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Abstract—TIn this paper, we study the collaboratively estimating
problem of a discrete-time LTI system with a time-varying undi-
rected communication graph among sensors. The performance
of resilient state estimators developed for cyber-physical systems
(CPS) degenerates if the sensor measurements are compromised.
To obtain robustness for the estimation, we propose Resilient
Distributed Estimator with Information Consensus (RDEIC).
RDEIC is a consensus-based resilient distributed algorithm that
produces bounded state estimation errors with faulty sensors.
Our algorithm converges to the true state in an attack-free
scenario and it produces bounded estimation errors during an
attack. The performance of the proposed algorithm is demon-
strated with Matlab simulations.

I. INTRODUCTION

Nowadays, the cyber-physical systems (CPS) have become
ubiquitous in most aspects of human society, including health-
care, transportation and manufacturing, etc. The innumerable
applications of CPS raise the interest of malicious parties.
Sensors, which help to collect information for decision-making
process, are distributed pervasively, and thus, easier to get
accessed. Since sensors are typically resource-restricted, they
are unlikely to be equipped with complex security mecha-
nisms. These features make it relatively easier for adversaries
to tamper with sensor readings, aka false data injection attacks
(FDIA). FDIA on sensors have been studied extensively, in-
cluding the GPS spoofing, LiDAR spoofing, and radar spoofing
[1]. Therefore, ensuring the system resiliency to such attacks
becomes necessary to the functioning of CPS.

In this paper, we investigate the distributed state estimation
problem under FDIA. As the scale of CPS applications in-
creases, e.g. connected vehicles, the computation cost of cen-
tralized and decentralized state estimation increases quadrat-
ically, making distributed algorithms preferred. Traditional
distributed state estimation algorithms, such as Distributed
Kalman Filter (DKF) [2], are not resilient to FDIA and the
estimation errors are not bounded when an attack occurs [3].
To make the system resilient to attacks, various works have
been proposed. Mitra et al. [4] developed a distributed observer
by decomposing the linear system model into detectable
and undetectable parts and estimating the two parts with a
Luenberger observer and a consensus algorithm respectively.
Dutta et al. [3] proposed a Resilient Distributed Kalman
Filter (RDKF) by formulating the state estimation problem
as an optimization problem. A compensation term was used
to balance the physical dynamics residuals and the sensor
measurement residuals. Nevertheless, these methods do not
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consider the dynamics of the network or the consensus among
nodes. S. Wang [5] proposed a consensus extended Kalman
filtering from a Bayesian perspective with the constraint that
each node shared an agreement with neighbors. However, their
method performed poorly if sensor attacks present.

To address the limitations, we propose Robust Distributed
Estimator with Information Consensus (RDEIC), which can
be applied for a time-varying communication network and
consensus among nodes is considered. The contributions of
the paper are listed as follows:

« Following the line of works [3], [6], RDEIC is developed
based on the variants of DKF with two versions of the
local loss functions being provided.

¢ RDEIC can be performed on both static and time-varying
underlying communication graphs.

e Compared with DKF, RDEIC achieves better perfor-
mance regardless of the presence of attacks.

The rest of the paper is organized as follows: In Section
II, we present the formulation of the system, the attack model
and the communication topology. In Section III, the distributed
Kalman estimator and its variants are discussed and we provide
two versions of local loss functions of each node. We present
our RDEIC method and its ADMM solver in Section IV. Some
numerical simulations are shown in Section V and conclusions
are drawn in Section VI.

II. PROBLEM DESCRIPTION

A. System Setup and Attack Model

We consider the following LTI system with n sensors,

z(k +1) = Az(k) + Bw(k), yi(k) = Cix(k) + vi(k),
ey

where x(k) € RY is the state vector, y; € R%,i € [n] is the
sensor measurement collected by the ¢-th sensor. The vectors
w(k) ~ N(0,Q),v;(k) ~ N (0, R) are Gaussian noises for the
system and the sensor, respectively. We assume that w(k) and
v;(k) are independent to each other. We also assume that @
and R are positive definite matrices. A € R9%7 is the system
matrix, B € R%%7 is the noise matrix, and C; € R%*? is
the observation matrix. We consider the attack taken place on
sensor measurements as

yi(k) = Ciz(k) + vi(k) + a;i(k),



where a;(k) is the i—th attack vector at time k. When
a;(k) is nonzero, we call the measurement y; (k) is compro-
mised/corrupted. Denote C = [C} --- C,,] T as the congregation
of {C;}" ;. The distributed estimator aims to asymptotically
correct the estimates &;(k) to the true state x(k) by collecting
information from neighbors for any node . The pair (A4, C;)
may not be detectable, and we only assume the pair (A,C) is
observable.

Information exchanges among the nodes are necessary for
a distributed estimator. The information flow is described as
a sequence of undirected graphs {G(k)}2, = {(V,€(k)) |
E CV xV)}. When G(k) = G for all k> 1, it is a static
graph. To extend our consensus-based algorithm into a time-
varying underlying communication graph, we additionally
assume that the sequence {G(k)}2, is “jointly strongly-
connected”. The definition is given below:

Definition 1 (Jointly Strong-connectivity): There exists T €
N, such that the union graph over the interval [kT, (k+1)T],
ie. UZ(.EZ;)TQ (i), is strongly connected, where £ € N.

ITI. DISTRIBUTED KALMAN FILTERS AND ITS VARIANTS

To mitigate the impact of noises on the estimation accu-
racy, the classical Kalman filter (KF) contains prediction and
correction stages. The prediction stage is represented in the
following equation

ik +1|k) = A@(k), P(k + 1|k) = AP(k)AT + BQB"

where P(k) is the estimation error covariance matrix and
P(k + 1|k) is a prior error covariance matrix. The measure-
ment updates of KF are given by

&(k+1) = Ad(k + 1k) + K (k)[y(k) — C2(k + 1|k)]
P(k+1) = (I — K(k))CP(k + 1|k)
K(k) =Pk +1k)CT[CP(k+1|k)CT + R},

where K (k) is the Kalman gain. According to [6], the classical
KF can be rewritten from a Bayesian viewpoint as

:E(k;+1):P(k:+1)(CTR_ly(k+1)+[P(k+1\k)]_1£(k+1|k))

The classical KF is centralised in the process of combining
sensory data. Although the KF is ideally Bayesian optimal
in terms of tracking performance, it has many practical limi-
tations, such as scalability, communication delay and limited
communication bandwidth [7]. To tackle these limitations, the
distributed estimation was introduced, in which each sensor
node performs estimation using the information from its own
and connected neighbors.

Olfati-Saber [8], [9] proposed Kalman consensus filter
(KCF) in which average consensus on local Kalman filtering
were performed. S. Park ez al. [10], [11] proposed a distributed
observer where augmented states were used. A distributed
Kalman filter (DKF) proposed by Dutta ef al. [3] read

Pi(k+1]k) = AP;(k)A" + BQB" 2)

#alk+1) =Pk +1) (- SIPO-H IR Ay (8)
'JEN;

+C R yik+1) ), 3)
where N; = {i} U {j | j is a neighbor of i} and d; = |N;]| is
the degree of node 7. The local estimate &;(k+ 1) evaluate the
state (k+1) in the i-th node at time k+1 and P;(k+1) is the
covariance matrix of the error e;(k+1) = &;(k+1)—x(k+1).
Assuming that A is full-rank and the pair (A, C) is observable,
a steady-state DKF is achieved with error covariance matrices
{Pi}iem) = {limp_oo Pi(k) | i € [n]}. The covariance
matrices {P; };c[n) satisfy the following equation,
—1
1

Pi=|— Y (AP,AT + BQB")' + CJR7'C;
t jEN;

4)

Dutta et al. [3] proved the convergence of the covariance
matrices {P;(k)}icr,) in connected graphs when initialized
as zero matrices. Kar et at. [12] proved the convergence of
covariance matrices using probability theory and Marelli et
al. [13] performed convergence analysis on a modified DKF
which had one prediction/update step at each time point. Note
that the results above are based on a static underlying graph,
ie. G(k) = G,Vk. We extend the distributed estimator into
the case where the underlying graph is time-varying as the
covariance matrices may not converge. In this case, a sequence
of covariance matrices are generated as follows,
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M;(k) = AP;(k)AT + BQB' (©6)

With the covariance matrices { P; (k) }ic[n),x>0 in (5), the DKF
presented in (3) can be rearranged as

b (3 — At
R 2, M B D = A
=C R [ys(k+1) — Cidi(k + 1)),

where M; := M;(k) = AP;(k)AT + BQBT for a nonstatic
underlying graph. The expression above implies that &;(k+ 1)
is the unique minimizer of the following optimization prob-
lem

1 .
N s — Adej (k)| 5,1 + [y (k+1) = Cizi[| -
NG 2 J
JEN; (k)

min
T

The above optimization form of DKF reveals the relation
of local measurement y;(k + 1) and the information obtained
from neighbors. It also shows that the estimation result is
sensitive to sensor attacks since any twisted measurement
enlarges the objective value by its square form in y;. To
make the optimization-based estimator more robust to attacks,
a commonly used strategy is to use optimization with /; norm



on the terms affected by attacks [14]. We provide the following
distributed estimator
zi(k+1) = arg@in Jilwssys(k 4+ 1), {2:(k) }icn))

For succinctness, we use f;(z;) to denote the loss of node i.
Two versions of the loss function f; are given as follows

fi(xi) = llyi(k+1) — Cimi — aill -1 + Mlaillh
1
+ > llwi— Ad k)12, )
4i(k) ;v M
fi() A lyi(k+1) = Ciag]|2,_,
i(x) = = ~
' 2 [lyi(k+1) — Ci Az (k)| g1
1
+ >l - ij(k)nM ®

(k) SNk

where a; is the attack vector occurred at time k+-1. The penalty
term A||a;||1 of the first loss function (7) measures the impact
of the sensor attack and makes the estimator robust. Equation
(7) can be reduced to a LASSO problem [15] minimizing
Y — Af|| + A||f||1 w.rt 6, and has already been broadly
studied. Compared with (7), the regularization term of X in
(8) has a similar effect of robustness. The parameter A in (8)
also connects the local estimation and the information from
its neighbors, a smaller A will lower the bias caused by the
attack but degenerate the convergence rate as the estimation
relies more on neighbors’ estimation information.

IV. ROBUST DISTRIBUTED ESTIMATOR WITH
INFORMATION CONSENSUS

Olfati-Saber et al. [16] showed that the linear system

wi(k+1) = ai(k) + Y ai(z;(k) — zi(k))
JEN;

was a distributed consensus algorithm that guaranteed conver-
gence to a collective decision via local interactions among
neighbors. As the underlying graph is undirected (a;; =
a;ji,Vi,5), >, xi(k+1) = >, x;(k) and the sum of state of
all nodes is invariant. This specific invariance property leads to
a type of consensus algorithms called average-consensus [17].

We aim to design a distributed estimator in reaching a con-
sensus via local communication with their neighbors. Reaching
a consensus here means each local node and its neighbors
reach an agreement, i.e. x; = x;,Vj € N,(k). We consider the
consensus-based robust estimator constructed as the following
optimization problem,

n

min Z filay) )
{I }Le[n i—1
st.a; =x;, Vie[n],Vje N;i(k)

where f;(x;) is given by (7) or (8).
To solve (9), we introduce auxiliary variables z; and the
problem can be rewritten as

min Z filxs)

(10)
teitiem 5

s.t.xy — 25 = 0, Vie [n],V] S Ni(ki),

Let v;; be the dual variable of x; — z; for all 7,57 € V.
The augmented Lagrangian (AL) function of (10) is given as
follows,

- 1
(x,2;V) Z(fl z;) +f Z ||xi—zj—fvij||2>,
i=1 jENi(k) P
where x = (z1;---;%0),2 = (215 ;2n),V = (Vij)nxn

The corresponding Alternating Direction Method of Multipli-
ers (ADMM) [18] algorithm derived from L, (x,z; v) has the
following updates,

xéﬂ = arg min Lp(x,zl;vl) (11
1
I+1 _ (pztt! — o
= pI v;:) (12)
pINi(k)| . Z ! ’
JEN; (k)
vitt =k — plzttt — zj-“). (13)

The inner iterations (11)—(13) have good performance with a
convergence guarantee towards a central solution [19]. One
should notice that the x-update in (11) depends on the choice
of the loss function f;. We present in Lemma 2 the solution
of (11) when f;(z;) in (8) is taken.

Lemma 2: Consider the optimization problem of equation
(11) with loss function f;(x;) in (8). The solution xé“ is based
on y;(k), {#i(k)}icn) and has the following expression

" AT R-C
o — —
‘ llyi (k41) = Ci A% (1)l p—1

-1
T, Mﬁwwﬂ)

JEN; (k)
2 1. 1
X <|N1(k) . Z M; AIj(k)“rp' Z 25+ . Z
JEN; (k) JEN; (k) JEN; (k)
MO Ry (k + 1) >

llyi (k+1) = Ci A%y (1) [ g—1

Based on the consensus optimization problem (9), we pro-
pose Robust Distributed Estimator with Information Consen-
sus (RDEIC). The RDEIC is summarized in Algorithm 1. We
provide two versions of the loss functions in (7) and (8). The
updates of the loss function (8) is concluded in Lemma 2.

Algorithm 1 RDEIC

Input: Covariance matrices {P; };cin], {Mi}icin]»
surement {y;}

Process: Initialize {Z;(0)}ic[n)

Fork=1,2,---

Update: fi(z;) < fi(wi;yi(k + 1), {2i(2) }icm)), Vi
Inner iteration: For [ =1,--- , L

Repeat (11)-(13) to produce {z}};cin)

Update: ;(k + 1) « z£, Vi

Output: State estimation {#;(k)}ic[n]

sensor mea-

V. SIMULATION RESULTS
To validate the resiliency of RDEIC, we run simulations
with MATLAB and compare the performance of RDEIC
against DKF. The simulation is conducted for ¢ = 100
simulation time units with a platoon of 5-vehicle. Each vehicle
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constraints like time-delay or packet loss in communication
in our model.
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(b) RMSE of distance estimation error
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Fig. 1. Performance Comparison between RDEIC and DKF.

is equipped with 4 sensors and the state vector of each vehicle
is ) = [d®) v a® 4] € R4, where d¥, vV, and o
are the distance, the velocity, and the acceleration of the i-
th vehicle, and u(® is the control input to the vehicle. The
dimension of x is quadruple the number of vehicles, i.e.,
z; € R A and {C,;}7, are generated based on [6]. The
communication graph is randomly generated at each time step.
During ¢t = (50, 80), Vehicle 2-4 are compromised and random
bias is added to the sensor measurements. The parameters
are set as ) = 0.01I, R = 0.1I, A = 100 and p = 1. For
performance analysis, we perform M = 10 Monte Carlo runs
with randomly generated x; and y; and use the root mean
square error (RMSE) at each time step k as the performance
evaluation metric:

Z%ﬂZ?ﬂegkm
MSE = = —
RMS \/ n

in which e; 1 ., is the absolute difference between the true and
estimated distance d*) at time & in Monte Carlo run .

The performance of RDEIC and DKF is presented in Fig. 1.
As can be seen, RDEIC outperforms DKF no matter whether
there are attacks or whether the graph is varying. Specifically,
the RMSE of RDEIC during attack-free period is less than
-20dB, i.e., less than 0.01, with both static graph and time-
varying graph. During attacks, the RMSE of DKF exceeds
60dB, which confirms the claim made in [3] that DKF is not
resilient to attacks. On the other hand, the RMSE of RDEIC
is about 15dB, which shows the resiliency of the proposed
algorithm. Besides, in the static graph situation, the estimation
error of RDEIC after attack quickly converges to the same
level as that before attacks. On the contrary, DKF goes through
a longer time to reach a converge.

VI. CONCLUSION

In this paper, we propose Robust Distributed Estimator
with Information Consensus (RDEIC) which performs robustly
against sensor measurement attacks. RDEIC is designed to
work on both static and time-varying communication graphs
and we prove the convergence of the covariance matrices under
the jointly strong-connectivity assumption. Two loss functions
of each local node are provided to construct an information
consensus estimation problem. RDEIC is solved in an ADMM
fashion. In the future, we plan to consider more practical
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