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Abstract— Platooning of connected vehicles is a solution geared
toward improving traffic throughput, highway safety, driving
comfort, and fuel efficiency. These vehicles are equipped with
Cooperative Adaptive Cruise Controller (CACC) that integrates
information from dedicated short-range communication (DSRC)
radio and sensors for safe navigation. The possibility of malicious
attacks such as Denial of Service (DoS) or False Data Injection
(FDI) on sensor data or control inputs tends to affect reliability,
and jeopardize the safety of connected vehicles. Thus, securing
sensor data of these vehicles from DoS or FDI attacks is essential
to avoid unwanted consequences. To withstand sensor attacks,
resilient state estimators have been developed for networked
cyber-physical systems (CPS). However, such estimators do not
perform well as the number of compromised sensors of the
system increases. As such, we propose a novel convex optimization
based Resilient Distributed State Estimator (RDSE) that bounds
the state estimation error, irrespective of the magnitude of the
attack and the number of compromised sensors. We theoretically
prove that the proposed estimator has similar performance
compared to the state-of-the-art Distributed Kalman Filter (DKF)
under attack free and noise free scenarios. While under attack,
our RDSE outperforms the DKF and we provide a theoretical
bound on state estimation error generated by RDSE during an
attack. We also demonstrate the effectiveness of RDSE against
FDI attacks in a platoon with five vehicles and compare its
performance during attack against the DKF and the Resilient
Distributed Kalman Filter (RDKF).

Index Terms— Vehicle Platoon, denial of service, false data
injection, convex optimization, distributed estimation.

I. INTRODUCTION

NCREASING population and economic activities has grad-
ually raised the need for road freight transportation around
the world. Despite its importance, road freight transportation is
facing serious challenges posed by increasing fuel price and
greenhouse gas emission. Consequently, advancements were
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made in the areas of information and communication tech-
nologies that led to the development of cooperative methods
such as platooning. Such a solution tends to enhance safety,
traffic throughput, fuel efficiency of transportation networks,
and reduces carbon emissions. A group of vehicles moving at
the same speed and maintaining close intervehicular distance
is known as a platoon. Its safe operation can be ensured by
using a feedback control system that uses measurements from
onboard sensors and state information of neighboring vehi-
cles through Dedicated Short Range Communication (DSRC)
radios to control velocity and intervehicular distance between
platoon vehicles. Such a system obtained by integrating exist-
ing cruise controller architecture with communication capa-
bilities is called cooperative adaptive cruise control (CACC).
Unlike adaptive cruise controller (ACC) or cruise controller
(CC), the control inputs in CACC are coordinated among
several vehicles to achieve stable platoon behavior.

Vehicles of the platoon follow an information flow topol-
ogy to exchange information among each other. Early-stage
platoons were radar-based, where each vehicle only obtained
information from its preceding car and the following car [1],
[2]. Information flow topology representative of the radar-
based platoon were predecessor following and bidirectional
[1]-[3]. With the addition of vehicular communication, topol-
ogy such as predecessor-leader following, bidirectional-leader,
two predecessors following, and two predecessor-leader fol-
lowing, have become possible in platooning [4]. Investigation
was done to understand the relationship between communi-
cation topology and formation stability in [5]. By using the
eigenvalues of the Laplacian matrix of the communication
graph such as complete, acyclic directed, single directed,
and two-cyclic undirected, they were able to relate individual
vehicle’s stability with stability of N identical (with the same
dynamics) vehicles of the network.

Over the last decade, research on design and analysis
of string stable controllers for vehicle platoon has matured
significantly [6]-[8]. As such, current research efforts have
been focused on making such controllers robust/resilient to
environmental uncertainties as well as adversarial attacks [9]—
[23]. In the case of attacks, an adversary either modify the
controller to destabilize or take control of the platoon or make
the communication channel unavailable to degrade the Quality
of Service (QoS) of the network. For the network attack
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scenario, [9], [12]-[15] analyzed the impact of different
attacks such as DoS and False data injection (FDI) on the
DSRC protocol stack and designed detection and/or prevention
methods. There are also works that targeted attack design,
security analysis, and development of mitigation strategies for
controllers of vehicle platoon [10], [11], [16]-[20], [23]. Such
attacks compromise integrity of the system by altering control
inputs, control laws, or sensor measurements. Repercussions
include vehicle pileup or increase in fuel consumption.

Various approaches have been proposed to address integrity
attacks on platoon control systems [11], [16], [19], [23].
In [16] and [19], sliding mode controller and switching
controller frameworks were developed respectively as coun-
termeasures. For detection of integrity attacks, [19] proposed
a model-based scheme whereas [11] combined system identi-
fication techniques with machine learning. Barrier approach,
where artificial bounds were imposed on control inputs to
limit attackers influence, was proposed by [23]. Another
direction, which is relevant to our work is the design of attack
resilient estimators for distributed systems such as platoon
[22], [24]-[28]. Preliminary resilient estimators were either
centralized or decentralized i.e. they required aggregation of
information of all the agents of the distributed system at
a particular location (centralized) or required all the agents
to have information of all the other agents of the system
(decentralized) [22], [24], [25]. Aggregation of data in a cen-
tralized or decentralized fashion made these estimators compu-
tationally inefficient. Consequently, resilient distributed state
estimators, that required information of only an agent’s neigh-
bors were developed [26]-[28]. However, these methods either
did not provide performance analysis results of their algo-
rithm or made several assumptions on the network topology.

In this paper, we model the platoon as a linear time-invariant
system. A malicious attack corrupts the sensor measurements
of some vehicles of the platoon. We design and analyze a
novel Resilient Distributed State Estimator (RDSE) to mitigate
the affect of attacks on platoon vehicles. Our estimator is
inspired from the Distributed Kalman Filter (DKF). We show
the asymptotic convergence of estimation error to zero for
both DKF and RDSE when there is no attack and no noise.
Furthermore, our resiliency analysis shows that RDSE bounds
the disturbance on the state estimate caused by an attack.
Compared to [28], our RDSE and its analysis does not make
assumptions of the structure of the graph (except being con-
nected), the number of corrupted nodes, and the eigenvalues
of system matrix A.

Our paper makes the following novel contributions:

o We design Resilient Distributed State Estimator (RDSE)
as countermeasure for data integrity attacks on sensor
measurements of a platoon vehicle and analyze its perfor-
mance. Two unique features of RDSE are as follows: (i) It
does not restrict the number of neighbors of an agent that
can be compromised and (ii) The estimator’s performance
does not get degraded (beyond an upper bound) with the
magnitude of the attack.

o We provide the convergence result of DKF and RDSE
for a no-noise and no-attack scenario. To the best of our
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knowledge, we are the first to provide analytical results
for DKF.

The rest of the paper is organized as follows: In Section II,
we present works related to ours and in section III, we describe
the model of platoon with CACC, the measurement attack
model, and formulate the problem. DKF, RDSE, their per-
formance analysis, and discussions are in Section IV. The
effectiveness of RDSE is demonstrated on a five vehicle
platoon scenario in Section V. Final conclusions are drawn in
Section VI and additional materials are given in Appendix A
and B.

II. LITERATURE REVIEW

Several security measures have been proposed to mitigate
the effect of integrity attacks on sensors, controllers, and
network of distributed system such as platoon [11], [16],
[19], [23], [26]-[28]. Dadras et al. [11] proposed a detection
algorithm that combined system identification approach with
the thresholding/clustering method to detect gain modification
and destabilizing attack on the vehicle of a platoon. Their
method requires input-output data of each vehicle to identify
the system matrix, but does not require any information on
number of attackers or system parameters. Sajjad et al. [16]
designed an insider attack aware sliding mode control scheme
that used only local sensor data and a decentralized attack
detector to reduce the severity of collision in a platoon. In their
case, the attacker modifies the control law of a vehicle to
induce an oscillatory behavior in the platoon. While designing
their solution, they assumed that the bidirectional platoon
was homogeneous with all cars sharing the same control
law. DeBruhl er al. [19] considered an insider attack on
platoon’s vehicular network that could manipulate the control
law of a vehicle or misreport information with the intention of
either reducing headway speed, joining platoon without having
necessary distancing equipment, collision induction, or misin-
forming follower vehicle. They developed an error calculation
and threshold based mechanism, which compared the expected
behavior of the preceding vehicle with observed behavior to
detect the attack. Whenever an attack was found, they switched
the control mode from CACC to non-cooperative ACC so that
the vehicle could use only radar or LIDAR data for navigation.
Kafash et al. [23] proposed an approach that reduced the
capabilities of an attacker by imposing artificial bounds on
the control inputs that drive the system. Whether the attack
was caused by manipulation of the control inputs or sensors,
these actuator bounds would restrict the system from reaching
unsafe states.

The attack resilient distributed state estimators were devel-
oped as an alternative to mitigate the impact of attack on
the system [26]-[28]. Khan and Stankovic [26] proposed
attack detection and single message exchange state estima-
tion methods for a compromised communication scenario.
Their estimator relied on statistical consistency of nodal and
local data sets and physical-layer feedback. Matei et al. [27]
designed a multi-agent filtering scheme in conjunction with
a trust-based mechanism to secure the state estimates of
power grid under false data injection attack. In their approach,
an agent of the grid computes local state estimates based
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on their own measurement and of their trusted neighbors.
However, [26], [27] did not provide any theoretical guarantees
of their methods. Mitra and Sundaram [28] developed a
secure distributed observer for the Byzantine adversary model,
where some nodes of the network were compromised by an
adversary. Prior to state estimation, they decomposed the linear
system model using Kalman’s observability decomposition
method. Then, Luenberger observer [29] was used at each
node to estimate the states corresponding to detectable eigen-
values. The undetectable portions of the states at each node
were estimated using secure consensus algorithm, which used
measurements of well-behaving neighboring nodes. However,
their method required the network to be highly connected to
mitigate the effect of a small number of adversarial nodes.
Furthermore, all these methods [26]-[28] were proposed for
a general distributed system and have not been applied to a
platoon. In this paper, we design an attack resilient distributed
estimator which overcome the limitations of the above filters
for the vehicle platoon.

III. PRELIMINARIES AND PROBLEM DESCRIPTION

In this section, the model of CACC equipped vehicles of
the platoon, model of the communication network, the platoon
dynamics, and the problem definition are introduced.

A. System Model

We consider a homogeneous predecessor-leader following
platoon of n cooperative adaptive cruise control (CACC)
equipped vehicles without attacks. In Figure 1, ¢ is the
position of i-th vehicle in the traffic, where (i = 0,--- ,n)
and d® = ("D (1) — ¢D(r)) is the actual distance between
vehicle i — 1 and its follower i. The active sensors and the
vehicle-to-vehicle (V2V) communication devices on the cars
are responsible for gathering these measurements. We assume
that the leader car of the platoon has index i = 0, and followers
of the platoon have index i = 1, ..., n. These vehicles should
maintain a desired distance d”) to its preceding vehicle,
which in our case is proportional to the time headway (7, =
0.9 sec [30]) between the vehicles, minimum stopping distance
(d” = 10 m), and the speed of the follower vehicle (v(i)).

d"D@) =d, + 5P @),

According to [31], the spacing-policy in Equation (1)
improves road efficiency, safety, and attenuates disturbance.
Now, the objective of the local control law is to regulate the
following distance and velocity errors to zero in the platoon.

D) =V —d" V@) by

D@y =0V = 0D @) = 1aD (1) 3)
Subsequently, a platoon of homogeneous vehicles (the
dynamics and the controller governing all the vehicles are
identical) is considered and longitudinal dynamics of the i-

th follower vehicle is described by the following set of linear
equations based on [4]:

1<i<m (1)

dO = O

5@

o = _la(i) + lu(l’) 4)
7 T

dD (), v (r),a® (r) are distance, velocity, and accelera-
tion of the i-th vehicle and ¢ = 1.008 is a constant that
represent inertial delay of vehicles longitudinal dynamics and
is assumed to be identical for all vehicle.

B. Communication Network Modeling

We model the V2V communication topology of the platoon
with the help of a graph. We assume that the platoon includes n
follower vehicles and one leader (0), X = {0} U {1,2,...,n}.
The information flow among followers and leader is given by
a directed graph G = (V, &). In the graph, nodes represent the
leader and followers, V = X, whose dynamics are given by
(4) and edges, £ =V x V, represent communication between
them. Here, (i, j) € £ is a unidirectional edge between i and
J, that enables i to send messages to j. Neighborhood of
i € X \ {0} is defined as the set of nodes that are adjacent to
it, e, NO = (iU {j e V:(,J) € £ and with whom it
can communicate. In our case, we consider predecessor-leader
following communication topology where the preceding car
of a follower and the leader of the platoon are its neighbor.
To describe the information exchange among followers, we use
an adjacency matrix, M = [m(i)(j )] € R"* " where

G 1 :G,j)eé&

0 :(,j)¢¢&
Furthermore, we model the communication between the leader
and its followers as a directed graph G. As such, there exists a
directed edge via which leader exchanges its information with
every follower. In this paper, we use the words vehicle and
node interchangeably.

C. Closed-Loop Platoon Dynamics

To compute the desired acceleration, the CACC controller of
the platoon vehicle, i, relies on the information of neighbors,
J, which can be represented as NO = {j|j #iand (j,i) €
&}. The controller uses a combination of DSRC based feed
forward input, u?} and sensor measurement based feedback

input, u%, to obtain the following control input of the plant:
ul = u% + ugf])(

The radar and internal sensors of the CACC unit measures
the preceding vehicles distance and velocity, which are used to
calculate inter-vehicular errors, ), ¢®). Subsequently, a pro-
portional and derivative (PD) feedback controller operates on
the errors to generate the following input:

ul) = kpe® + kge® (5)

where, k), is the proportional gain and k, is the derivative gain
of the linear controller.

The feed forward controller uses acceleration data of the
directly preceding vehicle 2~ and the leader 4(® (obtained
by DSRC) to improve vehicle following and string stability
performance. The feed forward control input is given by the
following equation:

(i) ' oo, 1
= T T 0

(i [P
@+ T-)(a(o)) (6)
Th
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In the case where the vehicles are behaving correctly then
a1 = a0 and 4@ = 4© during the update periods.
We make this assumption as we consider the DSRC commu-
nication to be secure.

The closed-loop dynamics of CACC equipped vehicle is
obtained by combining the longitudinal dynamics model
(Equation 4) with the feedback control law (Equation 5) and
the feed forward control law (Equation 6). By choosing the
state variable as xDT = [d®D O 4@ u?}] e R*, the state
space representation of the i-th CACC equipped vehicle in
an n— vehicle string is given by the following time-invariant
linear equations

@O = ADx©O 4 p®,0)
— (A(i) + B(i)K(i)T)x(i) (7
y(l) = OO (8)

where, A®) is the homogeneous system matrix of the ith
vehicle, BY) is the homogeneous transformation vector cor-
responding to the control input u® of the ith vehicle, K@ is
the homogeneous linear controller gain matrix, y® € R* (i =
0,---,n), is the output vector, and C) is the heterogeneous
output transformation matrix of the ith vehicle. The matrices
of the above equations are given in Appendix A. The leader,
i.e., car 0 has a unique control law, which is u® — U,
where u, is the reference desired acceleration of the platoon.
It is assumed that the leader receives u, in real-time and no
prediction is made on its value.

For the closed loop dynamics of the homogeneous platoon,
we aggregate the state vector of all the vehicles as: X =
(xOT x(OT @T (0T

The homogeneous platoon of cars interconnected by a given
information topology can be represented in the following
compact form:

X = AX )
y(i) -y (10

where, A, C) are matrices of the distributed system.

From Equation (7) and Equation (9), we observe that
platoon dynamics are functions of each vehicle’s longitudinal
dynamics A, the network topology M, the distributed feedback

and feed-forward control laws, (u%,u(i}) and the spacing

policy dr("). We also discretize Equation (9) and Equation (10)
with sampling period of 0.01 second to get the following,

(1D
(12)

Xi+1 = AXg

D. Attack Strategies

We consider two variants of sensor data manipulation attack
and assume that the attacks do not corrupt measurements
of all the follower vehicles. In the first type, we assume
that the adversary has control over followers of the platoon
and it transmits wrong sensor data to the vehicle’s controller
via its internal network. We define such an attack as False
Data Injection (FDI), whose goal is to make the vehicle
behave incorrectly. Consequently, such an attack can lead to
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destabilization of the platoon. The impact of such an attack
on the output equation of the system can be described by:

=y + Tiay (13)
where, a,El) is the malicious injected data vector. The attack
scenario can be analyzed with the given Bernoulli model:
P(Tx]P® = 1) = 0,Vi = 1,2,...,n, k < ks and
P(Tx]DD = 1) = pur,Vi = 1,2,...,n, k > ks, where
Day s the probability of successfully injecting false data after
time k.

In the second variant, we consider the attacker is present
outside the target vehicle. As such the adversary uses tools
such as Jammer to blind the sensors of the targeted follower.
We define such an attack as Denial of Service (DoS), whose
impact on the system can be captured by the following
attacked output signal, y,E’)’a:
=y = e = )

i (14)

where, 7 is the time at which the last good measurement, ygl),
was obtained and I’y € BY*9 is a Binary diagonal matrix
whose ith diagonal entry when [Fk](i)(i) = 1, indicates the
DoS attack on vehicle i € n and [[x]P® = 0, shows its
absence. Such an attack on vehicles can be represented using
the following Bernoulli model: IP([Fk](i)(i) =1)=0Vi =
1,2,...,n, k < 7, and P(II(]DD = 1) = p,;,Vi =
1,2,...,n, k > 7, where p,; is the probability of success-
fully jamming the sensor data after time . An adversary can
carry out any one of these attacks, but not simultaneously.
In this paper, we evaluate the vehicle platoon under FDI attack
and present the results in Section V. Our experiments can be
easily extended to the case of DoS attack.

E. Problem Description

Given a homogeneous platoon of n follower vehicles and
a leader represented by linear time-invariant system model,
linear measurement model, and directed communication graph
G, our goal is to design a filter that can estimate system
states such that limg_, o ||)A(,El) — Xill = 0, Vi € R* when
there is no attack and the estimation errors are bounded when
measurements of all sensors of a subset of vehicles of the
platoon V, C V are compromised by an attack.

To build such an estimator, we make the following assump-
tions.

o Matrix (A, C(i)) are detectable of the system. This
assumption is in line with the assumption in [28], [32],
where it was stated as necessary condition for solving
the distributed estimation problem with asymptotic guar-
antees.

o Each vehicle receives estimated state information from
the vehicle in front and the leader via a secure commu-
nication channel. Thus, we do not consider any attack on
the network.

o We assume that the vehicles cannot detect the attack on
the sensor measurements and thus accepts the corrupted
state estimates from its neighbors.
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Fig. 1. Homogeneous CACC vehicle platoon with predecessor-leader following communication topology.
IV. DESIGN & ANALYSIS OF DISTRIBUTED ESTIMATOR

In this section, we first analyze the performance of the
Distributed Kalman Filter (DKF) in attack-free and noise-free
scenarios. The motivations behind this analysis are two-fold:
(1) to the best of our knowledge, this is the first convergence
result on DKF for noise-free and attack-free scenarios; and
(ii) it forms the basis for the analysis of our attack resilient
estimator.

A. Distributed Estimation Without Attack

Based on the Bayesian interpretation of the Kalman
filter that consider local measurements from vehicle i,
state estimates of the neighbors of i, output equation,

C(’)X—}—v(l) with v(l) ~ N(O, E ) and state equation,
Xk+1 = AX; + w,({’) with w,({l) ~ N, 2, the state
estimator can be described as: P,Elli | = AP(i)lAT + Eg);
P’ = (c} Z]ENO)PIEU( et C,) 1; % =
P(')( Y jeno PR ARYD, +cOT 201 y0);
P,El) is the estimation error covariance matrix and )A(,g) is the
state estimate.

First, we investigate the attack-free and noise-free case for
the following discrete time linear-time invariant (LTI) model

15)

where

Xip1 = AXy, yP =COx,

We assume that P is chosen according to the following
equation,
—1

PO — ( Z (AP(J)AT ZI(DJ'))*l +C(i)TZ£i)1C(i))
jEN(')
(16)
where, N() = {i} U {neighbors of i in G} and d; = [N?| is

the total number of neighbors of node i. While in Kalman
filter, Zl(,i) and z,ﬁf’ are commonly used to denote the covari-
ance of the noise in the system, they can also be treated
as parameters for developing the algorithm in the noise-free
setting (Kalman filter application in the noise-free setting is
discussed in [33]). In principle, they can be chosen to be any
positive definite matrices. The impact of the values of Z(l)

and Eg) on the estimate are discussed in Section IV-B. The
distributed estimator then has the following prediction rules,
P = APOAT 4 2D
1 Nl Al . S
X0 = P(l)(d—i > PV TARY) + 0T 1y,§”) (17)
jeN®

where, P‘(l) is a priori estimate covariace of vehicle i. This
estimator is motivated from the Distributed Kalman Filter
studied of [34]-[37].

Before applying this estimator, we need to ensure that a
solution to (16) exist. Thus, we give the following theoretical
guarantee on the existence of solution.

Theorem 4.1: If the graph G is connected, A is full-rank,
(A, C(’)) is observable, and E is full rank forall 1 <i <n,
then there exist {P(’)}l’.’:l that satisfy Equation (16).

This proof of Theorem 4.1 in Appendix B shows that the
covariance matrices of the estimator converges when they are
initialized as zero matrices. In comparison, there exist work on
convergence of the covariance matrices of DKF: The authors in
[38] prove the convergence of the covariance using probability
theory and the authors in [35] perform convergence analysis
on a modified DKF which has one prediction/update step at
each time point. We remark that the convergence analysis in
the standard Kalman filter uses observability assumption and
as such it is the optimal assumption we could make as well.

The following theorem states the main result of distributed
estimation without attack and noise and its proof is in the
Appendix B. This theorem states that the estimation error
converges to zero in the attack-and noise-free scenario. There
exist work on convergence of estimation error of DKF. For
the noise-free case, Li et al. [39] prove that estimation error
converges to a unique value. However, we are not aware of
any work that has convergence result for the attack-and noise-
free scenario as considered by us. Our proof is based on the
observation that the estimation error do not increase over time
and as a result, the estimation error converges.

Theorem 4.2: (Convergence of DKF) Under the assump-
tions of Theorem 4.1, the estimator Equation (17) converges
to the correct solution in the sense that for all 1 < i < n,
limy o0 | X} = Xill = 0.
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The result described here is called the “omniscience prop-
erty” [28], [32], which is proved under the same system setting
as Theorem 4.2, but for a different estimation algorithm.
We remark that while the condition “(A, C)) is observable”
is more restrictive than the condition “(A, C®) is detectable”
of [32], in practice the difference could be addressed using
the idea of decomposing the system (A, C®, X) into two
parts corresponding to stable and unstable eigenvalues of A.
Note that for X, the stable part converges to zero, thus it is
sufficient to investigate the subsystem of (A, cO, x ) that is
associated with unstable eigenvalues of A. More specifically,
let A = Udiag(S;, Sz)U’l be the Jordan transformation of
A, where U is the similarity transformation matrix, S; is
a square matrix that contains all Jordan blocks with stable
eigenvalues and Sy consists of all Jordan blocks with unstable
eigenvalues. Then, with )ka =U"'X; and Xk = [)~(1 k> )N(z tl,
the state evolution of (15) is equlvalent to the equatlons
Xir11 = S1Xe1, Xeg12 = SaXy 2. We have ||Xk i =0
as k — oo. Thus, it is sufficient to estimate Xk,z To have
the “omniscience property” of the estimation of )~(k,2 from
y,((l) = COUx;, ~ C(i)Uz)?k,z (U, is a submatrix of U
corresponding to the component Sp), Theorem 4.2 implies
that it is sufficient to have the observability of (S,, C(i)Uz).
By applying the “Eigenvalue assignment” of [40, Table 15.1],
it can be shown that the observability of (S, CYDU») is
equivalent to the detectability of (A, C(i)).

B. Resilient Distributed State Estimator

We discuss the design of our optimization based estimator,
RDSE, which is resilient to sensor attacks. We also analyze
its performance and prove that when there is no attack,
the estimation error converges to zero and in the presence
of attack, the estimation error is bounded.

We investigate the case with attack, which is given by the
following model: X4 = AXk, y,E’)’a = C(i)Xk + a,(:) where
a,((l) is the attacker input and following is our RDSE based on
optimization:

X(l) =arg min (y(l) 4 C(i)Xk — a,({i))T Zl()i)_l
Xk, a,f
% (y<z),a —COx, —a) + ) Ha(i) H

1
+— > - A% - AR (19)
jEN(’)
This method is motivated from the DKF in Equation (17)

as follows: Equation (17) can be considered as the following
optimization problem:

)A(,El) = argmln(y(l) A C(i)Xk)T Elgi) _1(y,£i)’a — C(i)Xk)
+— LSt — AR )R (AR (19)
jEN(')

To make an optimization-based estimator more resilient to
attacks, a commonly used strategy is to use optimization with
{1 norm on the terms affected by attack [24]. We apply a
similar strategy, where we apply a penalty, 4, on the attacked
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@ & &
Fig. 2. Directed graph of homogeneous predecessor-leader following
topology of five vehicle platoon. (0)-(4) represents numbering of vehicles
(nodes), with (0) being the leader of the platoon. The edges represents sensor
and V2V communication between vehicles.
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Fig. 3. Performance of our resilient distributed estimator, (18), in the attack

free case. (A =2, X, = 101, X, =1).

values, a,Ei) and subtract the attack value from the attacked

measurement y(l) "4 This procedure makes our algorithm more
resilient to attacks. The optimization problem in Equation (18)
does not have an explicit solution, but it can be solved
efficiently as it is a convex optimization problem.

The choice of A is critical in our approach and it
gives a balance between the terms, a,({ and > jeN® (Xi —
AX,EJ_)I)TP‘(” Xy — AX,EJ_)I). A large Vglue of 1 implies
more weight is placed on attacked values, a,((l). Although, such
a choice of A makes the estimation error converge quickly to a
small value, it will give less stable performance in the presence
of an attack. On the contrary, when A is small, it will take
longer for the estimation error to converge to a small value,
but the method will be stable against attack.

As =71 appears in  the term (y(l) @
C(")Xk)TZy)_l(y,Ei)’“ — COXy), it will have an impact
opposite to that of 1 on state estimate i.e. when X, is large,
it will take longer for the estimation error to converge to
a small value, but it will make the method stable against
attack. In contrast, large value of X, will result in large P,
and it will have an impact similar to /4 on state estimates.
Furthermore, experimental results in Section V demonstrate
the impact of these parameters on state estimation error.

To analyze this estimator, we consider two scenarios:

1) Sensors of all vehicles are benign and the platoon
operates normally.

2) Sensors of some vehicles are compromised.

We provide the following theoretical guarantee (proof is
in Appendix B) for the first scenario. It suggests that when
the initial estimation error é(()l) is not too large, the algorithm
follow the “omniscience property” and the estimation error
converges to zero. Now, the proof of this theorem is based on
the structure of the proof of Theorem 4.2, i.e., we first show
that the estimation error does not increase over time and then,
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(a) Performance of our RDSE, (18), during FDI attack. Car under
attack is marked with (a). Distance estimation error is bounded and
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(b) Performance of Distributed Kalman Filter (DKF), (19), during
FDI attack. Car under attack is marked with (a). Distance estimation
error is large. (A = 2,3, = 10I,%,, = 1)
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(c) Performance of Resilient Distributed Kalman Filter (RDKF), of
[47], during FDI attack. Car under attack is marked with (a).
Convergence time is longer compared to RDSE.
A=2,%, =101, =1)

Fig. 4. FDI attack: (a, b, ¢c) comparison of estimated distance error of RDSE against DKF and RDKF.

with some additional arguments, we show that the estimation
error converges to zero.

Theorem 4.3: (Convergence of RDSE) Let ¢o be a number
such that if e satisfies e(i)TPl(')_le(i) <c¢oforalll <i<n,
then for all 1 <i <n,

251)_1C(1)P|(l) dll Z P‘(J)*lAe(J) (20)
jeN®

< 1/2.

oo

Under the assumptions of Theorem 4.1, if the initial estimation
error é(()l) is small in the sense that é(()l)TP‘(l)flé(()l) < ¢¢ for
all 1 < i < n, then for the first scenario without attack,
the estimation of a,((') in (18) is consistently zero and the
sequence produced by (18) converges to the correct solution
ie forall 1 <i <n, limgo | X — Xgll = 0.

We remark that, while this theorem makes the assumption
that the initial estimation error {é(()l) J!_, is not very large,
in practice we notice that our algorithm converges even when
initial estimations of X(()') are bad.

For the second scenario, the following resiliency theorem
(proof in the Appendix B) states that no matter how large the
magnitude of the attack, the deviation of the state estimate of
RDSE is bounded. Consequently, even during a worst-case
attack scenario, the error of the state estimate is upper
bounded. Compared to Theorem 4.3, which states that the
estimation error converge to zero when there is no attack,
this result suggests that the estimation error is bounded during
attack. This result separates RDSE from the traditional DKF

of Section IV-A, where an unbounded attack could result in
an unbounded estimation error. Furthermore, our analysis and
results are different from the theoretical guarantees given for
the resilient distributed estimator of [28]. We have made fewer
assumptions on the eigenvalues of A and graph structure of the
network. We only show that the estimation error is bounded
(rather than convergence to zero result shown in [28]).
Theorem 4.4: (Resiliency of RDSE) Consider the optimiza-
tion problem (18). For different values of y,ﬁl)’a, the norm of
the difference of the estimated value )A(,({l) is at most
AKIIEa - cOK) =0~ @ - cPK) + KTQKI ', 2D

where K = (Q + COT 25””C<f))—1c<f)T 25”*‘ and Q =
1y op@-t
dj 2jeN® 7| ;

This theorem implies that the disturbance on the state
estimate caused by an arbitrary attack on y,il)’a is bounded. It
also partially explains the observations that large 251) corre-
sponds to more stable performance of the estimator during an
attack. According to Equation (21) (represents the maximum
additional estimation error that can be caused by an attack),
large 251) will make the upper bound on estimation error
smaller.

C. Discussions

Recently, researchers have demonstrated successful attacks
on sensors such as LIDAR, GPS, ultrasonic, camera, and radar
[41]-[45]. As such, autonomous vehicles that rely heavily on
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Fig. 6. Performance of our RDSE, (18), during multiple FDI attack on cars-2.
(A=2,%, =10L X4 =1).

these sensors for decision making remains vulnerable to attack.
Our estimator, RDSE, is a countermeasure against jamming
and false data injection attack on vehicle sensors. Our system-
level solution will ensure that the vehicle gracefully degrades
to a less optimal, but safe operational mode during attack
and return to optimal operational mode after attack. As such,
our estimator when combined with the CACC controller will
ensure the safety and the mobility of the platoon. However,
certain properties of vehicle platoon such as cost and emission
benefits will not be preserved during an attack. In future,
we will present quantitative analysis to show the impact
of combining CACC controller with our RDSE on safety,
mobility, emission, and cost.

We remark that the Theorem 4.4 only captures the impact of
sporadic attack (an attack which does not occur continuously
for a long time) on the estimation of }A(,(;). Following this
theorem, if the estimation error is small enough to satisfy
the condition of Theorem 4.3 after an attack, then we can
consider such an estimation error as the “initial estimation
error” in Theorem 4.3 and use it to show that despite the
attack, the estimation error of our estimator still converge to
zero, provided we have attack-free measurements after the
sporadic attack. The long-term impact of persistent attack is
not considered and we leave it as possible future work.

V. EXPERIMENTAL RESULTS

In this section, we consider a platoon of five vehicles to
demonstrate the effectiveness of the RDSE approach against
sensor attacks. We represent the dynamics of vehicles of the
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platoon using a linear time-invariant model given by (7).
The sensor measurement equations of a car with and without
attacks are given by Equations (8), (13) and (14), respectively.
The system matrix A, the input transformation matrix B,
the controller gain matrix K, and the output matrix C(i),
of the homogeneous platoon are given in Appendix A. The
dimension of the state, x, of each vehicle is four and each
follower is equipped with four sensors. Also, the leader vehicle
has information of all the follower vehicles of the platoon.

The directed communication graph of the platoon, as shown
in Figure 2, consists of five nodes (representing homogeneous
vehicles) and eight edges (representing radar and V2V com-
munication). We simulate vehicle dynamics of the platoon,
communication graph, and the sensor attack in MATLAB.

e Case 1: Attack-free scenario

We first evaluate our algorithm over the attack-free scenario.
Figure 3 compares estimation error of five vehicles over a time
frame of 300 seconds. Y-axis represents normalized distance
estimation error of all the cars in meters (m). We observe that
the state estimation error is less than 70m for all the cars and
they converge to a small value (< 1m) within 50 seconds.

e Case 2: False Data Injection (FDI) attack

We consider a scenario where an adversary corrupts mea-
surements of internal sensors of a vehicle after a certain time
point. In case of a FDI attack on our experimental system,
malicious data of random value are added to all sensor outputs
of car-2, 3 at random time points of variable duration.

Case 2-a: Resiliency Comparison

In this case, we compare the performance of RDSE against
the Distributed Kalman Filter (DKF) and Resilient Distrib-
uted Kalman Filter (RDKF) of [46] during FDI attack. For
the experimental setup, we assume that the attacked signal
{a,El) }i=2,3 is injected into the output sensor data of the attacked
cars at different time points, but the attack does not corrupt
all the measurements after its initiation. The probability of
occurrence of the FDI attack at any time after its initiation
on a vehicle is p, = 0.99, i.e. probability of an attack being
successful is high during the attack duration. For instance,
in our experiment, the attack on car-2 of Figure 4a is successful
at most of the time points from 41 — 70 seconds. In our simu-
lation, we set the parameters (4, X,, X,) = (2, 10L I), where
I is the identity matrix. Figure 4 compares the performance
of our proposed algorithm against DKF and RDKF [46]. We
observe that the FDI attack affects distance estimation of the
neighbor (car-3) of the compromised car-2. Note that the
estimated distance error of our filter, shown in Figure 4a,
are small and the system is stable, while the error in DKF
goes up to 1000m and the error takes longer to converge to
a small value in case of RDKF. When there is no attack, our
method perform as well as an optimal estimator for distributed
systems. As perturbation in estimation error caused by the
attack is small in our algorithm, the likelihood of preventing
collision is high, as it keeps the distance error (< 6 m)
between cars-(2, 3) less than the minimum stopping distance
of d, = 10m.

The vast difference in performance between RDKF of [46]
and RDSE can be attributed to the design of the estimators.
In RDSE, the parameter A directly affect the sensitivity of
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Fig. 8. Performance of our RDSE for fixed X, = 10I, £,, = I and different values of 2 = 1000, 100, during FDI attack on car-2.

the estimator to attack. As such, small value of 4 makes the
estimator more resilient to attack, whereas large value make
the estimator more sensitive to attack. It should be noted
that 4 does not affect the convergence of RDSE. On the
contrary, in RDKF of [46], 1 affects the local information
of the agent and the information of its neighbors. Large value
of 4 implies more weight is placed on local information and
neighbors information. Although such a choice of 1 makes
the estimation error converge to zero quickly in the absence
of attack, it will make the system less resilient to attack.
When 4 is small, it will take longer for the estimation errors
to converge to zero in RDKF, but the method will be more
resilient to attack. Thus, the value of A = 2 chosen in our
current setting is suitable to increase resiliency of RDKEF, but
it takes more time to converge than the RDSE. In longer
simulation run, the performance of RDKF and RDSE are
comparable.

Case 2-b: Attack on Multiple Cars and Attacks with Multiple
Time Duration

We further considered attack on multiple cars-2, 3 between
time duration 40 — 70 seconds and with parameter values,
(4, Xy, 2y) = (2,10L I). From Figure 5 we observe that
the distance estimation errors for all the cars are less than
safety distance of d, = 10m. Furthermore, we consider
attack on car-2 with same parameter values at multiple time
duration’s, 20—30 seconds and 120—150 seconds. We observe
from Figure 6, that the estimation error is within the safe
distance. Also, after the first attack (from 20 — 30 seconds),
the filter takes 18 seconds to recover and reduce the distance
estimation error to < 2m. After the second attack (from

120 — 150 seconds), it takes 1 second to recover and reduce
the distance estimation error to < Im. This is because as the
filter stabilizes, it takes less time to converge when subsequent
attack occurs.

Case 2-c: Parameter Tuning

We also tried various values of parameters 4 and X,,.
In particular, we follow the setup of Figure 4a i.e. fix 4 =
2 and replace X, by 10I and I. The results obtained are
shown in Figure 7. We also fix the value of parameters
(X, = 10L, X, = 1) and vary 4 = 1000, 100 and the results
are shown in Figure 8. As stated in Section IV-B, smaller
A or larger X, gives slower convergence at the beginning,
but more stable performance during attacks, and larger X,
gives faster convergence at the beginning, but less stable
performance during attacks.

VI. CONCLUSION

In this paper, we have proposed a novel attack-resilient
distributed state estimation algorithm, RDSE, that can recur-
sively estimate states and it bounds the error on state estimates
during attack on sensors of a platoon vehicle. We consider a
homogeneous platoon of five vehicles and demonstrate that
the estimation error of our method asymptotically converges
to zero when there is no attack and has an upper bound during
False Data Injection (FDI) attack. Our results show that after
proper tuning of the parameters of the estimator, the distance
estimation error is always below the safe distance even in
the presence of an attack. In the future, we plan to improve
our current analysis to stochastic systems and also intend to
develop new attack-detection procedures.
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APPENDIX A - MATRICES

0 1 0 0
; 0 0 1 0
i) _
AT = 0 0 —¢! !
0o 0o ' —g!
" o N
W_1| 0 G _ | —kptn +ka)
S K2 = =0+ kam)
L 0 0

C9 is heterogeneous binary random 4 x 4 matrix, for all
i=0,1,...,n

A is 4(n 4+ 1) x 4(n + 1) matrix obtained by combining
(A(i) + B(i)K(i)T) matrix of all i =0, ..., n according to the
adjacency matrix M.

C s heterogeneous binary random 4 x 4(n + 1) matrix.

APPENDIX B - PROOF OF THEOREMS

Proof of Theorem 4.1

In the proof, both A > B and B < A mean that A — B is
positive semidefinite.

Here, we let Pol) =0 for all 1 <i < n and show that for

the sequence P,E) generated by

@) _ Ap@ AT
Pl =AP AT 4 50
-1
Q) 1 Z () - )T 5 (i) —1 G
Pkl - d Pk\k C(l) Elgl) C(l)

! jeN®

the limit, limg— P,Ei), exists and it is a positive definite matrix
for all 1 <i < n. If this is true, then PO = limy_, oo P\ is a
solution to (16). '

We will first show that sz) ~! is bounded below by a
positive definite matrix. For k = 1, we have

N1 AT (D) —1 i
Pil) = CW Elgl) c®,
which is positive semidefinite with range being the row space
of CO, ie, {CDTz: 7 e RY). '
If j € NO (and by definition i € N©), then

) 1 . . . ) )
—1 _ _
P! d—i(Apgf)AT + 214 cOTgO-1c®

1 . .
+ E(AP%”AT +x0y=1
1

which is a positive semidefinite matrix of range {C® 7z, +
AC(i)Tzz +AC(i)TZ3 171,122,723 € R7}. By applying the same
procedure to time k = 3, 4 -, we verify that for sufficiently
large k, the range of P(l) can be given by the linear combi-
nation of @; el )Tz} Vj such that there exists a path from
jtoiof length [(j). It can be shown that for sufficiently large
k, the set contains the range of A”CT, A"*1CT, A™+2CT, ...
for some positive integer ». When A is full-rank and (A, Cc®)
is observable, this range is R"” and as a result, P(’) s larger
than a yosmve definite matrix with full rank. Th1s suggests
that P is bounded by a positive definite matrix from above.
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In addition, by induction it can be shown that P,(f) is strictly
increasing in the sense that

() () (i)
P <P <P/ x---
Since, the sequence is bounded above, its limit exist. In addi-

tion,
—1

P(l) z 2(/) -1 cOT 2(1) -1c®
jeN U]
Thus, its limit is positive definite.
B Proof of Theorem 4.2 We specify the estimation error

as e,((l) X(l) X and show that,

el TPO el < — (22)

D Tp(j)—1,0)
) Z e PO el
' jen®

Applying (19), we have e,&i)

fle) = (CVe) =71 (COer)
1 . N
N YRR R T
" ieN®
Using the fact that V f (ek)lek:e

= argmine, f(ex), where

—Ael”)) (23

@ = 0, we have
k
(C(i)e]((i))T zl()i) —1(C(i)e]((i))

1 . , S
+ 7 z (e,((l) - Ae,E’_)l)TPl(’) le,((’) =0.
" ieN®

(24)

Combining (24) with f (e,Ei)) > 0 gives,
z (Ae (J)I)TP(J)*IAe(J)
jeN(‘)

(C(l) (z)) Z(l)f](c(l) (z))+

v

3 TR0 el
jeN(l)
el) PO ~lel), (25)
Since, PO-1 — ATP)7IA = PO-1 — AT(APOAT +
) TA = PO — PO 4 A1 DAIT) 1 s positive
semidefinite, (25) implies (22), and (22) implies that

max elp(0)~1e®

1<i<n

does not increase as a function of k and thus, it converges.
However, it remains to be proven that it converges to zero.
If this is not the case, then (25) achieves the equality
(Ae(j) )TP(j)_lAe,((j) (j)TP(J)*1 (j) and it implies that

e,Ej)l =0 forall j € NV, Comblnlng it with Ae(]) (i)

(which follows from the equality f (e, )) = 0), we get e(l) = O

|

Proof of Theorem 4.3 Similar to the proof of (23), we have
(e,E’), ak ) = argming, a, f(ex), where

fler) = (CVe +a)” 201 (CDer + ay) + Allaclh

1 . o )
7 > (e — Ae” TPV (e — Ael”)) (26)
jeN®



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DUTTA et al.: DESIGN AND ANALYSIS OF SECURE DISTRIBUTED ESTIMATOR FOR VEHICULAR PLATOONING IN ADVERSARIAL ENVIRONMENT 11

By differentiation with respect to a; and ey, e,(f

the solutions that satisfy

(C(l) (@) _+_a(i))T E(l')*IC(i)

) and a,(;) are

Z (e(l) (]) )TP(])_I 0 (27)
jeN(’)
and
ICVe” +a) =0 < 2/2. (28)
As a result, if the solution to (27) when a,((i) =0, i.e.,
(L (D=1 g
P i > P Ay (29)
jeN®
satisfies (28) with a,((i) =0, i.e.,
T
cop? [ — > P ae) || =071 <2,

i jeN®
(e.¢]
then e,(j) is given by (29) and a(’) 0.

Applying the assumption (20) this condition is satisfied for
k=1, so ag) =0 for all 1 <i < n. Then using the proof of
Theorem IV.2 and induction (note that max<;<, e ( p@) -1 (k)
is monotone), one can show that a(l) = 0 for all k>1 and
the errors a() converges to zero.

Proof of Theorem 4.4

Let Q = dl; ZjEN(i) P(]) ~, then (18) can be rewritten as
)A(Igi) = arg min (y(l) “ C(i)Xk — a,(j))TZISi)*l
Xk,a]((')
x (4~ cOx, —al) + 4 H (i) ‘

+ Xk — ' Q(Xk — d), (30)

where, d is a vector depending on A)A( (j ) and P(j ). WLOG

@

we may also assume that d = 0. Fixing ak , the solution of

(30) is given by

%9 = KO~ a®), 31)
K= (Q+COTz(-1c)=IcOT g™ -1 (37
Plugging it into (30) and differentiate with respect to a()
we have
Ia@-cYK’=P~'a-c?K)
+KTQK@ — 3" lloo < 2/2.
Combining it with (31), we have an upper bound on
Iy —a | < J1a - cOK) =0 -1 @ - cVK)
+KTQK]'|4/2
as well as
X1 < KA - cOK) =0 -1a - ¢k
+KTQK] 7 1j4/2.
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