 50

rounds

Fig. 10: Results 3b. Convergence of AntShield with 100 synthetic
users with uneven spit when B = 10, £ = 1, and varied C'

Facebook PII only
Facebook Total
Chrome PIl only
Chrome Total

packets
8(»
[T AT B SR TT1T] B

10
T T T T T T T T T T
- N ® S 1O © ~ © o O
— — — — — — — — — ~
o O O O O O T D D .
o o H o H v B » D
3 =} =} =} =} 3 S =) =) g

Fig. 11: Distribution of packets for Facebook and Chrome.

E B R: avg [min, max]
Facebook Chrome

1 10 16 [6, 31] 7 [4, 10]

1 20 20.2[12,41] 6.4 1[5, 11]

1 40 15.6 [8, 27] 514,71

1 oo 96, 14] 6.2 [4, 11]

5 10 33.2[5,113] 82 [14, 200]

5 20 37.6 [20, 46] 27 [3, 61]

5 40 39.6 [8, 97] 25.6 [8, 55]

5 oo 2613, 47] 23.2 [6, 56]

10 10 53.8 [4, 190] 756.2 [531, 800]
10 20 71.6[12,200] -
10 oo 72.8[21,146] 283.2[126, 800]

TABLE 8: Results 4b. We report the average [min, max] R commu-
nication rounds required to reach a target F1 score (0.94 for Facebook,
0.84 for Chrome). We vary the batch size (B) and local epochs (F)
to evaluate their impact on R, with C' = 0.5. If the target F1 score is
not reached within 800 rounds over 5 runs, we assume that it does not
converge.

Results 4a. We evaluate the classification performance of Cen-
tralized and Federated models for Chrome and Facebook, with
C = 0.5, B = 10 and E = 5. Chrome’s Federated model
achieves 0.84 F1 score compared to its Centralized version with
F1 score = 0.92. Facebook’s Federated model maintains similar
F1 score (0.94) compared to its Centralized version (0.95).

Results 4b. In Table [8| we evaluate the impact of batch size
(B) and local epochs (£) on the average rounds (R) required to
reach a target F1 score for Chrome and Facebook. We observe that
increasing B increases slightly R to achieve the target F1 score,
while increasing the E' parameter increases I significantly. The
reason is that we use a simple model and most likely the model
overfits with large F. The FL paper [15] showed the opposite ef-
fect: increasing E' decreases R; however, they train more complex
models (DNNS5) that do not overfit for those E values. Moreover,
we observe that B does not significantly affect the number of
rounds. In contrast, F/ plays an important role in the model’s

rg/publications_standards/publications/ri;
ctober 03,2(%2% at 01:27:34 UTC from |IEEE Xpigore. Restrictions apply.

hts/index.html for more information.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

Transactions on Mobile Computing

12

10
centralized=0.95 it = mm b i i 1 b i o

' LifN

509 ‘JW"'\“ AR A A
P
T 06 ‘ J ‘J
04— E
—— E=10
0 50 100 150 200

rounds

(a) Facebook classifier; rounds vs. local epochs E.

centralized=0.92 == === == m e

0.8
06
8
[
504
=
0.2
— E=1
0.0 — E=10
0 50 100 150 200

rounds
(b) Chrome classifier; rounds vs. local epochs F.
Fig. 12: Results 4c. Convergence of F1 score over R rounds for
Chrome, with C' = 0.5, B = 10 and varied E. Models are trained 5

times, and shaded regions represent standard deviation from average
F1 score. The Centralized model (dashed line) reaches F1 score 0.92.

10
centralized=0.95 - - ——— o=z

08
?

‘g‘:‘)

< 0.6

c

° — eta=0.01

e 04 — eta=0.1
) — eta=0.5

eta=adaptive

0.2 —— eta=optimal

0 10 20 30 40 50 60 70 80
rounds

Fig. 13: Results 4d. Convergence of F1 score over R rounds for
Facebook with C' = 0.5, B = 10, E = 1 and learning rate 7 varied.

convergence, which is explored next.

Results 4c: Convergence of Federated models. Fig.
shows the performance of Federated SVM for Facebook and
Chrome when we vary the local epochs, £, with C' = 0.5 and
B = 10. We train each model with an E value five times and
report the average and standard deviation (in shadowed color). The
main difference between the two apps is that the F1 score of the
Federated model is closer to the Centralized one for Facebook,
however, its standard deviation is much larger than Chrome’s. In
addition, £ = 1 for Chrome can reach a better F1 score (0.89)
than in the previous experiments, because of the lower E value.
We observe that the Federated model is more sensitive to the F
parameter, which leads to overfitting for SVM.

Results 4d: Learning Rate vs. Convergence. Throughout
this paper we used the “optimal” learning rate from scikit-learn
[68]] which is defined as n(t) = m where t is the time step
and tg is determined on a heuristic proposed by L. Bottou [[66],
167] as tg = nol*a where a is the regularization term. Fig.
shows the impact of the 1 on the Federated model’s convergence
for Facebook data with C' = 0.5, B = 10, £ = 1 similarly to
Fig. We observe that only the smaller learning rate (7=0.01)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

Euires IEEE Bermission. See http://www.ieee.o
ownloaded on

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX XX

1.0
(o)
5038
(S
2]
; 06 Facebook
%0_4 Chrome
< test set:
go02 e test on k users
—— teston all users
0.0
6

2 4
train on k users

8 10

Fig. 14: Results 4e. Benefit of crowdsourcing with k users for
Chrome and Facebook. The average F1 score is shown for all users’
test data (thin line) and for test data of k users (bold line).

requires more rounds to converge. Our chosen 7) reaches the target
F1 score within 20 rounds and is comparable to n >= 0.1 and the
“adaptive” i which is defined as: 17 = 7 if the training loss keeps
decreasing, otherwise 1 = g

Discussion of Convergence. Understanding the effect of
heterogeneity in terms of resources and data and how it affects
convergence, especially in non-convex settings like DNNs, is
currently an active research area within the FL literature [41],
142]), [46], [63], [69]. Our model has a linear kernel and the
loss function is convex which guarantees convergence for both
I[ID and non-IID data following the original FL paper [15]’s
empirical conclusions which stated that for convex problems with
E— oo the global minimum will be always reached regardless of
the model’s initialization. However, the original FL paper [15]
did not provide a mathematical analysis of convergence. The
authors in [63]] assumed strongly convex and smooth {3-norm
regularized linear regression model and proved a convergence rate
of O(%) where T is the number of SGD updates during local
training and data is non-IID. They also proved that a decaying
7 is necessary to guarantee convergence in case of non-IID data.
Otherwise, they showed that a fixed 77 will converge to a solution
at least)(n) away from the optimal. The reason is that constant
learning rates combined with £ > 1 generate biased local updates,
and a decaying 7 can gradually tackle this bias. In our work,
the Federated SVM is linear, {5-norm regularized and strongly
convex but it is not smooth and we chose decaying 7 as discussed
above. Overall, our experiments showed convergence consistent
with the findings in [15] and 63}

Results 4e: Benefit of Crowdsourcing. We ask the question:
how many users need to collaborate to train a global model in
order to get most of the predictive power? Fig. shows that a
few users participating in the training phase during FL can be
beneficial for all users. We show the maximum average F1 score
obtained from 5 runs, as a function of the number of users (k)
participating in training. The F1 score is evaluated both on all
user’s test data and on the test data of k users who participated
in the training. We sort the users by increasing amount of training
data: for k = 1, one user with the fewest data points participates in
training, for £ = 2, in addition to the previous user, another user
with more data is used during training. Adding more users in the
training phase is beneficial to increase the F1 score for both apps.
However, some users do not help and slightly worsen the F1 score,

4. We show throughout this work that the Federated model reaches con-
vergence within tens of rounds for both IID and non-IID settings. Additional
regularization-based methods [42], [46], [47], [48] can be considered in order
to speed up further the convergence and are deferred to future work.

g/
ctober 03,2(%2% at 01:27:34 UTC from IEEE Xplore. Restrictions apply.

ublications_standards/publications/rights/index.html for more information.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

Transactions on Mobile Computing

BAKOPOULOU et al.: A FEDERATED LEARNING APPROACH FOR MOBILE PACKET CLASSIFICATION 13

model: Centralized Federated Local Local

tested on: each user’s data each user’s data each user’s data all test data

user 1 0.92 0.92 0.92 0.3 .10

user 2 1.0 0.95 1.0 0.67 centralized=0.95 &g e e

user 3 0.89 0.84 0.88 0.62 0.9

user 5 0.72 0.55 0.77 0.33 =08

user 7 0.98 0.99 0.99 0.86 fl"_: '

user 9 1.0 0.9 1.0 0.3 507

user 10 1.0 0.99 0.97 0.26 =

06
X —— client sampling=data size

TABLE 9: For Results 4e, we compare the F1 score of Centralized vs. 05 " glient sampling=random
Federated vs. Local models, tested on each user’s test data vs. test data 04 — clientsampling=inverse data size
from all users (merged). The Local model is better for some users than o 5 100 150 200
the Centralized and Federated models. However, when these Local rounds

models are tested on the test data from all users, the F1 score drops
significantly. This is because these models do not generalize well for
other users. (Note: We only show users who have some positive labels
and omit the rest (users 4, 6, 8) whose F1 score is always 0.)

as their data might confuse the classifier. For Facebook, at least
3 users are needed to obtain a decent F1 score, while Chrome
reaches the same F1 score with only 2 users. The F1 score on the
test data of k users is much higher than on the union of all users’
test data, as the models only fit to the data of the participating
users. The lack of generalization is one of the reasons that Web-
view apps are a challenging special case in the packet classification
problem. However, both Chrome and Facebook train Federated
models generalize well with F1 score > 0.80, if enough users
with useful (diverse) data participate in training, as the data of
each user is generated by different usage of the apps. This shows
the necessity of a crowdsourced model which is beneficial to all
users, instead of training locally (F1 score with k=1 starts at 0).

Table [9] reports more details for Results 4e. The Centralized
and Federated models achieved similar F1 score when tested on
each user’s test data. The F1 score of Local models might be
higher for some users (e.g., user 5) than the Federated or Cen-
tralized models when tested on that user’s data. However, when
the Local models are tested on the data from all users, we observe
a significant drop in performance: e.g., the F1 score of user 1’s
Local model reaches 0.92 on their own test data, but it decreases
to 0.3 on all test data. This is due to Local models overfitting on
each user’s data and not generalizing well across all users. This is
even more pronounced for IID data (see Appendix [A.3).

5.5 Scenario 5: Client Selection and Convergence

In all previous experiments, the clients were selected randomly
in each FL round as in the original FL paper [15]. Here, we
explore how different client selection strategies affect convergence
when the local data of each client is non-IID (Setup 5a) vs. IID
(Setup 5b). We explore a second client selection strategy, which
we refer to as “data size”: clients are selected with probability
based on their training data size as in [63], such as P = Ciiigf R
where total is the amount of all training data summed from all
users and datay, is the training data of user k. We would like to
note that in the aggregation step in Algorithm 1, the updates are
weighted based on the training data of each client, giving more
importance to the updates of clients with most data. So, with the
“data size” client selection strategy those users are “boosted” even
further, which can lead to overfitting. For this reason, we added
a third client selection strategy, which we refer to as “inverse
data size”, and chooses clients to participate in each round with
probability inversely proportional to the size of their training data,
thus assigning higher probability to clients with few data.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

Euires IEEE Bermission. See http://www.ieee.o
ownloaded on

Fig. 15: Results 5a. Convergence of F1 score over R rounds vs.
various client selection strategies for Facebook (non-1ID) data with
C=05B=10,FE = 1.

0.950
0.925
% 0.900
8]
50875
* 0.850
—— client sampling=data size
0.825 —— client sampling=random
0.800 —— client sampling=inverse data size
0 5 10 15 20 25 30
rounds

Fig. 16: Results 5b. Convergence of F1 score over R rounds vs.
various client selection strategies with NoMoAds 20 synthetic (non-
IID) users when predicting PII with C' = 0.5, B =10, £ = 1.

Setup 5a. We use the following setup from Table 3} Dataset:
In-house Facebook. Users: 10 real users. Classifier Granularity:
Per App. Models: Federated SVM. Tasks: PII exposure. The goal
is to evaluate the convergence of the Federated model when
different client selection strategies are in place for non-IID users.

Results Sa: Non-IID clients. We extracted the probabilities
of each user being selected in a round based on their training
data size. User 7 has a 50% chance of being selected in a round
since their data had the most PII positive packets according to
Fig.|11|and thus, with data balancing they have the most training
data compared to the rest of the users. The rest of the users had
probability of being selected less than 0.1. Fig. shows the
convergence for three different client selection strategies in case of
non-IID data. With random sampling the F1 score is more stable
across rounds however it starts with lower value. In contrast, the
“data size” strategy starts with F1 score of 0.90 since the user with
the most data participates in almost all rounds and only the rest
of the users vary. Moreover, “data size” reaches a slightly lower
F1 score as the Federated model seems to slightly overfit to user
7’s data. Overall, the difference between the two strategies is not
significant; the model’s F1 score is still above 0.90. However,
“inverse data size” is significantly lower with high variance in the
first 50 rounds. After the 50th round, it exceeds the F1 score of
the other two strategies and shows low variance. Thus, even if
clients with few data points are selected for their updates, after
a certain number of rounds the model still converges due to the
regularization effect similar to dropout in DNNs, as C' = 0.5
requires half of the clients to send their model updates.

Setup 5b. We use a similar setup to Setup 5a, but with NoMo-
Ads 20 uneven synthetic users. Classifier Granularity: General.
Models: Federated SVM. Tasks: PII exposure, Ad request. The
goal is to evaluate the convergence of the Federated model when

g/
ctober 03,2(%2% at 01:27:34 UTC from IEEE Xplore. Restrictions apply.

ublications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

Transactions on Mobile Computing

14

96.00% &
94.00% [

92.00% o1

% feat recovered

90.00%

i
i
i
i
i
i
i
i

=+ 1.0

0 5 10 15 20 25 30
rounds

(a) % features recovered vs. C (% clients selected in a round) with
B=oo, E=1.

100.00% e o

©
<

50% ;I

95.00%

% feat recovered

92.50% 0.001

~#= 0,005
90.00% e 0,01
L]
0 5 10 15 20 25 30

rounds

(b) % features recovered vs. learning rate n with B = oo, £ = 1.

97.50%

e g

P - e e W e Bl

©
a
=)
3
53

92.50% B

10
20
] a0
Fi e

90.00%

% feat recovered

87.50%

85.00%

0 5 10 15 20 25 30
rounds

(c) % features recovered vs. batch size B with £ =1, n = 0.01.

e e e R SR S X X e Ko K K K K =K X X e 6 K K K = = X X = X

96.00%

94.00%

92.00%

% feat recovered

. } -*- 5
90.00% i - 10

0 5 10 15 20 25 30
rounds

(d) % features recovered vs. local epochs E with B = oo, 7 = 0.01.

Fig. 17: Evaluating the success of our privacy attack in terms of
features recovered (%) when we vary the FL parameters.

different client selection strategies are in place for IID clients.
Results 5b: IID clients. Fig. shows the convergence of
the Federated model for various client selection strategies when
the clients are IID. We observe similar effects to the non-1ID
case, except that the “inverse data size” strategy does not have
as significant impact. Thus, in the case of IID synthetic clients,
the convergence is not affected by the client selection strategy
and random client selection seems to perform well. We omit the
comparison between the two prediction tasks and even, uneven
splits due to space limit since the observations were identical.

6 PRIVACY CONSIDERATIONS

The FL framework clearly raises the privacy bar in mobile packet
classification, by allowing devices to collaboratively train a clas-
sifier, without uploading their raw packet traces or training data
to a server However, federated learning, and more generally dis-
tributed learning, has its own inherent vulnerabilities to inference

attacks based on observed updates [[18], [19], [20], [21], [22]. In

this section, we consider two inference attacks specifically de-

5. Crowdsourcing training data from users to the server is the current
practice in mobile data analytics, including mobile packet classification.
However, it can directly expose personal and device identifiers, location and
other sensitive information stored on the device, as well as enable inference of
other sensitive information about user behavior.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX XX

RN v -t SO S S -
0.80 T .
® 0.60 3
2 H
c § c
3 0.40 B 0.1
T i 0.2
0.20 " & 05
=+ 10
0.00
0 5 10 15 20 25 30
rounds
(a) F1 score vs. C (% clients selected in a round) with B = oo,
E=1.
0.90 - - -
g 0.85
§
= 0.80
0.75
0 5 10 15 20 25 30
rounds
(b) F1 score vs. learning rate nn with B = oo, £ = 1.
e
0.90
E 0.85
§
080
0.75
0 5 10 15 20 25 30
rounds
(c) F1 score vs. batch size B with £ =1, n = 0.01.
095 -
0.90
g
<085
© E
080 1
-u- 5
0.75 - 10

0 5 10 15 20 25 30
rounds

(d) F1 score vs. local epochs E with B = oo, n = 0.01.

Fig. 18: Convergence in terms of F1 score for selected FL parameters
corresponding to privacy attack.

signed against packet classification. These attacks are application-
specific in the context of HTTP data, as opposed to generic e.g.,
adversarial attacks against federated image classification.

6.1 Inference Attacks

Threat model. We assume an honest-but-curious server. It is
honest because it receives updates from all users, it computes and
sends back to them the updated model parameters, correctly and
without any modification. It is curious because it wants to infer
sensitive information about a target user. In each FL round, the
server observes the gradient updates, analyzes and stores them
for future use. Since no additional privacy mechanism, such as
Differential Privacy or Secure Aggregation is assumed, at
this point, the server knows the exact updates sent by each user and
can target users individually to infer sensitive information from
their updates. In Threat Setup 6a, the server aims to recover the
features of a target user via observing and storing their non-zero
gradients in each FL round. In Threat Setup 6b, we assume that
the server has already reconstructed successfully all local training
data of the target user and further attempts to infer additional
information related to the target’s browsing history.

Threat Setup 6a: Feature Recovery. We use the following
setup from Table [3} Dataset: In-house Facebook. Users: User 7.
Classifier Granularity: Per App. Models: Federated SVM. Tasks:

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution reiuires IEEE I]Sermislsiordl. Sdee htt; ://www.ieeeor(%glublicationsﬁstandards/publications/ri%hts/indexhtml for more information.
ownloaded on

ctober 03,2 at 01:27:34 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

Transactions on Mobile Computing

BAKOPOULOU et al.: A FEDERATED LEARNING APPROACH FOR MOBILE PACKET CLASSIFICATION 15

PII exposure. The goal is to evaluate how the FL parameters affect
the success rate of the attack in terms of % of features recovered.
Results 6a: Feature Recovery. The server observes the
gradient updates from users participating in each FL round. In
every round, the adversary stores the current gradients in order to
subtract them in the next round. Recall that the server receives
the updated model weights from each user, which are obtained
locally via w — w — % ZZ—GBk y; - x; as already mentioned in
Algorithm 1. Fig. [17|shows the percentage of recovered features
in each round during FL when we vary the FL parameters: batch
size B, local epochs E, percentage of clients C in each round and
learning rate 7). Fig. shows how the model’s convergence is
affected with selected parameters from the privacy attack.

One of the parameters that affects the success of the attack
the most is the fraction C' of participating clients, as shown in
Fig. since the target user might not participate in every
round due to random selection of clients in each round. Fig.
18al shows that selecting C' = 1.0 speeds up the convergence
in addition to speeding up the privacy attack, since the target user
is participating in every round. However, if the server can control
the percentage of clients or can select the target user regardless of
the C' parameter, then the attack can be successful in fewer rounds.

Another parameter that affects significantly the feature recov-
ery rate is the learning rate 7). Fig. [@ indicates that a smaller
learning rate can recover 100% of user features within few rounds.
However, 7 affects the performance of the global model and
convergence; smaller 77 slows down convergence, as shown in Fig.
We demonstrate this privacy-utility trade-off in Figures [I7b
and [I8b! smaller learning rate will speed up the privacy attack
but will impact negatively the model’s convergence. For instance,
setting 1 to 0.001 speeds up feature recovery, but the F1 score
of the federated model drops from 0.93 (with n = 0.01) to
0.87. From the attacker’s point of view, the server must choose a
learning rate to balance the trade-off between the feature recovery
rate and the global model’s F1 score. From privacy-preserving
point of view, larger 1) accelerates the convergence and slows down
the feature recovery. Due to this trade-off, we chose n = 0.01
and evaluate the B and E parameters. Fig. shows how the
batch size affects our privacy attack. Smaller batch size seems to
result in faster feature recovery, although the difference is not very
significant. Similarly, the convergence of the model is not affected
significantly by the B parameter, as shown in Fig. Finally,
Fig. [17d indicates that smaller local epochs E results in better
feature recovery, as increasing local epochs introduces a notion
of aggregation before the server receives the model updates from
the client. However, Fig. [@ shows that with £ = 1 the model
converges slower and the best trade-off is achieved when E = 5
in terms of attack success and convergence.

Overall, we showed that more than 90% of features can be
recovered within tens of rounds if the server controls the client
selection and asks the target user for their updates, when the learn-
ing rate is reasonably small regardless of the B and E parameters.
The next question we ask in Setup 6b is what additional sensitive
information can be inferred from these recovered features.

Threat Setup 6b: Predicting visited domains. We use the
following setup from Table[3} Dataset: In-house Facebook. Users:
User 7. Classifier Granularity: Per App. Models: Centralized
SVM. Tasks: Domain.

The goal is to show that additional sensitive information can
be inferred from a successful attack on features. Specifically, we
assume that the privacy attack from Setup 6a (attack to FL updates)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

Euires IEEE Bermission. See http://www.ieee.o
ownloaded on

| HTTP Keys | Recon Words |

\

#ad/tracking domains (ATS)	39 (76.5%)	38(57.6%)
# non-tracking domains (non-ATS)	12 (23.5%)	28 (42.4%)
total domains	51(100%)	66(100%)

TABLE 10: Summary of domains that reached F1 score above
0.80 when using two different feature spaces: HTTP Keys and
Recon Words. Recon Words resulted in more domains that were
predicted successfully and many of those domains were non-
advertising/tracking resulting in a higher privacy risk.

was successful and the server was able to recover all features of a
target user, which is an upper bound in practice. The question is
then: can the server also infer the user’s browsing history, i.e., the
domains the user visited, based on all the HTTP keys? How well
can the attacker predict the visited domains based on the Recon
features, that contain more sensitive information than HTTP keys?
Browsing history is only one, but important, example of sensitive
information that can be inferred from HTTP data.

Results 6b: Predicting visited domains. In this experiment,
we assume the attacker has already recovered all features of the
target user. If sensitive features are included in the feature space,
as in All Words or Recon Words, i.e., values to sensitive keys,
then the attacker will able to recover those within few rounds as
we showed in the previous experiment. Although HTTP Keys do
not have explicit information from about the URL path or domain,
it is possible that such sensitive information can be inferred from
HTTP Keys. Here, we ask the following question: how well can
we predict visited domains based on HTTP Keys? As a baseline
for comparison, we also predict domains from Recon Words
features, which actually contain parts of the URL path. For a fair
comparison, we are testing the performance on the intersection
of common domains on the test data for both Recon Words and
HTTP Keys experiments: there were 105 such common domains.
We train a Centralized SVM model with HTTP Keys (2,411) vs.
Recon Words (5,120) feature space.

To provide a summary of all 105 domainsﬂ we report the
macro average F1 score, i.e., the non-weighted average of all per-
domain F1 scores. With HTTP Keys, the macro average F1 score
was 0.55 and approximately 48.57% of domains reached F1 score
> 0.80. In contrast, Recon Words achieved 0.60 macro average
F1 score and 62.86% of the test domains reached F1 score > 0.80.
Recon Words increase the performance of domain predictions
and thus the attacker can infer better such sensitive information
from user data. This was expected since Recon Words contain
more information from the packet and especially the URL field.
However, it was previously unknown how well an attacker can
infer domains and this is the first work that quantifies such leakage.

Next, we further distinguish domains that provide advertising
and tracking services (a.k.a. ATS) from the rest of the predicted
domains. We consider the non-ATS domains to be more sensitive
as they represent the user’s browsing history in Webview apps
like Facebook. We used the Mother-Of-all AdBlockers (MQOaD)
[[70] filter list and the module AdblockRules from AdblockPlus
[10] to label ATS domains. Figures 26| and 27 in the Appendix
show the results. Some examples of non-ATS domains are the
following: europa.eu, facebook.net, vox.com, while some ATS

6. The results for all 105 common domains, are presented in Fig. [26| and a
zoomed-in version with top 30 (in alphabetical order) domains in Fig.[27] Both
figures are moved to the Appendix due to lack of space.

g/
ctober 03,2(%2% at 01:27:34 UTC from IEEE Xplore. Restrictions apply.

ublications_standards/publications/rights/index.html for more information.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

Transactions on Mobile Computing

16

domains: doubleclick.net, google-analytics.com, openx.net. Ta-
ble shows how many non-ATS domains were predicted well,
i.e.,, achieving F1 score above 0.80, based on Recon Words
compared to HTTP Keys. In particular, Recon Words predict more
domains (66) successfully than HTTP Keys (51). Recon Words
result in prediction of 42.4% non-ATS domains compared to
23.5% with HTTP Keys, thus increasing the risk of sensitive
information revealed to the attacker (server).

6.2 Mitigation via Aggregation

There are two families of defense mechanisms that are usually
applied on top of federated learning: differential privacy [56]
(and other types of noise, including federated GANs [71]) and
Secure Aggregation (SA) [23]. Recall that in both attack scenarios
described above, the honest-but-curious server had access to the
updates from the target user, which it used to infer features (in 6a)
and visited domains (in 6b) for that target user. To defend against
the particular attacks for our problem, SA seems naturally suited
to hide which updates come from which user.

SA [23] was proposed early as a defense mechanism added
on top of FL. It is a multi-party computation (MPC) mechanism
that enables clients to submit their updates to the server, but the
server sees only the aggregate of the updates needed for learning.
A user’s gradient is aggregated with a set of k — 1 other gradients,
from (k = C'K) users sending updates within the FL round, and
cannot be traced back to the individual user. Intuitively, the more
clients participate in a round (larger k), the better the protection
in the k-anonymity sense. However, the value of k also affects
the MPC, the communication and computation cost of FL and the
convergence. We show that even a small k (e.g., k > 3) provides
good enough protection (i.e., reduces the number of inferred
features to 65%) even for the strongest hypothetical adversary.

Threat Setup 6c, with Secure Aggregation (SA).We assume
that SA is used and the serve can only observe the aggregate of
the gradients of k users participating in each FL round. For k = 1,
this is the Attack Scenario 6a discussed before, where the server
could see the updates of the target user. For k& > 1, the server
observes the aggregate non-zero gradients from a set of k users,
including but not limited to the target. It can keep track of different
sets and features seen in the previous and current rounds, in order
to infer the features of the target. To that end, there are many
possible inference algorithms the server could implement.

We implemented a heuristic that carefully picks the sets of &
users to pull updates from, in every round. It maintains counts
of users that participated in sets that had non-zero gradient for
a certain feature (in a matrix I(user, feature)). Due to lack of
space, we defer details to the appendix, and outline the main idea.

I Consider all subsets of k users, including the target user.
For each k-subset, pull the secure aggregate of the gradients,
identify the features with non-zero gradient. Update the
matrix I based on the following rules: (i) if a feature appears
in a round but did not appear in previous rounds, conclude
that users that participated in earlier rounds do not have it and
update the count for users in k-subset, (ii) if a feature appears
in previous and the current round, update the count for users
in the k-subset, (iii) if a feature appeared in previous rounds
and not in the current round, the current users do not have it.

II Exclude the target user, consider (k — 1)-subsets of other
users and repeat Phase I for those subsets. If a feature does
not appear in Phase II but appeared in Phase I, we are sure

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

Euires IEEE Bermission. See http://www.ieee.o
ownloaded on

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX XX

109 confidence thres.

kel 0.5

s 0.6

g 0.9 :

g | owL e 08

O 1.0

123

0 0.8

=2

©

QL

R 0.74
T T T T
2 4 6 8

k users
Fig. 19: Evaluating Attack Algorithm 6¢, with secure aggregation
on. We report the percent of the target user’s recovered features, for
varying k (participating users in a round) and confidence thresholds.

that the target user has it. If a feature appears in Phase II but
not Phase I, we are sure that the target user does not have it.

The algorithm eventually infers which features are present or
absent in the target user, some deterministically (0 or 1), others
with varying degrees of confidence (a number between 0 and 1),
reflecting the fraction of rounds that a user participated when the
feature appeared). Finally, we focus on the target user, and apply
a confidence threshold: features with confidence above or below
that threshold are declared as present or absent, respectively.

Results 6c¢. Fig. evaluates the success of the inference
algorithm in Threat Setup 6¢, in a way that is consistent with the
evaluation of Threat Setup 6a (k = 1): we report the percentage of
features recovered for the target user (user 7) at various confidence
thresholds. As expected, the attack is less successful when more
users participate in a round (larger k), thus anonymizing the
inferred features within a group of k£ users. With confidence
threshold 1, we observe a sharp decrease for £ > 3 leading to
65% recovered features. The decrease is less sharp and offers less
protection for k& < 5 when confidence threshold < 0.8, which
shows a trade-off between % of features recovered vs. confidence
of attributing those features to the target user. Overall, the server
recovers correctly with high confidence only 65% of the features
if at least 3 users participate in the FL rounds.

Summary of privacy protections. First, we showed that using
HTTP Keys instead of Recon Words as feature space is more
privacy-preserving: we use only keys and not values or packet
fields that contain sensitive identifiers and other information. Sec-
ond, the FL framework prevents uploading raw training data from
devices to the server. Third, the inference of features and other
sensitive data from observed updates is an inherent vulnerability to
all distributed learning. Although HTTP Keys reduce the success
of a domain classifier or leakage of features themselves, there
are still privacy risks involved with unprotected gradients in FL.
We evaluated and quantified the leakage of features and browsing
history specifically for HTTP packets of a target user. We also
showed that Secure Aggregation (a well-known form of MPC)
can significantly help remedy this problem: even a small number
of participating users per round (k > 3) can reduce the number of
features deterministically inferred to 65%.

7 CONCLUSION AND FUTURE DIRECTIONS

This paper proposes for the first time, FedPacket, a framework
for federated mobile packet classification, and evaluates its effec-
tiveness and efficiency, using three real-world datasets and two
different tasks (namely PII exposure and Ad request). First, we

g/
ctober 03,2(%2% at 01:27:34 UTC from IEEE Xplore. Restrictions apply.

ublications_standards/publications/rights/index.html for more information.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

Transactions on Mobile Computing

BAKOPOULOU et al.: A FEDERATED LEARNING APPROACH FOR MOBILE PACKET CLASSIFICATION 17

proposed a reduced feature space (HTTP Keys), which limits
the sensitive information shared by users. Then, we showed that
SVM with SGD performs similarly to Decision Trees used by
state-of-the-art [[7]], [9], [12], [13], in terms of F1 score as well
as interpretability. We also showed that Federated achieves a
significantly higher F1 score than Local and is comparable to
Centralized models, and it does so within a few communication
rounds and with minimal computation per user, which is important
in the mobile environment. Finally, we demonstrated an attack by
an honest-but-curious server that can infer features and browsing
history, and demonstrated that simple existing add-on mechanisms
can provide significant levels of protection. The code for our
experiments, will be released along with the public datasets.

In future work, we will consider additional privacy protec-
tions on top of our framework, beyond secure aggregation, e.g.,
differential privacy (DP) [57], [58], [59], selecting a subset of
gradient updates, compression of gradients or federated GANS
[[71]. Another promising direction for addressing both feature
space explosion and privacy attacks is to train packet or URL
embeddings specifically for this problem. Finally, our framework
can be applied to tasks beyond PII/Ad prediction (e.g., to detect
tracking [|14] or fingerprinting [32]), and beyond mobile devices
(e.g., for network traffic generated by different IoT devices).

ACKNOWLEDGMENTS

This work has been supported by NSF Awards 1900654, 1649372
and 1526736. E. Bakopoulou and B. Tillman have been supported
by H. Samueli and Networked Systems Fellowships. E. Bako-
poulou has also received a Broadcom Foundation Fellowship. We
thank A. Shuba and M. Gjoka, former members of our group, for
the NoMoAds and in-house datasets, used for evaluation.

REFERENCES

[11 “EU General Data Protection Regulation (GDPR),” https://eugdpr.org.

[2] “California consumer privacy act (ccpa),” https://oag.ca.gov/privacy/
ccpa,

[3] E. Pan, J. Ren, M. Lindorfer, C. Wilson, and D. Choffnes, “Panoptispy:
Characterizing audio and video exfiltration from android applications,”
Proceedings on Privacy Enhancing Technologies, vol. 2018, no. 4, pp.
33-50, 2018.

[4] B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient Privilege De-
Escalation for Ad Libraries in Mobile Apps,” in Proceedings of the 13th
annual international conference on mobile systems, applications, and
services.

[5] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-flow
tracking system for realtime privacy monitoring on smartphones,” ACM
Transactions on Computer Systems (TOCS), vol. 32, no. 2, p. 5, 2014.

[6] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich,
P. Gill, M. Allman, and V. Paxson, “Haystack: A multi-purpose mobile
vantage point in user space,” 2015.

[71 1. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes, “Recon:
Revealing and controlling pii leaks in mobile network traffic,”
in Proceedings of the 14th Annual International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys *16. New
York, NY, USA: ACM, 2016, pp. 361-374. [Online]. Available:
http://doi.acm.org/10.1145/2906388.2906392

[8] A. Shuba, A. Le, E. Alimpertis, M. Gjoka, and A. Mar-
kopoulou, “Antmonitor: System and applications,” arXiv preprint
arXiv:1611.04268, 2016.

[9]1 A. Shuba, E. Bakopoulou, M. A. Mehrabadi, H. Le, D. Choffnes, and
A. Markopoulou, “Antshield: On-device detection of personal informa-
tion exposure,” arXiv preprint arXiv:1803.01261, 2018.

[10] “Adblock browser,” https://adblockbrowser.org.

[11] “EasyList,” |https://easylist.to/.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries.

Euires IEEE Bermission. See http://www.ieee.o
ownloaded on

[12] A. Shuba, E. Bakopoulou, and A. Markopoulou, “Privacy Leak Classifi-
cation on Mobile Devices,” in 2018 IEEE 19th International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC).
IEEE, 2018.

[13] A. Shuba, A. Markopoulou, and Z. Shafig, “NoMoAds: Effective and
Efficient Cross-App Mobile Ad-Blocking,” Proceedings on Privacy En-
hancing Technologies, vol. 2018, no. 4, 2018.

[14] A. Shuba and A. Markopoulou, “Nomoats: Towards automatic detection
of mobile tracking,” Proceedings on Privacy Enhancing Technologies,
vol. 2020, no. 2, pp. 45-66, 2020.

[15] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics (AISTATS), 2017. [Online].
Available: http://arxiv.org/abs/1602.05629

[16] “NoMoAds Dataset,” https://athinagroup.eng.uci.edu/projects/nomoads/
data/.

[17] “AntShield Dataset,”
antmonitor/antshield-dataset/.

[18] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning.” IEEE, 2019.

[19] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Stand-alone and federated learning un-
der passive and active white-box inference attacks,” arXiv preprint
arXiv:1812.00910, 2018.

[20] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Advances
in Neural Information Processing Systems, 2019, pp. 14747-14756.

[21] J. Geiping, H. Bauermeister, H. Droge, and M. Moeller, “Inverting
gradients—how easy is it to break privacy in federated learning?” arXiv
preprint arXiv:2003.14053, 2020.

[22] W. Wei, L. Liu, M. Loper, K.-H. Chow, M. E. Gursoy, S. Truex, and
Y. Wu, “A framework for evaluating gradient leakage attacks in federated
learning,” arXiv preprint arXiv:2004.10397, 2020.

[23] K. Bonawitz, V. Ivanov, B. Kreuter, and A. Marcedone, “Practical Secure
Aggregation for Privacy Preserving Machine Learning,” Eprint.lacr.Org.
[Online]. Available: https://eprint.iacr.org/2017/281.pdf

[24] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan,
M. Allman, C. Kreibich, and P. Gill, “Apps, trackers, privacy, and
regulators: A global study of the mobile tracking ecosystem,” 2018.

[25] J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes, and N. Vallina-
Rodriguez, “Bug fixes, improvements,... and privacy leaks,” 2018.

[26] N. Vallina-Rodriguez, S. Sundaresan, A. Razaghpanah, R. Nithyanand,
M. Allman, C. Kreibich, and P. Gill, “Tracking the trackers: Towards
understanding the mobile advertising and tracking ecosystem,” arXiv
preprint arXiv:1609.07190, 2016.

[27] “hphosts,” https://hosts-file.net/ad_servers.txt.

[28] “Adaway,” https://adaway.org/hosts.txt.

[29] K. Garimella, O. Kostakis, and M. Mathioudakis, “Ad-blocking: A study
on performance, privacy and counter-measures,” in Proceedings of the
2017 ACM on Web Science Conference. ACM, 2017, pp. 259-262.

[30] D. Gugelmann, M. Happe, B. Ager, and V. Lenders, “An automated
approach for complementing ad blockers’ blacklists,” Proceedings on
Privacy Enhancing Technologies, vol. 2015, no. 2, pp. 282-298, 2015.

[31] G. Srivastava, S. Chitkara, K. Ku, S. K. Sahoo, M. Fredrikson,
J. I. Hong, and Y. Agarwal, “Privacyproxy: Leveraging crowdsourcing
and in situ traffic analysis to detect and mitigate information
leakage,” CoRR, vol. abs/1708.06384, 2017. [Online]. Available:
http://arxiv.org/abs/1708.06384

[32] S. Zimmeck, J. S. Li, H. Kim, S. M. Bellovin, and T. Jebara, “A
privacy analysis of cross-device tracking,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 1391-1408.

[33] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15. New York, NY,
USA: ACM, 2015, pp. 1310-1321. [Online]. Available: http:
//doi.acm.org/10.1145/2810103.2813687

[34] J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtdrik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[35] S. Caldas, J. Konecny, H. B. McMahan, and A. Talwalkar,
“Expanding the reach of federated learning by reducing client resource
requirements,” CoRR, vol. abs/1812.07210, 2018. [Online]. Available:
http://arxiv.org/abs/1812.07210

[36] N. Guha, A. Talwlkar, and V. Smith, “One-shot federated learning,” arXiv
preprint arXiv:1902.11175, 2019.

[37]1 K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan et al.,

https://athinagroup.eng.uci.edu/projects/

g/
ctober 03,2(%2% at 01:27:34 UTC from IEEE Xplore. Restrictions apply.

ublications_standards/publications/rights/index.html for more information.

https://eugdpr.org
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
http://doi.acm.org/10.1145/2906388.2906392
https://adblockbrowser.org
https://easylist.to/
http://arxiv.org/abs/1602.05629
https://athinagroup.eng.uci.edu/projects/nomoads/data/
https://athinagroup.eng.uci.edu/projects/nomoads/data/
https://athinagroup.eng.uci.edu/projects/antmonitor/antshield-dataset/
https://athinagroup.eng.uci.edu/projects/antmonitor/antshield-dataset/
https://eprint.iacr.org/2017/281.pdf
https://hosts-file.net/ad_servers.txt
https://adaway.org/hosts.txt
http://arxiv.org/abs/1708.06384
http://doi.acm.org/10.1145/2810103.2813687
http://doi.acm.org/10.1145/2810103.2813687
http://arxiv.org/abs/1812.07210

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3058627, IEEE

18

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re
Authorized licensed use limited to: Access paid by The UC Irvine

Transactions on Mobile Computing

“Towards federated learning at scale: System design,” arXiv preprint
arXiv:1902.01046, 2019.

A. Hard, K. Rao, R. Mathews, F. Beaufays, S. Augenstein, H. Eichner,
C. Kiddon, and D. Ramage, “Federated learning for mobile keyboard
prediction,” arXiv preprint arXiv:1811.03604, 2018.

“Pretrained word2vec,” https://code.google.com/archive/p/word2vec/.

E. Bakopoulou, B. Tillman, and A. Markopoulou, “A federated
learning approach for mobile packet classification,” arXiv preprint
arXiv:1907.13113, 2019.

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” arXiv preprint
arXiv:1912.04977, 2019.

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine Learning and Systems, vol. 2, pp. 429—450, 2020.

G. L. Parisi and V. Lomonaco, “Online continual learning on sequences,”
in Recent Trends in Learning From Data. Springer, 2020, pp. 197-221.
R. Aljundi, E. Belilovsky, T. Tuytelaars, L. Charlin, M. Caccia, M. Lin,
and L. Page-Caccia, “Online continual learning with maximal interfered
retrieval,” in Advances in Neural Information Processing Systems, 2019,
pp. 11849-11 860.

R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio, “Gradient based
sample selection for online continual learning,” in Advances in Neural
Information Processing Systems, 2019, pp. 11 81611 825.

N. Shoham, T. Avidor, A. Keren, N. Israel, D. Benditkis, L. Mor-Yosef,
and 1. Zeitak, “Overcoming forgetting in federated learning on non-iid
data,” 2019.

X. Yao and L. Sun, “Continual local training for better initialization of
federated models,” arXiv preprint arXiv:2005.12657, 2020.

J. Yoon, W. Jeong, G. Lee, E. Yang, and S. J. Hwang, “Federated con-
tinual learning with adaptive parameter communication,” arXiv preprint
arXiv:2003.03196, 2020.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.
Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska et al.,
“Overcoming catastrophic forgetting in neural networks,” Proceedings
of the national academy of sciences, vol. 114, no. 13, pp. 3521-3526,
2017.

M. Abadi, U. Erlingsson, I. Goodfellow, H. B. McMahan, I. Mironov,
N. Papernot, K. Talwar, and L. Zhang, “On the protection of private
information in machine learning systems: Two recent approches,” in 2017
IEEE 30th Computer Security Foundations Symposium (CSF), Aug 2017,
pp. 1-6.

B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan:
information leakage from collaborative deep learning,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security.

M. S. Riazi, B. D. Rouhani, and F. Koushanfar, “Deep learning on private
data,” IEEE Security and Privacy Magazine, 2018.

A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyz-
ing federated learning through an adversarial lens,” arXiv preprint
arXiv:1811.12470, 2018.

Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond
inferring class representatives: User-level privacy leakage from federated
learning,” arXiv preprint arXiv:1812.00535, 2018.

B. Zhao, K. R. Mopuri, and H. Bilen, “idlg: Improved deep leakage from
gradients,” arXiv preprint arXiv:2001.02610, 2020.

C. Dwork, “Differential privacy,” Encyclopedia of Cryptography and
Security.

H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learn-
ing differentially private language models without losing accuracy,”
arXiv:1710.06963, 2017.

R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” CoRR, vol. abs/1712.07557, 2017.
[Online]. Available: http://arxiv.org/abs/1712.07557

A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers,
“Protection against reconstruction and its applications in private federated
learning,” arXiv preprint arXiv:1812.00984, 2018.

S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, and R. Zhang,
“A hybrid approach to privacy-preserving federated learning,” arXiv
preprint arXiv:1812.03224, 2018.

“Permanent Message Header Field Names,” www.iana.org/assignments/
message-headers/message-headers.xhtml#perm-headers, 2019.

S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal
estimated sub-gradient solver for svm,” Mathematical programming, vol.
127, no. 1, pp. 3-30, 2011.

ibraries.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX XX

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]
(711

X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” ICC 2019 - 2019
IEEE International Conference on Communications (ICC), May 2019.
[Online]. Available: http://dx.doi.org/10.1109/ICC.2019.8761315
“Ui/application exerciser monkey,” https://developer.android.com/studio/
test/monkey.

L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,”
in Advances in Neural Information Processing Systems 20, J. C.
Platt, D. Koller, Y. Singer, and S. T. Roweis, Eds. Curran
Associates, Inc., 2008, pp. 161-168. [Online]. Available: http:
/Ipapers.nips.cc/paper/3323-the-tradeoffs- of-large- scale-learning.pdf

L. Bottou, “Stochastic gradient descent (v.2),” https://leon.bottou.org/
projects/sgd.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

C. Wang, Y. Yang, and P. Zhou, “Towards efficient scheduling of feder-
ated mobile devices under computational and statistical heterogeneity,”
2020.

“Mother of all adblockers,” http://adblock.mahakala.is.

S. Augenstein, H. B. McMahan, D. Ramage, S. Ramaswamy, P. Kairouz,
M. Chen, R. Mathews, and B. A. y Arcas, “Generative models for
effective ml on private, decentralized datasets,” 2020.

Evita Bakopoulou received her B.Sc. and M.Sc.
degrees in Computer Science from Athens Uni-
versity of Economics and Business, Greece, in
2014 and 2016, respectively. Currently, she is
a Ph.D. student in the Networked Systems Pro-
gram at UC Irvine, working with Prof. Athina Mar-
kopoulou. She was a Summer Intern with Bell
Labs (2017), Oath/Verizon Digital Media Ser-
vices (2018) and Google (2020). Her research
interests are primarily in the area of machine
learning, and privacy.

Balint Tillman received the B.Sc degree in Busi-
ness Information Technology from the Corvi-
nus University of Budapest, Hungary, in 2008;
the M.Sc degree in Software Development and
Technology from IT University of Copenhagen,
Denmark, in 2012; and the Ph.D. degree in
Networked Systems Program from UC Irvine in
2019. He was a Summer Intern with Google from
2016 to 2018, and he is currently with Google,
Mountain View. He received the Henry Samueli
Fellowship for Networked Systems 2015-2016.

His research interests include graph algorithms and machine learning in
computer networks.

Athina Markopoulou (S'98-M'02-SM’'13-F’21)
received the Diploma degree in Electrical and
Computer Engineering from the National Tech-
nical University of Athens, Greece, in 1996,
and the M.S. and Ph.D. degrees in Electrical
Engineering from Stanford University in 1998
and 2003, respectively. She joined the faculty of
EECS Department at UC Irvine in 2006, where
she is currently a Professor and Chair. She has
held short-term positions at SprintLabs, Arista
Networks, and IT University of Copenhagen.

She has received the NSF CAREER award in 2008, the HSSoE Faculty
Midcareer Research Award in 2014, the OCEC Educator Award in 2017,
and a UCI Chancellor’s Fellowship in 2019. She has served as an Asso-
ciate Editor for IEEE/ACM Trans. on Networking and for ACM Computer
Communications Review, as the General Co-Chair for ACM CoNEXT
2016, as TPC Co-Chair for ACM SIGMETRICS 2020 and NetCod 2012.
She is also a Senior Member of the ACM. Her research interests are
in networking, mobile and loT, privacy, network measurement, social
networks, and network coding.

Euires IEEE Bermission. See http://www.ieee.o
ownloaded on

g/
ctober 03,2(%2% at 01:27:34 UTC from IEEE Xplore. Restrictions apply.

ublications_standards/publications/rights/index.html for more information.

https://code.google.com/archive/p/word2vec/
http://arxiv.org/abs/1712.07557
www.iana.org/assignments/message-headers/message-headers.xhtml%23perm-headers
www.iana.org/assignments/message-headers/message-headers.xhtml%23perm-headers
http://dx.doi.org/10.1109/ICC.2019.8761315
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
http://papers.nips.cc/paper/3323-the-tradeoffs-of-large-scale-learning.pdf
http://papers.nips.cc/paper/3323-the-tradeoffs-of-large-scale-learning.pdf
https://leon.bottou.org/projects/sgd
https://leon.bottou.org/projects/sgd
http://adblock.mahakala.is

