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ABSTRACT

The increasing penetration level of distributed energy resources
(DERs) substantially expands the attack surface of the modern
power grid. By compromising DERs, adversaries are capable of
destabilizing the grid and potentially causing large-area blackouts.
Due to the limited administrative control over DERs, constrained
computational capabilities, and possible physical accesses to DERs,
current device level defenses are insufficient to defend against ma-
licious attacks on DERs. To compensate the shortcomings of device
level defenses, in this paper, we develop a system-level risk-aware
DER management framework (RADM) to mitigate the attack im-
pacts. We propose a metric, trust score, to dynamically evaluate the
trustworthiness of DERs. The trust scores are initialized with of-
fline trust scores derived from static information and then regularly
updated with online trust scores derived from a physics-guided
Gaussian Process Regressor using real-time data. The trust scores
are integrated into the grid control decision making process by
balancing the grid performance and the security risks. Extensive
simulations are conducted to justify the effectiveness of the pro-
posed method.
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1 INTRODUCTION

The traditional power grid is undergoing a massive change through
the integration of distributed energy resources (DERs) [9]. DERs
represent the power generation devices or controllable loads spread-
ing in the distribution system, such as renewable energy harvesting
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devices like photovoltaic (PV) systems, electrical vehicles, and elec-
tricity storage, etc. In 2018, the capacity of renewable energy, which
constitutes the majority of DERs, has reached 20.5% of the total
electricity generating capacity in the U.S. [14]. With the significant
increase in the DER penetration level, DERs have been taking an
active role in grid control operations such as demand response
and frequency stabilization, due to its communication and control
capabilities similar to many other Internet of Things (IoT) devices.

Although DERs enrich the power grid with increasing auton-
omy and flexibility, they at the same time lead to a substantially
expanded attack surface of the power system [7], which may cause
the uneconomical dispatch of power, unstable grid status, or even
large-area blackouts [4, 5, 23]. The threats induced by the integra-
tion of DERs are mainly because of two reasons. First, like many
other IoT devices, most DERs are computationally constrained and
lack of security in design. Thus the DERs are implemented with no
or poor security defenses. Second, the connectivity between DERs
and the grid makes more types and larger scales of cyber-physical
attacks possible. As most DERs are owned and controlled by con-
sumers and third-parties, they may be inappropriately operated,
leaving vulnerabilities for attackers to exploit.

The asymmetry between the importance and the reliability of
DERs makes DERs attractive to attackers [4, 7]. To protect DERs
against malicious attacks, various approaches have been developed
in the literature, such as the usage of trusted execution environ-
ments (TEEs) [21], voltage-state of charge feature [30], cryptogra-
phy [15], sliding mode control [12], etc. Nevertheless, there is still a
lack of adequate protections on DERs due to the following reasons.
First of all, defenses relying on hardware modifications [21, 30] are
ineffective as the number of DERs is enormous; 2 million residen-
tial PV systems have been installed in the U.S. at the end of 2018.
Considering a 20-year life span of solar panels, the poor scalability
limits the application of protections using hardware modifications.
Moreover, cryptography is not an ideal solution due to the limited
computational capability. To avoid long latency, only naive cryp-
tography mechanisms can be implemented on DER devices, e.g.,
the simplest 128-bit Advanced Encryption Standard (AES) with a
mean latency of 4.05ms [15]. The latency for more complicated
mechanisms is expected to be much longer. Nonetheless, systems
such as substations require latency on the order of 10ms, which can
hardly be satisfied if more sophisticated cryptography is required
or grid support functions are implemented. In the literature, there
are also defense methodologies which modify the control strategies
embedded in the DER firmware [12]. Such methods require less
computational resources and can be implemented through wireless
firmware update. However, since most DERs are installed outside,
the attacker may gain physical access to the device [4], and thus,
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methods relying on the control strategies at the DER side might
not be effective.

Due to the limited administrative controls over DERs, constrained
computational capabilities, and the massive volume of DERs, imple-
menting defenses only on DERs are insufficient against malicious
attacks. To overcome the limitations of the current defense meth-
ods, we introduce an additional system defense layer on top of the
device level defenses. Since the solar energy is among the most
widely used DERs, in this paper, we use PV systems as a case study
of DERs. We consider an attacker capable of compromising the
data integrity of DERs and propose a framework that protects the
operations of the grid in the presence of such attacks. Specifically,

e We propose RADM, a risk-aware DER management frame-
work, to robustly integrate DERs into the power grid and
increase the resilience of the grid. We use the trust score
to quantify the probability of attacks on a DER, i.e., the
trustworthiness of a DER, and leverage the trust scores for
real-time risk-aware DER management. By doing so, the
grid is capable of maintaining normal operations even in the
appearance of attacks.

e Since the attack launch time is not determined, the trust
scores are dynamically estimated with a Bayesian frame-
work. The framework initializes the trust scores with offline
trust scores estimated from static information, such as DER
firmware and grid topology, to present a general assessment
of the DER security levels. The framework then updates
the trust scores with online trust scores utilizing real-time
information, such as weather information and solar power
generations, for a timely understanding of the DER status.

e To update the trust scores and obtain the real-time trustwor-
thiness of DERs, we propose a physics-guided Gaussian Pro-
cess Regressor integrating physical domain knowledge and
data-driven patterns. By leveraging the DER physical model,
the regressor prediction results are regulated by physical
laws and thus responsive to attacks. The data-driven pat-
terns learned from historical observations allow to enhance
the prediction power by cross-checking nearby DERs that
share similar generation patterns.

e Simulations are conducted to justify the effectiveness of
RADM. The results prove that our method can mitigate the
attack impacts with slight performance degradation.

The rest of the paper is organized as follows: Section 2 discusses
the current literature of the DER security and Section 3 introduces
the background knowledge of the paper. In Section 4, we describe
the system and the threat model considered, and formulate the
problem. The detailed trustworthiness evaluation framework is
introduced in Section 5. In Section 6, we use voltage regulation as
a case study and show how the DER trustworthiness is integrated
into the control decisions. Section 7 presents the performance of
the proposed work and in Section 8, we conclude our work.

2 RELATED WORK

There have been several standards and guidelines addressing the
security of power systems, such as the NIST Framework for Improv-
ing Critical Infrastructure Cybersecurity [8] and IEEE C37.240 [1].
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However, since power systems such as substations are within ad-
ministrative controls and have sufficient computational resources,
only few standards addressed the unique challenges of DERs. The
IEEE 1547 Standards [2] is designed specifically for DERs but no
practice for DER security has been recommended yet.

To defend against attacks on DERs, various methods have been

proposed. These methods can be divided into two categories: hardware-

based and software-based. The hardware-based defenses leverage
hardware components to be the root-of-trust. In [21], Sebastian
et al. proposed to utilize the hardware-enforced trusted execution
environments (TEEs) and utilized the secure storage and crypto-
graphic functions of TEEs to reduce the attack surface and guaran-
tee the data integrity of DERs. Besides, Zografopoulos et al. [30]
explored the correlations between the state-of-charge (SoC) and
the voltage measurements from DER battery energy storage system
(BESS) and designed a DER authentication mechanism based on the
challenge-reply sequences (CRSeqs). There have also been various
works attempting to develop cryptographic modules. Lai et al. built
a cryptographic module with keys embedded in the trusted plat-
form modules (TPM) and examined the feasibility of implementing
different cryptography methods on DERs [15]. Hupp et al. [13] de-
veloped Module-OT which was integrated in the transport layer of
the Open Systems Interconnection (OSI) model. An average latency
of 4 ms was observed in [15] and 6ms in [13], which barely fulfilled
the latency requirement of substations. Since the hardware-based
defenses require modifications to the DER hardware, not only the
scalability is poor but also the cost is prohibitively high because of
the large population and the long life span of DERs.

Compared with the hardware-based defenses, the software-based
defenses are more affordable because the software can be updated
remotely. Cryptography has also been suggested in the software-
based defenses [9, 20]. As an emerging technology, blockchains
have also been applied to DERs [19]. Nevertheless, similar to the
cryptographic modules in the hardware-based defenses, concerns
about potential latency still exist in these methods due to the lim-
ited computational resources of DERs, especially for blockchains,
which have heavy computational overheads. Besides cryptography,
different control strategies have also been developed. Gholami et al.
designed a sliding mode observer to estimate the attack vector and
compensate the manipulated data [12]. Thus the observer is capable
of forcing the safe operation of DERs. Few papers considered the
grid resilience under attacks, i.e., how to maintain the operation of
the grid in case of successful attacks. Srikantha et al. in [24] con-
structed the control policies by formulating a two-player zero-sum
differential game between the control center and the attacker. The
authors demonstrated that the attack impacts could be mitigated
as long as a set of uncompromised components exist. However,
the control center could only win the game and maintain the grid
stability when the grid scale is smaller than 39 buses.

3 BACKGROUND

In this section, we introduce the background knowledge required in
the trustworthiness evaluation framework. We leverage Gaussian
Process Regression (GPR) to validate the trustworthiness of the
DER measurements, in our case, the PV generation reports. To
mitigate the impacts of spoofed reports and enhance the prediction
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accuracy, we combine the DER physical model, in our case, the PV
array circuit model, with GPR.

3.1 Gaussian Process Regression

A Gaussian process (GP) is a stochastic process in which any fi-
nite collection of the random variables in the process follows a
multivariate normal distribution. As a powerful regression algo-
rithm, GPR is able to learn an unknown function and also give a
reliable estimate of their own uncertainty, with a standard function
format y = f(x) + ¢ where ¢ is the independent noise following
the Gaussian distribution N(0,6?). In GPR, f(x) is assumed to
be a random variable from a GP. That is, for any finite collection
x, f(x) ~ N(m(x),K), where m(x) = E[f(x)]. K is the covari-
ance matrix and Kj; = k(x;,x;; 0), where k(x;,x; ) is the kernel
function measuring the distance between x; and x; with hyper-
parameter 6.

Given a training dataset {x, y} and new observations x., the ob-
jective of GPR is to estimate the posterior distribution p(y«|x, y, X«).
Based on the definition of GP, the joint distribution of y and y.
given x and x, is given as:

K+0%l K.
P(Ysy«l% %) ~ N(m(X), ( K7 K**) ,
(1)
Ky = k(x,%4;0),
Kis = k(X*,X*Q 0)
Therefore, p(y«|x,y, x«) ~ N (1, 2), in which

p=E[f(x)] =m(x) + K] (K+5*)7y, )

2

3 = V[f(%)] = Kex — KL (K + 6°1) 'K,

3.2 Single-Diode PV Array Circuit Model

PV systems are composed of inverters and PV panels. The PV panels
can be regarded as a series of solar cells. According to [26], given
a PV array with Np strings in parallel and Ng cells in series, the
output current

I =
q(V+1ﬁ—1§R5)

NpIirr —NPI() exp W -1 &RP
Np

N
~ V+IFRs  (3)

in which I;;, is the photocurrent, V is the output voltage, Iy is the
diode saturation current, Rg is the series resistance, and T is the
cell temperature. g = 1.602 x 1071°C is the electronic charge, and
k = 1.3806503 x 10723]/K is the Boltzmann’s constant. n is the
diode ideality factor and almost remains constant w.r.t. operation
conditions. The derivation of the equation is elaborated in [26].

Typically each PV array is equipped with a Maximum Power
Point Tracking (MPPT) controller and operated at the maximum
power P. Here we consider the incremental conductance algorithm
because of its efficient and stable tracking performance. Thus, when
the maximum power is reached, we have

ap _d(1v) _ dr

AN _ivE
v - av Vg =0
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By solving Eq. 3 and Eq. 4, I and V can be determined, and the
PV generation power P = IV.

4 PROBLEM DESCRIPTION

In this section, we formulate the problem and present a summary
in Figure 1. Specifically, we introduce the system model and the
threat model we tangle with and present a brief introduction to the
proposed DER management framework.

Online trustworthiness Offline trustworthiness

. TG evaluation evaluation
Physics-informed | Gr:d ) DER
Gaussian Process | mp‘i ogy firmware

! ‘ |
& Regeem | Criticality  Vulnerability

. ! = Score NEC; Score VS,
Generation estimation Pp ;

- | wald test
Online trust score s;

Qp Risk-aware optimization
Objective: Voltage regulation, etc.
Constraints:

Offline trust score 7;

r P, Q; * Power flow balance

| ‘.  Capacity constraints

: . etc.

! I

L - J P
—— Power line — Information Flow Attack

oy L) = N
& Atacker 5% per sensor @ Weather website

Figure 1: The architecture of RADM. T; and G; are the
weather information. 13D,i is the reported DER measure-
ments and in this case, the reported power generations from
PV systems. P; and Q; are the sensor measurements such as
active/reactive power flows. Qp is the request to DERs.

4.1 System Model

In this paper, we consider a simplified grid system in which DERs
are coordinated by a control center such as an independent system
operator (ISO). Without loss of reality, we assume that DERs are
required to report their manufacturing models, sizes (i.e., Np and
Ns), and the locations before installation. Since the data sheets of
different DER manufacturing models are open to public, the con-
trol center knows the operation status at the Standard Reference
Conditions (SRC). We also assume that the control center has full
knowledge of the grid, such as the grid topology and the line ad-
mittance. We represent the grid as a weighted graph with each bus
(such as a substation) being a node and the nodal admittance matrix
Y € C™*" being the weights. In the rest of the paper, we use “bus”
and “node” interchangeably. Y;; denotes the admittance between
bus i and k, and nj denotes the number of buses in the grid. If
there is no physical power line connecting buses i and k, Yir = 0.
Y not only represents the physical connection of the grid, but also
indicates the power transfer capability of each power line. With
the settings above, we have YV =1, in which V, 1 € C"*1 are the
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vectors of the voltages and the currents at each bus, respectively.
We also assume the power system is balanced and thus we have:

np
Si=Vi > (YuVe)", 6)
k=1

where S; denotes the power injection at bus i.

We assume that two-way communication links are established
between the control center and DERs, through either wired or wire-
less communications. There are also a set of sensors, such as smart
meters and Phasor Measurement Units (PMUs), installed across the
grid for monitoring purposes. During operations, DERs and sensors
report their status and measurements, e.g., the power generations,
active/reactive power flow injections, voltage magnitudes/angles,
etc., to the control center. The control center also has access to the
weather data, including the solar irradiation and the temperature
data from the meteorological authority or public websites. In order
to maintain the grid stably and economically, the control center
can issue tasks, such as active/reactive power injections, to DERs,
according to the measurements from sensors and DERs.

4.2 Threat Model

In the threat model, we assume the adversary conducts attacks
on DERs. Compared with the control center, DERs are prone to
be attacked because the control center is much more powerful
in computing than DERs and can have various advanced security
mechanisms implemented. To mislead the control center, the adver-
sary compromises the data integrity of the DERs measurements by
exploiting vulnerabilities in DERs or the communication protocols.
With the tampered DER measurements, the grid will be operated
with inaccurate control decisions, which may lead to economic
losses or even blackouts.

We assume the adversary can compromise the DERs by physical
attacks [4], tampering DER firmware and/or spoofing the DER mea-
surements packets [7]. Due to limited resources, the adversary can
compromise at most k DERs. Thus the adversary has to deliberately
identify the target DERs. The attacker is more willing to attack the
DERs with poor security defenses while located at critical buses.
Since different DER manufacturing models have different imple-
mentations, some DERs are more likely to be penetrated because of
the potential vulnerabilities in their firmware. Besides, to maximize
the attack impacts, the adversary would attack the DERs located at
the critical buses of the grid. Moreover, the attacker intends to pick
victim DERSs in an area instead of spreading over a large area. By
doing so, the adversary can conduct coordinated attacks like that
in [23], which has the potential to cause large-area blackouts.

4.3 Overview of RADM

Considering the possible attacks on the DERs, we intend to maintain
the normal operations of the grid even in the presence of attacks.
To achieve the goal, we develop a framework for robust DER man-
agement, RADM, as depicted in Figure 1. In the framework, we use
trust scores to dynamically quantify the trustworthiness of each
DER and operate the grid based on the DER trust scores. The trust
scores indicate the probability that a DER is not under attack and
the estimation of trust scores is summarized in Algorithm 1. By
leveraging the trust scores, the control center is facilitated with
more precise awareness of the DER security.
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Algorithm 1 Trust Score Estimation

Input: DER firmware, S, Y, ns, DER datasheets and locations, his-
torical weather information, historical DER measurements, real-
time weather information {G;(¢)}, {Tj(t)}, real-time DER mea-
surements {ISD,i(t)}

Output: {#;}

1: Initialize:
2. {ai}, {Bi}, {fi} = OFrLINEPHASE(DER firmware, S, Y, ne);
3 {0:(0} {Ki()}, {KPZ (1)}, {K#% (t)} = GPRTRAINING(DER

datasheets and locations, historical DER measurements);

5. repeat

6 {si(t)} = ONLNEPHASE({Gi (1)}, {Ti (1)}, {Ppi (D)}, {6i (1)},
{Ki(D)}, {KFZ (1)}, {KF# (1)});

7: Update {«;} and {f;} according to Eq. 22 and {#;} accord-
ing to Eq. 23.

8: return {#;};

9: until No new readings come in

Denote the set of DERs as N = {1,...,n} where n is the number
of DERs. We denote the trust score of DER i as r; and model the
status of each DER, i.e., attacked or not, at each time, as a Bernoulli
trial with the parameter r;. Since the start time of the attack is
unknown, the control center dynamically update their belief on r;
based on a Bayesian framework. Compared with other trust eval-
uation frameworks such as the Dempster—Shafer theory [27], the
Bayesian framework is easier to implement. The Bayesian frame-
work is composed of an offline phase and an online phase. The
offline phase provides us with a general belief on the likelihood a
DER might be attacked, and the online phase tests the real-time
DER status based on dynamic data inputs. The former enhances
the robustness of the trustworthiness evaluation system, while the
latter can provides an up-to-date understanding of DERs.

Without loss of generality, we assume the trust score of DER i
follows a conjugate prior distribution, i.e., r; ~ Beta(a;, §;). The
hyper-parameters «; and f;, and the trust score are initially esti-
mated with the offline trust score 7; in the offline phase (Algorithm 1,
line 2). The offline trust score is derived from the DER vulnerabil-
ity score VS; and the DER criticality score NEC;. VS; reflects the
adversary’s capability of manipulating the DER and is calculated
according to the DER firmware analysis results. NEC; reflects the
potential damages on the grid that an adversary can cause and is
calculated based on the grid topology. Since the start of an attack
is unpredictable, a; and f; are updated dynamically with the on-
line trust score s; to obtain a timely estimation of the trust score 7;
(Algorithm 1, line 6-7). The online trust score s; is the test result
from a physics-guided Gaussian Process Regressor, which combines
the physics-based model with a data-driven Gaussian Process (GP).
Most computations of the trust score estimation scheme is processed
offline, including the offline trust estimation and the GP training.
Thus, the scheme induces little computational overhead during
run-time and is efficient for real-time implementations.

When generating requests for DERs regarding different opera-
tions such as voltage regulations or economic dispatches, we for-
mulate the tasks as optimization problems with the estimated trust
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score 7; included to balance the impacts of attacks. The details of
the framework will be introduced in the following sections.

5 TRUST SCORE ESTIMATION
5.1 Offline Estimation

As described in Algorithm 2, we provide a general belief on the
distribution of the trust score r; by quantifying a; and f; of the prior
distribution based on the DER vulnerability score VS; and the DER
criticality score NEC;.

Algorithm 2 Offline Trust Score Estimation

1: function OFrLINEPHASE(DER firmware, S, ?, ne)
2: forieN

3 Construct v' through automatic firmware vulnerability
detection; )

" VS; = min( 12081k 4y,

5: Calculate NEC; with Y, the set of generators and the

set of loads;

6 Fi = (1-VS; X NEC;);
7: aj =mefi,  fi=np—ag;
8 end for

9; return {a;}, {8}, {fi};

10: end function

5.1.1 DER vulnerability score. Due to the heterogeneity of the de-
vices in the grid, different devices may have different functionalities
and implementations, and thus different vulnerabilities may lie in
different devices. Since DERs with more severe vulnerabilities are
more likely to be compromised, we check the possible vulnerabili-
ties in DER firmware and derive the DER vulnerability score VS;
for each DER i (Algorithm 2, line 3-4). We choose the Common
Vulnerability Scoring System (CVSS) to quantify the severity of
a vulnerability. We denote the vector of the severity of vulnera-
bilities using S € [0, 10]"S, in which the k-th element S; denotes
the severity score of the vulnerability k and ng is the number of
vulnerabilities recorded. Note that the construction of S is static
and only requires regular update, therefore, no run time overhead
is induced. By automatically exploring the vulnerabilities in device
firmware (existing work can be found in [16]), a boolean vector
vl € {0,1}™ can be constructed for DER i (Algorithm 2, line 3). v;;,
ie., the k-th element in v, is a boolean variable indicating whether
the vulnerability k exists in DER i. To justify how likely an adver-
sary is capable of compromising DER i, we integrate all the detected
vulnerabilities by defining the DER vulnerability score VS; as the
scaled distance between the state of the DER i, v/, to the origin, i.e.,
a secure state with no vulnerability (Algorithm 2, line 4):

vio§
I ||2,1),

VS; = mi 6
i mm( m (6)
where v o S is the Hadamard product, i.e., the elemental-wise

product, of v} and S. || - || indicates the L, norm.

5.1.2  DER criticality score. DERs locate at different places will have
different impacts on the grid if compromised. Therefore, besides
VS; which determines how likely an adversary can manipulate the
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device, the criticality of a device to grid that determines how much
an adversary can impact the grid, is also an imperative component
of the trustworthiness assessment of a DER. Since the more critical
a node is, the more likely it will be the target of an adversary, a
critical node is expected to have a relatively low trust score. Many
metrics have been proposed to evaluate the node criticality [17, 28].
Here we adopt the Node Electrical Centrality (NEC) proposed in
[17] (Algorithm 2, line 5). The NEC of node i, NEC;, reflects the
impact of node i to the grid if the node is removed. NEC; is a
weighted average of the electrical betweenness centrality and the
eigenvector centrality. Instead of treating all nodes equally, the
authors assign different attributes (generators and/or loads) to the
nodes. With such setting, the electrical betweenness of a node
is defined as the weighted sum of currents flowing through the
node w.r.t each generator-load pairs. Compared with the standard
definition of betweenness centrality in graph theory, the definition
of the electrical betweenness centrality is more reasonable because
the currents do not flow along the shortest paths only. Due to the
limited space, we will not elaborate how NEC; is calculated here.

5.1.3  Trust score in the offline phase. VS; infers the probability that
an adversary is capable of compromising a DER, and the criticality
score NEC; infers the probability that an adversary would like to
attack the device. As assumed in the threat model (Section 4.2),
the attacker is more likely to attack the DERs with poor security
defenses while located at critical buses. Therefore, VS; x NEC;
indicates the probability that a DER will be compromised, and the
trust score of DER i, i.e., the probability that the DER will not be
compromised, is computed as (Algorithm 2, line 6)

Fi =1-VS; x NEC;. 7)

Statistically, we expect 7; to be the initial belief of the trustworthi-
ness of DER i and can derive that (Algorithm 2, line 7)

aj 243

Fi=E(r) = —— =,
ai+pi n (8)

ai =nehi,  fi=ne—a,

where n; = a; + f; represents our belief on the confidence of the
prior distribution estimation and a larger n; will result in a smaller
variance on the distribution estimation. Given n;, both «; and f;
can be derived from Eq. 8.

5.2 Online Monitoring and Estimation

As described in Algorithm 3, in the online phase, we update the
distribution of the trust score with real-time measurements. We
monitor the status of DERs (compromised or not) by comparing
their readings with the estimated readings from a physics-guide
GPR exploiting external data (e.g., weather), DER physical model,
and real-time neighboring DER readings.

5.2.1 Physics-guided Gaussian process regression. We use the re-
ported power generations from PV systems as the DER measure-
ments and denote the generation of PV system i at time ¢ as PD, i (1),
The true power generation of the PV system i is denoted as m;(t).
We assume that ﬁD,i(t) ~ N(m;(t), O'iz(t)) in the attack free sce-
nario. Here o;(t) is the standard deviation of pD,i(t). Based on the
distances between PV systems, each PV system i has a set of neigh-
boring PV systems denoted as E; = {j|d(i,j) < do;j # i;j € N}.
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d(i, j) represents the distance between PV system i and j, and dp is
the distance threshold. E; j for 1 < j < k; is the j-th element in E;,
i.e., the j-th neighbor of PV system i, and k; = |E;| is the number
of neighbors of PV system i. Since nearby PV systems share similar
weather conditions, their performance will also follow similar pat-
terns. Therefore, we can use the neighboring power generations to
predict the power generation of PV system i.

Since the neighboring PV systems can be compromised, the
prediction results may be biased with the tampered neighboring
reports. Therefore, besides the neighboring data, we also combine
the physical model predictions to enhance the prediction accuracy.
Denote the power generation of PV system i derived from the phys-
ical model as ISD,i(t). We assume that PD,i(t) ~ N(m;(t), el.z(t)).
€;(t) is the standard deviation of PD, i(t). Given the PV system man-
ufacturing model, the solar irradiation G;(¢) and the temperature
T;(t) at PV system i’s location at time ¢, the output voltage V;(t) and
the output current I;(¢) of PV system i at time ¢ can be determined
with Eq. 3 and Eq. 4, and thus the output power 15D,,~(t) =Vi(t)I;(t)
(Algorithm 3, line 3).

Based on the settings above, we have (Algorithm 3, line 4)
Zi(t)

= (Pp,i(t), Ppi(1), Pp.£,, (1), Pp.E,, (), Py (8 PDoy (D),
©)

as the vector of the reported and the physics-based power genera-
tions for PV system i and its neighbors. For each epoch t over a day,
Z;(t) is collectively modeled as a Gaussian Process N (u;(t), Z;(t)).
Here, p;(¢) is the expectation of Z;(t), i.e.,

pi(t) = (mi(2), mi(t), mg, , (t), mg, , (0),.....mg,; (1), mg,;. o7,

and X;(t) is the covariance matrix of Z;(t). To parameterize the
covariance matrix and incorporate performance similarities induced
by physical distances, the covariance between any two elements of
Z;i(t) is defined based on d(k, j) values by Gaussian kernel functions

) . d(k, j)?
Cov(Pp (1), Pp,j (1)) = o(t)? exp (—2}(11(;;2 ) (10)
3 3 d(k, j)?
Cou(Pe(0) P10 = (0 exp -5 ), )
, ) d(k, j)?
Cov(Pp (1), Pp,j (1)) = a(t)o(t)e(t) exp (— sz(gz ) . (12)

Here, hy(t), ha(t) and h3(t) are the length scales of the covariance
functions adjusting the impact of PV system distances to their
correlations. To simplify the mathematical model, here we assume
all PV systems have the same standard deviations, that is, 0 () =
o(t) and €;(t) = e(t) for all i € N. Note that this assumption can
be flexibly relaxed if the PV systems exhibit very large differences
in variances. Since the physical model prediction from PV system k
does not directly connect to the reported reading from PV system
J, a parameter «(t) is used to scale the effect of their correlation.

During the training phase, we use historical data to estimate the
hyper-parameters 6; (t) = (ui(1), a(t), o(t), (1), h1 (1), ha (1), h3 (1))
by maximizing the log likelihood (Algorithm 3, line 5):

Nsp

1 1 n
Li=—3 ;zzszizi,s ~ gnsp X log([Zil) — = x log(2m). (13)
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where ngp, indicates the number of historical samples, and Z; s is
the s-th sample..

During the prediction phase, the power generation of PV system
i, Pp ;(¢), is estimated with (Algorithm 3, line 13):

Ppi(t) = mi(t) + K[ (D) (KFZ ()™M (Z-i(t) - pi(), (19)
and the variance of the estimation, Kj(t), is
Ki(t) = K[P (1) - KP2 () (K2 () LKA ()T, (15)
in which

Z_i(t) = (Ppi(t). Ppg,, (1). Ppg,, (D). ... PDE,, (D, PDE,, O

(16)
pei(t) = (mi(t), mg,, (£), mg,, (1), ..., mg, (1), mE, Nt )
KFZ(t) = Cou(Pp (1), Z-i(1)), (18)
KZ%(t) = Covo(Z—i(1), Z—i (1)), (19)
KPP (1) = Cou(Pp (1), Pp (1)) (20)

Algorithm 3 Online Trust Score Estimation

1: function GPRTRAINING(DER datasheets and locations, histor-
ical weather information {G;}, {T;}, historical DER measure-
ments {Pp;})

2 forie N

3 Solve V; and I; with Eq. 3 and Eq. 4, and thus PD’,- =Vil;
4 Construct Z; according to Eq. 9;

5 0; = argmaxy L;;

6 Calculate K; (1), K})Z(t) and KiZZ(t) according to Eq. 15,

Eq. 18 and Eq. 19, respectively;
7: end for
s return {0;(1)}, {Ki(t)}, {KPZ ()} and {K7Z (1) };
9: end function
10:
11: function ONLINEPHASE({G;(t)}, {T; (1)}, {}A’D’,-(t)}, {0;(t)},

{Ki()} AKPZ (D} AKFZ (D)

12: forieN

13: Calculate the estimated DER measurement Pp ;() ac-
cording to Eq. 14;

14: Calculate the statistic ¢;(¢) according to Eq. 21;

15: Apply Wald test to t;(t) and obtain the trust score s;(t);

16: end for

17: return {s;(t)};

18: end function

5.2.2  Trust score in online phase. To decide whether the PV system
i is under attack, the estimation P;(t) is validated with the reported
generation Bi(v) through Wald test (Algorithm 3, line 14-15). Since
Pp.i(8)|Z-i(t) ~ N (Pp,i(t), Ki(t)) in attack-free cases, the statistic

ti(t) = (Pp,i(t) = Pp,i(1))//Ki () (1)
follows the asymptotic z distribution. When the p-value correspond-
ing to t;(t) is low, it is unlikely that the PV system is not under
attack. We set up a threshold 7 such that when the p-value is below
7, we believe the PV system is compromised and its online trust
score s; = 0. Otherwise, s; = 1.

Since an adversary is prone to attack PV systems close to each
other, the neighboring PV systems are also at risk when a PV system
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is subject to attack. In our GPR, the estimations of the PV systems
will be deviated if the neighboring PV system is compromised.
Therefore, our trust score estimation framework can catch such
potential vulnerabilities. On the other hand, thanks to the physical
model, the impacts of compromised neighboring PV systems are
alleviated to avoid the degradation of the grid performance.

5.3 Trust Score Update

Given an observation s;(t), the posterior distribution of r; can be
updated through the following exponentially weighted moving
average of the prior and online trust score:
a; — (1= Nai + Asi(1),
Bi — (1= +A(1 —si(1)).
Such an update can better utilize historical observations and facili-
tate the detection of less obvious attacks [18]. A is a parameter to
balance the prior knowledge and the new observations. A larger A
will make the trust score more sensitive to attacks while a smaller A
will result in a more stable trust score. Recall that 7; = E(r;) = aj/ns
and n; = a; + f;, the posterior expectation of the trust score is then
(Algorithm 1, line 6)

(22)

. (1= gty + Asi(t)
Fi & ——————=
(1-=MDns+A

6 RISK-AWARE DER MANAGEMENT

To maintain the normal operations of the grid, we integrate the
estimated trust scores into the coordination of DERs in the trans-
mission network by introducing a resilience term to balance the
overall grid performance and the security risks derived from the
trust scores. Depending on different grid operations, the optimiza-
tion formulation may change. For illustration purpose, in this paper,
we showcase how the trust score is utilized to maintain the voltage
profile. Other tasks can be formulated in a similar manner.

To guarantee the grid stability or dispatch energies economically,
the control center may want to set the grid voltages at a certain
point. To force the voltage to the set point, the control center sends
requests to PV systems to inject/absorb certain amounts of reactive
powers to/from the grid. To decide the most preferrable action of
each PV system, the control center calculates the optimal power
flow (OPF). Nevertheless, when a PV system is compromised, the
tampered power generation reports from it may mislead the deci-
sion of the control center. Moreover, the compromised PV systems
may not follow the requests from the control center and thus, the
grid cannot be correctly controlled. Therefore, to mitigate the im-
pacts of tampered power generation reports, we use the estimated
measurement from GPR Pp, ; for OPF. Meanwhile, we introduce a
resiliency term in which the assigned amount of the reactive power
injection/absorption for each PV system Qp ; is weighted with its
trust score estimation 7;. By doing so, we intend to assign heavier
tasks to those trustworthy PV systems and balance the possible
impacts caused by the malfunctioning of compromised PV systems.
The objective function of OPF is formulated as follows:

(23)

min||V-V — ! s 24
nir I refllz2 = 11" Qp (24)

V = (V1,V,...,Vy,) is the vector of the voltage amplitudes of
each bus. V,.. ¢ denotes the vector of desired values of the voltages.
6 = (61,02,...,0n,) denotes the vector of the voltage angles of
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each bus. r is the vector of trust scores and Qp is the vector of
the amounts of reactive powers requested from PV systems. 7 is a
penalty coefficient to balance the following two terms. The first term
forces the grid voltage to the set voltage profile, and the second term
enhances the grid resilience and limits the impacts of PV systems
with low trust scores. By doing so, we increase the resilience of the
grid by making a trade-off between grid performance and security.
There are several physical limits and constraints characterizing
the system. All voltage magnitudes and angles are bounded by an
upper and a lower limit to guarantee the stability of the grid:

0.98 < V; < 1.02,

—Eﬁ5i<£. (25)

2 2

Since we consider a balanced system model, we have the following
power balance constraints:

PG,i +PD,b,~ _PL,i -V ZVJ (Gij COS(Sl'j +Bij sin(S,-j) =0,
Jj
Q6,i+Qpp; —QLi — Vi ZV]‘ (Gij sin6;j — Bjj cos 8ij) = 0,

j
(26)

PG i, Qg,; are the active and the reactive power injection from gen-
erator and Py ;, Qr, ; are the active and the reactive power consumed
by the load at the bus i. All the 4 variables can be measured by smart
meters. PD,b,- and Qp p, are the active and reactive powers of the
PV system b;(b; € N) located at bus i. If no PV system is installed
at the bus, P, and Qp p, will be 0. G;; and B;; are the real and
the imaginary components of ¥; j. 6ij = 6;i — J; is the voltage angle
difference between bus i and j. Moreover, the apparent power of
each PV system should not exceed its capacity:

2 2 2
Phb, +9pb; < Sppy (27)

where Sp 5, is the nominal power of PV system b;.
We summarize the optimization problem as follows:

min ||V = Veflls - 11’ Qp,
Qp (28)
st,  Eq.25,26,27

To solve the highly non-linear problem Eq. 28, we adopt a heuristic
algorithm - Differential Evolution (DE) [6, 25]. DE improves the
solution of the optimization problem iteratively by generating off-
spring candidates from mutations of the parent candidate solutions
and selecting the better ones from the offspring and parent can-
didates. DE is easy to implement and converges fast because the
mutation is generated based on the difference between candidates
instead of random generation. Denote the number of populations
as NP and the maximum number of generations as NG. The muta-
tion factor F is the weight of the difference between two random
candidates and functions like the learning rate. The crossover rate
CR decides the probability that a crossover operation is performed.
The implementation of DE is illustrated as follows:

(1) Initialization: Set the index of generation g = 0. A set of
candidates {qzlk € {1,...,NP}} are initialized as random
vectors between the lower and the upper bound of Qp, i.e.,
-Sp and Sp.
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utation: Increase the generation index g < g+ 1. e
2) Mutation: [ the g tion index g « g + 1. At th
generation g, for each candidate, an offspring is generated
from three candidates, q‘flzll , qfl?zl and qi;; ,randomly chosen

s . _ g-1 g-1 _ g-1
from the candidate set: uy = q; | + F(qu2 93 ).
(3) Crossover: For each element in ug, arandom number cr, 4, €

(0, 1) is generated. If cr,45,q > CR, the element is replaced
with the corresponding element in qi_l.

(4) Selection: Given qi_l and uy, we derive V and é with Mat-
power [29], and the results are evaluated w.r.t Eq. 28. The
constraint violation is handled through the Superiority of
feasible solutions (SF) method proposed in [10]. From qi_l
and uy, we choose the one with no or less violation that
minimizes the objective function in Eq. 24 as the candidate
for the next generation qi.

(5) The mutation, crossover and selection processes are iterated
until the maximum number of generation is reached. From
all candidates, we choose the one with no or the smallest
violation that minimizes Eq. 24 as the solution of Eq. 28, Qp.

7 EXPERIMENTAL RESULTS

7.1 Dataset and Simulation Setup

We use the 39-bus system shown in Figure 2 as the test case. The
PV systems are installed at the buses connected to loads but not
connected to the generators, which results in 12 PV systems in total.
The PV system indexes and their corresponding bus indexes are
summarized in Table 1. The PV systems are divided into 3 groups
with 4 PV systems in each group. Group 1 includes PV system 1, 4,
7, 10, group 2 includes PV system 2, 5, 8, 11, and group 3 includes
PV system 3, 6, 9, 12. For PV systems in the same group, they are
the neighbors of each other.

37>
(30> <25> <26>]

>

<1>

<3>

]

Generator # DER# W Transformer  <#> Bus# l Load

<34>_| <33>

@

Figure 2: Single line diagram of the modified IEEE 39-bus
with 12 PV installed.

PV | 1] 2 415 6 | 7| 8 9 110 |11 12
bus | 8 |18 | 24 |7 |26 |16 |4 |27 |15 | 3 |28 |21
Table 1: PV indexes and their corresponding bus indexes.

w

Due to the lack of real-time fine-grained load and PV generation
data, we use synthetic data for simulation. Similar to [3], we use the
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load data of New York (NY) state in Nov, 2019 from the NYISO to
derive the power demands of loads in the 39-bus system. There are
11 control areas in the NYISO map while there are 21 loads in the
39-bus system. Therefore, for each load in the 39-bus system, we
randomly choose 2 control areas from the NYISO map and use the
sum of their load data as the active power demand of the load in the
39-bus system. The synthetic data generation process is detailed
in [3]. Since the historical reactive power data is not available, we
generate the reactive powers for the loads by assuming a constant
power factor PF = 0.9.

To generate the PV power generation data, we utilize the weather
information from the National Solar Radiation Database (NSRDB)
[22]. NSRDB offers synthetic data for half-hourly solar radiation
measurements and meteorological data with a granularity of about
4km, i.e., 0.04°in latitude/longitude. We use global horizontal irradi-
ance (GHI) and temperature measurements for the whole year of
2019. The locations of the 12 PV systems are selected from the Cali-
fornia state, which is rich in the solar energies. The 3 groups of PV
systems are located near (-81.58°, 30.5°), (-81.78°, 30.25°), and (-81.30°,
30.61°), respectively. We assume a penetration level of 15% and the
nominal power of the PVs are set as 15% of the initial apparent
powers of the loads in the 39-bus system. We use SunPower SPR-
415E-WHT-D as the manufacturing model of PV systems. GHI and
temperature measurements are input to Simulink [11] to generate
the PV power generation data.

Based on the assumptions made in the threat model (Section 4.2),
the attacks are performed on the 3 PV systems with the lowest
offline trust scores. The offline trust scores of PV systems are pre-
sented in Figure 3, and the attack victims are PV system 1, 2 and
10. At each epoch, with a probability of 0.5, the attacks are per-
formed by adding random numbers between 10 and 20 to the power
generation data of the victim PV systems.

7.2 Simulation Results

7.2.1 Trust score in the offlline phase. In the simulation, the vul-
nerability score of PV system i, i.e., VS;, is randomly generated.
We calculate the offline trust scores of PV systems according to
Eq. 7 with n; = 10 and depict them in Figure 3. PV system 6 and
10, corresponding to bus 16 and 3, have the highest 2 NEC (0.26
and 0.34), which agrees with our intuitions that buses with higher
degrees in graph theory are supposed to carry more power flows.
On the other hand, PV system 10 also has a high VS value (0.54),
and thus its offline trust score is the lowest among all the PV sys-
tems (0.82). This meets our assumption that a PV system located
at a critical place with poor security implementations is more at-
tractive to adversaries. Furthermore, although PV system 2 does
not have a high NEC (0.17), it has the highest VS (0.72), i.e., the
poorest security implementations. Therefore, PV system 2 is easy
to be compromised and have a low overall offline trust score 0.88.

7.2.2  Physics-guided GPR evaluation. Since the power generations
from PVs heavily rely on the solar irradiation, a GPR is trained for
every half hour from 9 am to 16:30 pm when the solar irradiation is
abundant, thus resulting in 16 GPR models for each PV system. In
the training phase, 80% of the PV power generation data is used as
the training data. To evaluate the performance of trustworthiness
evaluation capability of the physics guided GPR, for each PV system,
we use the mean of the relative errors ((Estimation—Truth) /Truth)
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Figure 3: The offline trust score of each PV system.

at each time epoch as the performance metric, and the box plot
of the average relative errors for each PV system is presented in
Figure 4. When there’s no attack, the average relative errors are
within 5% except few outliers. Recall that the estimation accuracy

depends on it’s neighbor readings and physical model prediction.

Therefore, when attack appears, the prediction errors increase for
all the PV systems in group 1 (PV system 1, 4, 7, 10) as half of the
PV systems (PV system 1 and 10) are compromised. On the other
hand, for the PV systems in group 2 (PV system 2, 5, 8, 11), in which
only PV system 2 is compromised, the performance of PV system 2
does not change because its neighbors are not attacked, and thus
the predictions from GPR are the same. Besides, the performance of
other PV systems in group 2 drops only slightly compared with the
attack-free situation. This proves that the proposed GPR has the
capability of recovering the true power generations of PV systems
when a moderate number of PV systems are compromised.
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Figure 4: The box plot of the average relative errors at each
epoch for PV systems. (a) depicts the results without attacks
and (b) depicts the results with attacks.

When performing the Wald test, the threshold 7 = 1 X 107>, An
attack is alarmed if the online trust scores of any PV systems are
equal to 0. The test achieves an accuracy (correct /total) of 98.75%, a
false negative rate (false negative/total positive) of 0%, and a false
positive rate (false positive/total negative) of 2.67%. Therefore,
our online trust score estimation is capable of correctly evaluating
the dynamic trustworthiness of the DERs.

7.2.3  The dynamics of trust scores. Here we evaluate the impact
of attacks on the trust scores of the attacked PV systems and their
neighbors as shown in Figure 5. The vertical red dashed line marks
the epochs that a PV system is attacked over a day. Due to the
superior performance of the online trust score estimation, we assign
more weight to s; and choose A = 0.5 in Eq. 22. We select two PV
systems from each group and present their trust scores 7; on day 1.
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According to the figure, we observe that the proposed trust score
estimation framework can accurately capture the dynamic status
of PV systems. The trust scores of the attacked PV systems (PV
system 1 and 2) decrease at the epochs with attacks and increase at
the epochs without attacks. Since two PV systems are attacked in
group 1, the attacker is likely to attack the remaining ones. Thus
the trust score of PV system 7 decreases as well. On the other hand,
only PV system 2 is attacked in the group 2, thus PV system 5 is
less affected and has a relatively high trust score. The trust scores
of PV system 3 and 9 keep increasing because PV systems in the

group 3 are not attacked.
o

4
%)

o
=N

DER
DER
DER
DER
DER
DER 9

N
IS

Trust score 7;

o
v

— — — Attack position

| |

| |

| |
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Figure 5: The dynamics of the trust scores on day 1.

7.2.4  Evaluation of RADM. With the trust scores, we optimize
Eq. 28 with n = 0.01. Through several trials, we set NP = 50, NG =
100,F = 0.7 and CR = 0.9. The objective voltages of all buses
are set at 1 p.u.. We use the Mean Square Errors (MSEs) between
the reference voltage profile V,.r and the voltages V from the
solution of Eq. 28 as the performance metric. In the basic case,
the optimization is run without the second term in Eq. 28, ie,
with the objective to minimize ||V - V,.¢|[2 only. Both the basic
case and RADM are examined with and without the presence of
attacks and the results are presented in Figure 6. We use the MSE
of the basic case without attacks as the baseline. As shown in
Figure 6a, an average MSE of 5.42 x 10™* is achieved in the baseline.
Compared with the baseline, the attacks result in an average MSE
of 6.39 x 10~* in the basic case, which increases the average MSE
by 17.97% (Figure 6¢). On the other hand, in RADM, when no attack
appears, the introduction of the resilience term, i.e., —yr’ Qp in
Eq. 28, leads to an average MSE of 5.78 x 107, which increases
the average MSE by 6.56% (Figure 6b). When there are attacks, the
average MSE is 5.77 x 10~ (Figure 6d). Therefore, by introducing
the resilience term, RADM resists to the attacks at the cost of
slightly degrading the performance compared with the baseline. In
the worst situation, a maximum MSE of 6.19 x 10~* is observed in
the baseline, which is increased by 61.44% with a maximum MSE of
1 x 1073 when attacks occur. On the other hand, RADM achieves
maximum MSEs of 6.36 x 10™* without attacks and 6.46 x 107%
with attacks, which are only 2.63% and 4.15% worse compared
with the baseline. Thus, RADM could perform even better and
significantly limit the impact of attacks in the worst situations.

8 CONCLUSIONS

In this paper, we develop a system-level DER management frame-
work, RADM, which is capable of identifying DER risk levels and
maintaining the grid performance even when DERs are subject to
attacks. We propose to use trust scores to evaluate the trustworthi-
ness of DERs and a trust score estimation method is developed. The
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Figure 6: The box plot of the MSEs at each epoch. (a) the per-
formance of the basic case without attacks; (b) the perfor-
mance of RADM without attacks; (c) the performance of the
basic case with attacks; and (d) the performance of RADM
with attacks.

method estimate the trust scores by generating a general belief of
the trust scores in the offline phase and then updating the belief
with real-time data in the online phase. To mitigate the attack im-
pacts on DERs, we formulate the grid decision making process as
a optimization problem balancing the grid performance and the
security risks derived from the trustscores. Through simulations,
we use PV systems as a case study of DERs and demonstrate the
capability of the trust scores of capturing the dynamic status of
DERs as well as RADM’s capability of mitigating the attack impacts
with only slight degradation of the grid performance. In the future
work, we will investigate developing a more robust GPR adapting
to varying PV power generation patterns across a day to enhance
the scalability of the proposed method.
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