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ABSTRACT

Symbolic planning models allow decision-making agents to se-
quence actions in arbitrary ways to achieve a variety of goals in
dynamic domains. However, they are typically handcrafted and
tend to require precise formulations that are not robust to human
error. Reinforcement learning (RL) approaches do not require such
models, and instead learn domain dynamics by exploring the en-
vironment and collecting rewards. However, RL approaches tend
to require millions of episodes of experience and often learn poli-
cies that are not easily transferable to other tasks. In this paper,
we address one aspect of the open problem of integrating these
approaches: how can decision-making agents resolve discrepancies
in their symbolic planning models while attempting to accomplish
goals? We propose an integrated framework named SPOTTER that
uses RL to augment and support (“spot”) a planning agent by dis-
covering new operators needed by the agent to accomplish goals
that are initially unreachable for the agent. SPOTTER outperforms
pure-RL approaches while also discovering transferable symbolic
knowledge and does not require supervision, successful plan traces
or any a priori knowledge about the missing planning operator.
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1 INTRODUCTION

Symbolic planning approaches focus on synthesizing a sequence of
operators capable of achieving a desired goal [9]. These approaches
rely on an accurate high-level symbolic description of the dynamics
of the environment. Such a description affords these approaches
the benefit of generalizability and abstraction (the model can be
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used to complete a variety of tasks), available human knowledge,
and interpretability. However, the models are often handcrafted,
difficult to design and implement, and require precise formulations
that can be sensitive to human error. Reinforcement learning (RL)
approaches do not assume the existence of such a domain model,
and instead attempt to learn suitable models or control policies
by trial-and-error interactions in the environment [28]. However,
RL approaches tend to require a substantial amount of training in
moderately complex environments. Moreover, it has been difficult
to learn abstractions to the level of those used in symbolic planning
approaches through low-level reinforcement-based exploration.
Integrating RL and symbolic planning is highly desirable, enabling
autonomous agents that are robust, resilient and resourceful.

Among the challenges in integrating symbolic planning and RL,
we focus here on the problem of how partially specified symbolic
models can be extended during task performance. Many real-world
robotic and autonomous systems already have preexisting models
and programmatic implementations of action hierarchies. These
systems are robust to many anticipated situations. We are inter-
ested in how these systems can adapt to unanticipated situations,
autonomously and with no supervision.

In this paper, we present SPOTTER (Synthesizing Planning Op-
erators through Targeted Exploration and Reinforcement). Unlike
other approaches to action model learning, SPOTTER does not have
access to successful symbolic traces. Unlike other approaches to
learning low-level implementation of symbolic operators, SPOT-
TER does not know a priori what operators to learn. Unlike other
approaches which use symbolic knowledge to guide exploration,
SPOTTER does not assume the existence of partial plans.

We focus on the case where the agent is faced with a symbolic
goal but has neither the necessary symbolic operator to be able
to synthesize a plan nor its low-level controller implementation.
The agent must invent both. SPOTTER leverages the idea that the
agent can proceed by planning alone unless there is a discrepancy
between its model of the environment and the environment’s dy-
namics. In our approach, the agent attempts to plan to the goal.
When no plan is found, the agent explores its environment using
an online explorer looking to reach any state from which it can
plan to the goal. When such a state is reached, the agent spawns of-
fline “subgoal” RL learners to learn policies which can consistently
achieve those conditions. As the exploration agent acts, the subgoal
learners learn from its trajectory in parallel. The subgoal learners



regularly attempt to generate symbolic preconditions from which
their candidate operators have high value; if such preconditions
can be found, the operator is added with those preconditions into
the planning domain. We evaluate the approach with experiments
in a gridworld environment in which the agent solves three puzzles
involving unlocking doors and moving objects.

In this paper, our contributions are as follows: a framework for
integrated RL and symbolic planning; algorithms for solving prob-
lems in finite, deterministic domains in which the agent has partial
domain knowledge and must reach a seemingly unreachable goal
state; and experimental results showing substantial improvements
over baseline approaches in terms of cumulative reward, rate of
learning and transferable knowledge learned.

1.1 Running example: GridWorld

Throughout this paper, we will use as a running example a Grid-
World puzzle (Figure 1) which an agent must unlock a door which is
blocked by a ball. The agent’s planning domain abstracts out the no-
tion of specific grid cells, and so all navigation is framed in terms of
going to specific objects. Under this abstraction, no action sequence
allows the agent to “move the ball out of the way”. Planning actions
are implemented as handcrafted programs that navigate the puzzle
and execute low-level actions (up, down, turn left/right, pickup).
Because the door is blocked, the agent cannot generate a symbolic
plan to solve the problem; it must synthesize new symbolic actions
or operators. An agent using SPOTTER performs RL on low-level
actions to learn to reach states from which a plan to the goal exists,
and thus can learn a symbolic operator corresponding to “moving
the ball out of the way”.

2 BACKGROUND

In this section, we provide a background of relevant concepts in
planning and learning.

2.1 Open-World Symbolic Planning

We formalize the planning task as an open-world variant of propo-
sitional STRIPS [8], T = (F, O, 09, 54). We consider F (fluents) to

Figure 1: The agent’s (red triangle) goal is to unlock the
door (yellow square). SPOTTER can learn how to move the
blue ball out of the way. The learned representation is sym-
bolic and can be used to plan (without additional learning)
to achieve different goals like reaching the green square.

be the set of propositional state variables f. A fluent state o is a
complete assignment of values to all fluents in F. That is, || = |F|,
and o includes positive literals (f) and negative literals (= f). a9
represents the initial fluent state. We assume full observability of
the initial fluent state. We can define a partial fluent state & to refer
to a partial assignment of values to the fluents F. The goal condition
is represented as a partial fluent state 6,. We define £ (F) to be the
set of all partial fluent states with fluents in F.

The operators under this formalism are open-world. A partial
planning operator can be defined as o = (pre(o), eff (0), static(0)).
pre(o) € L(F) are the preconditions, and eff (0) € L(F) are the
effects, static(o) C F are those fluents whose values are known
not to change during the execution of the operator. An operator
o is applicable in a partial fluent state ¢ if pre(o) C 6. The result
of executing an operator o from a partial fluent state ¢ is given
by the successor function §(6,0) = eff (0) U restrict (6, static(0)),
where restrict(6, F’) is the partial fluent state consisting only of
6’s values for fluents in F’. The set of all partial fluent states defined
through repeated application of the successor function beginning at
¢ provides the set of reachable partial fluent states As. A complete
operator is an operator 6 where all the fluents are fully accounted for,
namely, Vf € F, f € eff "(6) U eff (6) U static(6), where eff * (o) =
{feF:feeff(o))andeff (0) ={f € F:—f € eff(0)}. We
assume all operators o satisfy eff (0)\pre(o) # 0; these are the only
operators useful for our purposes.! A plan 77 is a sequence of
operators {01, . .., 0n). A plan 77 is executable in state oy if, for all
ie{1,---,n}, pre(o;) C 6i—1 where 6; = §(5i-1,0;). A plan 7 is
said to solve the task T if executing 77 from o9 induces a trajectory
(00,01, 51, . . ., 0n, Gp) that reaches the goal state, namely 64 C .

An open-world forward search (OWFS) is a breadth-first plan
search procedure where each node is a partial fluent state 6. The
successor relationships and applicability of O are specified as de-
fined above and used to generate successor nodes in the search
space. A plan is synthesized once 6, has been reached. If o9 is a
complete state and the operators are complete operators, then each
node in the search tree will be complete fluent states, as well.

We also define the notion of a “relevant” operator and “regressor”
nodes, as used in backward planning search [9]. For a partial fluent
state 6 with fluents f; and their valuations ¢; € {True, False},
operator o is relevant at partial fluent state & when:

(1) restrict(c\eff (0), static(o)) = 6\eff (0) and
(2) 6 2 eff (0) Urestrict(pre(o), static(0))

When a relevant operator o is found for a particular &, it can
be regressed to generate a partial fluent state §71(6,0) = pre(o) U
(&\eff(0)).2 Regression is the “inverse” of operator application
in that if applying any operator sequence (o1, .. ., 0p) yields final
state &7, if we let 6”7 = §71(...(671(6,0n) ...),01), then 6"’ C 6.
In particular, 6" is the minimal partial fluent state from which
application of {01, - - -, 0,) results in 5”.

1We also assume (eff* (0) U eff ~(0)) N static(o) = 0; i.e. that postconditions and
static variables do not conflict.

2This is a slight abuse of notation because 87! is not the function inverse of &, but
they can be thought of as inverse in the sense described in this paragraph.



2.2 Reinforcement Learning

We formalize the environment in which the agent acts as a Markov
Decision Process (MDP) M = (S, A, p,r,1,y), where S is the set
of states, A is the set of actions, p is the probability distribution
p(se+1 | sear), r : SXAXS — Ris areward function, : is a
probability distribution over initial states, and y € (0, 1] [28]. A
policy for M is defined as the probability distribution 7ps(a | s) that
establishes the probability of an agent taking an action a given that
it is in the current state s. We define the set of all such policies in
M as Ty Welet So = {s € S : i(s) > 0}. An RL problem typically
consists of finding an optimal policy 7y, € Ty that maximizes the
expected discounted future rewards obtained from s € S:

Ty, = arg max ZU”M(S)’
™ SES
where vy, () is the value function and captures the expected dis-
counted future rewards obtained when starting at state s and se-
lecting actions according to the policy 7p;:

0o

Orar(s) = B Zytrt | so=s|.
t=0

At each time step, the agent executes an action a and the en-
vironment returns the next state s’ € S (sampled from p) and an
immediate reward r. The experience is then used by the agent to
learn and improve its current policy my,.

Q-learning [31] is one learning technique in which an agent uses
experiences to estimate the optimal Q-function g* (s, a) for every
state s € S and a € A, where ¢*(s, a) is the expected discounted
sum of future rewards received by performing action a in state s.
The Q-function is updated as follows:

q(s,a) < q(s,a) +a

5

(r +y max q(s’,a’) = q(s, a))

where @ € (0, 1] is the learning rate. The Q-learner can explore
the environment, e.g., by following an e-greedy policy, in which
the agent selects a random action with probability € and otherwise
follows an action with the largest q(s, a).

3 PROPOSED SPOTTER FRAMEWORK

We begin by introducing a framework for integrating the planning
and learning formulations. We define an integrated planning task
that enables us to ground symbolic fluents and operators in an MDP,
specify goals symbolically, and realize action hierarchies.

We define an executor for a given MDP M = (S, A, p,r, 1, y) as a
triple x = (Iy, 7rx, fx) Where I, C S is an initiation set, 7y (alSiniz, S)
is the probability of performing a given that the executor initialized
at state sjp;; and the current state is s, and fx (siniz, s) expresses the
probability of terminating x at s given that x was initialized at sjp;;.
3 We define X as the set of executors for M.

Definition 3.1. (Integrated Planning Task) We can formally
define an Integrated Planning Task (IPT) as 7 = (T, M, d, e) where
T = (F, 0, oy, &g) is an open-world STRIPS task, M = (S, A, p, 7, 1, y)
is an MDP, a detector function d : S + L(F) determines a fluent

3 An executor is simply an option [29] where the policy and termination condition
depend on where it was initialized.

state for a given MDP state, and an executor function e : O — X
that determines a mapping between an operator and an executor
in the underlying MDP.

For the purposes of this paper, we assume that for each operator
o0 € O, e(0) is accurate to o; that is, for every o € O, Ie(o) 2 {s€S:
d(s) 2 pre(o)} and

1 ifd(s) 2 eff (o)
ﬂe(o) (Sinit»$) = Urestrict(d(sinit), static(o))

0 otherwise.

The objective of this task is to find an executor x* € Xy such
that Sy (Sinir, s) = 1if and only if d(s) 2 &y, and Lex 2 Sp, and x*
terminates in finite time.

A solution to a particular IPT 7~ is an executor x* € Xy, having
the properties defined above.

A planning solution to a particular IPT 7 is a mapping nr :
So — O such that for every sy € So, 77(s0) = (01,...,0p) is
executable at so and achieves goal state G4. Assuming all operators
are accurate, executing in the MDP M the corresponding executors
e(01),...,e(op) in sequence will yield a final state s such that d(s) 2
g as desired.

An IPT 7 is said to be solvable if a solution exists. It is said to
be plannable if a planning solution exists.

3.1 The Operator Discovery Problem

As we noted earlier, symbolic planning domains can be sensitive to
human errors. One common error is when the domain is missing
an operator, which then prevents the agent from synthesizing a
plan that requires such an operator. We define a stretch-Integrated
Planning Task, stretch-IPT#, that captures difficult but achievable
goals — those for which missing operators must be discovered.

Definition 3.2. (Stretch-IPT). A Stretch-IPT 7 is an IPT 7 for
which a solution exists, but a planning solution does not.

Sarathy et al. considered something similar in a purely symbolic
planning context as MacGyver Problems [24]; here we extend these
ideas to integrated symbolic-RL domains. A planning solution is
desirable because a plannable task affords the agent robustness to
variations in goal descriptions and a certain degree of generality
and ability to transfer decision-making capabilities across tasks.
We are interested in turning a stretch-IPT into an plannable IPT,
and specifically study how an agent can automatically extend its
task description and executor function to invent new operators and
their implementations.

Definition 3.3. (Operator Discovery Problem). Given a stretch-
IPTT = (T,M,d,e) with T = (F, O, oy, 59), construct a set of
operators O’ = {o{,- - - , 07, } and their executors Xofs o Xo, €X
such that the IPT (T’,M,d, e’ is plannable, with T’ = (F,0 U
0’, 0y, &g) and the executor function

, e(o) ifoeO
e’ (o) = ) .
Xo ifo € O’

In the rest of the section, we will outline an approach for solving
the operator discovery problem.

4akin to “stretch goals” in business productivity



3.1.1 The Operator Discovery Problem in GridWorld. In the ex-
ample GridWorld puzzle, the SPOTTER agent is equipped with a
high-level planning domain specified in an open-world extension
of PDDL that can be grounded down into an open-world STRIPS
problem. This domain is an abstraction of the environment which ig-
nores the absolute positions of objects. In particular, the core move-
ment actions forward, turnLeft, and turnRight in the MDP are ab-
sent from the planning domain, which navigates in terms of objects
using, e.g., the operator goToOb j(agent,object), with precondi-

Algorithm 2: SOLVE(T, 8, Zyeach> Zplans T, impasse, L)

Input: 7 Integrated Planning Task
Input: s: Initial MDP state from which to plan
Input: 3,cqcn: Set of reachable fluent states
Input: 3,;qn: Set of plannable fluent states
Input: 7: Value threshold parameter
Input: impasse: true if this algorithm was called from LEARN
Input: L: A set of learners
1: 0« T.d(s)

tions —holding(agent, object), ~blocked(ob ject), and inRoom(agent, ob ject), if 7.64 C o then

and with effect nextToFacing(agent, object). All initial operators
are assumed to satisfy the closed-world assumptions, except that
putting down an object (putDown(agent, object)) leaves unknown
whether at the conclusion of the action, some other object (e.g.,
a door) will be blocked. Each operator has a corresponding hand-
coded executor. The goal here is 6, = {open(door)}, which is not
achievable using planning alone from the initial state.

3.2 Planning and Execution

Our overall agent algorithm is given by Algorithm 1. We consider
the agent to be done when it has established that the input IPT
7 is a plannable IPT. This is true once the agent is able to find a
complete solution to the IPT through planning and execution, alone,
and without requiring any learning. Algorithm 1 shows that the
agent repeatedly learns in the environment until it has completed
a run in which there were no planning impasses, i.e., situations
where no plan was found through a forward search in the symbolic
space. The set of learners L is maintained between runs of SOLVE.

Two sets of fluent states will be important in Algorithms 2-4:
Zreach and Zpjgn. Zpeqch contains all states known to be reachable
from the initial state via planning. %, contains all states from
which a plan to the goal g, is known.

Algorithm 2 (SOLVE) begins with the agent performing an OWFS
(open-world forward search) of the symbolic space specified by the
task. If a plan is found (line 7), the agent attempts to execute the
plan (line 9). If unexpected states are encountered such that the
agent cannot perform the next operator, it will call Algorithm 3
(LEARN). Otherwise, the agent continues with the next operator
until all the operators in a plan are complete. If the goal conditions
are satisfied (line 16), the algorithm returns success. Otherwise, it
turns to LEARN.

3.3 Learning Operator Policies

Broadly, in Algorithm 3 (LEARN), the agent follows an exploration
policy 7exp1, €.g., €-greedy, to explore the environment, spawning

Algorithm 1: sPOTTER(T")

Input: 7 Integrated Planning Task
1: impasse < true
2 L« {[expl}
3: while impasse do
4 so~T.Mu(-)
5 impasse, L < sOLVE(T, so, 0, 0, 7, false, L))
6: end while
7: return 7

3 return impasse, L

4: end if

5. o, visitedNodes < owFrs(T.T, o)

6: Zreach-add(visitedNodes)

7: if &1 # 0 then

8 Xplan-add(all visitedNodes along 77)
9:  for operator o; in 77 do

10: s < EXECUTE(7T.e(0;),s)

11: o «— T.d(s)

12: if pre(ois1) ¢ o then

13: return LEARN(T, S, Xreachs Zplans T> L)
14: end if

15: end for
16:  if 7.64 C o then

17: return impasse, L

18: else

19: return LEARN(T, S, Zreachs Zplans T L)
20: end if

21: else

22: return LEARN(T, S, Zreachs Zplans Ts L)
23: end if

RL agents which attempt to construct policies to reach particular
partial fluent states from which the goal 6 is reachable by planning.
These partial fluent states correspond to operator effects. For each
such set of effects, the system attempts to find sets of preconditions
from which that operator can consistently achieve high value; when
one such set of preconditions is found, the policy along with the
corresponding set of preconditions and effects is used to define a
new operator and its corresponding executor, which are added to
the IPT.

Algorithm receives as input, among other things, a set of learners
L (which may grow during execution, as described below). L in-
cludes an exploration agent £,; with corresponding policy 7 p;
(initialized in Algorithm 1). L also contains a set of offline “subgoal”
learners, which initially is empty.

In each time step, LEARN executes an action a according to its
exploration policy 7, ,;, with resulting MDP state s” and corre-
sponding fluent state o (lines 4-6). The agent will attempt to check if
o is a fluent state from which it can plan to the goal. First the agent
checks if o is already known to be a state from which it can plan to
the goal (¢ € 24p; line 7). If not, the agent attempts to plan from
o to the goal (line 10). If there is a plan, then the agent regresses
each operator in the plan in reverse order (op, - - - , 01). As described
in Section 2.1, after regressing through o;, the resulting fluent state
Gi-1 is the most general possible partial fluent state (i.e., containing
the least possible fluents) such that executing (o;,- - -, 05) from
i1 results in G4; this makes each ;-1 a prime candidate for some



new operator o*’s effects. That is, assuming static(o) = 0, 5;—1
guarantees that (oj, - - - , 0,) is a plan to G4, while allowing the cor-
responding executor to terminate in the largest possible set of fluent
states. Each such partial fluent state G4 is chosen as a subgoal, for
which a new learner {5, is spawned and added to L (lines 12-18).
Gsg is also added to the set of “plannable” fluent states 24,

Each subgoal learner 05, is trained each time step using as re-
ward the indicator function 1526, which returns 1 if that learner’s
subgoal is satisfied by s” and 0 otherwise (lines 23-25).

While in this case the exploration learner £, ,; may be conceived
as an RL agent whose reward function is 1 whenever any such
subgoal is achieved (line 22) and whose exploration policy 7y p;
is e-greedy, nothing prevents it from being defined differently as a
random agent or even symbolic learner as discussed in Section 6.

Algorithm 3: LEARN(T, s, Zcachs Zplans T> L)

Input: 7 Integrated Planning Task
Input: s: Initial MDP state
Input: X,.,cn: Set of reachable fluent states
Input: 3,4,: Set of plannable fluent states
Input: 7: Value threshold
Input: L: set of learners

1: done « false

2: 0« T.d(s)

3: while ~done do

4 a~ ”expl(' |'s)

5 s ~T.p(-]|s,a)

6: o« 7.d(s)

7. if 0 2 6 for some & € 3p1qn then
8: done « true

9: else

10: 7T, visitedNodes «— owrs(7T.T, o)
11: if 77 # 0 then

12: Gsg < Oy

13: for o; in reversed(sr7) do

14: Gsg — 6 (Gsg, 0i)

15: Zplan-add(Fsg)

16: logy < spawnLearner(Gsg)
17: L<—LU{£’,359}

18: end for

19: done « true
20: end if
21: end if

22: [expl-train(s; a, Lgone=trues ')
23: for t5. €L do

sg
24: losg .train(s, a, 16265y s’)
25:  end for
26: s« s

27: end while

28: for {5, € L do

29:  for Gpre € GEN-PRECON([&Sg, Sreach, T) do

30: 0* — (Gpre. Gsg, 0)

31: x* makeExecutor (5, 0*)
32: 7 .addOperator(o*, x*)

33:  end for

34: end for

35: return SOLVE(T, S, Zyreachs Zplan» T, true, L)

Upon reaching a state from which a plan to the goal exists, the
agent stops exploring. For each of its subgoal learners £; € L,
it attempts to construct sets of preconditions (characterized as a
partial fluent state 6;,¢) from which its policy can consistently
achieve the subgoal state d54 (see Section 3.4) (lines 28-34). If any
such precondition sets Gpye exist, the agent constructs the operator
o* such that pre(o*) = 6pre, eff (0*) = &gy, and without static
fluents (all other variables are unknown once the operator is exe-
cuted; static(0*) = 0). The corresponding executor is constructed
as makeExecutor({’&sg, 0%) = (Lex, Tyx, Box ), where

Lo ={s’ € S:T.d(s") 2 pre(o™)}
1 ifa = argmax {’g,sg.q(s, a)

aeT.M.A
0 otherwise

Tyex (@ | Sinit,s) =

1 if T.d(s) 2 64

0 otherwise.

ﬂx* (sinit’ S) = {

Note that while the definition of the Operator Discovery Problem
allows the constructed operators’ executors to depend on sjpjz, in
practice the operators are ordinary options. Options are sufficient,
provided the operators being constructed have no static fluents.> Con-
structing operators with static fluents is a topic for future work.

Constructed operators and their corresponding executors are
added to the IPT (line 32), which ideally becomes plannable as a
result, solving the Operator Discovery Problem. Because the agent
is currently in a state from which it can plan to the goal, control is
passed back to sOLVE (with impasse set to true because this episode
required learning).

3.3.1 Learning operator policies in GridWorld. The puzzle shown in
Figure 1 presents a Stretch-IPT for which a solution exists in terms
of the MDP-level actions, but no planning solution exists. Thus,
SPOTTER enters LEARN, and initially moves around randomly (the
exploration policy has not yet received a reward). Eventually, in
the course of random action, the agent moves the ball out of the
way (Algorithm LEARN, line 11). From this state, the action plan

nr = goToObj(agent, key); pickUp(agent, key);
goToObj(agent, door); useKey(agent, door)
achieves the goal 65 = {open(door)}. Regressing through this plan

from the goal state (Algorithm LEARN, lines 13-17), the agent iden-
tifies the subgoal

Gsg = {nextToFacing(agent, ball),
handsFree(agent), inRoom(agent, key),
inRoom(agent, door), locked(door),
—holding(agent, key), ~blocked(door)}

(as well as other subgoals corresponding to the suffixes of 7r), and
constructs a corresponding subgoal learner, lsy, which uses RL to
learn a policy which consistently achieves dsg.

5This also indicates why we used our open-world planning formalism: in closed-world
planning, all fluents not in the effects are static, requiring executors which depend
on Sipiz. By specifying static fluents for each operator, we can leverage handmade
operators which (largely) satisfy the closed-world assumption while allowing the
operators returned by SPOTTER to be open-world.



3.4 Generating Preconditions

The prior algorithms allow an agent to plan in the symbolic space,
and when stuck explore a subsymbolic space with RL learners. We
noted that each learner is connected to a particular subgoal - from
which the agent can generate a symbolic plan — which in turn,
maps onto the effects of a potential new operator. What remains
is to define the preconditions of such an operator. Algorithm 4
(GEN-PRECON) incrementally generates increasingly general sets
of preconditions for each learner.

GEN-PRECON begins with initializing a set of above-threshold
fluent states X, to empty. This set will represent the output of
the algorithm, which in turn is essentially a form of graph search
over the space of possible sets of preconditions. More specifically,
GEN-PRECON first adds all the fluent states in the set of reachable
fluent states 2,45, to the search queue and to 2 ; (lines 3-7). The
learner ¢ has visited states in the MDP and has been updating its
Q-table as part of LEARN (see line 24 in LEARN). We probe this
Q-table and extract the fluent states that the agent has visited and
populate a set of “been” fluent states 3., (line 9). While there are
fluent states (or partial fluent states) in the queue, a set of “succes-
sor” nodes is computed for each one (node) by capturing the set
of fluents common to both the node and a particular “been” fluent
state o”, for each o/ € 2, If the average value (according to £’s
q function) of all states satisfying 6common is above the threshold z,
then the above-threshold common partial fluent state 6common is
added to X ;. The idea here is to only allow sets of preconditions
which are guaranteed reachable by the planner (generalizations
of elements of X,,,.), and to compute the set of all such sets of
preconditions for which the agent can consistently achieve the
learner’s subgoal G54 (Where for the purposes of this paper, a set
of preconditions Gpre “consistently achieves” &4 if the average
value of all MDP states satisfying Gpre is above the threshold 7).

Algorithm 4: GEN-PRECON(?, 2o qch, T)

Input: ¢: Learner along with Q-tables
Input: X, .,.n: Fluent states reachable from the initial state
Input: 7: Value threshold
1: Dsp — 0
: queue — 0
: for o in X, eqcn do
if value(o) > 7 then
queue.add (o)
Ssr.add(o)
end if
: end for
: Zpeen — getFluentStatesFromQ(¢)
10: while queue do
11:  node «— queue.pop()
122 for ¢’ in Zpeen do

N N e LI~ S )

13: Gcommon — node N o’

14: if value(Gcommon) > T A Gcommon DOt in X~ ; then
15: queue.add(6common)

16: %> 7.add(Gcommon)

17: end if

18:  end for
19: end while
0: return X.,

)

GEN-PRECON can be terminated at any time during the while loop,
and will yield zero or more plausible preconditions for a partic-
ular learner-operator. If terminated before any nodes have been
expanded, GEN-PRECON will simply yield elements from X, 5.
However, allowing this algorithm to run longer will yield more
general preconditions, i.e., those with fewer fluents.

3.4.1 Precondition generation in GridWorld. Returning to the puz-
zle in Figure 1, the precondition generation algorithm uses the value
function for the subgoal learner /5 to determine a conjunction
of fluents such that the MDP states satisfying those fluents have a
high average state value (say, > 0.9), and which is plannable from
the environment’s start state.® This conjunction specifies the new
operator’s preconditions. The operator is added to the planning
domain, and this augmented domain can be solved using planning
alone, and can be used in other plans to achieve other goals in the
environment.

4 EXPERIMENTS

We evaluate SPOTTER on MiniGrid [5], a platform based on pro-
cedurally generated 2D gridworld environments populated with
objects - agent, balls, doors and keys. The agent can navigate the
world, manipulate objects, and move between rooms.

To establish the fact that (1) operator discovery is possible, and
(2) that the symbolic operators discovered by SPOTTER are useful
for performing new tasks in the environment, we structure our
evaluation into three puzzles that the agent must solve in sequence,
much like three levels in puzzle video games (Fig. 1). The envi-
ronment in each level consists of two rooms with a locked door
separating them. The agent and the key to the room are randomly
placed in the leftmost room. In puzzle 1, the agent’s task is to pickup
the key, and use it to open the door. The episode terminates, and
the agent receives a reward inversely proportional to the number
of elapsed time steps, when the door is open. In puzzle 2 the agent’s
goal is again to open the door, but a ball is placed directly in front
of the door, which the agent must pick up and move elsewhere
before picking up the key (this is the running example). Puzzle 3
is identical to puzzle 2, except that the agent’s goal is now not to
open the door, but to go to a goal location (green square) in the far
corner of the rightmost room. The high-level planning domain and
low-level RL actions are as defined for the running example.

The evaluation is structured so that for almost all initial condi-
tions in puzzle 1, SPOTTER’s planner can produce a plan that can
be successfully executed to reach the goal state. In puzzle 2, the
door is blocked by the ball, and the agent has no operator represent-
ing “move the ball out of the way” (and no combination of existing
operators can safely achieve this effect given the agent’s planning
domain). The agent must discover such an operator. Finally, puzzle
3 is designed to test whether the learned operator can be used in
the execution of different goals in the same environment.

Figure 2 shows the average results of running SPOTTER 10
times on puzzles 1 through 3. The algorithm was allowed to re-
tain any operators/executors discovered between puzzles 2 and 3.
In each case we employed a constant learning rate ¢ = 0.1, dis-
count factor y = 0.99, and an e-greedy exploration policy with

®The preconditions produced are too lengthy to include in this paper, but can be found
in the supplementary material.
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Figure 2: Experimental performance across three tasks. We
report mean cumulative reward (and standard deviation in
lighter color) obtained by our approach (SPOTTER) and
three baseline algorithms: tabular Q-learning over primitive
actions (VQL), tabular Q-learning with primitive and high-
level action executors (HLAQL), and HLAQL with q-updates
trickling down from HLAs to primitives (HLALQL).

decaying exploration constant € beginning at 0.9 and decaying to-
wards 0.05. € is decayed exponentially using the formula e(t) =
€min + (Emax — emin)e_/“, where A = —l0g(0.01)/N, N being the
maximum number of episodes. The value threshold was set to
7 = 0.9. We ran for 10,000 episodes on puzzle 1, 20,000 episodes on
puzzle 2, and 10,000 episodes on puzzle 3.

The experimental results show that SPOTTER achieved higher
overall rewards than the baselines in the given time frame and did
so more quickly.” Crucially, the agent learned the missing oper-
ator for moving the blue ball out of the way in Level 2, and was
immediately able to use this operator in Level 3. This is demon-
strated both by the fact that the agent did not experience any drop
in performance when transitioning to Level 3 and also we know
from running the experiment that the agent did not enter LEARN or
GEN-PRECON in Level 3. It is important to note that the baselines
did converge at around 800,000 - 1,000,000 episodes, significantly
later than SPOTTER 2.

The results suggest that SPOTTER significantly outperformed
comparable baselines. The HLAQL and HLALQL baselines have
their action space augmented with the same high-level executors
provided to SPOTTER. SPOTTER does not use any function approx-
imation techniques and the exploration and subgoal learners are
tabular Q-learners themselves. Accordingly, we did not compare
against any deep RL baselines. We also did not compare transfer
learning and curriculum learning approaches as these approaches

7Code implementing SPOTTER and the baselines along with experiments will be made
available post-review.

8n the supplementary material, we provide the learned operator described in PDDL,
learning curves for the baselines over 2,000,000 episodes, and videos showing SPOT-
TER’s integrated planning and learning.

do not handle cases where new representations need to be learned
from the environment.

4.1 Experiment 2

Ordinarily, as soon as SPOTTER discovers an operator exceeding
the value threshold, that operator is incorporated into the plan-
ning agent’s model. We dispensed with this assumption and ran
SPOTTER on puzzle 2 for 50,000 episodes, allowing the system to
continue learning operator policies and generating preconditions
throughout this time. Every 50 episodes, SPOTTER logged the new
operators it had created. (Operators were not logged if their precon-
ditions were specifications of preconditions for which an operator
had already been discovered.) Figure 3 shows the results for one
particular operator learner (i.e., each of the output operators has
the same postconditions and the same underlying policy, but has
a unique set of preconditions). As Figure 3a indicates, by episode
29,500 this learner discovered 9,049 unique operators; no further
operators were discovered after this episode.

Figures 3b and 3c demonstrate that with additional exploration,
the agent can construct more general operators. Recall that an op-
erator with a set of preconditions is accepted whenever the average
value of all MDP states satisfying those preconditions is greater
than the value threshold (in this experiment, 0.9). As the values of
additional MDP states increase past the threshold, more general
operators (with fewer preconditions) cross this threshold. Figure 3b
plots, for each operator discovered, the episode in which it was
logged and its total number of preconditions. Note that there are
several “waves” of precondition generalization. Beginning with
the discovery of the first viable set of preconditions, as additional
states cross the threshold there is a rapid discovery of new opera-
tors with additional preconditions. Eventually (a little after 10,000
episodes), the existing operators are sufficiently general that many
rarely-seen MDP states would have to be thoroughly explored be-
fore more general preconditions can be found. For a while, any new
operators discovered (while they are not merely specifications of
existing operators) have a larger number of preconditions. This ulti-
mately culminates in a “second wave” in which enough MDP states
have been explored that more general operators can be produced,
ultimately surpassing the first wave.

Figure 3c shows that operators created later not only have fewer
preconditions than earlier operators, but dominate earlier operators
(in that the preconditions of the dominated operator are a strict
superset of the preconditions of the dominating operator). Orange
bars represent dominated operators, blue bars those for which
a superior operator has not yet been found. Relatively few non-
dominated operators persist by step 30,000, and nearly all that
do were created in the last few thousand episodes, suggesting that
running SPOTTER for longer before incorporating operators allows
the construction of strictly better (more general) operators.’

5 DISCUSSION

The SPOTTER architecture assumes the existence of a planning do-
main with operators which correspond to executors which are more

9 An animated version of this chart, showing how operators are constructed and then
dominated as the agent continues exploring, appears in the supplementary material.
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Figure 3: Results of precondition generalization experiment for a single subgoal learner on puzzle 2.

or less correct. It does not assume that these executors are reward-
optimal. Further, some tasks can be more efficiently performed if
they are not first split into subgoals. Thus, the performance of raw
RL systems eventually overtakes that of SPOTTER on any particular
environment. This is not a serious flaw — SPOTTER also produces
knowledge that can be more easily applied to perform other tasks
in the same environment.

The environments used to test SPOTTER (puzzles 1 through 3)
are deterministic. In stochastic environments, it is often difficult to
design planning domains where operators have guaranteed effects.
While SPOTTER can handle stochastic environments, it would need
more robust metrics for assessing operator confidence.

Future work could also emphasize adapting this work to high-
dimensional continuous state and action spaces using deep rein-
forcement learning. “Symbolizing” such spaces can be difficult, and
in particular such work would have to rethink how to generate
candidate preconditions, since the existing approach enumerates
over all states, which clearly would not work in deep RL domains.

The key advantage of SPOTTER is that the agent can produce
operators that can potentially be applied to other tasks in the same
environment. Because these operators’ executors are policies (here,
policies over finite, atomic MDPs), they do not generalize particu-
larly well to environments with different dynamics or unseen start
states (e.g., an operator learned in puzzle 2 could not possibly be
applied in puzzle 3 if the door was moved up or down by even one
cell). While function approximation could be helpful to solving this
problem, an ideal approach might be a form of program synthe-
sis [27], in which the agent learns programs that can be applied
regardless of environment.

Furthermore, in this work, we manually sequenced the three
tasks to elicit the discovery of operators that would be useful in the
final task environment. A possible avenue for future work would
be to develop automated task sequencing methods (i.e., curriculum
learning [22]) as to improve performance in downstream tasks.

6 RELATED WORK

In this section, we review related work that overlaps with various
aspects of the proposed integrated planning and learning literature.

6.1 Learning Symbolic Action Models

Early work in the symbolic Al literature explored how agents can
adjust and improve their symbolic models through experimentation.
Gill proposed a method for learning by experimentation in which
the agent can improve its domain knowledge by finding missing
operators [10]. The agent is able design experiments at the symbolic
level based on observing the symbolic fluent states and comparing
against an operator’s preconditions and effects. Other approaches
(to name a few: [11, 17, 21, 25, 26, 30]), comprising a significant
body of literature, have explored recovering from planning failures,
refining domain models, and open-world planning.

These approaches do not handle the synthesis of the underly-
ing implementation of an operator as we have proposed. That is,
they synthesize new operators, but no executors. That said, the
rich techniques offered by these approaches can be useful in inte-
grating into our online learner. As we describe in Section 3.3, the
online learner follows an e-greedy exploration policy. Future work
will explore how our online learner could be extended to conduct
symbolically-guided experiments as these approaches suggest.

More recently, there has been a growing body of literature ex-
ploring how domain models can be learned from action traces
[3, 14, 16, 36]. The ARMS system learns PDDL planning operators
from examples. The examples consist of successful fluent state and
operator pairs corresponding to a sequence of transitions in the
symbolic domain [35]. Subsequent work has explored how domains
can be learned with partial knowledge of successful traces [2, 6],
and with neural networks capable of approximating from partial
traces [33] and learning models from pixels [4, 7].

In the RL context, there has been recent work in learning sym-
bolic concepts [18] from low-level actions. Specifically, Konidaris
et al. assume the agent has available to it a set of high-level actions,
couched in the options framework for hierarchical reinforcement
learning. The agent must learn a symbolic planning domain with
operators and their preconditions and effects. This approach to
integrating planning and learning is, in a sense, a reverse of our
approach. While their use case is an agent that has high-level ac-
tions but no symbolic representation, ours assumes that we have



(through hypothesizing from the backward search) most of the
symbolic scaffolding, but need to learn the policies themselves.

6.2 Learning Action Executors

There has been a tradition of research in leveraging planning do-
main knowledge and symbolically provided constraints to improve
the sample efficiency of RL systems. Grzes et al. use a potential func-
tion (as a difference between source and destination fluent states)
to shape rewards of a Q-learner [13]. While aligned with our own
targeted Q-learners, their approach requires the existence of sym-
bolic plans, which our agent does not possess. A related approach
(PLANQ) combines STRIPS planning with Q-learning to allow an
agent to converge faster to an optimal policy [12]. Planning with
Partially Specified Behaviors (PPSB) is based on PLANQ, and takes
as input symbolic domain information and produces a Q-values for
each of the high-level operators [1]. Like Grzes et al., PLANQ and
PPSB assume the existence of a plan, or at least a plannable task.
Other recent approaches have extended these ideas to incorporate
using partial plans [15]. The approach proffered by Illanes et al.
improves the underlying learner’s sample efficiency, but can also
be provided with symbolic goals. However, their approach assumes
the agent has a complete (partial order) plan for its environment,
and can use that plan to construct a reward function for learning
options to accomplish a task. One key difference between their
work and ours is that we construct our own operators, whereas
they use a set of existing operators to learn policies.

Generally, while these methods learn action implementations,
they assume the existence of a successful plan or operator defini-
tion. In the proposed framework, the agent has neither and must
hypothesize operators and their corresponding executors.

RL techniques have also been used to improve the quality of
symbolic plans. The DARLING framework uses symbolic planning
and reasoning to constrain exploration and reduce the search space,
and uses RL to improve the quality of the plan produced [19]. While
our approach shares the common goal of reducing the brittleness
of planning domains, they do not modify the planning model. The
PEORL framework works to choose a plan that maximizes a re-
ward function, thereby improving the quality of the plan using
RL [34]. More recently Lyu et al. propose a framework (SDRL) for
generalizing the PEORL framework with intrinsic goals and inte-
gration with a deep reinforcement learning (DRL) machinery [20].
However, neither PEORL nor SDRL synthesizes new operators or
learns planning domains. Our work also differs from the majority
of model-based RL approaches [23, 32] in that we are interested in
STRIPS-like explicit operators that are useful in symbolic planning,
and thereby transferable to a wide range of tasks within a domain.

7 CONCLUSION

Automatically synthesizing new operators during task performance
is a crucial capability needed for symbolic planning systems. As we
have examined here, such a capability requires a deep integration
between planning and learning, one that benefits from leveraging
RL to fill in missing connections between symbolic states. While
exploring the MDP state space, SPOTTER can identify states from
which symbolic planning is possible, use this to identify subgoals
for which operators can be synthesized, and learn policies for these

operators by RL. SPOTTER thus allows a symbolic planner to ex-
plore previously unreachable states, synthesize new operators, and
accomplish new goals.
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