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ABSTRACT

Heterogeneousmemory systems promise better performance, energy-

efficiency, and cost trade-offs in emerging systems. But delivering

on this promise requires efficient OS mechanisms and policies for

data tiering and migration. Unfortunately, modern OSes are lacking

inefficient support for data tiering. While this problem is known for

application data, the question of how best to manage kernel objects

for filesystems and networkingÐi.e., inodes, dentry caches, journal

blocks, socket buffers, etc.Ðhas largely been ignored and presents

a performance challenge for I/O-intensive workloads. We quantify

the scale of this challenge and introduce a new OS abstraction,

kernel-level object contexts (KLOCs), to enable efficient tiering of

kernel objects. We use KLOCs to identify and group kernel objects

with similar hotness, reuse, and liveness, and demonstrate their

use in data placement and migration across several heterogeneous

memory system configurations, including Intel’s Optane systems.

Performance evaluations using RocksDB, Redis, Cassandra, and

Spark show that KLOCs enable up to 2.7× higher system through-

put versus prior art.

CCS CONCEPTS

· Software and its engineering→ Virtual memory.

KEYWORDS

Heterogeneous Memory, OS, Nonvolatile Memory, Virtual Memory

ACM Reference Format:

Sudarsun Kannan, Yujie Ren, and Abhishek Bhattacharjee. 2021. KLOCs:

Kernel-Level Object Contexts for Heterogeneous Memory Systems. In Pro-

ceedings of the 26th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS ’21), April 19ś

23, 2021, Virtual, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/

10.1145/3445814.3446745

1 INTRODUCTION

Memory heterogeneity is here. Emerging systems combine the best

properties of memory technologies optimized for latency, band-

width, capacity, persistence, and cost. Multiple DRAM nodes are be-

ing augmentedwith die-stackedDRAM [15, 30, 45], high-bandwidth
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multi-channel DRAM (e.g., Intel’s Knight’s Landing [6]), and byte-

addressable NVMs (e.g., 3D XPoint in Intel Optane DC) [4, 14, 16].

While heterogeneous memory systems may offer better per-

formance, energy-efficiency, and cost trade-offs, they complicate

memory management. Decades of research have demonstrated the

challenge of data allocation and migration in multi-socket non-

uniform memory access (NUMA) architectures [7, 8, 10, 26, 33, 47].

Heterogeneous memory systems amplify this challenge by inte-

grating memory devices with more varied latency, bandwidth, and

capacity characteristics.

To optimize a heterogeneous memory system for performance,

one would ideally place the hottest data in the fastest memory node

(in terms of latency or bandwidth) until that node is full, the next-

hottest data would be filled into the second-fastest node up to its

capacity, and so on. As a program executes, its data would be peri-

odically assessed for hotness and re-organized to maximize perfor-

mance. For emerging software-controlled heterogeneous memory

systems, hotness detection and migration requires effective soft-

ware mechanisms and policies to determine data reuse and control

data migration. While it is possible for application developers to

orchestrate these tasks, efficient OS approaches that are transparent

to the programmer are preferable because of their less onerous pro-

gramming model. Current OS mechanisms to measure reuse and

migrate data have, however, surprisingly high overheads and have

consequently been the subject of recent software and hardware

acceleration techniques [13, 19, 31, 33, 35, 37, 40, 50, 53, 57].

Unfortunately, most prior research on OS-directed data tiering

focuses on application-level data and ignores kernel objects. One

exception is recent work that migrates and replicates page tables

in DRAM devices in different sockets [11], but memory tiering of

kernel objects for storage and networking I/O remains unexplored.

This is because kernel objects have traditionally been thought to

be few in number, restricted in memory footprint, and less signifi-

cant in their impact on overall performance. This view is driven by

network and disk I/O speeds that are several orders of magnitude

slower ś and hence more consequential to performance ś than

memory. But while this was true in the past, advances in network-

ing and storage speeds now make memory management of kernel

objects critical to performance. We quantify the scale of this crit-

icality by showing that current approaches that ignore tiering of

inodes, dentry caches, journal blocks, network socket buffers, etc.,

leave as much as 4× performance on the table. This paper’s central

contribution is to recover this wasted performance via a new OS

abstraction, kernel-level object contexts (KLOCs), that permits fluid

tiering of kernel objects.

The KLOC abstraction: KLOCs are logical groupings that capture

the kernel objects associated with OS entities requested by applica-

tions. Kernel entities requested by applications are files and sockets,
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Table 1: Kernel objects associated with file systems and net-

working that form the basis of this work.

KLOC Type Kernel Object Structure

FS/Network inode_struct - Per-file inode

FS block - Block I/O structure for conversion of metdata to disk
blocks

FS journal - Filesystem journal buffers

FS page_cache - Buffer cache page

FS dentry - Name resolution for each file

FS extent - Structure for grouping contiguous disk blocks

FS blk_mq - Block layer multi-queue structure for parallel dis-
patch of blocks to disk

Network sock - Socket object for packet buffers

Network skbuff - Header for packet buffer

Network skbuff->data - Data buffer for packet

Network rx_buf - Network receive driver buffer

kmap

slab tree

journal

block

dentry

extent

request

slab tree

sock

skbuff skbuff

data
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Figure 1: All of the kernel objects associatedwith each active

file and active socket represent individual KLOCs. All the

KLOCs in the system are tracked using a kmap. The inode

of each active file or socket maintains a pointer to a knode

data structure, which tracks associated kernel objects.

while kernel objects range from structures associated with files

(e.g., inodes, blocks, journals, etc.) to those associated with sockets

(e.g., packet buffers, headers, data buffers, etc.), as listed in Table 1.

Figure 1 shows that we treat all the kernel objects associated with

each active file and each active socket as individual KLOCs. This

means that in Unix-based "everything is a file" OSes, there is one

KLOC of kernel objects associated with each inode.

Using KLOCs: Good performance is achieved when hot applica-

tion data and kernel objects are placed in faster and nearer memory

up to its capacity, while colder data and kernel objects are placed

in slower and more distant memory. As we will show, kernel ob-

jects are rapidly allocated and deallocated, and have much shorter

lifetimes than application pages. This makes it challenging to ex-

tend existing OS LRU code paths that identify hot/cold pages ś

originally built for longer-living application pages ś to place and

migrate kernel objects in a sufficiently timely manner for good

performance. Even if some of these code paths could be accelerated,

the diverse assortment of kernel objects used today and the com-

plexity of their intertwined memory allocation, reuse, and deletion

code paths make it difficult to implement these changes.

KLOCs offer a principled way to tame this diverse ecosystem of

kernel objects and quickly ascertain their hotness/coldness. When

the OS determines that an inode has become cold (because, for ex-

ample, the file or socket associated with the inode has been closed),

KLOCs permit direct identification of all kernel objects associated

with the inode and mark them as candidates for migration to slow

memory. In other words, rather than relying on expensive and

independent traversals of separate code paths for all the kernel

objects to gradually which of them are cold, KLOCs short-circuit

this process and migrate related cold kernel objects en masse. Our

implementation in a Linux 4.17 kernel shows that KLOCs improve

the performance of I/O-intensive workloads like RocksDB, Redis,

Cassandra, and Spark by up to 2.7× on a two-tier memory sys-

tem and 1.4× on a multi-socket Intel Optane system compared to

state-of-the-art application tiering (Nimble [53]).

Implementing KLOCs: In realizing KLOCs, we answer several

important research questions:

What OS entity should KLOCs be anchored to? Grouping kernel

objects according to files and sockets strikes a good compromise

between performance and minimal kernel changes. This is because

it allows identification of well-defined points where the OS can

manipulate kernel objects ś i.e., existing system calls for file and

network I/O (e.g., file create, open, etc.) ś and also naturally groups

related kernel objects. Leaning on existing system calls also means

that KLOCs are transparent to programmers and manipulated en-

tirely within the kernel.

How should KLOCs manage member kernel objects? The OS must

group millions of kernel object pages with diverse sizes, reuse, and

intricate associations across files and sockets into KLOCs. We rely

on principled use of data structures already widely employed in real-

world OS kernels to efficiently track these relationships. Figure 1

illustrates our implementation. Each inode is expanded to maintain

a pointer to a knode structure, which uses kernel red-back trees to

track all associated kernel objects. When the OS opts to migrate

a KLOC, the kernel objects pointed to by the subtree under the

corresponding knode are migrated. Furthermore, all system KLOCs

are tracked using a global kmap structure, which maintains pointers

to all system knodes.

What changes to kernel object code paths are necessary to support

KLOCs? To support KLOCs, some kernel object code paths need

to be changed. For example, KLOCs must enable the relocation

of kernel objects. Unfortunately, OSes create kernel buffers with

either slab allocators, which are fast but preclude kernel object

relocation. In contrast, vmalloc and page alloc allocations permit

kernel object relocation but are unsuitable for kernel objects that

are referenced by physical address. We create a KLOC allocation

interface that permits fast allocation of kernel objects while sup-

porting relocatability and, via systematic study, are able to redirect

400+ allocation sites to our interface. Similarly, associating a kernel

object with the right file/socket can be a high-latency endeavor.

For example, the OS determines the socket for incoming network

packet buffers only after traversing several levels in the TCP stack.

This long-latency process can overly delay kernel object migration

decisions. We design KLOCs to circumvent these challenges and

enable the fast association of kernel objects with files/sockets.

Overall, we show that memorymanagement of kernel objects has

become vital to the performance of heterogeneous memory systems.

KLOCs are an initial approach to tame the large design space of

kernel object management options. We expect future research to

improve the efficiency and design elegance of kernel object tiering,

but believe that the notion of kernel object contexts can help manage

the continued growth in memory footprint and diversity of kernel

objects.
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2 RECENTWORK ON DATA TIERING

Heterogeneous memory devices are being integrated into systems

with conventional DRAM, with die-stacked 3D-DRAM, Hybrid

Memory Cube (HMC), High Bandwidth Memory (HBM), and byte-

addressable NVMs showing early promise in addressing the big-

data needs of modern applications [12, 35, 45, 48]. While they offer

performance benefits, these devices pose complex performance and

capacity tradeoff questions. Technologies like 3D-DRAM, HMC, and

HBM provide 2-10× higher bandwidth and 1.5× lower latency than

conventional DRAM, but suffer 8-16× lower capacity [12, 15, 16, 41].

Meanwhile, byte-addressable NVMs offer 4-8× higher capacity than

DRAM but suffer 2-3× higher read latency, 5× higher write latency,

and 3-5× reductions in access bandwidth [26, 44, 52]. To manage

a mix of heterogeneous memories, recent studies propose several

software and hardware techniques, including OS and runtime ap-

proaches [13, 27, 33, 35, 37, 41, 53]. Most of these approaches track

page hotness by scanning page tables to migrate hot application

pages of different sizes to fast memory. Approaches such as Hetero-

Visor [27] andHeteroOS [33] propose data placement andmigration

for applications in virtualized datacenters, while other work ac-

celerates page migration using multi-threading and more efficient

caching [53]. Lagar-Cavilla et al. [35] propose a combination of

OS-level hotness scanning combined with machine learning for

data placement.

In contrast, hardware approaches for data tiering include aug-

menting the memory controller [19, 46] or the TLBs [40] for ef-

ficient identification of hot pages and migration. These studies

have primarily focussed on byte-addressable NVMs and on-chip

die-stacked 3D-DRAM technologies [15, 18, 19, 25, 28, 31, 36, 38, 40,

42, 57]. While the NVMs are used as slower memory [36], stacked

3D-DRAMs are used either as a hardware-managed last level L4

cache [18, 31, 38, 43, 57] or faster DRAM. The hardware memory

controller is delegated with the responsibility of managing page

placement across memories as well as predicting and prefetching

pages.

None of these studies consider kernel object tiering. Recent work

on accelerating OS page migration mechanisms place kernel objects

either entirely in slow memory for two-tier memory systems or in

DRAM local to the CPU that allocated the kernel object for con-

ventional NUMA systems [33, 53, 54]. They do not quantitatively

ascertain the performance impact of these decisions or consider

alternatives. The closest prior work comes to studying kernel ob-

jects placement is Mitosis, a recent study on page tables placement

across NUMA memory sockets [11], but even this ignores file or

networking objects. In fact, not only is there no prior work on

heuristics and mechanisms for file and network object tiering, mod-

ern OSes cannot migrate many kernel objects for reasons that we

discuss subsequently. While better hardware caching and prefetch-

ing techniques complement KLOCs by improving data placement to

a faster memory, these techniques do not differentiate between ker-

nel objects and application pages with different lifetimes. We show

the need to treat short-lived kernel pages differently from applica-

tion pages and increase the direct placement of kernel objects by

avoiding delays from hotness detection and migration overheads.

3 MOTIVATION

3.1 Prevalence of Kernel Objects

In this section, we characterize the memory footprint, reuse, and

lifetimes of kernel objects. In section 6, we summarize the I/O-

intensive workloads and platforms used in our studies. Figure 2a

shows the percentage of pages allocated to different kernel objects

and separates these from application-level page allocations. All

workloads are configured with 40GB input data sets, and we quan-

tify the number of pages allocated in units of millions of pages on

top of each bar. Kernel objects are prevalent for all these applica-

tions. Consider Filebench, which uses 16 threads to read and write

4KB blocks to separate files. Writes and reads to disk may prompt

page cache page allocations, updates, and allocation of journals,

metadata radix trees, block driver buffers, etc. As another exam-

ple, consider RocksDB, which updates hundreds of 4MB files with

key-value data, and spends 40% of its runtime within the OS kernel

allocating inodes, driver block I/O and journals, dentry caches, and

radix tree nodes. Spark [56], which uses the Hadoop file system to

store and checkpoint data, is similarly filesystem-intensive.1 These

observations apply to network-intensive workloads too. For ex-

ample, Redis allocates a significant number of kernel object pages

for ingress and egress socket buffers, and page cache pages to pe-

riodically checkpoint key-value store state to a large file on disk

[9].

Figure 2a shows that kernel object memory footprints can rival

memory capacities expected for high-bandwidth DRAM devices in

the near-term. Recent studies focus on fast memory nodes in the

range of 4-16GB [13, 33, 41, 53, 54], and our results show that even

with a modest input data set of 40GB, I/O-intensive workloads need

more than 10s of GBs for kernel objects alone. Different workloads

rely on different sets of kernel objects extensively. For example,

while page cache pages dominate RocksDB allocation, Redis and

Cassandra require a mix of page cache and socket buffer objects.

Overall, kernel objects are plentiful, even exceeding application

pages in some cases, and need to be carefully managed.

Figure 2b shows that the observations from Figure 2a hold as the

sizes of our input data sets are changed. In Figure 2b, our workloads

are adjusted to use 10GB input data sets (Small) in addition to the

40GB input data sets showed in Figure 2a (Large), and we show the

percentage of pages allocated to kernel objects versus userspace.

Kernel objects continue to use a significant fraction of the total

pages.

Figure 2c quantifies the percentage of memory references to user-

space data versus kernel objects. These results were collected using

on-chip performance counters via Intel’s VTune, and Linux Perf [5],

and shows that kernel objects are accessed often. Consider a file

write in Filebench. The virtual file system looks up the page cache

radix tree, allocates a new page if necessary, inserts the page into the

radix tree, performs metadata/data journalling, and finally, commits

blocks to storage. These steps are even more memory-intensive

than writing data to the page cache because of the increase in

random accesses and poor locality of reference. In fact, scaling the

workload inputs leads to a sharp increase in LLC misses due to

higher traffic to kernel buffers. Filebench spends 86% of execution

1The Hadoop filesystem is run as a separate process that maintains user-level caches
and periodically updates page caches.
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Figure 2: Figure 2a shows the breakdown of pages used by application, page cache, and other slab allocations across the file

and the network subsystems for the large workload. In Figure 2b, the y-axis shows the percentage of page allocations in the

application and the OS. Small and large workloads use data sizes (RocksDB, Redis, and Cassandra) or file sizes (Filebench,

Spark) of 10GB and 40GB, respectively. OS allocations include page cache, slab, and vmalloc objects. Pages are allocated and

released (freed) frequently; hence the total allocations can be greater than available memory. Figure 2d shows the lifetime of

application pages, slab, and page cache pages.

time inside the OS, and hence, the memory accesses increase are

higher than RocksDB (54%) and Redis (38%).

3.2 Kernel Object Hotness

In section 3.1, we showed that kernel objects are allocated and

accessed frequently. Consequently, we need to identify the ones

that are hot for placement in capacity-constrained fast memory. We

define hot kernel objects as those currently in use by applications

or have been recently used, and cold kernel objects as those that

are good candidates for placement in slow memory. There are

several reasons that a kernel object may become cold. Consider the

case when an application closes an open file. If no other processes

continue to leave the file open, then the inode, block, dentry, extent,

page cache pages, and other structures associated with the file are

now cold. As another example, even if the file remains open, it may

have been accessed long ago and is hence cold.

As with application pages, there is no clear threshold as to how

long ago a filemust have been accessed to be considered cold. Rather,

to tier kernel objects appropriately, the OS-level LRU policies must

be augmented to identify kernel objects associated with files that

are definitely cold (i.e., because the file has been closed) and must be

able to infer the relative ages of files that have not yet been closed

to identify those that are likely cold because of a lack of recent use.

The exact number of kernel objects that are to be migrated and

the threshold where the kernel objects are considered cold hence

remains a function of the OS LRU policy. This notion of kernel

object coldness has three implications:

First, on file creation, the associated kernel objects should be

allocated in fast memory because they are hot. As they become

colder, they may be migrated to slower memory. This presents a

contrast to all recent work [41, 53], which, for two-tier systems,

allocates kernel objects entirely in slow memory, or, in traditional

NUMA systems, allocates them to the memory socket local to the

CPU performing the allocation without the option of migrating

them in the future.

Second, kernel objects associatedwith files that have been deleted

or completely unlinked (i.e., their reference count is zero) are not

cold, but are instead deallocated. They should not be migrated to

slow memory and can be deleted.

Third, all kernel objects associated with a file inode are treated

as having the same level of hotness/coldness and are migrated

together. This reduces kernel bookkeeping cost and is appropriate

because all kernel objects associated with the inode do tend to be

accessed during I/O. However, it is possible that in select cases,

some kernel objects may see different reuse attributes. In practice,

we find that this happens so rarely that opting for an inode-driven

view of all kernel objects offers a simplistic implementation and

good performance.

3.3 Challenges of Kernel Object Tiering

One may initially consider extending existing OS LRU code paths

to also account for all kernel object pages, currently lacking in

modern OSes. OSes like Linux or FreeBSD scan to identify hot and

cold pages by traversing an application’s page table and visiting

all physical frames to mark them as eviction candidates. While

one could potentially identify kernel objects in this manner, this

approach is successful only if the time taken to identify cold kernel

objects is significantly faster than the kernel objects’ lifetime. Fig-

ure 2d quantifies the lifetime of several categories of kernel objects.

Because the lifetime of kernel objects is tied to OS mechanisms used

to allocate them, we separate kernel objects into those allocated by

slab allocators versus kernel objects like page cache pages, which

are allocated via other techniques.

Short-lived kernel objects ś i.e., inodes, blocks, dentrys, ex-

tents, dir buffers, skbuffs ś are typically allocated using slab al-

locators (kmalloc and its variants like kmem_cache_alloc in Linux

and FreeBSD). Kernel objects allocated with kmalloc use only con-

tiguous physical pages for allocation, do not require manipulation

of page tables during allocation and release, and cannot be relocated.

However, they are allocated quickly. In contrast, separate allocators
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are used for large kernel objects like filesystem page caches. Unlike

slab allocations, these are mapped into the virtual address space of

processes in order to satisfy reads/writes from the application.

Regardless of allocation strategy, Figure 2d shows that kernel

objects are short-lived. While application-level data for RocksDB

and Redis have lifetimes in the tens of minutes, their slab pages are

alive for only 36ms on average. Page cache pages live for marginally

longer, averaging 160ms. Such short lifetimes for kernel objects are

expected. The lifetime of page cache pages can also vary depend-

ing on memory pressure. When available free memory is low, the

cache pages are aggressively released to accommodate application

allocations. Slab-allocated kernel objects consist of buffers added

to radix tree nodes to track file metadata or structures like dentry

caches and in-memory journals. These structures are frequently

queried, allocated, and deleted when trees are rebalanced, or page

cache pages are evicted [32]. Consequently, application pages are

long-lived enough to tolerate LRU scan times. For example, we

measure the time taken to scan one million pages on our Intel Xeon

platform as 2 seconds, corroborating results from recent work [13]

ś but kernel objects are not, even if the LRU scans occur in the

background.

Yet another approach may be one where the concept of NUMA

nodes is extended to kernel objects, and associations are built be-

tween CPU nodes and the kernel objects that they allocate. This

would enable kernel objects tiering close to the CPU that likely

uses them. Indeed, this is what modern OSes do ś they allocate

kernel objects on the NUMA socket corresponding to the core that

is responsible for the OS activity leading to kernel object creation.

However, while NUMA systems do migrate pages between sockets

post-allocation if the traffic from remote sockets increases, kernel

objects are never migrated. This leads to performance loss when

kernel objects are used asynchronously (e.g., receive path kernel

objects associated with sockets or pages invoked via I/O prefetch-

ing).

4 DESIGN OF THE KLOC ABSTRACTION

We first provide a brief overview of KLOC followed by the design

approach.

4.1 Overview

Figures 1 and 3(a) illustrate the data structures involved in realizing

KLOCs within the Linux kernel. At their core, these data structures

are manipulated by two general OS sub-components. The first is

the OS system call interface, which allocates kernel objects and

adds pointers to them in the knodes. The knodes act as a "table

of contents" to the locations of all associated kernel objects and

sidestep the challenges detailed in section 3.3. Intercepting system

calls as the medium for knodes to point to kernel objects ensures

that the KLOC abstraction remains transparent to applications.

Figure 3(a) shows that the second OS sub-component necessary

for the management of KLOCs involves the data structures used by

Linux’s LRU code paths to identify hot/cold kernel objects. Most

OSes, including Linux, use a data structure to track important per-

CPU information for scheduling and resource usage. Our approach

is to add, to this data structure, a list of pointers to knodes touched

by each CPU. As we discuss in section 4, this data structure acts

as a software cache of the bigger kmap structure in Figure 1, and

is similar in spirit to several other "fast path" software caches that

OSes maintain for page tables, virtual memory area (VMA) trees,

etc. The knodes are further associated with a variable for tracking

their hotness (age) and whether they are active (inuse). The code

paths that implement OS LRU policies use these per-CPU lists of

knode pointers to quickly identify cold knodes. Moreover, without

walking the page table to identify all the kernel objects associated

with this knode, the kernel can identify objects pointed to by each

knode. This permits the LRU engine to short-circuit lengthy page

table scans.

The exact number of pages, kernel objects, and KLOCs to mi-

grate depends upon memory pressure and LRU policies to govern

the aggressiveness with which data migration must be pursued.

The KLOC abstraction does not enforce any constraints on these

runtime decisions but instead offers fast migration capabilities for

any existing OS policy.

4.2 KLOC Management

Figures 1 and 3 highlight key aspects of the KLOC abstraction. We

now discuss more concrete design details. To drive our design, we

focus on our prototype in the Linux kernel. Our prototype is likely

to extend to other monolithic kernels, even if the implementation

details vary. We next discuss how to initiate KLOC, allocation of

KLOC’s knode, and their management.

4.2.1 KLOC Initiation. System administrators trigger the use of

the KLOC abstraction via a begin_kloc() system call with the target

application passed as an argument. To avoid application changes, we

implement this as a shared user-level library that the application can

be linked. All activities pertaining to KLOC creation, management,

and deletion are handled entirely within the OS and are transparent

to the userspace.

4.2.2 Allocation. Every file, whether it is created by the filesystem

or the networking stack, has a knode associated with it. Every

file’s inode maintains a pointer to its associated knode. We make

knodes easily accessible to the filesystem and networking system

code paths by allocating them within the virtual filesystem (VFS)

layer as a red-black tree. We leverage Linux’s existing support for

red-black trees to enable efficient design, minimize correctness

concerns, and ease design effort [23, 34]. When an inode is created,

an entry is allocated in the knode red-black tree and pointed to

by the appropriate file or socket inode. When an inode is closed,

the knode red-black tree is searched, and the appropriate knode

is marked inactive. All updates to the knode red-black tree are

performed serially to avoid race conditions and deadlocks when

multiple CPUs access per-inode RB-trees. In ??, we discuss how we

reduce red-black tree contention and increase concurrency.

We use the slab allocator for knodes in order to optimize for

speed of allocation. This is important because I/O-intensive work-

loads spawn and delete files hundreds of thousands of times over

an application lifetime, leading to many knode allocations and

deletions. The downside of using slab allocators is, however, that

the knodes become non-migratable. However, our profiling results

show that prioritizing knode allocation speed over amenability for

migration is more important to overall system performance. This is
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/* KLOC-based dentry object allocation */

void *dentry_alloc(struct inode *inode)

{

struct dentry *dentry;  

/* Get KLOC */ 

struct knode *knode = knode(inode);   

struct *alloc_policy;   

/* Check if KLOC is enabled for current 

* process and the knode is active */ 

if (KLOC(current) && active(knode))  

{

/* Get knode’s allocation policy */  

dentry = allocate_hetero_(size, policy); 

/* Add kernel object to knode*/

knode_add_obj(knode, dentry) 

}  else /* Use default allocation */

dentry = allocate(size);   
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Figure 3: On the left (a), we show that existing per-CPU structures in Linux are augmented with a list of knodes accessed by

each CPU, with information about the knode reuse. These data structures are used by Linux’s LRU engine to identify hot/cold

KLOCs. In the middle (b), we show an example of the key kernel objects related to file operations that are managed during

open(), write(), sync(), and close() operations. On the right (c), we show pseudocode for dentry object allocation using the KLOC

abstraction.

because knodes are orders of magnitude fewer in number than the

kernel objects that they point to (which must be migratable and

cannot, therefore, use slab allocation). Therefore, our design always

allocates knodes to fast memory. Note that this is not a fundamental

design decision, and other designs are also possible.

Overall, the tight association between inodes and knodes binds

KLOC lifetime to that of the file or socket that it is associated with.

In other words, when an inode is created, so too is a KLOC. When

an inode is deleted, so too is its KLOC.

Next, regarding application pages, KLOCs prioritize application

pages to reduce their placement in slowermemory, which can signif-

icantly impact performance. KLOCs attempt to allocate application

pages to a faster memory, unlike kernel objects, where only objects

of active knodes are allocated to fast memory.

4.2.3 Associating Kernel Objects to Knodes. After the knodes are

allocated, they must maintain pointers to all associated kernel ob-

jects. A key research question is the choice of data structure used

to track kernel objects. Kernel objects can number in millions (e.g.,

RocksDB has roughly two million kernel objects). They must be

quickly looked up via the knode and tracked using data structures

that are correctly implemented. To balance these factors, we opt for

Linux’s red-black trees. We find that using a single red-black tree

to record millions of kernel objects can be prohibitively expensive;

empirically, as many as ten memory references are needed on av-

erage for tree traversal, posing too high a performance tax. While

many design solutions are possible, we use the simple approach of

incorporating two red-black trees within each knode ś rbtree-cache

tracks large kernel objects allocated using non-slab allocators, while

rbtree-slab tracks smaller kernel objects allocated using slab allo-

cators. Beyond its performance benefits, this approach also offers

the organizational benefits of separating page cache pages versus

smaller kernel allocations.

Any OS subsystem that accesses and manipulates files or sockets

is responsible for manipulating the red-black trees. Two such sub-

systems are system calls for the filesystem and networking system.

For example, when a file is created, so are the inodes, dentrys, and

journal blocks. A file write can create cache page objects, radix

tree nodes, journal records, and extents. Similarly, system calls re-

sponsible for socket creation (socket(), open()) result in creation and

manipulation of packet buffers (skbuff). When applications invoke

egress and ingress activity via send() and recv() system calls, or

when they poll, associated kernel objects are created. In all cases,

the pointers to these kernel objects must be inserted or deleted in

the target knode’s red-black tree. Figure 3(b)-(c) show the diagram

and pseudo-code associated with file creation. As shown, an inode

is created, a new knode is created, and a pointer to a dentry ob-

ject is added to the knodes. When the file is written, a page cache

page is allocated, and a pointer to it is added to the rbtree-cache,

while references to the extents and journal records (journal) are

added to rbtree-slab. After the file is closed, the page cache pages

are removed. When the file/inode is deleted, so too is its knode.

Non-system call OS activity can also change knodes. For example,

when the filesystem block driver commits in-memory pages to disk,

it allocates the file’s block I/O structures. Pointers to these must be

added to the appropriate knode.

While identifying the file/socket that a kernel object is associated

with is straightforward in many cases, it can pose a challenge in

others. Consider the networking stack. Packets are buffered across

several layers of ingress and egress paths, including TCP, UDP,

IP, and the network device driver (i.e., NAPI). Problematically, the

ingress path receives packets asynchronously. As network packets

arrive, the device driver allocates a generic packet buffer but does

not know the socket to which this packet belongs. This information

is extracted in a higher layer of the TCP stack and presents a prob-

lem for KLOCs, which need fast association between kernel objects

and their corresponding file/socket for maximal performance.

In response, one might extract the packet’s entire header to iden-

tify the socket inside the driver code before transferring control to

the higher TCP layers. We find this to be CPU-intensive and compa-

rable in latency to socket lifetimes, making it infeasible. Instead, we

extract socket information within the device driver and eliminate

redundant work at the higher-level layers. We do this by extending
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the packet buffer structure (skbuff ) with an 8-byte socket field con-

taining the socket information extracted in the device driver. This

field elides the need for further socket information extraction at

higher levels of the TCP stack. We also extend the device driver to

add packets to the desired knode.

4.3 Concurrency Via Per-CPU Fast Paths

As initially described, we expect our system to suffer from two

key sources of degradation pertaining to synchronization. First,

multiple threads may simultaneously access per-inode red-black

trees, especially when objects are added to knodes or when threads

responsible for migrating kernel objects access them. Second, as

shown in Figure 1, we use a global kmap implemented as a red-

black tree to maintain pointers to all knodes. This global structure

is susceptible to synchronization overheads [39].

We exploit Linux’s red-black tree with read-copy-update (RCU)

support to partly mitigate some of these contention overheads.

RCU enables "multi-reader, single-writer" concurrency [20]. To re-

duce locking overheads, we split a knode’s red-black tree into a

cache (rbtree-cache) and a kernel slab object (rbtree-slab) tree. We

also, as shown in Figure 3(a), employ a well-known OS approach

of creating a "fast path" cache of the kmap by implementing per-

CPU linked-lists of associated knodes. Creating separate lists of

knodes reduces synchronization overheads, and by restricting their

sizes, ensures that they can be traversed fast. However, they pose

coherence challenges as the same knode may be accessed by mul-

tiple CPUs and may hence be mapped to multiple per-CPU lists.

Fortunately, Linux already maintains APIs and mechanisms for

coherence management of per-CPU lists [24]; by leveraging these,

we achieve correct implementation. We find that existing coherence

mechanisms present minimal overhead to the KLOC design. Finally,

each per-CPU list associates an age variable with the knode pointers

as shown in Figure 3a. This age variable is set to zero whenever a

knode is accessed and is incremented when the LRU policy scans it

but does not mark it as a candidate for eviction. As the age increases,

its KLOC becomes colder and becomes a stronger candidate for evic-

tion to slow memory. Finally, KLOCs, similar to other kernel data

structures in NUMA-based systems, do not introduce additional

false sharing problems via coherence protocols. The combination

of per-CPU fast path lists and the red-black trees reduce knode

contention. Per-CPU lists reduce the rbtree-cache and rbtree-slab

accesses by 54%. Reusing existing RCU support for red-black trees

also minimizes contention among remaining accesses.

4.4 Support for Migration in KLOC

We first discuss the need for supporting kernel object migration

and then discuss our support for kernel object and application page

migration.

Migrating kernel objects with short lifetime. Cache and slab

objects have short lifetimes, but many of them (e.g., inodes, socket

buffer structures) are frequently accessed through application life-

time. Using slow memory for all these objects hurts performance

(see Figure 5C). KLOCs aim to increase direct allocations of kernel

objects of an active knode to faster memory and too significantly

"reduce" migration from slow to fast memory. However, migration

cannot be completely eliminated because of limited fast memory

capacity. In fact, we find that inactive kernel and application pages

need to be downgraded from fast to slow memory frequently, and

represent 88% of total migrations. Within this group, 79% of the

migrations are for page cache pages. KLOCs also permit downgrad-

ing of slab objects, which are not freed even after a knode becomes

inactive. Because many real-world workloads see inodes, dentry

structures, and other filesystem structures enjoying periods of ac-

tivity interspersed with inactivity, KLOCs are vital to downgrading

these structures when necessary. On the other hand, reverse migra-

tion from slow to fast memory represents 4-12% of the migrations

and is mainly used for cache pages. With increasing fast memory

capacity, the slow memory page use reduces, consequently reduc-

ing the performance difference across approaches and the variance

across workloads.

Finally, we track KLOCs at the inode granularity, as opposed

to tracking each object in a fine-grained manner. This enables

direct allocation of short-lived kernel objects relevant to an I/O

request to fast memory and migration of inactive objects to slow

memory. Direct allocation of short-lived kernel objects reduce the

cost of moving kernel objects across memories. Our future work

will explore the benefits of employing a fine-grained kernel object

tracking approach in ways that do not introduce tracking overheads.

Support for Kernel Object Migration. Once the OS kernel iden-

tifies KLOCs with cold knodes, it migrates all kernel objects mapped

to knodes together. This means that the kernel objects pointed to

by a knode subtree in Figure 1 are migrated. While kernel objects

allocated using vmalloc() and page_alloc() (e.g., page cache pages)

are relocatable, those that are slab allocated are not. This is because

they are not mapped into a virtual address and allow kernel object

access using a physical address when required.

While it is possible to make wholesale changes to the slab allo-

cator to fix this, it is a complex endeavor. Instead, we build a new

allocation interface for kernel objects, enabling the allocation of

kernel objects into virtual address spaces by leveraging existing

code paths for anonymous virtual memory area (VMA) regions that

are not backed by files. While these VMA regions have tradition-

ally not been relocatable, we found that it was possible to more

easily enhance them than slab allocators to support kernel object

migration.

Migration of Application Pages. In tandem with kernel objects,

application pages deemed to be inactive by Linux’s LRU mechanism

are migrated to slower memory. In our work, we repurpose OS-level

LRU for application data pages, like recent work like Nimble [53],

HeteroOS [33], and ThermoStat [13].

Making KLOCs amenable to I/O prefetching: Linux’s adaptive

readahead mechanism prefetches I/O pages with temporal and spa-

tial locality locality [51]. We augment this mechanism to prefetch

kernel objects associated with the inode by exposing them to the

I/O prefetcher kernel objects via the KLOC abstraction. The I/O

prefetcher’s existing logic modulates the cost-benefit trade-off of

prefetching kernel objects. As we describe in section 7, KLOCs

make I/O prefetching even more effective. When the right kernel

objects are prefetched, KLOCs enable the I/O prefetcher to iden-

tify them more quickly. When the kernel objects are actually poor
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prefetching candidates, KLOCs enable the OS to determine that

they are cold, to migrate them slow memory more quickly.

4.5 KLOC in HW-SWManaged Tiering

The KLOC abstraction is usable by any existing kernel-level pol-

icy that tiers data. To demonstrate its utility, we enhance Linux’s

existing support for LRU and automatic NUMA (AutoNUMA) poli-

cies [22, 29] to take advantage of kernel object tiering.

Updating LRU and AutoNUMA:Modern LRU policies track ac-

tive pages and inactive pages via separate lists. Ideally, as pages

become inactive, they would be migrated to slow memory, and as

they become active, they are migrated to fast memory. Like prior

work for two-level memories [53], we use this approach to deter-

mine which pages to migrate between memory devices. Unlike

prior work, we also migrate kernel objects. Once the knodes for a

file/socket becomes inactive, we immediately mark and migrate the

kernel page objects they are associated with, without waiting for

scans of active/inactive lists. We also enhance Linux’s existing LRU

policy to avoid repeated migration. We use 8-bit per-page counters

to track migrations and retain such pages in fast memory. We found

that less than 1% of pages met these conditions due to the shorter

lifetime of kernel objects.

We also enhance AutoNUMA with KLOCs to better balance

local/remote memory accesses in traditional multi-socket NUMA

systems. While recent kernel patches suggest that AutoNUMA

developers are considering ways of optimizing data placement in

tiered memory systems, these approaches completely ignore kernel

objects [29]. With AutoNUMA, the OS periodically scans a portion

of a task’s address space and marks the memory to force a page

fault when the data is next accessed. When this address is faulted

to, the data can be migrated to a memory node associated with

the task accessing the memory. AutoNUMA also uses a scheduler

to group tasks that share data. Baseline AutoNUMA works well

for application pages but takes too long to identify kernel objects

such as page cache associated with the application, corroborating

results from previous work [55]. We overcome these problems

by enhancing AutoNUMA with KLOCs via a simple policy: for all

active KLOCs currently in use by an application, we identify related

kernel objects and check if their pages are placed in local memory.

We use the kmap and per-CPU lists to do this and subsequently

migrate kernel objects that are remote. As we show in section 7,

improving AutoNUMA with KLOCs performance by 1.4×.

5 IMPLEMENTATION

We briefly describe the components that support KLOC and then

discuss our current design implications and limitations.

KLOC components: Due to the lack of multi-tiered software-

controlled heterogeneous memory systems, we implement KLOCs

on a dual-socket system with fast and slow memory, where slow

memory is realized by throttling bandwidth. We also evaluate

KLOCs on an Intel Optane system [4] to explore its benefits in

an environment that requires coordinated hardware and software

management. The KLOC abstraction and OS-level changes are im-

plemented in roughly 4K lines of code, spread across different parts

Table 2: KLOC APIs. App Dev., OS Dev., and Admin indicate

KLOC API use by application-, kernel-developers, and ad-

ministrators, respectively.

KLOC API Description API User

sys_enable_kloc() System call to enable KLOC for
an application

Admin

map_knode(knode, inode) Map a new inode to a knode OS dev.

knode_add_obj(knode, obj) Add kernel object to a knode OS dev.

itr_knode_slab(knode) Iterate knode’s kernel objects in
slab tree

OS dev.

itr_knode_cache(knode) Iterate knode’s kernel objects in
page cache tree

OS dev.

add_to_kmap(knode) Add knode to global kmap OS dev.

get_LRU_knodes(kmap) Get LRU knodes from kmap OS dev.

find_cpu(knode) Find CPU that last accessed a kn-
ode

OS dev.

sys_kloc_memsize(memtype,
size)

System call to limit the memory
capacity use of a memory type
by KLOC

Admin

of Linux memory management, ext4 file system, network, and stor-

age block driver stacks. KLOCs require no application changes

except linking to a userspace shared library. The shared library ap-

proach ś as opposed to a kernel configuration that enables KLOCs

at the compile time ś offers system administrators the option to

dynamically enable and selectively control which kernel objects

are included with KLOCs.

KLOC usage interface: Table 2 summarizes the set of func-

tions that we design and expose to the remainder of the kernel to

manipulate KLOCs. Figure 3(c) shows an example of how to use

these functions for the case where a dentry kernel object is allo-

cated and mapped. A dentry object is used to track the hierarchy

of files in a directory. The code checks to see whether there is an

active knode and then performs the requisite additions to the KLOC

and KLOC map.

KLOCmemory usage: KLOCs increase memory consumption

by <1% of fast memory capacity. The memory increase stems from

the 8-byte red black tree pointers to cache pages and slab object

structure in the rb-cache and rb-slab trees, per-CPU active and

inactive lists, a linked list to track pages that need to be migrate, and

other auxiliary structures. In section 7, we provide a breakdown

of memory increase with KLOC. Our future work will focus on

reducing these overheads.

KLOC System call cost: During a system call, the KLOCs code

paths set a flag to mark an inode active and a promising candidate

for allocation to fast memory. This is a fast operation. Kernel ob-

jects allocated during the system call are added to knodes. Although

KLOCs use the file and network system for kernel object placement

decisions, system call overheads are negligible. Kernel object mi-

grations are asynchronous, and we use dedicated kernel threads to

migrate kernel objects associated with active and inactive knodes

between fast and slow memory. This can involve additional CPUs

for the migration thread, but this is no different from the migra-

tion mechanisms used by modern swap managers, state-of-the-art
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heterogeneous memory management systems such as Nimble [53],

Thermostat [13], and others [35].

KLOCsupport formulti-page size. Becausemost Linux kernel-

level objects like page cache and slab pages are allocated using 4KB

pages, we mainly focus on 4KB pages. For applications that can use

larger page sizes, the KLOC abstraction relies on existing Linux

LRU support for active and inactive page detection and migration.

Because KLOC aims to increase the placement of kernel objects to

fast memory and reduce migrations, KLOCs should provide higher

performance gains with THP [13, 53], although this hypothesis

needs to be tested in future studies.

Table 3:We evaluateKLOCs using I/O-intensive applications

that stress the storage and networking stacks.

Application Description Memory
Footprint

RocksDB [2] Facebook’s persistent key-value store based on
log-structured merge tree. We use DBbench [3]
workload with 1M keys and 16 client threads.
The benchmark performs 50% random and se-
quential writes and reads.

12.4GB

Redis [9] In-memory key-value store that periodically
checkpoints to disk. We use 16 Redis instances
that serve requests from 16 clients with 4M keys
with 75% sets (writes), 25% gets (reads).

14.0GB

Filebench [49] File system benchmark using 16 threads, 13.0GB
per-thread, executing 50% sequential and ran-
dom reads on a 32GB file.

16.3GB

Cassandra [1] NoSQL DB running YCSB [21] with 16 threads,
50% read-write ratio.

11.0GB

Spark [56] Apache Spark with Hadoop, running Terrasort
on 20GB of data with 16 threads. The workload
first generates the dataset followed by the ana-
lytics.

32.1GB

6 EXPERIMENTAL METHODOLOGY

6.1 Evaluation Workloads

We quantify the benefits of KLOCs on the I/O-intensive workloads

in Table 3. Our evaluation focuses on the Filebench, RocksDB, Redis,

and Cassandra workloads because we had difficulty resolving issues

brought about by the firewall settings in Spark.

6.2 Evaluation Platforms

For evaluation, we use two experimental platforms. KLOCs can be

used in multiple tiered memory configurations. Evaluating KLOCs

on all memory configurations is infeasible, so we focused on two

extreme points ś a software-managed tiered memory setup and a

combined hardware/software-managed tiered memory setup. The

OptaneMemory Mode is the latter, where software is responsible for

migrating data across memory nodes, but hardware is responsible

for tiering data within each node. In both platforms, application

and kernel object pages are managed by the OS and are transparent

to the programmer.

Software-managed tieredmemory. In our first platform, which

we refer to as two-tier memory, uses the OS to control data manage-

ment between a high-bandwidth, low-capacity first DRAM tier and

a lower-bandwidth, higher-capacity second DRAM tier. While we

would prefer using a real-world platform for these studies, there are

Table 4: We use the two-tier memory and Optane Memory

Mode platforms for our evaluations. KLOCs are used in

both platforms by the OS, which controls datamovement be-

tweenmemory tiers in the first platform, andmemory sock-

ets in the second platform.

Experimental Platforms

Two-Tier Memory Platform

Processor 2-socket Intel E5ś2650v4 (Broadwell), 2.4 GHz cores, 20
cores/socket, 2 threads/core

SRAM Cache 512 KB L2, 25 MB LLC
Memory Two 80 GB sockets, max bandwidth of 30 GB/sec
Storage 512 GBNVMewith 1.2 GB and 412MB sequential and random

access bandwidth
OS Debian Trusty Ð Linux v4.17.0

Optane Memory Mode Platform

Processor 2-socket Intel Xeon, 2.67 GHz cores, 32 cores/socket, 2
threads/core

SRAM Cache 512 KB L2, 25 MB LLC
DRAM Cache 16-GB DRAM hardware-managed L4 cache per socket
Memory 128-GB Intel DC Persistent DIMM per socket
Storage 1-TB Intel NVMe Block Storage
OS Debian Trusty Ð Linux v4.17.0

no commercially-available tiered memory systems with entirely OS-

controlled data movement, although they are expected to become vi-

able and widely-used in the near future (e.g., die-stacked memories,

disaggregated memories, etc. [41, 53]). Instead, like recent work,

we leverage a two-socket system for our studies [13, 33, 41, 53]. We

use thermal throttling to reduce the DRAM bandwidth in one of the

sockets in a configurable manner, mimicking the activity of slower

memory. Table 4 shows that fast memory is configured to 8GB of

capacity at 30GB/s. This matches the raw capacity and bandwidth

ranges as well as relative ratios between fast and slowmemory from

recent studies [17, 33, 41, 53]. We also evaluate performance for

variations of fast memory capacity and slow memory bandwidth.

We turn off AutoNUMA for the two-tier memory system, like re-

cent work on Nimble [53]. This is because AutoNUMAmoves pages

across homogeneous NUMA nodes based on CPU affinity/locality,

unlike KLOCs and Nimble, whose goal is to enable tiering across

memory devices with differing performance characteristics.

Hardware/software-managed tieredmemory. Our second plat-

form uses a two-socket Intel Optane DC system representative of

tiered memory systems that use a hybrid OS-hardware approach

for data management. We configure the Optane DC system to op-

erate in Intel Optane’s Memory Mode, meaning that each socket

uses its DRAM as a hardware-managed L4 cache of a slower-tier

byte-addressable persistent memory [55]. Data movement between

the L4 DRAM cache and persistent memory is controlled entirely

in hardware, while the OS is responsible for data movement be-

tween sockets using AutoNUMA techniques. The DRAM L4 cache

achieves 3-4× faster latency than persistent memory.

One might also consider using Intel Optane’s App Direct mode

for our studies. However, the goal of KLOCs is to manage OS ker-

nel object tiering. Since programmers do not have direct access

to kernel objects by design, it is not possible to tier kernel objects

using the App Direct mode and therefore not possible to demon-

strate the benefits of KLOCs in the App Direct mode. We show the

configuration parameters of the Memory Mode platform in Table 4.
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Table 5: KLOCs and alternatives evaluated in our studies. Ap-

proaches like Nimble represent prior state of the art research

on application page migration [53], while AutoNUMA is the

standard in modern OS kernels like Linux and FreeBSD.

Strategy Description

Two-Tier Memory Platform

Naive Greedy approach that places application and kernel data in fast
memory until it fills up. After becoming full, fast memory is
available again when data in it is deallocated.

Nimble Prior work using OS-controlled application tiering with parallel
and concurrent page migration optimizations.

Nimble ++ Our extension of Nimble to migrate kernel object migration with
parallel migration optimizations, but without implementation
of the KLOC abstraction.

KLOCs Original Nimble policies to identify hot application pages and
mechanisms to accelerate application pages, KLOCs to associate
hot/cold application pages with kernel objects, and parallel ker-
nel page migration.

Optane Memory Mode

AutoNUMA AutoNUMA for application page migration between sockets,
with L4 DRAM caches of persistent memory.

KLOCs AutoNUMA with support to migrate kernel objects associated
with application pages between sockets, with L4 DRAM caches
of persistent memory.

Performance comparisons:We compare KLOCs against themem-

ory management strategies in Table 5. We also compare against an

ideal scenario where all application and kernel data is resident in

fast memory (All Fast Mem), and the pessimistic scenario where all

application and kernel data is in slow memory (All Slow Mem). Ta-

ble 5 separates the tiering strategies for the two-tier versus Optane

Memory Mode platforms.

For the two-tier memory platform, we consider a Naive approach

that employs a greedy first-come, first-serve approach for allocating

data in fast memory. Once fast memory becomes full, all alloca-

tions are directed to slow memory. Neither application nor kernel

pages are migrated between memory tiers, meaning that fast mem-

ory becomes unavailable for allocation until some data in it is

deallocated first. In contrast, Nimble is a recently-proposed data

placement and migration scheme for application pages in tiered

memory [53]. Nimble optimizes page hotness tracking and acceler-

ates software-directed page migration via parallelization of page

copy operations and concurrent multi-page migrations. We also

enhance Nimble to support kernel objects in two ways. The first

and most straightforward approach (Nimble++) is to extend Nim-

ble’s existing mechanisms and policies that identify and migrate

hot kernel objects without the KLOC abstraction. While this ap-

proach does permit hot kernel objects to reside in fast memory,

more practically, once kernel objects are evicted to slow memory,

they rarely return to fast memory. The key problem is that Nimble’s

page hotness and migration control have higher latency than kernel

objects’ lifetimes. Hence, Nimble++ offers sub-optimal performance

because it cannot adapt to changes in kernel object hotness suffi-

ciently rapidly. In contrast, KLOCs permits Nimble to more rapidly

identify and migrate hot kernel objects associated with hot appli-

cation pages with Nimble’s parallel page migration optimizations.

While Nimble’s concurrent multi-page migration optimizations can

be extended to kernel objects, we leave this for future work be-

cause of the engineering complexity. We show that just extending

Nimble with kernel object support via KLOCs outperforms Nimble
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Figure 4: Performance of KLOCs on the two-tier mem-

ory platform. Speedups are relative to the All Slow Mem

configuration. KLOCs outperform all other approaches,

except for Cassandra, where they are roughly similar to

Nimble++. KLOCs-nomigration shows an approach that uses

KLOCs to directly allocate kernel objects to fast mem-

ory without migration. Finally, the KLOCs bars combine

KLOCs-nomigration’s direct allocation of kernel objects

as well as the migration of kernel objects associated with

active and inactive knodes.

and Nimble++, despite the absence of concurrent multi-page kernel

object migration.

For our Optane Memory Mode platform, we enhance AutoNUMA

with KLOCs so that the OS can migrate kernel objects between

sockets. Our experiments are set up such that workloads are run

concurrently with another workload that streams through memory

and hence interferes with our workload on one of the sockets.When

interference begins to harm performance, AutoNUMA migrates the

workload of interest to another socket where there is no interfering

workload. However, while vanilla AutoNUMA migrates application

pages, kernel object pages are ignored. This problem is resolved

with KLOCs, and kernel objects are also migrated.

Table 6: Averagememory increase using KLOCs inMBs com-

pared to All Fast Mem approach.

Filebench RocksDB Redis Cassandra Spark

Mem usage
increase

44MB 101MB 83MB 12MB 43MB

7 EVALUATION

7.1 Overall Performance

Figure 4 quantifies the speedup achieved via KLOCs on the two-tier

memory platform versus the alternatives in Table 4, normalized to

the case when only slow memory is available. We compare KLOCs-

nomigration, an approach that directly allocates active KLOCs to

fast memory without migrating inactive kernel objects from fast

to slow memory, and KLOCs, which also migrates kernel objects.

Both approaches generally outperform other approaches. Consider,

for example, filesystem-intensive workloads like RocksDB, which

stores persistent key-values as a string-sorted table in hundreds of

4MB files. Because many of the files become inactive, Naive pollutes

fast memory. KLOCs-nomigration directly allocates performance-

critical active knode objects to available fast memory pages and

achieves 1.61× throughput gains over the naive approach. However,
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KLOCs-nomigration cannot move inactive kernel objects that are

yet to be deallocated, reducing the available fast memory for kernel

objects of an active knode. In contrast, KLOCs also migrates inactive

kernel objects to fast memory, increasing fast memory availability,

and improving performance by 1.96×. Redis, which uses only a

few large files to checkpoint data, suffers cache pollution in the

Naive case. Because Redis is also networking-intensive, the Naive

approach is vastly outperformed by KLOCs (by 2.2×), which can

ensure that socket buffers are prioritized in fast memory and can

rapidly identify and migrate cold kernel socket buffers to slow

memory.

In general, KLOCs also outperform Nimble and Nimble++. For

Redis, KLOCs throughput increases by 2.7× over Nimble. Both

Nimble and Nimble++ leave cold kernel objects for longer in fast

memory than KLOCs. Nimble and Nimble++ also take longer to

identify hot kernel objects and retrieve them in fast memory than

KLOCs. One might initially expect that since kernel objects have

short lifetimes, retrieving them into fast memory may be infrequent.

However, our experiments suggest that kernel objects experience

rapid phase changes in hotness, and while Nimble and Nimble++

are too coarse-grained in assessing these phase changes, KLOCs

can adapt to them more readily and improve performance.

Figure 4 shows that KLOCs is similar to Nimble++ for Cassandra.

This is because Cassandra uses a 512MB application-level cache

for 200K keys. Because this large cache satisfies many requests

at the application level, kernel I/O is reduced, performance is less

sensitive to kernel object placement. Note that for the same reason,

Cassandra benefits the least from the ideal case where all data is

placed in fast memory. Additionally, Cassandra suffers from high

Java and language overheads towards storage access combined

with the use of the YCSB workload generator [21] running in a

client-server configuration.

Memory Usage. Table 6 shows the increase in memory usage

when using KLOCs for all applications compared to the All Fast

Mem approach. Although KLOCs increase memory usage, the in-

crease is < 1% of overall memory usage. For RocksDB, with the

maximum memory increase (101MB), the overheads stem from

metadata required for supporting KLOCs. The metadata memory

increase mainly stems from 8 byte RB-tree pointer for each cache

page and slab object structure that is added to rb-cache and rb-

slab trees (roughly 96MB). The per-CPU active and inactive list

(<800KB), a list to track pages to migrate (roughly 1MB depending

on migration size), 64 byte KLOC structure attached to each open

inode (<400KB), and other KLOC auxiliary bookkeeping structures

also contributed to memory increase.

Hardware/software-managed tieredmemory. Figure 5a shows

that KLOCs outperform AutoNUMA in the Optane’s Memory Mode

configuration. The ideal scenario where all data can be maintained

in local memory offers a 1.6× speedup. AutoNUMA and Nimble are

able to achieve only a fraction of this improvement because they

ignore kernel pages, which remain resident in the memory device

where they were first allocated, even as execution shifts between

NUMA nodes. KLOCs achieve performance improvements close to

1.5× over AutoNUMA and 1.4× over Nimble.

7.2 Sources of Performance Improvement

To shed light on the source of KLOCs performance improvements

for the two-tier memory platform, Figure 5b quantifies the number

of page cache pages and slab pages allocated in slow memory, as

well as pages migrated from fast to slow memory for RocksDB.

For good performance, we wish to maximize the number of pages

allocated in fast memory and minimize the number of pages allo-

cated in slow memory. Figure 5b shows that KLOCs allocate data

in slow memory far less frequently than Naive, Nimble, or Nim-

ble++ because they are able to more quickly identify kernel objects

associated with cold application pages, and migrate them to slow

memory as a group. KLOCs also guard against excessive migration,

which can damage performance. In particular, it requires far fewer

migrations than Nimble and Nimble++. Both Nimble and Nimble++

lack the knowledge of active and inactive kernel objects, and both

application and kernel pages are always maintained in fast mem-

ory, hence polluting fast memory. In response, more application

data migrations are necessitated between the two tiers. In contrast,

KLOCs only place active kernel objects to a faster memory, reducing

fast memory pollution and resulting migrations. The confluence of

these factors enables KLOCs to achieve superior performance to

the alternatives.

7.3 Performance Sensitivity of Kernel Objects

Different workloads are more performance-sensitive to different

combinations of kernel objects. Figure 2a illustrates this, showing

that all kernel objects must be includedwithin the KLOC abstraction

for maximal performance benefit. To generate these results, we

incrementally add groups of kernel objects to the KLOC abstraction

and quantify performance improvements. Initially, we tier just the

application pages and always assign kernel objects to fast memory

only. Then we incrementally add KLOC support for page caches,

followed by journals, slab objects, socket buffers, and block I/O.

For each of these configurations, kernel objects excluded from

KLOCs are always maintained in fast memory. We find that many

workloads benefit from including page cache pages within KLOCs,

but other workloads like Redis also benefit from socket buffers, etc.

The conclusion is that workloads employ kernel objects in diverse

ways, and a truly robust KLOC abstraction must include as many

kernel object types as possible.

KLOCs also offer complementary benefits to existing I/O prefetch-

ing techniques in modern OSes. We elide results for brevity, but find

that with Naive, Nimble, and Nimble++, prefetching can amplify

the likelihood fast memory is polluted by cold application pages

and hence, their associated kernel object pages. KLOCs can quickly

identify the kernel object pages associated with cold application

pages and migrate them to slow memory. This is particularly useful

for not just applications where some prefetched pages are indeed

useful (e.g., RocksDB, Redis, and Cassandra), but also for work-

loads with more random access patterns (e.g., Filebench) where

pollution from prefetching is pernicious. For instance, augmenting

prefetchers with KLOCs improves RocksDB throughput by 1.26×.

7.4 Sensitivity to Bandwidth and Capacity

Finally, Figure 6 quantifies KLOC speedup as a function of the

relative memory bandwidth of fast and slow tiers of memory and
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Figure 5: Figure 5a shows the speedup offered by KLOCs in the Optane platform’s Memory Mode over the worst-case con-

figuration where all data is serviced from remote memory, the vanilla AutoNuma and the Nimble configurations. Figure 5b

shows the number of pages allocated in slowmemory for page cache objects and slab objects (in units of 10million pages), and

pages migrated from fast to slow memory on the two-tier memory platform for RocksDB. A good approach is to maximize

the number of pages allocated in fast memory (therefore, we wish to minimize page cache page and slab page allocations in

slow memory) and migrate as many cold pages to slow memory as possible. KLOCs does both better than Nimble or Nimble++.

Figure 2a shows the impact of different kernel objects on the KLOCs performance.
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Figure 6: Speedup on a two-tier memory platform. Fast

memory capacity is varied from 4GB to 8GB to 32GB.

Bandwidth differentials between slow and fast memory

are varied from the scenario where fast memory has 8×

more bandwidth than slow memory (1:8 x-axis label) to

4× to 2×. All bars show the average across all workloads,

and variance bars capture the maximum and minimum

speedup achieved across workloads.

the capacity of fast memory in the two-tier memory platform. We

show average speedups across all workloads, with variance bars

indicating the minimum and maximum speedups achieved by our

workload per configuration. KLOCs offer superior performance

across all bandwidth and capacity configurations, particularly as

the bandwidth differential between fast and slow memory becomes

more pronounced. KLOCs offer more speedup as capacity becomes

progressively limited, and as the memory bandwidth differential

grows. In general, the speedup benefits over Nimble and Nimble++

remain consistent and peak for mid-scale fast memory capacities of

8GB, especially for higher bandwidth differentials. As fast memory

capacity increases, slow memory is used less often, reducing the

performance difference of all tiering approaches.

8 CONCLUSION

We present KLOCs, a new OS abstraction to systematically group

and manage kernel objects data. As hardware vendors increase

system memory capacities, the total memory footprint of kernel

objects has grown to the extent that it can no longer be treated as

an afterthought, particularly for heterogeneous memory systems.

Many refinements and enhancements can be made to this initial

KLOC abstraction, but by showing that even a proof-of-concept

prototype can achieve 1.4×-2.7× higher throughput than traditional

systems, we highlight the exigent need to investigate better kernel

object management in the systems research community.
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