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Transition from an atomic to a molecular 
Bose–Einstein condensate

Zhendong Zhang1, Liangchao Chen2, Kai-Xuan Yao1 & Cheng Chin1 ✉

Molecular quantum gases (that is, ultracold and dense molecular gases) have many 
potential applications, including quantum control of chemical reactions, precision 
measurements, quantum simulation and quantum information processing1–3. For 
molecules, to reach the quantum regime usually requires efficient cooling at high 
densities, which is frequently hindered by fast inelastic collisions that heat and 
deplete the population of molecules4,5. Here we report the preparation of 
two-dimensional Bose–Einstein condensates (BECs) of spinning molecules by 
inducing pairing interactions in an atomic condensate near a g-wave Feshbach 
resonance6. The trap geometry and the low temperature of the molecules help to 
reduce inelastic loss, ensuring thermal equilibrium. From the equation-of-state 
measurement, we determine the molecular scattering length to be + 220(±30) Bohr 
radii (95% confidence interval). We also investigate the unpairing dynamics in the 
strong coupling regime and find that near the Feshbach resonance the dynamical 
timescale is consistent with the unitarity limit. Our work demonstrates the 
long-sought transition between atomic and molecular condensates, the bosonic 
analogue of the crossover from a BEC to a Bardeen−Cooper−Schrieffer (BCS) 
superfluid in a Fermi gas7–9. In addition, our experiment may shed light on condensed 
pairs with orbital angular momentum, where a novel anisotropic superfluid with 
non-zero surface current is predicted10,11, such as the A phase of 3He.

Because of their rich energy structure, cold molecules may enable 
advances in quantum engineering and quantum chemistry1–3; a wide 
variety of platforms have been developed to trap and cool the cold 
molecules2. The same rich energy structure, however, also causes com-
plex reactive collisions that obstruct experimental attempts to cool 
molecules towards quantum degeneracy.

One successful strategy towards preparing molecular quantum gas 
is to begin with an atomic quantum gas, and then to pair the atoms 
into molecules6. A prominent example is the pairing of atoms in a 
two-component Fermi gas, which opens the door to exciting research 
on the crossover from a BEC to a BCS superfluid12–14. Recently, a degener-
ate Fermi gas of ground-state KRb molecules has been produced from 
quantum mixtures of Rb and K atoms15. In these examples, molecules 
gain collisional stability from Fermi statistics and the preparation of 
molecules in the lowest rovibrational state, respectively.

For more generic molecules with many open inelastic channels, ine-
lastic collision rates are difficult to predict and experiments frequently 
report rates near the unitarity limit, which means that all possible scat-
terings result in loss4,5. The short lifetime hinders evaporative cooling 
towards quantum degeneracy.

Here we report the observation of BECs of Cs2 molecules in a high 
vibrational and rotational state; see Fig. 1. The molecules are produced 
by pairing Bose-condensed caesium atoms in a two-dimensional, 
flat-bottomed trap near a narrow g-wave Feshbach resonance16. The trap 
geometry allows molecules to form at very low temperature and with 

low collision loss such that they emerge into the Berezinskii−Kosterlitz−
Thouless (BKT) superfluid regime17–19. Our experiment thus enables us 
to investigate pairing and unpairing dynamics in a bosonic many-body 
system, described by the interaction Hamiltonian7–9

H g a aa a a a= ( ˆ ˆˆ + ˆ ˆ ˆ ),int m
†

m
† †

where âm and â are the annihilation operators of a molecule and an 
atom, respectively, and g is the coupling constant. Pairing of bosons 
is expected on both sides of the Feshbach resonance and can lead to 
an Ising-like quantum phase transition7–9. Interestingly, in the molecu-
lar BEC phase, atoms and molecules are predicted to have BCS-like 
correlations8.

Our experiment starts with a BEC of 6 × 104 caesium atoms in a uni-
form optical trap. The radial confinement on the x−y plane comes from a 
circular, flat-bottomed optical potential20. The sample is vertically con-
fined with 1/e radius of 0.4 μm to a single site of an optical lattice with 
trap frequency ωz = 2π × 400 Hz. The atomic scattering length is 127a0 
at B = 19.2 G and the global chemical potential is μ0 = h × 365 Hz, where 
h = 2πħ is the Planck constant and a0 is the Bohr radius. The initial state 
of the atoms is a BEC in the two-dimensional (2D) to three-dimensional 
(3D) crossover regime at temperature T = 11(2) nK, well below the BEC 
critical temperature of 85 nK.

We create Cs2 molecules by ramping the magnetic field across a 
closed-channel dominated Feshbach resonance at B0 = 19.87 G (ref. 21).  
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This resonance has a small width ΔB = 11 mG (ref. 22) and couples two 
scattering atoms into a weakly bound molecule with a large orbital 
angular momentum l = 4ħ and projection along the magnetic field direc-
tion lz = 2ħ. The molecules are closed-channel dominated and chemi-
cally bound with the size given by the van der Waals length RvdW = 5.3 nm 

for Cs (ref. 16). This resonance is chosen owing to the superior colli-
sional stability between the molecules. The molecules can be brought 
into other rotational states or superposition of rotational states by a 
time-dependent magnetic field23.

The ramp is optimized to pair up to 15% of the atoms into molecules 
at the lowest achievable temperature. After the formation of the mol-
ecules, residual atoms are optically expelled from the trap and a mag-
netic field gradient is applied to levitate the molecules21. To detect the 
molecules, we dissociate them back to atoms by reversely ramping 
the field well above the resonance, and perform in situ imaging on 
the atoms; see Fig. 2a.

The molecules produced thus occupy the same trap volume as the 
atomic cloud. A slightly lower molecular density is observed at the 
trap centre owing to a weak magnetic field curvature of 21.5 G cm–2 on 
the x−y plane. The field curvature leads to a slightly deeper (by 1.1 nK) 
potential in the rim than in the centre for the molecules. The appear-
ance of the ring structure in the molecular density profile (see Fig. 2a) 
suggests that the molecules are prepared at a temperature or chemical 
potential on the order of a few nanokelvin. The ring structure forms 
soon after passing the Feshbach resonance during the magnetic field 
ramp, which suggests that the equilibrium of molecules is reached by 
their fast interactions with atoms near the resonance (see Methods). 
This supports our equation-of-state measurements (below) of the 
molecular samples from their density profiles.

To determine the molecular temperature, we find the conventional 
time-of-flight method impractical because the molecules expand very 
slowly within their lifetime. Instead we measure the density profile 
by slowly raising a potential barrier at the trap centre over 10 ms and 
recording the density response; see Fig. 2b. With a high potential bar-
rier, the molecules at the centre become thermal with the density 
response ∂n/∂μ = n/kBT, where kB is the Boltzmann constant. From fit-
ting the data, we determine the molecular temperature to be 10(3) nK 
(the uncertainty in parentheses is the 95% confidence interval here and 
throughout unless otherwise stated). The low-temperature kBT < ħωz 
also suggests that the molecules form a 2D gas.
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Fig. 1 | Production of g-wave molecular condensate. A uniform Cs BEC (grey) 
is initially confined in a 2D optical potential (blue). Caesium atoms (red circles) 
are paired into molecules through a narrow g-wave Feshbach resonance at 
magnetic field B0 = 19.87 G. The molecules occupy a rotational state with orbital 
angular momentum l = 4ħ and its projection in the z-direction is lz = 2ħ. The 
molecules form a molecular BEC (green) in the same optical trap, while the 
remaining atoms are expelled from the trap.
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Fig. 2 | Equation of state of molecular gases. a, In situ images of atomic BEC 
(left) and molecular BEC (right) density profiles nA and nM, shown on the colour 
scale, both at B = 19.2 G, in the dipole trap. Atoms are paired into molecules near 
the g-wave Feshbach resonance; see text. b, Molecular density response to 
optical potential. A circular repulsive barrier with a radius of 4 μm is raised at 
the centre of the trap with a barrier height of h × 83 (left), h × 165 (middle) and 
h × 330 Hz (right). The molecular density response determines the equation of 
state for small and negative chemical potential. The total external potential is 
sketched below. The samples have a diameter of 25 μm. c, Equation of state of 
atomic and molecular BEC, n(μ), where μ is chemical potential. The 2D phase 
space density n n λ=ϕ M dB

2  of molecules is derived from the optical barrier (red) 

and density profile (blue) measurements (see Methods), where λdB is the 
molecular de Broglie wavelength. The background colour shows the 2D gas in 
the thermal (nϕ ≤ 2, blue), fluctuation (2 < nϕ < nc, grey) and BKT superfluid  
(nϕ > nc, red) regimes, where the superfluid critical phase space density is 
nc = 6.5 (experimental) and 7.5 (theoretical); see text. The green and blue lines 
are fits in the thermal and superfluid regimes for a 2D Bose gas26, respectively. 
The red line is a fit based on a classical gas. The inset shows identical 
measurement on atomic condensates with fits in the thermal (red) and BEC 
(blue) regimes. Data values represent the average and error bars represent one 
standard deviation of the mean, estimated from the statistical errors of 9–22 
measurements.
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To probe the phase of the molecules at high densities, we measure 
the equation of state n(μ, T) from their in situ density distribution24. 
Precise knowledge of the magnetic anti-trap potential is obtained from 
identical measurements with atomic condensates (see Methods). The 
molecular density is found to linearly increase with the local chemical 
potential, consistent with the mean-field expectation μ = ħ2g2DnM/2m, 
where g a mω h= 4π 2 /z2D M  is the 2D coupling constant25, nM is the 2D 
molecular density, m is the atomic mass and aM is the molecular scat-
tering length. Fitting the data with the theoretical prediction including 
finite temperature contribution26, we obtain a temperature of 11(1) nK, 
consistent with the optical barrier measurement.

We combine both measurements to determine the equation of state 
n(μ, T) of the molecular gas. In Fig. 2c, we present the 2D density nM as a 
function of the local chemical potential μ. Notably, the transition from 
exponential to linear dependence on μ is the hallmark of the transition 
from the thermal gas to the superfluid phase. A global fit to the data 
shows excellent agreement with the theory in the thermal and super-
fluid limits (see Methods). From the fit, we determine the 2D coupling 
constant g2D = 0.19(3), the molecular scattering length aM = +220(30)a0, 

the peak phase space density nϕ ≈ 9 and the global chemical potential 
μ0 = h × 61(7) Hz. Repeated experiments in the range of 18.2 G < B < 19.5 G 
show that aM is approximately constant. The peak phase space density 
exceeds the critical value for the BKT superfluid transition of nc = 6.5 
(experimental value)19 and 7.5 (theoretical value)27 at g2D = 0.19. On the 
basis of our trap geometry and the interaction strength, we expect that 
molecules condense in the superfluid regime28, and estimate that 30% 
to 50% of the molecules are in the superfluid phase.

We further investigate the lifetime of the molecules. By holding the 
molecular BEC in the dipole trap with an initial mean density of 
n3D ≈ 1 × 1013 cm−3, the sample survives for more than 30 ms. Comparing 
samples with different densities and in different traps, we conclude that 
the decays are dominated by two-body collision loss (see Methods); see 
Fig. 3a. The average loss coefficient of L2 = 4 × 10−12 cm3 s−1 for molecules 
in the 2D trap with ωz/2π = 400 Hz is about ten times lower than previous 
measurements29,30; see Fig. 3b. It is also a factor of 500 below the unitarity 
limit U h m k= (4 /2 )⟨ ⟩2

−1  = 2 × 10–9 cm3 s−1, where k⟨ ⟩−1  is the thermal aver-
age of the reciprocal molecular scattering wavenumber k−1 (see Meth-
ods), and a factor of 10 below the interaction scale μ0/ħn3D; see Fig. 3b.

The large suppression of inelastic collisions between the highly 
excited g-wave molecules is remarkable. The comparison in Fig. 3b 
suggests that the collision loss is suppressed at low temperatures and 
possibly in the 2D regime31,32. Since the unitarity limited loss scales as 
T−1/2, the smaller loss at lower temperature suggests that a larger sup-
pression relative to the unitarity limit can be obtained by reaching 
even lower temperatures. At 10 nK, the loss coefficient we observe 
is already at the same level as the ground-state fermionic molecules 
reported in refs. 33,34.

The observed lifetime of 30 ms is sufficient for many elastic scattering 
events between molecules, which occur at the timescale of ħ/μ0 = 2.7 ms. 
Although the lifetime is insufficient to re-distribute molecules over the 
entire sample, thermal equilibrium in a (nearly) homogeneous system 
does not require global transport and can form by local interactions 
near the Feshbach resonance, where fast collisions between atoms and 
molecules occur (see Methods). It is remarkable that the temperatures 
measured at the trap centre and in the rim are in good agreement with 
the atomic BEC at 11(2) nK. Our observation suggests that molecules 
produced at all locations in the trap are in thermal equilibrium with the 
atoms. Since the atoms are in thermal equilibrium, the molecules thus 
prepared are in thermal equilibrium with each other.

The molecular superfluid thus enables the investigation of pairing 
and unpairing in a Bose condensate. A phase transition is expected 
when unpairing occurs in a molecular BEC7,8. Figure 4 presents our 
investigation into the unpairing dynamics. After forming the molecular 
condensate at B = 19.4 G, we ramp the magnetic field in 0.3 ms near and 
above the Feshbach resonance with a precision of 2 mG. We monitor 
the dissociation process by imaging the emerging atoms.

When the field is ramped high above the resonance, the molecules 
quickly and entirely dissociate. In particular, the dissociation rate fol-
lows Fermi’s golden rule Γ ∝ E1/2, where E = Δμ(B – B0) is the molecular 
energy above the continuum and Δμ = h × 770 kHz G−1 is the relative 
magnetic moment30.

Near the Feshbach resonance the system enters the strong coupling 
regime and the measurement deviates from Fermi’s golden rule. Here 
the measured dissociation energy ħγ = ħ × 8 ms−1 = kB × 61 nK (see Fig. 4b), 
is much greater than μ and T of the BEC and much smaller than the 
Feshbach resonance width ΔμΔB = kB × 410 nK. The energy is, how-
ever, comparable to the universal Fermi energy scale for the molecules 
EF = (ħ2/4m)(6π2n3D)2/3 = kB × 63 nK. This result suggests that the disso-
ciation dynamics near the Feshbach resonance is unitarity-limited35,36. 
Finally, we observe about 40% of the molecules converted back to 
atoms, and attribute the missing 60% to inelastic collisions between 
atoms and molecules in the strong coupling regime.

To conclude, we have realized a BEC of highly excited, rotating mole-
cules near a narrow Feshbach resonance. The molecules are sufficiently 
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stable at low temperatures to ensure local thermal equilibrium. Unpair-
ing dynamics in molecular condensates is consistent with the universal-
ity hypothesis. Our system offers a platform with which to study the 
long-sought transition from an atomic BEC to a molecular BEC, and 
highlights the fundamental difference between Cooper pairing in a 
degenerate Fermi gas and bosonic pairing in a BEC.
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Methods

Experimental procedure
The starting point of our experiment is a BEC of 6 × 104 caesium atoms 
prepared in a disk-shaped dipole trap with a radius of 18 μm in the x–y 
horizontal plane. The disk-shaped potential is provided by a digital 
micromirror device (DMD), which projects 788 nm blue-detuned laser 
light on the plane with 1 μm resolution. The atoms are loaded into a 
single layer of the optical lattice in the vertical direction with trap fre-
quency ωz/2π = 400 Hz (ref. 37) A magnetic field gradient of 31 G cm−1 is 
applied to levitate the atoms and the magnetic field is tuned to 20.03 G.

We create the molecules with the g-wave narrow Feshbach resonance 
located at 19.87 G based on a procedure similar to that in ref. 21. Since 
atoms and molecules have different magnetic moments, they tend 
to separate vertically in the presence of a magnetic field gradient. To 
better confine both atoms and molecules in the molecular formation 
phase, we increase the magnetic field gradient to 41.9 G cm−1 in 2 ms 
before ramping the magnetic field to 19.79 G in 2 ms, which creates 
the molecules. After the formation of the molecules, the magnetic 
field gradient is increased to 50 G cm−1 in 0.5 ms, which levitates the 
molecules and overlevitates the atoms.

To remove residual atoms after the molecular formation phase, a 
resonant light pulse of 60 μs illuminates and pushes atoms away from 
the imaging area in 4 ms. Molecules are detected by reversely ramping 
the magnetic field, which dissociates the molecules back to atoms, and 
the atoms are detected by absorption imaging. The final value of the 
magnetic field and the hold time are selected to give a reliable image 
that reflects the distribution of the molecules. In our experiments, 
we set the final magnetic field to be 20.19 G and do the detection in 
0.1 ms after the reverse ramp. We estimate that the atoms expand by 
1 μm during the dissociation process, which is comparable with the 
imaging resolution of our experimental system.

Characterization of external potential from atomic density profile
The strong magnetic field gradient for levitating the molecules leads 
to an additional magnetic anti-trapping potential on the horizontal 
plane. We also apply a central potential barrier projected from a DMD 
to measure the density response of the molecules. A precise knowledge 
of both the magnetic anti-trapping potential and the optical poten-
tial barrier are needed in order to extract the equation of state of the 
molecular gas.

We load atomic BEC into the same trap as for molecules to calibrate 
the external potential. Since the magnetic moment and polarizability 
of the g-wave molecule are accurately known, the trapping potential for 
molecules can thus be obtained from the trapping potential for atoms.

The magnetic anti-trap frequency on the horizontal plane is given by

ω
μ

mB
B ε B=

4
( ′ − 4 ), (1)i i

2 m

0

2
0
2

where i = x, y, μm is the magnetic moment, B0 and B′ are the magnetic 
field and the magnetic field gradient, respectively, at the location of the 
particles and εi is determined from the coil geometry37. We determine 
the offset field value B0 with an accuracy of 2 mG using microwave spec-
troscopy. We prepare atomic BEC at 17.2 G where the s-wave scattering 
length is aS = 4a0. Because of the low chemical potential, the atomic 
density distribution is sensitive to the magnetic anti-trap and the density 
is lower at the centre and higher in the rim; see Extended Data Fig. 1a. 
Since the vertical trap frequency ωz/2π = 400 Hz is much larger than the 
chemical potential μ0/h ≈ 10 Hz, the BEC is in the quasi-2D regime and 
the column density under the Thomas−Fermi approximation is given by

n x y
m

ħ g
μ V x y( , ) = [ − ( , )], (2)2

2D
0 mag

where the 2D coupling strength is g a l= 8π / z2D S , with the harmonic 

oscillator length given by l ħ mω= /z z, the magnetic anti-trap potential 
Vmag(x, y) is parametrized by the trap frequencies ωx and ωy as Vmag(x, y) =  
−mωx

2(x − x0)2/2 − mωy
2(y − y0)2/2 and (x0, y0) is the centre position of 

the anti-trap. To determine the trap frequencies and the global chem-
ical potential, we fit the in situ atomic density distribution using equa-
tion (2); see Extended Data Fig. 1a. From the fit we obtain ωx/2π = 1.94(9) 
Hz, ωy/2π = 2.24(9) Hz and μ0 = h × 9.19(7) Hz. In this way, we calibrate 
the geometric parameters to be εx = 0.54(3)cm−2 and εy = 0.45(3) cm−2, 
which we use to calculate the anti-trap frequencies for molecules based 
on equation (1), and obtain ω /2πx

mol  = 3.35(4) Hz and ω /2πy
mol  = 3.48(4) Hz. 

As a consistency check, we plot out the atomic density nA versus the 
local chemical potential μ = μ0 − Vmag(x, y), which agrees with the equa-
tion of state of a pure 2D BEC, μ = (ħ2g2D/m)n(x,y) (see Extended Data 
Fig. 1b).

We calibrate the optical potential barrier projected by DMD using 
atomic BEC prepared at 19.2 G, where the atomic scattering length is 
aS = 127a0 and the vertical trap frequency is ωz/2π = 409 Hz. The inten-
sity of the optical barrier is ramped up within 10 ms. After waiting for 
another 2 ms, absorption imaging is performed in the vertical direction 
to record the atomic column density; see Extended Data Fig. 2a. Here 
the barrier height is controlled by the fraction of micromirrors fDMD 
that are turned on. The fraction determines the intensity of the light 
projected onto the atom plane. In the region with higher light inten-
sity, the atomic density is suppressed more, which in turn allows us to 
determine the light intensity. Because of the higher chemical potential 
of the BEC in this case, the density depletion has a larger dynamical 
range that helps us to calibrate a larger range of barrier height. Since 
the chemical potential is comparable to the vertical trap frequency, the 
BEC is in the 3D regime and the column density under Thomas−Fermi 
approximation is given by

n x y α μ V x y( , ) = [ − ( , )] (3)0 opt
3/2

where α g mω= 4 2 /(3 )z , the 3D coupling strength g = 4πħ2aS/m and 
the local optical potential Vopt(x, y) is proportional to the micromirror 
fraction as Vopt(x, y) = p(x, y)fDMD. Thus for each pixel located at (x, y), 
we have n2/3(x, y) = α2/3[μ0−p(x, y)fDMD], from which the proportionality 
p(x, y) can be extracted from a series of measurements with different 
fDMD, see Extended Data Fig. 2b. Repeating the same procedure for all 
the pixels within the region of optical barrier, we can map out the spa-
tial dependence of the proportionality p(x, y), see Extended Data Fig. 2c. 
The polarizability of weakly bound molecules is approximately twice 
as large as that of a free atom, thus the corresponding proportionality 
for the molecules is 2p(x, y).

After calibrating both the magnetic potential Vmag(x, y) and the opti-
cal potential Vopt(x, y) for molecules, we can obtain the local molecular 
density as a function of the total external potential V(x, y) = Vmag(x, y) + 
Vopt(x, y) and follow the fitting procedure in Methods section ‘Fitting the 
equation of state for 2D and 3D Bose gases’ to extract the global chemical 
potential μ0. Then we obtain the corresponding local chemical potential 
μ and average the density over a certain spatial area with a proper range 
of local chemical potential to obtain the equation of state for molecules 
from the density profile and optical barrier measurements in Fig. 2. In 
addition, with knowledge of the optical potential profile, we obtain the 
equation of state for the BEC in the 3D regime; see the inset of Fig. 2c.

Density profiles of atomic and molecular BECs
Starting from a flat-topped atomic density profile, we prepare a molecu-
lar condensate in the 2D box trap after the magnetic field is ramped 
across the Feshbach resonance. It is clear that the molecules do not 
inherit the density profile from the atoms; see Fig. 2a and Extended 
Data Fig. 4. The molecular density profile depends sensitively on the 
curvature of the magnetic field and the optical barrier potential, which 
we introduce immediately after the ramp.



To understand the fast change of the molecular density profile, we 
note that there is a drastic difference between the interaction energy 
scale near the Feshbach resonance where the molecules are created 
and far away from the resonance where we observe the molecular BEC. 
On resonance, the interaction energy scale is h × 8,000 Hz, determined 
by the ‘Fermi energy’35 in our system, and is also orders of magnitude 
higher than the molecular chemical potential of h × 61 Hz measured 
far from the resonance. Thus, near the resonance the molecules can 
speedily form and establish equilibrium with the other particles. In 
Extended Data Fig. 3, it is clear that molecules are created from the 
atoms within 200 μs for various ramp speeds and that they develop 
the ring structure in their density profiles near the resonance.

Finally, after the formation of the molecules, the molecular den-
sity profile persists for a hold time of 15 ms or longer; see Extended 
Data Fig. 5. In the presence of the optical barrier potential, the central 
molecular density is suppressed to <25% of the peak density and the 
molecular lifetime is expected to be longer than 100 ms. In this case, 
we expect that the particle loss during the 10-ms ramp does not greatly 
influence the compressibility measurement.

Fitting the equation of state for 2D and 3D Bose gases
For a nondegenerate 2D ideal Bose gas, the phase space density is 
given by nϕ = –ln(1 – ζ), where ζ = exp(βμ) is the fugacity, β = 1/kBT and 
μ = μ0 – V(x, y) is the local chemical potential. If the gas is interacting, a 
mean-field potential 2(ħ2g2D/2m)n(x, y) is added to the external poten-
tial, based on the Hartree−Fock approximation28. Then the equation 
of state for interacting 2D Bose gas becomes:

n x y
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1
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βμ g n x y λ

dB
2
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2

On the other hand, the density of 2D superfluid outside the fluctua-
tion region is27:

n x y
β

g λ
μ

λ
n x y λ g βμ( , ) =

2π
+

1
ln [2 ( , ) /π − 2 ], (5)

2D dB
2

dB
2 dB

2
2D

We apply the above models for a 2D Bose gas to describe the equa-
tion of state of the molecules, shown in Fig. 2c. We perform a global 
fit to the data points within the range nM < 1 μm−2 and nM > 4 μm−2 using 
equations (4) and (5), respectively, with temperature T, global chemical 
potential μ0 and 2D coupling constant g2D as fitting parameters. Since 
the experimental conditions drifted, the global chemical potential 
between the optical barrier and density profile measurements are 
different, and the chemical potential difference δμ is also set as an free 
parameter in the global fit. The fit gives T = 11(1) nK, g2D = 0.19(3) and 
the global chemical potential for the optical barrier and density profile 
measurements as h × 45(7) Hz and h × 61(7) Hz, respectively. We also 
performed independent fits to the data at low-density nM < 1 μm−2 and 
high-density nM > 4 μm−2. The resulting temperatures are 10(3) nK and 
11(1) nK, in agreement with each other and with the global fit.

With the extracted 2D coupling constant g2D, the critical phase space 
density for the BKT superfluid transition is evaluated as ln(ξ/g2D) ≈ 7.5, 
where the coefficient ξ = 380(3) (ref. 27). On the other hand, the BEC 
transition in our 2D box potential occurs at a critical phase space density 
of R λln(4π / ) ≈ 7.52

dB
2  (ref. 28), which coincides with the BKT transition.

For BECs in the 3D regime, as shown in the inset of Fig. 2c, the 
low-density part where the column density nA < 10 μm−2 is fitted using 
the classical gas formula n x y l λ βμ( , ) = (2π / )exp( )z

2
dB
4 . The high-density 

part is fitted based on equation (3).

Extraction of the two-body inelastic loss coefficients
To study the lifetime of g-wave molecules, we hold the molecules in 
different traps and monitor the decay of total particle number as a 
function of the hold time. The two traps we used have horizontal radii 

of R1 = 12.5 μm and R2 = 9 μm and vertical trap frequencies of ωz1/2π =  
400 Hz and ωz2/2π = 167 Hz, respectively. The molecular density dis-
tributions in these traps are approximately uniform in the horizontal 
direction and Gaussian in the vertical direction, given by

n
N
R l

θ R ρ( ) =
π

e ( − ), (6)
i zi

z l
i

M
3/2 2

− /2
zi
2

r

where i = 1, 2, ρ x y= +2 2  and θ(x) is the Heaviside step function.
Even though the 1,064 nm light intensity in the vertical direction of 

the two traps differs by a factor of ω ω/ ≈ 6z z1
2

2
2 , the decay rates of molec-

ular numbers are similar; see Fig. 3a. This suggests that the one-body 
loss process due to the off-resonant laser light is negligible. In fact, 
since the g-wave molecules are in a highly excited rovibrational state, 
the two-body loss process dominates, which is modelled by 
n t L n t∂ ( , ) = − ( , )t 2

2r r . The molecular number decay corresponding to 
the density profile in equation (6) is thus given by

N t
N
L N t

( ) =
(0)

1 + ′ (0)
, (7)M

M

2 M

where L L R l′ = / 2 π i zi2 2
3/2 2 . We use equation (7) to fit the data of molec-

ular number decay and extract the inelastic loss coefficient L2 in Fig. 3b.
The unitarity limit of the two-body loss coefficient is U2(k) = 4h/2mk, 

where k is the magnitude of the relative wavevector k between two 
colliding molecules, associated with the relative kinetic energy 

kE ħ m= /22 2  (ref. 16). Owing to the finite temperature in our experiment, 
the relative kinetic energy obeys the Boltzmann distribution as 
p(E) = Aexp(−E/kBT), where the coefficient A = (1/4)(ħ2/πmkBT)3/2. The 
distribution of the wavenumber k is then given by

p k Ak( ) = 4π e . (8)ħ k mk T2 − /22 2
B

The unitarity limit that we evaluate in Fig. 3b is ∫U U k p k k= ( ) ( )d =2 0

∞
2  

h m k(4 /2 )⟨ ⟩−1 , where the thermal average of k−1 with respect to the dis-
tribution p(k) is k ħ mk T⟨ ⟩ = /π−1 2

B . For comparison with the loss coef-
ficients, we evaluate the interaction scale as μ0/ħn3D, where the 3D mean 
density is ∫ ∫n n n N R l= ( )d / ( )d = / 2 π z3D −∞
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Empirical fits to dissociation rate and dissociated molecular 
fraction
After preparing a purely molecular BEC below the Feshbach resonance, if 
the magnetic field is then switched to a value high above the resonance, 
the molecules quickly dissociate into a continuum of free atoms. The 
dissociation rate follows Fermi’s golden rule as Γ = (2π/ħ)|VMA|2ρ(E) =  
2m1/2abgΔμΔBE1/2/ħ2, where VMA is the coupling matrix element between 
the molecular and atomic states and is independent of the energy  
E above the continuum to leading order, the density of state ρ(E) ∝ E1/2 
and abg is the background scattering length. In this high-field limit, our 
measured dissociation rate is consistent with Fermi’s golden rule γ = αΓ, 
where the coefficient α = 0.4(1). The fact that α is less than 1 may be 
because the resonance width ΔB from the measurement of the Innsbruck 
group22 we used in evaluating Γ is larger than the actual resonance width. 
The dissociation rate in Fig. 4b is extracted by fitting the data in Fig. 4a 
using the formula NM(t) = NM(t0){1 – exp[–γ(t – t0)]}θ(t – t0), where t0 is 
the time when the molecules start to dissociate.

On the other hand, when the magnetic field is ramped to near the 
resonance where ρ(E) ≈ 0, we still observe a finite dissociation rate 
of 8 m s−1. This is because the molecular state can couple to a band of 
scattering states that are Lorentzian distributed38. We thus define an 
effective density of state ρeff to be a convolution between ρ(E) and a 
Lorentzian distribution. Thus the effective dissociation rate becomes

Γ Γ Ω E= ( 1 + /4 + 1)/2 , (9)
eff

2 2
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where Ω is the full width of the Lorentzian distribution. We use equa-
tion (9) to fit the dissociation rate as a function of the magnetic field 
we measured, shown as the blue solid line in the upper panel of Fig. 4b.

The dissociated molecular fraction drops when the magnetic field is 
ramped back closer to the resonance, which we attribute to the inelastic 
collision loss between atoms and molecules near the resonance. The 
data of the fraction in Fig. 4b is fitted using a sigmoid function f = 1/2 + 
(1/π)arctan[Δμ(B−B0)/δ], where δ is a free parameter.
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Extended Data Fig. 1 | Calibration of magnetic anti-trap potential from the 
atomic density distribution. a, Fit of the in situ atomic density profile for 
determination of the magnetic anti-trap frequencies ωx and ωy using 
equation (2). The top and right panels show line cuts of the 2D atomic density in 
the x and y directions, crossing at the centre of the anti-trap. We choose the 
region within the red dashed circle for fit and extraction of the equation of 

state. b, Equation of state of atomic BEC shown in a. Each data point represents 
averaged density within a bin size δμ/h = 0.25 Hz and error bars represent one 
standard deviation. The black solid line is a linear fit to the data, while the black 
dashed line is an extrapolation of the fit towards the origin. Data values and 
error bars are estimated as in Fig. 2 from 20 measurements.



Article

Extended Data Fig. 2 | Calibration of the optical potential barrier projected 
by a DMD from the density response measurement of atomic BEC. a, Images 
of in situ atomic column density with different central barrier heights 
determined by different fractions of micromirrors fDMD that are turned on in the 
DMD. b, Example measurements of the proportionality p(x, y) for six pixels at 
different locations. The solid lines are linear fits to the linear part of the data 

points, the slope of which gives p(x, y). Data values and error bars are estimated 
as in Fig. 2 from 9–11 measurements. c, Spatial dependence of the 
proportionality p(x, y). The upper and right panels are line cuts in the x and y 
directions crossing the peak value. Data values are determined from the fits 
and the errorbars represent 95% confidence interval.



Extended Data Fig. 3 | Fast equilibration of molecules with atoms during 
the ramp across the Feshbach resonance. a, Dynamics of the number of 
molecules during the magnetic field ramp across the Feshbach resonance at 
19.87 G with different ramp speeds of 161 mG ms−1 (red), 80 mG ms−1 (blue) and 

54 mG ms−1 (green). b, In situ images of molecules during the magnetic field 
ramp at 80 mG ms−1. Data values and error bars are estimated as in Fig.2 from 
5–7 measurements.
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Extended Data Fig. 4 | Azimuthally averaged density profiles. These profiles correspond to the atomic (left) and molecular (right) clouds shown in Fig. 2a. The 
atomic density profile is flat-topped, whereas the molecular density profile has a dip in the middle.



Extended Data Fig. 5 | Dynamics of molecular density profiles in the 2D box 
trap with magnetic anti-trap potential. The azimuthally averaged molecular 
density profiles are shown as a function of the hold time after the formation of 
molecules. The dips in the middle result from the magnetic anti-trap potential 
and persist during the first 15 ms after formation of the molecules.
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