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ABSTRACT

Heterogeneous memory systems promise better performance, energy-
efficiency, and cost trade-offs in emerging systems. But delivering
on this promise requires efficient OS mechanisms and policies for
data tiering and migration. Unfortunately, modern OSes are lacking
inefficient support for data tiering. While this problem is known for
application data, the question of how best to manage kernel objects
for filesystems and networking—i.e., inodes, dentry caches, journal
blocks, socket buffers, etc.—has largely been ignored and presents
a performance challenge for I/O-intensive workloads. We quantify
the scale of this challenge and introduce a new OS abstraction,
kernel-level object contexts (KLOCs), to enable efficient tiering of
kernel objects. We use KLOCs to identify and group kernel objects
with similar hotness, reuse, and liveness, and demonstrate their
use in data placement and migration across several heterogeneous
memory system configurations, including Intel’s Optane systems.
Performance evaluations using RocksDB, Redis, Cassandra, and
Spark show that KLOCs enable up to 2.7x higher system through-
put versus prior art.
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1 INTRODUCTION

Memory heterogeneity is here. Emerging systems combine the best
properties of memory technologies optimized for latency, band-
width, capacity, persistence, and cost. Multiple DRAM nodes are be-
ing augmented with die-stacked DRAM [15, 30, 45], high-bandwidth
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multi-channel DRAM (e.g., Intel’s Knight’s Landing [6]), and byte-
addressable NVMs (e.g., 3D XPoint in Intel Optane DC) [4, 14, 16].

While heterogeneous memory systems may offer better per-
formance, energy-efficiency, and cost trade-offs, they complicate
memory management. Decades of research have demonstrated the
challenge of data allocation and migration in multi-socket non-
uniform memory access (NUMA) architectures [7, 8, 10, 26, 33, 47].
Heterogeneous memory systems amplify this challenge by inte-
grating memory devices with more varied latency, bandwidth, and
capacity characteristics.

To optimize a heterogeneous memory system for performance,
one would ideally place the hottest data in the fastest memory node
(in terms of latency or bandwidth) until that node is full, the next-
hottest data would be filled into the second-fastest node up to its
capacity, and so on. As a program executes, its data would be peri-
odically assessed for hotness and re-organized to maximize perfor-
mance. For emerging software-controlled heterogeneous memory
systems, hotness detection and migration requires effective soft-
ware mechanisms and policies to determine data reuse and control
data migration. While it is possible for application developers to
orchestrate these tasks, efficient OS approaches that are transparent
to the programmer are preferable because of their less onerous pro-
gramming model. Current OS mechanisms to measure reuse and
migrate data have, however, surprisingly high overheads and have
consequently been the subject of recent software and hardware
acceleration techniques [13, 19, 31, 33, 35, 37, 40, 50, 53, 57].

Unfortunately, most prior research on OS-directed data tiering
focuses on application-level data and ignores kernel objects. One
exception is recent work that migrates and replicates page tables
in DRAM devices in different sockets [11], but memory tiering of
kernel objects for storage and networking I/O remains unexplored.
This is because kernel objects have traditionally been thought to
be few in number, restricted in memory footprint, and less signifi-
cant in their impact on overall performance. This view is driven by
network and disk I/O speeds that are several orders of magnitude
slower — and hence more consequential to performance — than
memory. But while this was true in the past, advances in network-
ing and storage speeds now make memory management of kernel
objects critical to performance. We quantify the scale of this crit-
icality by showing that current approaches that ignore tiering of
inodes, dentry caches, journal blocks, network socket buffers, etc.,
leave as much as 4x performance on the table. This paper’s central
contribution is to recover this wasted performance via a new OS
abstraction, kernel-level object contexts (KLOCs), that permits fluid
tiering of kernel objects.

The KLOC abstraction: KLOCs are logical groupings that capture
the kernel objects associated with OS entities requested by applica-
tions. Kernel entities requested by applications are files and sockets,
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Table 1: Kernel objects associated with file systems and net-
working that form the basis of this work.

KLOC Type Kernel Object Structure

FS/Network inode_struct - Per-file inode

FS block - Block I/0 structure for conversion of metdata to disk
blocks

FS Jjournal - Filesystem journal buffers

FS page_cache - Buffer cache page

FS dentry - Name resolution for each file

FS extent - Structure for grouping contiguous disk blocks

FS blk_mgq - Block layer multi-queue structure for parallel dis-
patch of blocks to disk

Network sock - Socket object for packet buffers

Network skbuff - Header for packet buffer

Network skbuff->data - Data buffer for packet

Network rx_buf - Network receive driver buffer

page-cache ab ree
tre %ree @ @ Journa

File KLOC Socket KLOC

Figure 1: All of the kernel objects associated with each active
file and active socket represent individual KLOCs. All the
KLOCs in the system are tracked using a kmap. The inode
of each active file or socket maintains a pointer to a knode
data structure, which tracks associated kernel objects.

while kernel objects range from structures associated with files
(e.g., inodes, blocks, journals, etc.) to those associated with sockets
(e.g., packet buffers, headers, data buffers, etc.), as listed in Table 1.
Figure 1 shows that we treat all the kernel objects associated with
each active file and each active socket as individual KLOCs. This
means that in Unix-based "everything is a file" OSes, there is one
KLOC of kernel objects associated with each inode.

Using KLOCs: Good performance is achieved when hot applica-
tion data and kernel objects are placed in faster and nearer memory
up to its capacity, while colder data and kernel objects are placed
in slower and more distant memory. As we will show, kernel ob-
jects are rapidly allocated and deallocated, and have much shorter
lifetimes than application pages. This makes it challenging to ex-
tend existing OS LRU code paths that identify hot/cold pages —
originally built for longer-living application pages - to place and
migrate kernel objects in a sufficiently timely manner for good
performance. Even if some of these code paths could be accelerated,
the diverse assortment of kernel objects used today and the com-
plexity of their intertwined memory allocation, reuse, and deletion
code paths make it difficult to implement these changes.

KLOC:s offer a principled way to tame this diverse ecosystem of
kernel objects and quickly ascertain their hotness/coldness. When
the OS determines that an inode has become cold (because, for ex-
ample, the file or socket associated with the inode has been closed),
KLOCs permit direct identification of all kernel objects associated
with the inode and mark them as candidates for migration to slow
memory. In other words, rather than relying on expensive and
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independent traversals of separate code paths for all the kernel
objects to gradually which of them are cold, KLOCs short-circuit
this process and migrate related cold kernel objects en masse. Our
implementation in a Linux 4.17 kernel shows that KLOCs improve
the performance of I/O-intensive workloads like RocksDB, Redis,
Cassandra, and Spark by up to 2.7X on a two-tier memory sys-
tem and 1.4X on a multi-socket Intel Optane system compared to
state-of-the-art application tiering (Nimble [53]).

Implementing KLOCs: In realizing KLOCs, we answer several
important research questions:
What OS entity should KLOCs be anchored to? Grouping kernel
objects according to files and sockets strikes a good compromise
between performance and minimal kernel changes. This is because
it allows identification of well-defined points where the OS can
manipulate kernel objects - i.e., existing system calls for file and
network I/O (e.g., file create, open, etc.) — and also naturally groups
related kernel objects. Leaning on existing system calls also means
that KLOCs are transparent to programmers and manipulated en-
tirely within the kernel.
How should KLOCs manage member kernel objects? The OS must
group millions of kernel object pages with diverse sizes, reuse, and
intricate associations across files and sockets into KLOCs. We rely
on principled use of data structures already widely employed in real-
world OS kernels to efficiently track these relationships. Figure 1
illustrates our implementation. Each inode is expanded to maintain
a pointer to a knode structure, which uses kernel red-back trees to
track all associated kernel objects. When the OS opts to migrate
a KLOC, the kernel objects pointed to by the subtree under the
corresponding knode are migrated. Furthermore, all system KLOCs
are tracked using a global kmap structure, which maintains pointers
to all system knodes.
What changes to kernel object code paths are necessary to support
KLOCs? To support KLOCs, some kernel object code paths need
to be changed. For example, KLOCs must enable the relocation
of kernel objects. Unfortunately, OSes create kernel buffers with
either slab allocators, which are fast but preclude kernel object
relocation. In contrast, vmalloc and page alloc allocations permit
kernel object relocation but are unsuitable for kernel objects that
are referenced by physical address. We create a KLOC allocation
interface that permits fast allocation of kernel objects while sup-
porting relocatability and, via systematic study, are able to redirect
400+ allocation sites to our interface. Similarly, associating a kernel
object with the right file/socket can be a high-latency endeavor.
For example, the OS determines the socket for incoming network
packet buffers only after traversing several levels in the TCP stack.
This long-latency process can overly delay kernel object migration
decisions. We design KLOCs to circumvent these challenges and
enable the fast association of kernel objects with files/sockets.
Overall, we show that memory management of kernel objects has
become vital to the performance of heterogeneous memory systems.
KLOC:s are an initial approach to tame the large design space of
kernel object management options. We expect future research to
improve the efficiency and design elegance of kernel object tiering,
but believe that the notion of kernel object contexts can help manage
the continued growth in memory footprint and diversity of kernel
objects.
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2 RECENT WORK ON DATA TIERING

Heterogeneous memory devices are being integrated into systems
with conventional DRAM, with die-stacked 3D-DRAM, Hybrid
Memory Cube (HMC), High Bandwidth Memory (HBM), and byte-
addressable NVMs showing early promise in addressing the big-
data needs of modern applications [12, 35, 45, 48]. While they offer
performance benefits, these devices pose complex performance and
capacity tradeoff questions. Technologies like 3D-DRAM, HMC, and
HBM provide 2-10x higher bandwidth and 1.5X lower latency than
conventional DRAM, but suffer 8-16x lower capacity [12, 15, 16, 41].
Meanwhile, byte-addressable NVMs offer 4-8% higher capacity than
DRAM but suffer 2-3% higher read latency, 5x higher write latency,
and 3-5X reductions in access bandwidth [26, 44, 52]. To manage
a mix of heterogeneous memories, recent studies propose several
software and hardware techniques, including OS and runtime ap-
proaches [13, 27, 33, 35, 37, 41, 53]. Most of these approaches track
page hotness by scanning page tables to migrate hot application
pages of different sizes to fast memory. Approaches such as Hetero-
Visor [27] and HeteroOS [33] propose data placement and migration
for applications in virtualized datacenters, while other work ac-
celerates page migration using multi-threading and more efficient
caching [53]. Lagar-Cavilla et al. [35] propose a combination of
OS-level hotness scanning combined with machine learning for
data placement.

In contrast, hardware approaches for data tiering include aug-
menting the memory controller [19, 46] or the TLBs [40] for ef-
ficient identification of hot pages and migration. These studies
have primarily focussed on byte-addressable NVMs and on-chip
die-stacked 3D-DRAM technologies [15, 18, 19, 25, 28, 31, 36, 38, 40,
42, 57]. While the NVMs are used as slower memory [36], stacked
3D-DRAMs are used either as a hardware-managed last level L4
cache [18, 31, 38, 43, 57] or faster DRAM. The hardware memory
controller is delegated with the responsibility of managing page
placement across memories as well as predicting and prefetching
pages.

None of these studies consider kernel object tiering. Recent work
on accelerating OS page migration mechanisms place kernel objects
either entirely in slow memory for two-tier memory systems or in
DRAM local to the CPU that allocated the kernel object for con-
ventional NUMA systems [33, 53, 54]. They do not quantitatively
ascertain the performance impact of these decisions or consider
alternatives. The closest prior work comes to studying kernel ob-
jects placement is Mitosis, a recent study on page tables placement
across NUMA memory sockets [11], but even this ignores file or
networking objects. In fact, not only is there no prior work on
heuristics and mechanisms for file and network object tiering, mod-
ern OSes cannot migrate many kernel objects for reasons that we
discuss subsequently. While better hardware caching and prefetch-
ing techniques complement KLOCs by improving data placement to
a faster memory, these techniques do not differentiate between ker-
nel objects and application pages with different lifetimes. We show
the need to treat short-lived kernel pages differently from applica-
tion pages and increase the direct placement of kernel objects by
avoiding delays from hotness detection and migration overheads.
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3 MOTIVATION
3.1 Prevalence of Kernel Objects

In this section, we characterize the memory footprint, reuse, and
lifetimes of kernel objects. In section 6, we summarize the I/O-
intensive workloads and platforms used in our studies. Figure 2a
shows the percentage of pages allocated to different kernel objects
and separates these from application-level page allocations. All
workloads are configured with 40GB input data sets, and we quan-
tify the number of pages allocated in units of millions of pages on
top of each bar. Kernel objects are prevalent for all these applica-
tions. Consider Filebench, which uses 16 threads to read and write
4KB blocks to separate files. Writes and reads to disk may prompt
page cache page allocations, updates, and allocation of journals,
metadata radix trees, block driver buffers, etc. As another exam-
ple, consider RocksDB, which updates hundreds of 4MB files with
key-value data, and spends 40% of its runtime within the OS kernel
allocating inodes, driver block I/O and journals, dentry caches, and
radix tree nodes. Spark [56], which uses the Hadoop file system to
store and checkpoint data, is similarly filesystem-intensive.! These
observations apply to network-intensive workloads too. For ex-
ample, Redis allocates a significant number of kernel object pages
for ingress and egress socket buffers, and page cache pages to pe-
riodically checkpoint key-value store state to a large file on disk
[9].

Figure 2a shows that kernel object memory footprints can rival
memory capacities expected for high-bandwidth DRAM devices in
the near-term. Recent studies focus on fast memory nodes in the
range of 4-16GB [13, 33, 41, 53, 54], and our results show that even
with a modest input data set of 40GB, I/O-intensive workloads need
more than 10s of GBs for kernel objects alone. Different workloads
rely on different sets of kernel objects extensively. For example,
while page cache pages dominate RocksDB allocation, Redis and
Cassandra require a mix of page cache and socket buffer objects.
Overall, kernel objects are plentiful, even exceeding application
pages in some cases, and need to be carefully managed.

Figure 2b shows that the observations from Figure 2a hold as the
sizes of our input data sets are changed. In Figure 2b, our workloads
are adjusted to use 10GB input data sets (Small) in addition to the
40GB input data sets showed in Figure 2a (Large), and we show the
percentage of pages allocated to kernel objects versus userspace.
Kernel objects continue to use a significant fraction of the total
pages.

Figure 2c quantifies the percentage of memory references to user-
space data versus kernel objects. These results were collected using
on-chip performance counters via Intel’s VTune, and Linux Perf [5],
and shows that kernel objects are accessed often. Consider a file
write in Filebench. The virtual file system looks up the page cache
radix tree, allocates a new page if necessary, inserts the page into the
radix tree, performs metadata/data journalling, and finally, commits
blocks to storage. These steps are even more memory-intensive
than writing data to the page cache because of the increase in
random accesses and poor locality of reference. In fact, scaling the
workload inputs leads to a sharp increase in LLC misses due to
higher traffic to kernel buffers. Filebench spends 86% of execution

! The Hadoop filesystem is run as a separate process that maintains user-level caches
and periodically updates page caches.
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(a) Percentage of total memory foot- (b) Percentage of the memory footprint (c) Percentage of memory references (d) Lifetime of important kernel ob-
print for different kernel objects and for kernel objects (OS) versus applica- dedicated to kernel objects (OS) ver- jects versus application pages. The y-
application pages. Raw page counts tion data (App + Lib). Small/large x- Sus applications (user-space App +Lib). axis is in log scale. Slab and page
shown at the top of each bar. Work- axjs Jabels correspond to workloads with All workloads are scaled to 40GB input cache pages are kernel objects, and are
loads scaled to 40GB input data set. 10GB/40GB input data set. data set. shorter-lived than application pages.

Figure 2: Figure 2a shows the breakdown of pages used by application, page cache, and other slab allocations across the file
and the network subsystems for the large workload. In Figure 2b, the y-axis shows the percentage of page allocations in the
application and the OS. Small and large workloads use data sizes (RocksDB, Redis, and Cassandra) or file sizes (Filebench,
Spark) of 10GB and 40GB, respectively. OS allocations include page cache, slab, and vmalloc objects. Pages are allocated and
released (freed) frequently; hence the total allocations can be greater than available memory. Figure 2d shows the lifetime of
application pages, slab, and page cache pages.

time inside the OS, and hence, the memory accesses increase are Second, kernel objects associated with files that have been deleted

higher than RocksDB (54%) and Redis (38%). or completely unlinked (i.e., their reference count is zero) are not
cold, but are instead deallocated. They should not be migrated to
slow memory and can be deleted.

3.2 Kernel Object Hotness Third, all kernel objects associated with a file inode are treated
In section 3.1, we showed that kernel objects are allocated and as having the same level of hotness/coldness and are migrated
accessed frequently. Consequently, we need to identify the ones together. This reduces kernel bookkeeping cost and is appropriate
that are hot for placement in capacity-constrained fast memory. We because all kernel objects associated with the inode do tend to be
define hot kernel objects as those currently in use by applications accessed during I/0. However, it is possible that in select cases,
or have been recently used, and cold kernel objects as those that some kernel objects may see different reuse attributes. In practice,
are good candidates for placement in slow memory. There are we find that this happens so rarely that opting for an inode-driven
several reasons that a kernel object may become cold. Consider the view of all kernel objects offers a simplistic implementation and
case when an application closes an open file. If no other processes good performance.

continue to leave the file open, then the inode, block, dentry, extent,
page cache pages, and other structures associated with the file are

now cold. As another example, even if the file remains open, it may 3.3 Challenges of Kernel Object Tiering
have been accessed long ago and is hence cold. One may initially consider extending existing OS LRU code paths
As with application pages, there is no clear threshold as to how to also account for all kernel object pages, currently lacking in
long ago a file must have been accessed to be considered cold. Rather, modern OSes. OSes like Linux or FreeBSD scan to identify hot and
to tier kernel objects appropriately, the OS-level LRU policies must cold pages by traversing an application’s page table and visiting
be augmented to identify kernel objects associated with files that all physical frames to mark them as eviction candidates. While
are definitely cold (i.e., because the file has been closed) and must be one could potentially identify kernel objects in this manner, this
able to infer the relative ages of files that have not yet been closed approach is successful only if the time taken to identify cold kernel
to identify those that are likely cold because of a lack of recent use. objects is significantly faster than the kernel objects’ lifetime. Fig-
The exact number of kernel objects that are to be migrated and ure 2d quantifies the lifetime of several categories of kernel objects.
the threshold where the kernel objects are considered cold hence Because the lifetime of kernel objects is tied to OS mechanisms used
remains a function of the OS LRU policy. This notion of kernel to allocate them, we separate kernel objects into those allocated by
object coldness has three implications: slab allocators versus kernel objects like page cache pages, which
First, on file creation, the associated kernel objects should be are allocated via other techniques.
allocated in fast memory because they are hot. As they become Short-lived kernel objects - i.e., inodes, blocks, dentrys, ex-
colder, they may be migrated to slower memory. This presents a tents, dir buffers, skbuffs — are typically allocated using slab al-
contrast to all recent work [41, 53], which, for two-tier systems, locators (kmalloc and its variants like kmem_cache_alloc in Linux
allocates kernel objects entirely in slow memory, or, in traditional and FreeBSD). Kernel objects allocated with kmalloc use only con-
NUMA systems, allocates them to the memory socket local to the tiguous physical pages for allocation, do not require manipulation
CPU performing the allocation without the option of migrating of page tables during allocation and release, and cannot be relocated.
them in the future. However, they are allocated quickly. In contrast, separate allocators
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are used for large kernel objects like filesystem page caches. Unlike
slab allocations, these are mapped into the virtual address space of
processes in order to satisfy reads/writes from the application.

Regardless of allocation strategy, Figure 2d shows that kernel
objects are short-lived. While application-level data for RocksDB
and Redis have lifetimes in the tens of minutes, their slab pages are
alive for only 36ms on average. Page cache pages live for marginally
longer, averaging 160ms. Such short lifetimes for kernel objects are
expected. The lifetime of page cache pages can also vary depend-
ing on memory pressure. When available free memory is low, the
cache pages are aggressively released to accommodate application
allocations. Slab-allocated kernel objects consist of buffers added
to radix tree nodes to track file metadata or structures like dentry
caches and in-memory journals. These structures are frequently
queried, allocated, and deleted when trees are rebalanced, or page
cache pages are evicted [32]. Consequently, application pages are
long-lived enough to tolerate LRU scan times. For example, we
measure the time taken to scan one million pages on our Intel Xeon
platform as 2 seconds, corroborating results from recent work [13]
— but kernel objects are not, even if the LRU scans occur in the
background.

Yet another approach may be one where the concept of NUMA
nodes is extended to kernel objects, and associations are built be-
tween CPU nodes and the kernel objects that they allocate. This
would enable kernel objects tiering close to the CPU that likely
uses them. Indeed, this is what modern OSes do - they allocate
kernel objects on the NUMA socket corresponding to the core that
is responsible for the OS activity leading to kernel object creation.
However, while NUMA systems do migrate pages between sockets
post-allocation if the traffic from remote sockets increases, kernel
objects are never migrated. This leads to performance loss when
kernel objects are used asynchronously (e.g., receive path kernel
objects associated with sockets or pages invoked via I/O prefetch-

ing).

4 DESIGN OF THE KLOC ABSTRACTION

We first provide a brief overview of KLOC followed by the design
approach.

4.1 Overview

Figures 1 and 3(a) illustrate the data structures involved in realizing
KLOCs within the Linux kernel. At their core, these data structures
are manipulated by two general OS sub-components. The first is
the OS system call interface, which allocates kernel objects and
adds pointers to them in the knodes. The knodes act as a "table
of contents" to the locations of all associated kernel objects and
sidestep the challenges detailed in section 3.3. Intercepting system
calls as the medium for knodes to point to kernel objects ensures
that the KLOC abstraction remains transparent to applications.
Figure 3(a) shows that the second OS sub-component necessary
for the management of KLOCs involves the data structures used by
Linux’s LRU code paths to identify hot/cold kernel objects. Most
OSes, including Linux, use a data structure to track important per-
CPU information for scheduling and resource usage. Our approach
is to add, to this data structure, a list of pointers to knodes touched
by each CPU. As we discuss in section 4, this data structure acts
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as a software cache of the bigger kmap structure in Figure 1, and
is similar in spirit to several other "fast path" software caches that
OSes maintain for page tables, virtual memory area (VMA) trees,
etc. The knodes are further associated with a variable for tracking
their hotness (age) and whether they are active (inuse). The code
paths that implement OS LRU policies use these per-CPU lists of
knode pointers to quickly identify cold knodes. Moreover, without
walking the page table to identify all the kernel objects associated
with this knode, the kernel can identify objects pointed to by each
knode. This permits the LRU engine to short-circuit lengthy page
table scans.

The exact number of pages, kernel objects, and KLOCs to mi-
grate depends upon memory pressure and LRU policies to govern
the aggressiveness with which data migration must be pursued.
The KLOC abstraction does not enforce any constraints on these
runtime decisions but instead offers fast migration capabilities for
any existing OS policy.

4.2 KLOC Management

Figures 1 and 3 highlight key aspects of the KLOC abstraction. We
now discuss more concrete design details. To drive our design, we
focus on our prototype in the Linux kernel. Our prototype is likely
to extend to other monolithic kernels, even if the implementation
details vary. We next discuss how to initiate KLOC, allocation of
KLOC’s knode, and their management.

4.2.1 KLOC Initiation. System administrators trigger the use of
the KLOC abstraction via a begin_kloc() system call with the target
application passed as an argument. To avoid application changes, we
implement this as a shared user-level library that the application can
be linked. All activities pertaining to KLOC creation, management,
and deletion are handled entirely within the OS and are transparent
to the userspace.

4.2.2  Allocation. Every file, whether it is created by the filesystem
or the networking stack, has a knode associated with it. Every
file’s inode maintains a pointer to its associated knode. We make
knodes easily accessible to the filesystem and networking system
code paths by allocating them within the virtual filesystem (VFS)
layer as a red-black tree. We leverage Linux’s existing support for
red-black trees to enable efficient design, minimize correctness
concerns, and ease design effort [23, 34]. When an inode is created,
an entry is allocated in the knode red-black tree and pointed to
by the appropriate file or socket inode. When an inode is closed,
the knode red-black tree is searched, and the appropriate knode
is marked inactive. All updates to the knode red-black tree are
performed serially to avoid race conditions and deadlocks when
multiple CPUs access per-inode RB-trees. In ??, we discuss how we
reduce red-black tree contention and increase concurrency.

We use the slab allocator for knodes in order to optimize for
speed of allocation. This is important because I/O-intensive work-
loads spawn and delete files hundreds of thousands of times over
an application lifetime, leading to many knode allocations and
deletions. The downside of using slab allocators is, however, that
the knodes become non-migratable. However, our profiling results
show that prioritizing knode allocation speed over amenability for
migration is more important to overall system performance. This is
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| 1. fopen() || 2. fwrite() || 3. fsync() || 4. fclose() |L'ser-space

CPU 0 void *dentry_alloc(struct inode *inode)
v 1 A knode_alloc() {
4 s
age: 0 age: 6 age: 15 @ i slow-mem §
@ struct knode *knode = knode(inode);
: 2 uct *alloc policy:
block> . struct *alloc_policy;
Inactive and d 1 4@ Ext4 FS ¢ —policy
oldest Knode 2 @tent>journan>
CPUN Cxtend> 2 ourmar>
I . 3 B> Block /O if (KLOC(current) && active(knode))
agmc: 0 age: 6 (1) Create KLOC’s (2) Allocate journal and (4) Move cold (inactive)

knode, allocate
inode, add related
objects knode’s slab
tree
(a) Per-CPU list with support for active (hot)
and inactive (cold) knode identification.

extent to slab tree and
cache page to cache tree

(3) Allocate block /0
structures and add to knode

(b) KLOC abstraction to map kernel objects.

file’s kernel objects using
knode to slow memory and
deallocate them from fast
memory

dentry = allocate_hetero_(size, policy);

knode_add_obj(knode, dentry)
} else
dentry = allocate(size);
(¢) KLOC kernel object allocation pseudocode.

Figure 3: On the left (a), we show that existing per-CPU structures in Linux are augmented with a list of knodes accessed by
each CPU, with information about the knode reuse. These data structures are used by Linux’s LRU engine to identify hot/cold
KLOC:s. In the middle (b), we show an example of the key kernel objects related to file operations that are managed during
open(), write(), sync(), and close() operations. On the right (c), we show pseudocode for dentry object allocation using the KLOC

abstraction.

because knodes are orders of magnitude fewer in number than the
kernel objects that they point to (which must be migratable and
cannot, therefore, use slab allocation). Therefore, our design always
allocates knodes to fast memory. Note that this is not a fundamental
design decision, and other designs are also possible.

Overall, the tight association between inodes and knodes binds
KLOC lifetime to that of the file or socket that it is associated with.
In other words, when an inode is created, so too is a KLOC. When
an inode is deleted, so too is its KLOC.

Next, regarding application pages, KLOCs prioritize application
pages to reduce their placement in slower memory, which can signif-
icantly impact performance. KLOCs attempt to allocate application
pages to a faster memory, unlike kernel objects, where only objects
of active knodes are allocated to fast memory.

4.2.3  Associating Kernel Objects to Knodes. After the knodes are
allocated, they must maintain pointers to all associated kernel ob-
jects. A key research question is the choice of data structure used
to track kernel objects. Kernel objects can number in millions (e.g.,
RocksDB has roughly two million kernel objects). They must be
quickly looked up via the knode and tracked using data structures
that are correctly implemented. To balance these factors, we opt for
Linux’s red-black trees. We find that using a single red-black tree
to record millions of kernel objects can be prohibitively expensive;
empirically, as many as ten memory references are needed on av-
erage for tree traversal, posing too high a performance tax. While
many design solutions are possible, we use the simple approach of
incorporating two red-black trees within each knode - rbtree-cache
tracks large kernel objects allocated using non-slab allocators, while
rbtree-slab tracks smaller kernel objects allocated using slab allo-
cators. Beyond its performance benefits, this approach also offers
the organizational benefits of separating page cache pages versus
smaller kernel allocations.

Any OS subsystem that accesses and manipulates files or sockets
is responsible for manipulating the red-black trees. Two such sub-
systems are system calls for the filesystem and networking system.
For example, when a file is created, so are the inodes, dentrys, and
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journal blocks. A file write can create cache page objects, radix
tree nodes, journal records, and extents. Similarly, system calls re-
sponsible for socket creation (socket(), open()) result in creation and
manipulation of packet buffers (skbuff). When applications invoke
egress and ingress activity via send() and recv() system calls, or
when they poll, associated kernel objects are created. In all cases,
the pointers to these kernel objects must be inserted or deleted in
the target knode’s red-black tree. Figure 3(b)-(c) show the diagram
and pseudo-code associated with file creation. As shown, an inode
is created, a new knode is created, and a pointer to a dentry ob-
ject is added to the knodes. When the file is written, a page cache
page is allocated, and a pointer to it is added to the rbtree-cache,
while references to the extents and journal records (journal) are
added to rbtree-slab. After the file is closed, the page cache pages
are removed. When the file/inode is deleted, so too is its knode.
Non-system call OS activity can also change knodes. For example,
when the filesystem block driver commits in-memory pages to disk,
it allocates the file’s block I/O structures. Pointers to these must be
added to the appropriate knode.

While identifying the file/socket that a kernel object is associated
with is straightforward in many cases, it can pose a challenge in
others. Consider the networking stack. Packets are buffered across
several layers of ingress and egress paths, including TCP, UDP,
IP, and the network device driver (i.e., NAPI). Problematically, the
ingress path receives packets asynchronously. As network packets
arrive, the device driver allocates a generic packet buffer but does
not know the socket to which this packet belongs. This information
is extracted in a higher layer of the TCP stack and presents a prob-
lem for KLOCs, which need fast association between kernel objects
and their corresponding file/socket for maximal performance.

In response, one might extract the packet’s entire header to iden-
tify the socket inside the driver code before transferring control to
the higher TCP layers. We find this to be CPU-intensive and compa-
rable in latency to socket lifetimes, making it infeasible. Instead, we
extract socket information within the device driver and eliminate
redundant work at the higher-level layers. We do this by extending
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the packet buffer structure (skbuff) with an 8-byte socket field con-
taining the socket information extracted in the device driver. This
field elides the need for further socket information extraction at
higher levels of the TCP stack. We also extend the device driver to
add packets to the desired knode.

4.3 Concurrency Via Per-CPU Fast Paths

As initially described, we expect our system to suffer from two
key sources of degradation pertaining to synchronization. First,
multiple threads may simultaneously access per-inode red-black
trees, especially when objects are added to knodes or when threads
responsible for migrating kernel objects access them. Second, as
shown in Figure 1, we use a global kmap implemented as a red-
black tree to maintain pointers to all knodes. This global structure
is susceptible to synchronization overheads [39].

We exploit Linux’s red-black tree with read-copy-update (RCU)
support to partly mitigate some of these contention overheads.
RCU enables "multi-reader, single-writer" concurrency [20]. To re-
duce locking overheads, we split a knode’s red-black tree into a
cache (rbtree-cache) and a kernel slab object (rbtree-slab) tree. We
also, as shown in Figure 3(a), employ a well-known OS approach
of creating a "fast path" cache of the kmap by implementing per-
CPU linked-lists of associated knodes. Creating separate lists of
knodes reduces synchronization overheads, and by restricting their
sizes, ensures that they can be traversed fast. However, they pose
coherence challenges as the same knode may be accessed by mul-
tiple CPUs and may hence be mapped to multiple per-CPU lists.
Fortunately, Linux already maintains APIs and mechanisms for
coherence management of per-CPU lists [24]; by leveraging these,
we achieve correct implementation. We find that existing coherence
mechanisms present minimal overhead to the KLOC design. Finally,
each per-CPU list associates an age variable with the knode pointers
as shown in Figure 3a. This age variable is set to zero whenever a
knode is accessed and is incremented when the LRU policy scans it
but does not mark it as a candidate for eviction. As the age increases,
its KLOC becomes colder and becomes a stronger candidate for evic-
tion to slow memory. Finally, KLOCs, similar to other kernel data
structures in NUMA-based systems, do not introduce additional
false sharing problems via coherence protocols. The combination
of per-CPU fast path lists and the red-black trees reduce knode
contention. Per-CPU lists reduce the rbtree-cache and rbtree-slab
accesses by 54%. Reusing existing RCU support for red-black trees
also minimizes contention among remaining accesses.

4.4 Support for Migration in KLOC

We first discuss the need for supporting kernel object migration
and then discuss our support for kernel object and application page
migration.

Migrating kernel objects with short lifetime. Cache and slab
objects have short lifetimes, but many of them (e.g., inodes, socket
buffer structures) are frequently accessed through application life-
time. Using slow memory for all these objects hurts performance
(see Figure 5C). KLOCs aim to increase direct allocations of kernel
objects of an active knode to faster memory and too significantly
"reduce" migration from slow to fast memory. However, migration
cannot be completely eliminated because of limited fast memory
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capacity. In fact, we find that inactive kernel and application pages
need to be downgraded from fast to slow memory frequently, and
represent 88% of total migrations. Within this group, 79% of the
migrations are for page cache pages. KLOCs also permit downgrad-
ing of slab objects, which are not freed even after a knode becomes
inactive. Because many real-world workloads see inodes, dentry
structures, and other filesystem structures enjoying periods of ac-
tivity interspersed with inactivity, KLOCs are vital to downgrading
these structures when necessary. On the other hand, reverse migra-
tion from slow to fast memory represents 4-12% of the migrations
and is mainly used for cache pages. With increasing fast memory
capacity, the slow memory page use reduces, consequently reduc-
ing the performance difference across approaches and the variance
across workloads.

Finally, we track KLOCs at the inode granularity, as opposed
to tracking each object in a fine-grained manner. This enables
direct allocation of short-lived kernel objects relevant to an I/O
request to fast memory and migration of inactive objects to slow
memory. Direct allocation of short-lived kernel objects reduce the
cost of moving kernel objects across memories. Our future work
will explore the benefits of employing a fine-grained kernel object
tracking approach in ways that do not introduce tracking overheads.
Support for Kernel Object Migration. Once the OS kernel iden-
tifies KLOCs with cold knodes, it migrates all kernel objects mapped
to knodes together. This means that the kernel objects pointed to
by a knode subtree in Figure 1 are migrated. While kernel objects
allocated using vmalloc() and page_alloc() (e.g., page cache pages)
are relocatable, those that are slab allocated are not. This is because
they are not mapped into a virtual address and allow kernel object
access using a physical address when required.

While it is possible to make wholesale changes to the slab allo-
cator to fix this, it is a complex endeavor. Instead, we build a new
allocation interface for kernel objects, enabling the allocation of
kernel objects into virtual address spaces by leveraging existing
code paths for anonymous virtual memory area (VMA) regions that
are not backed by files. While these VMA regions have tradition-
ally not been relocatable, we found that it was possible to more
easily enhance them than slab allocators to support kernel object
migration.

Migration of Application Pages. In tandem with kernel objects,
application pages deemed to be inactive by Linux’s LRU mechanism
are migrated to slower memory. In our work, we repurpose OS-level
LRU for application data pages, like recent work like Nimble [53],
HeteroOS [33], and ThermoStat [13].

Making KLOCs amenable to I/0 prefetching: Linux’s adaptive
readahead mechanism prefetches I/O pages with temporal and spa-
tial locality locality [51]. We augment this mechanism to prefetch
kernel objects associated with the inode by exposing them to the
1/O prefetcher kernel objects via the KLOC abstraction. The I/O
prefetcher’s existing logic modulates the cost-benefit trade-off of
prefetching kernel objects. As we describe in section 7, KLOCs
make I/O prefetching even more effective. When the right kernel
objects are prefetched, KLOCs enable the I/O prefetcher to iden-
tify them more quickly. When the kernel objects are actually poor
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prefetching candidates, KLOCs enable the OS to determine that
they are cold, to migrate them slow memory more quickly.

4.5 KLOC in HW-SW Managed Tiering

The KLOC abstraction is usable by any existing kernel-level pol-
icy that tiers data. To demonstrate its utility, we enhance Linux’s
existing support for LRU and automatic NUMA (AutoNUMA) poli-
cies [22, 29] to take advantage of kernel object tiering.

Updating LRU and AutoNUMA: Modern LRU policies track ac-
tive pages and inactive pages via separate lists. Ideally, as pages
become inactive, they would be migrated to slow memory, and as
they become active, they are migrated to fast memory. Like prior
work for two-level memories [53], we use this approach to deter-
mine which pages to migrate between memory devices. Unlike
prior work, we also migrate kernel objects. Once the knodes for a
file/socket becomes inactive, we immediately mark and migrate the
kernel page objects they are associated with, without waiting for
scans of active/inactive lists. We also enhance Linux’s existing LRU
policy to avoid repeated migration. We use 8-bit per-page counters
to track migrations and retain such pages in fast memory. We found
that less than 1% of pages met these conditions due to the shorter
lifetime of kernel objects.

We also enhance AutoNUMA with KLOCs to better balance
local/remote memory accesses in traditional multi-socket NUMA
systems. While recent kernel patches suggest that AutoNUMA
developers are considering ways of optimizing data placement in
tiered memory systems, these approaches completely ignore kernel
objects [29]. With AutoNUMA, the OS periodically scans a portion
of a task’s address space and marks the memory to force a page
fault when the data is next accessed. When this address is faulted
to, the data can be migrated to a memory node associated with
the task accessing the memory. AutoNUMA also uses a scheduler
to group tasks that share data. Baseline AutoNUMA works well
for application pages but takes too long to identify kernel objects
such as page cache associated with the application, corroborating
results from previous work [55]. We overcome these problems
by enhancing AutoNUMA with KLOCs via a simple policy: for all
active KLOCs currently in use by an application, we identify related
kernel objects and check if their pages are placed in local memory.
We use the kmap and per-CPU lists to do this and subsequently
migrate kernel objects that are remote. As we show in section 7,
improving AutoNUMA with KLOCs performance by 1.4X.

5 IMPLEMENTATION

We briefly describe the components that support KLOC and then
discuss our current design implications and limitations.

KLOC components: Due to the lack of multi-tiered software-
controlled heterogeneous memory systems, we implement KLOCs
on a dual-socket system with fast and slow memory, where slow
memory is realized by throttling bandwidth. We also evaluate
KLOCs on an Intel Optane system [4] to explore its benefits in
an environment that requires coordinated hardware and software
management. The KLOC abstraction and OS-level changes are im-
plemented in roughly 4K lines of code, spread across different parts
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Table 2: KLOC APIs. App Dev., OS Dev., and Admin indicate
KLOC API use by application-, kernel-developers, and ad-
ministrators, respectively.

KLOC API Description API User
sys_enable_kloc() System call to enable KLOC for | Admin
an application
map_knode(knode, inode) Map a new inode to a knode OS dev.
knode_add_obj(knode, obj) | Add kernel object to a knode OS dev.
itr_knode_slab(knode) Iterate knode’s kernel objects in | OS dev.
slab tree
itr_knode_cache(knode) Iterate knode’s kernel objects in | OS dev.
page cache tree
add_to_kmap(knode) Add knode to global kmap OS dev.
get_LRU_knodes(kmap) Get LRU knodes from kmap OS dev.
find_cpu(knode) Find CPU that last accessed a kn- | OS dev.
ode
sys_kloc_memsize(memtype, | System call to limit the memory | Admin
size) capacity use of a memory type
by KLOC

of Linux memory management, ext4 file system, network, and stor-
age block driver stacks. KLOCs require no application changes
except linking to a userspace shared library. The shared library ap-
proach — as opposed to a kernel configuration that enables KLOCs
at the compile time — offers system administrators the option to
dynamically enable and selectively control which kernel objects
are included with KLOCs.

KLOC usage interface: Table 2 summarizes the set of func-
tions that we design and expose to the remainder of the kernel to
manipulate KLOCs. Figure 3(c) shows an example of how to use
these functions for the case where a dentry kernel object is allo-
cated and mapped. A dentry object is used to track the hierarchy
of files in a directory. The code checks to see whether there is an
active knode and then performs the requisite additions to the KLOC
and KLOC map.

KLOC memory usage: KLOCs increase memory consumption
by <1% of fast memory capacity. The memory increase stems from
the 8-byte red black tree pointers to cache pages and slab object
structure in the rb-cache and rb-slab trees, per-CPU active and
inactive lists, a linked list to track pages that need to be migrate, and
other auxiliary structures. In section 7, we provide a breakdown
of memory increase with KLOC. Our future work will focus on
reducing these overheads.

KLOC System call cost: During a system call, the KLOCs code
paths set a flag to mark an inode active and a promising candidate
for allocation to fast memory. This is a fast operation. Kernel ob-
jects allocated during the system call are added to knodes. Although
KLOCs use the file and network system for kernel object placement
decisions, system call overheads are negligible. Kernel object mi-
grations are asynchronous, and we use dedicated kernel threads to
migrate kernel objects associated with active and inactive knodes
between fast and slow memory. This can involve additional CPUs
for the migration thread, but this is no different from the migra-
tion mechanisms used by modern swap managers, state-of-the-art
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heterogeneous memory management systems such as Nimble [53],
Thermostat [13], and others [35].

KLOC support for multi-page size. Because most Linux kernel-
level objects like page cache and slab pages are allocated using 4KB
pages, we mainly focus on 4KB pages. For applications that can use
larger page sizes, the KLOC abstraction relies on existing Linux
LRU support for active and inactive page detection and migration.
Because KLOC aims to increase the placement of kernel objects to
fast memory and reduce migrations, KLOCs should provide higher
performance gains with THP [13, 53], although this hypothesis
needs to be tested in future studies.

Table 3: We evaluate KLOCs using I/O-intensive applications
that stress the storage and networking stacks.

Application Description Memory
Footprint

12.4GB

RocksDB [2] Facebook’s persistent key-value store based on
log-structured merge tree. We use DBbench [3]
workload with 1M keys and 16 client threads.
The benchmark performs 50% random and se-
quential writes and reads.

In-memory key-value store that periodically
checkpoints to disk. We use 16 Redis instances
that serve requests from 16 clients with 4M keys
with 75% sets (writes), 25% gets (reads).

File system benchmark using 16 threads, 13.0GB
per-thread, executing 50% sequential and ran-
dom reads on a 32GB file.

NoSQL DB running YCSB [21] with 16 threads,
50% read-write ratio.

Apache Spark with Hadoop, running Terrasort
on 20GB of data with 16 threads. The workload
first generates the dataset followed by the ana-
lytics.

Redis [9] 14.0GB

Filebench [49] 16.3GB

Cassandra [1] 11.0GB

Spark [56] 32.1GB

6 EXPERIMENTAL METHODOLOGY

6.1 Evaluation Workloads

We quantify the benefits of KLOCs on the I/O-intensive workloads
in Table 3. Our evaluation focuses on the Filebench, RocksDB, Redis,
and Cassandra workloads because we had difficulty resolving issues
brought about by the firewall settings in Spark.

6.2 Evaluation Platforms

For evaluation, we use two experimental platforms. KLOCs can be
used in multiple tiered memory configurations. Evaluating KLOCs
on all memory configurations is infeasible, so we focused on two
extreme points — a software-managed tiered memory setup and a
combined hardware/software-managed tiered memory setup. The
Optane Memory Mode is the latter, where software is responsible for
migrating data across memory nodes, but hardware is responsible
for tiering data within each node. In both platforms, application
and kernel object pages are managed by the OS and are transparent
to the programmer.

Software-managed tiered memory. In our first platform, which
we refer to as two-tier memory, uses the OS to control data manage-
ment between a high-bandwidth, low-capacity first DRAM tier and
a lower-bandwidth, higher-capacity second DRAM tier. While we
would prefer using a real-world platform for these studies, there are
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Table 4: We use the two-tier memory and Optane Memory
Mode platforms for our evaluations. KLOCs are used in
both platforms by the OS, which controls data movement be-
tween memory tiers in the first platform, and memory sock-
ets in the second platform.

Experimental Platforms

Two-Tier Memory Platform

Processor 2-socket Intel E5-2650v4 (Broadwell), 2.4 GHz cores, 20
cores/socket, 2 threads/core

SRAM Cache 512 KB L2, 25 MB LLC

Memory Two 80 GB sockets, max bandwidth of 30 GB/sec

Storage 512 GB NVMe with 1.2 GB and 412 MB sequential and random
access bandwidth

0S Debian Trusty — Linux v4.17.0

Optane Memory Mode Platform

Processor 2-socket Intel Xeon, 2.67 GHz cores, 32 cores/socket, 2
threads/core

SRAM Cache 512 KB L2, 25 MB LLC

DRAM Cache 16-GB DRAM hardware-managed L4 cache per socket

Memory 128-GB Intel DC Persistent DIMM per socket

Storage 1-TB Intel NVMe Block Storage

0OS Debian Trusty — Linux v4.17.0

no commercially-available tiered memory systems with entirely OS-
controlled data movement, although they are expected to become vi-
able and widely-used in the near future (e.g., die-stacked memories,
disaggregated memories, etc. [41, 53]). Instead, like recent work,
we leverage a two-socket system for our studies [13, 33, 41, 53]. We
use thermal throttling to reduce the DRAM bandwidth in one of the
sockets in a configurable manner, mimicking the activity of slower
memory. Table 4 shows that fast memory is configured to 8GB of
capacity at 30GB/s. This matches the raw capacity and bandwidth
ranges as well as relative ratios between fast and slow memory from
recent studies [17, 33, 41, 53]. We also evaluate performance for
variations of fast memory capacity and slow memory bandwidth.
We turn off AutoNUMA for the two-tier memory system, like re-
cent work on Nimble [53]. This is because AutoNUMA moves pages
across homogeneous NUMA nodes based on CPU affinity/locality,
unlike KLOCs and Nimble, whose goal is to enable tiering across
memory devices with differing performance characteristics.

Hardware/software-managed tiered memory. Our second plat-
form uses a two-socket Intel Optane DC system representative of
tiered memory systems that use a hybrid OS-hardware approach

for data management. We configure the Optane DC system to op-
erate in Intel Optane’s Memory Mode, meaning that each socket

uses its DRAM as a hardware-managed L4 cache of a slower-tier

byte-addressable persistent memory [55]. Data movement between

the L4 DRAM cache and persistent memory is controlled entirely

in hardware, while the OS is responsible for data movement be-
tween sockets using AutoNUMA techniques. The DRAM L4 cache

achieves 3-4x faster latency than persistent memory.

One might also consider using Intel Optane’s App Direct mode
for our studies. However, the goal of KLOCs is to manage OS ker-
nel object tiering. Since programmers do not have direct access
to kernel objects by design, it is not possible to tier kernel objects
using the App Direct mode and therefore not possible to demon-
strate the benefits of KLOCs in the App Direct mode. We show the
configuration parameters of the Memory Mode platform in Table 4.
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Table 5: KLOCs and alternatives evaluated in our studies. Ap-
proaches like Nimble represent prior state of the art research
on application page migration [53], while AutoNUMA is the
standard in modern OS kernels like Linux and FreeBSD.

Strategy Description

Two-Tier Memory Platform
Greedy approach that places application and kernel data in fast
memory until it fills up. After becoming full, fast memory is
available again when data in it is deallocated.
Prior work using OS-controlled application tiering with parallel
and concurrent page migration optimizations.
Our extension of Nimble to migrate kernel object migration with
parallel migration optimizations, but without implementation
of the KLOC abstraction.
Original Nimble policies to identify hot application pages and
mechanisms to accelerate application pages, KLOCs to associate
hot/cold application pages with kernel objects, and parallel ker-
nel page migration.

Optane Memory Mode

AutoNUMA for application page migration between sockets,
with L4 DRAM caches of persistent memory.
AutoNUMA with support to migrate kernel objects associated
with application pages between sockets, with L4 DRAM caches
of persistent memory.

Naive

Nimble

Nimble ++

KLOCs

AutoNUMA

KLOCs

Performance comparisons: We compare KLOCs against the mem-
ory management strategies in Table 5. We also compare against an
ideal scenario where all application and kernel data is resident in
fast memory (All Fast Mem), and the pessimistic scenario where all
application and kernel data is in slow memory (All Slow Mem). Ta-
ble 5 separates the tiering strategies for the two-tier versus Optane
Memory Mode platforms.

For the two-tier memory platform, we consider a Naive approach
that employs a greedy first-come, first-serve approach for allocating
data in fast memory. Once fast memory becomes full, all alloca-
tions are directed to slow memory. Neither application nor kernel
pages are migrated between memory tiers, meaning that fast mem-
ory becomes unavailable for allocation until some data in it is
deallocated first. In contrast, Nimble is a recently-proposed data
placement and migration scheme for application pages in tiered
memory [53]. Nimble optimizes page hotness tracking and acceler-
ates software-directed page migration via parallelization of page
copy operations and concurrent multi-page migrations. We also
enhance Nimble to support kernel objects in two ways. The first
and most straightforward approach (Nimble++) is to extend Nim-
ble’s existing mechanisms and policies that identify and migrate
hot kernel objects without the KLOC abstraction. While this ap-
proach does permit hot kernel objects to reside in fast memory,
more practically, once kernel objects are evicted to slow memory,
they rarely return to fast memory. The key problem is that Nimble’s
page hotness and migration control have higher latency than kernel
objects’ lifetimes. Hence, Nimble++ offers sub-optimal performance
because it cannot adapt to changes in kernel object hotness suffi-
ciently rapidly. In contrast, KLOCs permits Nimble to more rapidly
identify and migrate hot kernel objects associated with hot appli-
cation pages with Nimble’s parallel page migration optimizations.
While Nimble’s concurrent multi-page migration optimizations can
be extended to kernel objects, we leave this for future work be-
cause of the engineering complexity. We show that just extending
Nimble with kernel object support via KLOCs outperforms Nimble
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Figure 4: Performance of KLOCs on the two-tier mem-
ory platform. Speedups are relative to the All Slow Mem
configuration. KLOCs outperform all other approaches,
except for Cassandra, where they are roughly similar to
Nimble++. KLOCs-nomigration shows an approach that uses
KLOCs to directly allocate kernel objects to fast mem-
ory without migration. Finally, the KLOCs bars combine
KLOCs-nomigration’s direct allocation of kernel objects
as well as the migration of kernel objects associated with
active and inactive knodes.

and Nimble++, despite the absence of concurrent multi-page kernel
object migration.

For our Optane Memory Mode platform, we enhance AutoNUMA
with KLOCs so that the OS can migrate kernel objects between
sockets. Our experiments are set up such that workloads are run
concurrently with another workload that streams through memory
and hence interferes with our workload on one of the sockets. When
interference begins to harm performance, AutoNUMA migrates the
workload of interest to another socket where there is no interfering
workload. However, while vanilla AutoNUMA migrates application
pages, kernel object pages are ignored. This problem is resolved
with KLOCs, and kernel objects are also migrated.

Table 6: Average memory increase using KLOCs in MBs com-
pared to All Fast Mem approach.

Redis
83MB

Cassandra
12MB

Filebench
44MB

RocksDB
101MB

Spark
43MB

Mem usage
increase

7 EVALUATION

7.1 Overall Performance

Figure 4 quantifies the speedup achieved via KLOCs on the two-tier
memory platform versus the alternatives in Table 4, normalized to
the case when only slow memory is available. We compare KLOCs-
nomigration, an approach that directly allocates active KLOCs to
fast memory without migrating inactive kernel objects from fast
to slow memory, and KLOCs, which also migrates kernel objects.
Both approaches generally outperform other approaches. Consider,
for example, filesystem-intensive workloads like RocksDB, which
stores persistent key-values as a string-sorted table in hundreds of
4MB files. Because many of the files become inactive, Naive pollutes
fast memory. KLOCs-nomigration directly allocates performance-
critical active knode objects to available fast memory pages and
achieves 1.61x throughput gains over the naive approach. However,
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KLOCs-nomigration cannot move inactive kernel objects that are
yet to be deallocated, reducing the available fast memory for kernel
objects of an active knode. In contrast, KLOCs also migrates inactive
kernel objects to fast memory, increasing fast memory availability,
and improving performance by 1.96x. Redis, which uses only a
few large files to checkpoint data, suffers cache pollution in the
Naive case. Because Redis is also networking-intensive, the Naive
approach is vastly outperformed by KLOCs (by 2.2x), which can
ensure that socket buffers are prioritized in fast memory and can
rapidly identify and migrate cold kernel socket buffers to slow
memory.

In general, KLOCs also outperform Nimble and Nimble++. For
Redis, KLOCs throughput increases by 2.7x over Nimble. Both
Nimble and Nimble++ leave cold kernel objects for longer in fast
memory than KLOCs. Nimble and Nimble++ also take longer to
identify hot kernel objects and retrieve them in fast memory than
KLOCs. One might initially expect that since kernel objects have
short lifetimes, retrieving them into fast memory may be infrequent.
However, our experiments suggest that kernel objects experience
rapid phase changes in hotness, and while Nimble and Nimble++
are too coarse-grained in assessing these phase changes, KLOCs
can adapt to them more readily and improve performance.

Figure 4 shows that KLOCs is similar to Nimble++ for Cassandra.
This is because Cassandra uses a 512MB application-level cache
for 200K keys. Because this large cache satisfies many requests
at the application level, kernel I/O is reduced, performance is less
sensitive to kernel object placement. Note that for the same reason,
Cassandra benefits the least from the ideal case where all data is
placed in fast memory. Additionally, Cassandra suffers from high
Java and language overheads towards storage access combined
with the use of the YCSB workload generator [21] running in a
client-server configuration.

Memory Usage. Table 6 shows the increase in memory usage
when using KLOC:s for all applications compared to the All Fast
Mem approach. Although KLOCs increase memory usage, the in-
crease is < 1% of overall memory usage. For RocksDB, with the
maximum memory increase (101MB), the overheads stem from
metadata required for supporting KLOCs. The metadata memory
increase mainly stems from 8 byte RB-tree pointer for each cache
page and slab object structure that is added to rb-cache and rb-
slab trees (roughly 96MB). The per-CPU active and inactive list
(<800KB), a list to track pages to migrate (roughly 1IMB depending
on migration size), 64 byte KLOC structure attached to each open
inode (<400KB), and other KLOC auxiliary bookkeeping structures
also contributed to memory increase.

Hardware/software-managed tiered memory. Figure 5a shows
that KLOCs outperform AutoNUMA in the Optane’s Memory Mode
configuration. The ideal scenario where all data can be maintained
in local memory offers a 1.6X speedup. AutoNUMA and Nimble are
able to achieve only a fraction of this improvement because they
ignore kernel pages, which remain resident in the memory device
where they were first allocated, even as execution shifts between
NUMA nodes. KLOCs achieve performance improvements close to
1.5% over AutoNUMA and 1.4X over Nimble.
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7.2 Sources of Performance Improvement

To shed light on the source of KLOCs performance improvements
for the two-tier memory platform, Figure 5b quantifies the number
of page cache pages and slab pages allocated in slow memory, as
well as pages migrated from fast to slow memory for RocksDB.
For good performance, we wish to maximize the number of pages
allocated in fast memory and minimize the number of pages allo-
cated in slow memory. Figure 5b shows that KLOCs allocate data
in slow memory far less frequently than Naive, Nimble, or Nim-
ble++ because they are able to more quickly identify kernel objects
associated with cold application pages, and migrate them to slow
memory as a group. KLOCs also guard against excessive migration,
which can damage performance. In particular, it requires far fewer
migrations than Nimble and Nimble++. Both Nimble and Nimble++
lack the knowledge of active and inactive kernel objects, and both
application and kernel pages are always maintained in fast mem-
ory, hence polluting fast memory. In response, more application
data migrations are necessitated between the two tiers. In contrast,
KLOCs only place active kernel objects to a faster memory, reducing
fast memory pollution and resulting migrations. The confluence of
these factors enables KLOCs to achieve superior performance to
the alternatives.

7.3 Performance Sensitivity of Kernel Objects

Different workloads are more performance-sensitive to different
combinations of kernel objects. Figure 2a illustrates this, showing
that all kernel objects must be included within the KLOC abstraction
for maximal performance benefit. To generate these results, we
incrementally add groups of kernel objects to the KLOC abstraction
and quantify performance improvements. Initially, we tier just the
application pages and always assign kernel objects to fast memory
only. Then we incrementally add KLOC support for page caches,
followed by journals, slab objects, socket buffers, and block I/O.
For each of these configurations, kernel objects excluded from
KLOCs are always maintained in fast memory. We find that many
workloads benefit from including page cache pages within KLOCs,
but other workloads like Redis also benefit from socket buffers, etc.
The conclusion is that workloads employ kernel objects in diverse
ways, and a truly robust KLOC abstraction must include as many
kernel object types as possible.

KLOCs also offer complementary benefits to existing I/O prefetch-
ing techniques in modern OSes. We elide results for brevity, but find
that with Naive, Nimble, and Nimble++, prefetching can amplify
the likelihood fast memory is polluted by cold application pages
and hence, their associated kernel object pages. KLOCs can quickly
identify the kernel object pages associated with cold application
pages and migrate them to slow memory. This is particularly useful
for not just applications where some prefetched pages are indeed
useful (e.g., RocksDB, Redis, and Cassandra), but also for work-
loads with more random access patterns (e.g., Filebench) where
pollution from prefetching is pernicious. For instance, augmenting
prefetchers with KLOCs improves RocksDB throughput by 1.26x.

7.4 Sensitivity to Bandwidth and Capacity

Finally, Figure 6 quantifies KLOC speedup as a function of the
relative memory bandwidth of fast and slow tiers of memory and
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RocksDB in two-tier memory.

Figure 5: Figure 5a shows the speedup offered by KLOCs in the Optane platform’s Memory Mode over the worst-case con-
figuration where all data is serviced from remote memory, the vanilla AutoNuma and the Nimble configurations. Figure 5b
shows the number of pages allocated in slow memory for page cache objects and slab objects (in units of 10 million pages), and
pages migrated from fast to slow memory on the two-tier memory platform for RocksDB. A good approach is to maximize
the number of pages allocated in fast memory (therefore, we wish to minimize page cache page and slab page allocations in
slow memory) and migrate as many cold pages to slow memory as possible. KLOCs does both better than Nimble or Nimble++.
Figure 2a shows the impact of different kernel objects on the KLOCs performance.
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Figure 6: Speedup on a two-tier memory platform. Fast
memory capacity is varied from 4GB to 8GB to 32GB.
Bandwidth differentials between slow and fast memory
are varied from the scenario where fast memory has 8%
more bandwidth than slow memory (1:8 x-axis label) to
4x to 2x. All bars show the average across all workloads,
and variance bars capture the maximum and minimum
speedup achieved across workloads.

the capacity of fast memory in the two-tier memory platform. We
show average speedups across all workloads, with variance bars
indicating the minimum and maximum speedups achieved by our
workload per configuration. KLOCs offer superior performance
across all bandwidth and capacity configurations, particularly as
the bandwidth differential between fast and slow memory becomes
more pronounced. KLOCs offer more speedup as capacity becomes
progressively limited, and as the memory bandwidth differential
grows. In general, the speedup benefits over Nimble and Nimble++
remain consistent and peak for mid-scale fast memory capacities of
8GB, especially for higher bandwidth differentials. As fast memory
capacity increases, slow memory is used less often, reducing the
performance difference of all tiering approaches.
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8 CONCLUSION

We present KLOCs, a new OS abstraction to systematically group
and manage kernel objects data. As hardware vendors increase
system memory capacities, the total memory footprint of kernel
objects has grown to the extent that it can no longer be treated as
an afterthought, particularly for heterogeneous memory systems.
Many refinements and enhancements can be made to this initial
KLOC abstraction, but by showing that even a proof-of-concept
prototype can achieve 1.4x-2.7X higher throughput than traditional
systems, we highlight the exigent need to investigate better kernel
object management in the systems research community.
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