
SPOTTER: Extending Symbolic Planning Operators through
Targeted Reinforcement Learning

Vasanth Sarathy
∗

Smart Information Flow Technologies

Lexintgon, MA

vsarathy@sift.net

Daniel Kasenberg
∗

Tufts University.

Medford, MA

dmk@cs.tufts.edu

Shivam Goel

Tufts University.

Medford, MA

shivam.goel@tufts.edu

Jivko Sinapov

Tufts University.

Medford, MA

jivko.sinapov@tufts.edu

Matthias Scheutz

Tufts University.

Medford, MA

matthias.scheutz@tufts.edu

ABSTRACT

Symbolic planning models allow decision-making agents to se-

quence actions in arbitrary ways to achieve a variety of goals in

dynamic domains. However, they are typically handcrafted and

tend to require precise formulations that are not robust to human

error. Reinforcement learning (RL) approaches do not require such

models, and instead learn domain dynamics by exploring the en-

vironment and collecting rewards. However, RL approaches tend

to require millions of episodes of experience and often learn poli-

cies that are not easily transferable to other tasks. In this paper,

we address one aspect of the open problem of integrating these

approaches: how can decision-making agents resolve discrepancies

in their symbolic planning models while attempting to accomplish

goals? We propose an integrated framework named SPOTTER that

uses RL to augment and support (“spot”) a planning agent by dis-

covering new operators needed by the agent to accomplish goals

that are initially unreachable for the agent. SPOTTER outperforms

pure-RL approaches while also discovering transferable symbolic

knowledge and does not require supervision, successful plan traces

or any a priori knowledge about the missing planning operator.

KEYWORDS

Planning, Reinforcement Learning

ACM Reference Format:

Vasanth Sarathy, Daniel Kasenberg, ShivamGoel, Jivko Sinapov, andMatthias

Scheutz. 2021. SPOTTER: Extending Symbolic Planning Operators through

Targeted Reinforcement Learning. In Proc. of the 20th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2021), London,
UK, May 3–7, 2021, IFAAMAS, 10 pages.

1 INTRODUCTION

Symbolic planning approaches focus on synthesizing a sequence of

operators capable of achieving a desired goal [9]. These approaches

rely on an accurate high-level symbolic description of the dynamics

of the environment. Such a description affords these approaches

the benefit of generalizability and abstraction (the model can be

∗
The first two authors contributed equally.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, London,
UK. © 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

used to complete a variety of tasks), available human knowledge,

and interpretability. However, the models are often handcrafted,

difficult to design and implement, and require precise formulations

that can be sensitive to human error. Reinforcement learning (RL)

approaches do not assume the existence of such a domain model,

and instead attempt to learn suitable models or control policies

by trial-and-error interactions in the environment [28]. However,

RL approaches tend to require a substantial amount of training in

moderately complex environments. Moreover, it has been difficult

to learn abstractions to the level of those used in symbolic planning

approaches through low-level reinforcement-based exploration.

Integrating RL and symbolic planning is highly desirable, enabling

autonomous agents that are robust, resilient and resourceful.

Among the challenges in integrating symbolic planning and RL,

we focus here on the problem of how partially specified symbolic

models can be extended during task performance. Many real-world

robotic and autonomous systems already have preexisting models

and programmatic implementations of action hierarchies. These

systems are robust to many anticipated situations. We are inter-

ested in how these systems can adapt to unanticipated situations,

autonomously and with no supervision.

In this paper, we present SPOTTER (Synthesizing Planning Op-

erators through Targeted Exploration and Reinforcement). Unlike

other approaches to action model learning, SPOTTER does not have

access to successful symbolic traces. Unlike other approaches to

learning low-level implementation of symbolic operators, SPOT-

TER does not know a priori what operators to learn. Unlike other

approaches which use symbolic knowledge to guide exploration,

SPOTTER does not assume the existence of partial plans.

We focus on the case where the agent is faced with a symbolic

goal but has neither the necessary symbolic operator to be able

to synthesize a plan nor its low-level controller implementation.

The agent must invent both. SPOTTER leverages the idea that the

agent can proceed by planning alone unless there is a discrepancy

between its model of the environment and the environment’s dy-

namics. In our approach, the agent attempts to plan to the goal.

When no plan is found, the agent explores its environment using

an online explorer looking to reach any state from which it can

plan to the goal. When such a state is reached, the agent spawns of-

fline “subgoal” RL learners to learn policies which can consistently

achieve those conditions. As the exploration agent acts, the subgoal

learners learn from its trajectory in parallel. The subgoal learners

regularly attempt to generate symbolic preconditions from which

their candidate operators have high value; if such preconditions

can be found, the operator is added with those preconditions into

the planning domain. We evaluate the approach with experiments

in a gridworld environment in which the agent solves three puzzles

involving unlocking doors and moving objects.

In this paper, our contributions are as follows: a framework for

integrated RL and symbolic planning; algorithms for solving prob-

lems in finite, deterministic domains in which the agent has partial

domain knowledge and must reach a seemingly unreachable goal

state; and experimental results showing substantial improvements

over baseline approaches in terms of cumulative reward, rate of

learning and transferable knowledge learned.

1.1 Running example: GridWorld

Throughout this paper, we will use as a running example a Grid-

World puzzle (Figure 1) which an agent must unlock a door which is

blocked by a ball. The agent’s planning domain abstracts out the no-

tion of specific grid cells, and so all navigation is framed in terms of

going to specific objects. Under this abstraction, no action sequence

allows the agent to “move the ball out of the way”. Planning actions

are implemented as handcrafted programs that navigate the puzzle

and execute low-level actions (up, down, turn left/right, pickup).

Because the door is blocked, the agent cannot generate a symbolic

plan to solve the problem; it must synthesize new symbolic actions

or operators. An agent using SPOTTER performs RL on low-level

actions to learn to reach states from which a plan to the goal exists,

and thus can learn a symbolic operator corresponding to “moving

the ball out of the way”.

2 BACKGROUND

In this section, we provide a background of relevant concepts in

planning and learning.

2.1 Open-World Symbolic Planning

We formalize the planning task as an open-world variant of propo-

sitional STRIPS [8], 𝑇 = ⟨𝐹,𝑂, 𝜎0, 𝜎̃𝑔⟩. We consider 𝐹 (fluents) to

Figure 1: The agent’s (red triangle) goal is to unlock the

door (yellow square). SPOTTER can learn how to move the

blue ball out of the way. The learned representation is sym-

bolic and can be used to plan (without additional learning)

to achieve different goals like reaching the green square.

be the set of propositional state variables 𝑓 . A fluent state 𝜎 is a

complete assignment of values to all fluents in 𝐹 . That is, |𝜎 | = |𝐹 |,
and 𝜎 includes positive literals (𝑓) and negative literals (¬𝑓). 𝜎0
represents the initial fluent state. We assume full observability of

the initial fluent state. We can define a partial fluent state 𝜎̃ to refer

to a partial assignment of values to the fluents 𝐹 . The goal condition

is represented as a partial fluent state 𝜎̃𝑔 . We define L(𝐹) to be the

set of all partial fluent states with fluents in 𝐹 .

The operators under this formalism are open-world. A partial

planning operator can be defined as 𝑜 = ⟨𝑝𝑟𝑒 (𝑜), eff (𝑜), 𝑠𝑡𝑎𝑡𝑖𝑐 (𝑜)⟩.
𝑝𝑟𝑒 (𝑜) ∈ L(𝐹) are the preconditions, and eff (𝑜) ∈ L(𝐹) are the
effects, 𝑠𝑡𝑎𝑡𝑖𝑐 (𝑜) ⊆ 𝐹 are those fluents whose values are known
not to change during the execution of the operator. An operator

𝑜 is applicable in a partial fluent state 𝜎̃ if 𝑝𝑟𝑒 (𝑜) ⊆ 𝜎̃ . The result
of executing an operator 𝑜 from a partial fluent state 𝜎̃ is given

by the successor function 𝛿 (𝜎̃, 𝑜) = eff (𝑜) ∪ 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡 (𝜎̃, 𝑠𝑡𝑎𝑡𝑖𝑐 (𝑜)),
where 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡 (𝜎̃, 𝐹 ′) is the partial fluent state consisting only of

𝜎̃ ’s values for fluents in 𝐹 ′. The set of all partial fluent states defined
through repeated application of the successor function beginning at

𝜎̃ provides the set of reachable partial fluent states Δ𝜎̃ . A complete

operator is an operator𝑜 where all the fluents are fully accounted for,

namely, ∀𝑓 ∈ 𝐹, 𝑓 ∈ eff + (𝑜) ∪ eff − (𝑜) ∪ 𝑠𝑡𝑎𝑡𝑖𝑐 (𝑜), where eff + (𝑜) =
{𝑓 ∈ 𝐹 : 𝑓 ∈ eff (𝑜)} and eff − (𝑜) = {𝑓 ∈ 𝐹 : ¬𝑓 ∈ eff (𝑜)}. We

assume all operators 𝑜 satisfy eff (𝑜)\𝑝𝑟𝑒 (𝑜) ≠ ∅; these are the only
operators useful for our purposes.

1
A plan 𝜋𝑇 is a sequence of

operators ⟨𝑜1, . . . , 𝑜𝑛⟩. A plan 𝜋𝑇 is executable in state 𝜎0 if, for all

𝑖 ∈ {1, · · · , 𝑛}, 𝑝𝑟𝑒 (𝑜𝑖) ⊆ 𝜎̃𝑖−1 where 𝜎̃𝑖 = 𝛿 (𝜎̃𝑖−1, 𝑜𝑖). A plan 𝜋𝑇 is

said to solve the task𝑇 if executing 𝜋𝑇 from 𝜎0 induces a trajectory

⟨𝜎0, 𝑜1, 𝜎̃1, . . . , 𝑜𝑛, 𝜎̃𝑛⟩ that reaches the goal state, namely 𝜎̃𝑔 ⊆ 𝜎̃𝑛 .
An open-world forward search (OWFS) is a breadth-first plan

search procedure where each node is a partial fluent state 𝜎̃ . The

successor relationships and applicability of 𝑂 are specified as de-

fined above and used to generate successor nodes in the search

space. A plan is synthesized once 𝜎̃𝑔 has been reached. If 𝜎0 is a

complete state and the operators are complete operators, then each

node in the search tree will be complete fluent states, as well.

We also define the notion of a “relevant” operator and “regressor”

nodes, as used in backward planning search [9]. For a partial fluent

state 𝜎̃ with fluents 𝑓𝑖 and their valuations 𝑐𝑖 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒},
operator 𝑜 is relevant at partial fluent state 𝜎̃ when:

(1) 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡 (𝜎̃\eff (𝑜), 𝑠𝑡𝑎𝑡𝑖𝑐 (𝑜)) = 𝜎̃\eff (𝑜) and
(2) 𝜎̃ ⊇ eff (𝑜) ∪ 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡 (𝑝𝑟𝑒 (𝑜), 𝑠𝑡𝑎𝑡𝑖𝑐 (𝑜))

When a relevant operator 𝑜 is found for a particular 𝜎̃ , it can

be regressed to generate a partial fluent state 𝛿−1 (𝜎̃, 𝑜) = 𝑝𝑟𝑒 (𝑜) ∪
(𝜎̃\eff (𝑜)).2 Regression is the “inverse” of operator application

in that if applying any operator sequence ⟨𝑜1, . . . , 𝑜𝑛⟩ yields final
state 𝜎̃ ′, if we let 𝜎̃ ′′ = 𝛿−1 (. . . (𝛿−1 (𝜎̃, 𝑜𝑛) . . .), 𝑜1), then 𝜎̃ ′′ ⊆ 𝜎̃ .
In particular, 𝜎̃ ′′ is the minimal partial fluent state from which

application of ⟨𝑜1, · · · , 𝑜𝑛⟩ results in 𝜎̃ ′.

1
We also assume (eff + (𝑜) ∪ eff − (𝑜)) ∩ 𝑠𝑡𝑎𝑡𝑖𝑐 (𝑜) = ∅; i.e. that postconditions and
static variables do not conflict.

2
This is a slight abuse of notation because 𝛿−1 is not the function inverse of 𝛿 , but

they can be thought of as inverse in the sense described in this paragraph.

2.2 Reinforcement Learning

We formalize the environment in which the agent acts as a Markov

Decision Process (MDP) 𝑀 = ⟨𝑆,𝐴, 𝑝, 𝑟, 𝜄, 𝛾⟩, where 𝑆 is the set

of states, 𝐴 is the set of actions, 𝑝 is the probability distribution

𝑝 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡), 𝑟 : 𝑆 × 𝐴 × 𝑆 → R is a reward function, 𝜄 is a

probability distribution over initial states, and 𝛾 ∈ (0, 1] [28]. A
policy for𝑀 is defined as the probability distribution 𝜋𝑀 (𝑎 | 𝑠) that
establishes the probability of an agent taking an action 𝑎 given that

it is in the current state 𝑠 . We define the set of all such policies in

𝑀 as Π𝑀 . We let 𝑆0 = {𝑠 ∈ 𝑆 : 𝜄 (𝑠) > 0}. An RL problem typically

consists of finding an optimal policy 𝜋∗
𝑀
∈ Π𝑀 that maximizes the

expected discounted future rewards obtained from 𝑠 ∈ 𝑆 :

𝜋∗𝑀 = argmax

𝜋𝑀

∑︁
𝑠∈𝑆

𝑣𝜋𝑀 (𝑠) ,

where 𝑣𝜋𝑀 (𝑠) is the value function and captures the expected dis-

counted future rewards obtained when starting at state 𝑠 and se-

lecting actions according to the policy 𝜋𝑀 :

𝑣𝜋𝑀 (𝑠) = E𝜋𝑀


∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡 | 𝑠0 = 𝑠
 .

At each time step, the agent executes an action 𝑎 and the en-

vironment returns the next state 𝑠 ′ ∈ 𝑆 (sampled from p) and an

immediate reward 𝑟 . The experience is then used by the agent to

learn and improve its current policy 𝜋𝑀 .

Q-learning [31] is one learning technique in which an agent uses

experiences to estimate the optimal Q-function 𝑞∗ (𝑠, 𝑎) for every
state 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴, where 𝑞∗ (𝑠, 𝑎) is the expected discounted

sum of future rewards received by performing action 𝑎 in state 𝑠 .

The Q-function is updated as follows:

𝑞(𝑠, 𝑎) ← 𝑞(𝑠, 𝑎) + 𝛼
[(
𝑟 + 𝛾 max

𝑎′∈𝐴
𝑞(𝑠 ′, 𝑎′) − 𝑞(𝑠, 𝑎)

)]
,

where 𝛼 ∈ (0, 1] is the learning rate. The Q-learner can explore

the environment, e.g., by following an 𝜖-greedy policy, in which

the agent selects a random action with probability 𝜖 and otherwise

follows an action with the largest 𝑞(𝑠, 𝑎).

3 PROPOSED SPOTTER FRAMEWORK

We begin by introducing a framework for integrating the planning

and learning formulations. We define an integrated planning task

that enables us to ground symbolic fluents and operators in anMDP,

specify goals symbolically, and realize action hierarchies.

We define an executor for a given MDP𝑀 = ⟨𝑆,𝐴, 𝑝, 𝑟, 𝜄, 𝛾⟩ as a
triple 𝑥 = ⟨𝐼𝑥 , 𝜋𝑥 , 𝛽𝑥 ⟩ where 𝐼𝑥 ⊆ 𝑆 is an initiation set, 𝜋𝑥 (𝑎 |𝑠𝑖𝑛𝑖𝑡 , 𝑠)
is the probability of performing 𝑎 given that the executor initialized

at state 𝑠𝑖𝑛𝑖𝑡 and the current state is 𝑠 , and 𝛽𝑥 (𝑠𝑖𝑛𝑖𝑡 , 𝑠) expresses the
probability of terminating 𝑥 at 𝑠 given that 𝑥 was initialized at 𝑠𝑖𝑛𝑖𝑡 .
3
We define 𝑋𝑀 as the set of executors for𝑀 .

Definition 3.1. (Integrated Planning Task) We can formally

define an Integrated Planning Task (IPT) as T = ⟨𝑇,𝑀,𝑑, 𝑒⟩ where
𝑇 = ⟨𝐹,𝑂, 𝜎0, 𝜎̃𝑔⟩ is an open-world STRIPS task,𝑀 = ⟨𝑆,𝐴, 𝑝, 𝑟, 𝜄, 𝛾⟩
is an MDP, a detector function 𝑑 : 𝑆 ↦→ L(𝐹) determines a fluent

3
An executor is simply an option [29] where the policy and termination condition

depend on where it was initialized.

state for a given MDP state, and an executor function 𝑒 : 𝑂 ↦→ 𝑋𝑀
that determines a mapping between an operator and an executor

in the underlying MDP.

For the purposes of this paper, we assume that for each operator

𝑜 ∈ 𝑂 , 𝑒 (𝑜) is accurate to 𝑜 ; that is, for every 𝑜 ∈ 𝑂 , 𝐼𝑒 (𝑜) ⊇ {𝑠 ∈ 𝑆 :

𝑑 (𝑠) ⊇ 𝑝𝑟𝑒 (𝑜)} and

𝛽𝑒 (𝑜) (𝑠𝑖𝑛𝑖𝑡 , 𝑠) =


1 if 𝑑 (𝑠) ⊇ eff (𝑜)

∪𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡 (𝑑 (𝑠𝑖𝑛𝑖𝑡), 𝑠𝑡𝑎𝑡𝑖𝑐 (𝑜))
0 otherwise.

The objective of this task is to find an executor 𝑥★ ∈ 𝑋𝑀 such

that 𝛽𝑥★ (𝑠𝑖𝑛𝑖𝑡 , 𝑠) = 1 if and only if 𝑑 (𝑠) ⊇ 𝜎̃𝑔 , and 𝐼𝑥★ ⊇ 𝑆0, and 𝑥★
terminates in finite time.

A solution to a particular IPT T is an executor 𝑥★ ∈ 𝑋𝑀 having

the properties defined above.

A planning solution to a particular IPT T is a mapping 𝜋𝑇 :

𝑆0 → 𝑂∗ such that for every 𝑠0 ∈ 𝑆0, 𝜋𝑇 (𝑠0) = ⟨𝑜1, . . . , 𝑜𝑛⟩ is
executable at 𝑠0 and achieves goal state 𝜎̃𝑔 . Assuming all operators

are accurate, executing in the MDP𝑀 the corresponding executors

𝑒 (𝑜1), . . . , 𝑒 (𝑜𝑛) in sequencewill yield a final state 𝑠 such that𝑑 (𝑠) ⊇
𝜎̃𝑔 as desired.

An IPT T is said to be solvable if a solution exists. It is said to

be plannable if a planning solution exists.

3.1 The Operator Discovery Problem

As we noted earlier, symbolic planning domains can be sensitive to

human errors. One common error is when the domain is missing

an operator, which then prevents the agent from synthesizing a

plan that requires such an operator. We define a stretch-Integrated

Planning Task, stretch-IPT
4
, that captures difficult but achievable

goals – those for which missing operators must be discovered.

Definition 3.2. (Stretch-IPT). A Stretch-IPT
˜T is an IPT T for

which a solution exists, but a planning solution does not.

Sarathy et al. considered something similar in a purely symbolic

planning context as MacGyver Problems [24]; here we extend these

ideas to integrated symbolic-RL domains. A planning solution is

desirable because a plannable task affords the agent robustness to

variations in goal descriptions and a certain degree of generality

and ability to transfer decision-making capabilities across tasks.

We are interested in turning a stretch-IPT into an plannable IPT,

and specifically study how an agent can automatically extend its

task description and executor function to invent new operators and

their implementations.

Definition 3.3. (Operator Discovery Problem). Given a stretch-

IPT
˜T = ⟨𝑇,𝑀,𝑑, 𝑒⟩ with 𝑇 = ⟨𝐹,𝑂, 𝜎0, 𝜎̃𝑔⟩, construct a set of

operators 𝑂 ′ = {𝑜 ′
1
, · · · , 𝑜 ′𝑚} and their executors 𝑥𝑜′

1

, · · · , 𝑥𝑜′𝑚 ∈ 𝑋
such that the IPT ⟨𝑇 ′, 𝑀,𝑑, 𝑒 ′⟩ is plannable, with 𝑇 ′ = ⟨𝐹,𝑂 ∪
𝑂 ′, 𝜎0, 𝜎̃𝑔⟩ and the executor function

𝑒 ′(𝑜) =
{
𝑒 (𝑜) if 𝑜 ∈ 𝑂
𝑥𝑜 if 𝑜 ∈ 𝑂 ′

.

In the rest of the section, we will outline an approach for solving

the operator discovery problem.

4
akin to “stretch goals” in business productivity

3.1.1 The Operator Discovery Problem in GridWorld. In the ex-

ample GridWorld puzzle, the SPOTTER agent is equipped with a

high-level planning domain specified in an open-world extension

of PDDL that can be grounded down into an open-world STRIPS

problem. This domain is an abstraction of the environment which ig-

nores the absolute positions of objects. In particular, the core move-

ment actions forward, turnLeft, and 𝑡𝑢𝑟𝑛𝑅𝑖𝑔ℎ𝑡 in the MDP are ab-

sent from the planning domain, which navigates in terms of objects

using, e.g., the operator 𝑔𝑜𝑇𝑜𝑂𝑏 𝑗 (𝑎𝑔𝑒𝑛𝑡, 𝑜𝑏 𝑗𝑒𝑐𝑡), with precondi-

tions¬ℎ𝑜𝑙𝑑𝑖𝑛𝑔(𝑎𝑔𝑒𝑛𝑡, 𝑜𝑏 𝑗𝑒𝑐𝑡),¬𝑏𝑙𝑜𝑐𝑘𝑒𝑑 (𝑜𝑏 𝑗𝑒𝑐𝑡), and 𝑖𝑛𝑅𝑜𝑜𝑚(𝑎𝑔𝑒𝑛𝑡, 𝑜𝑏 𝑗𝑒𝑐𝑡),
and with effect 𝑛𝑒𝑥𝑡𝑇𝑜𝐹𝑎𝑐𝑖𝑛𝑔(𝑎𝑔𝑒𝑛𝑡, 𝑜𝑏 𝑗𝑒𝑐𝑡). All initial operators
are assumed to satisfy the closed-world assumptions, except that

putting down an object (𝑝𝑢𝑡𝐷𝑜𝑤𝑛(𝑎𝑔𝑒𝑛𝑡, 𝑜𝑏 𝑗𝑒𝑐𝑡)) leaves unknown
whether at the conclusion of the action, some other object (e.g.,

a door) will be blocked. Each operator has a corresponding hand-

coded executor. The goal here is 𝜎̃𝑔 = {𝑜𝑝𝑒𝑛(𝑑𝑜𝑜𝑟)}, which is not

achievable using planning alone from the initial state.

3.2 Planning and Execution

Our overall agent algorithm is given by Algorithm 1. We consider

the agent to be done when it has established that the input IPT

T is a plannable IPT. This is true once the agent is able to find a

complete solution to the IPT through planning and execution, alone,

and without requiring any learning. Algorithm 1 shows that the

agent repeatedly learns in the environment until it has completed

a run in which there were no planning impasses, i.e., situations

where no plan was found through a forward search in the symbolic

space. The set of learners 𝐿 is maintained between runs of solve.

Two sets of fluent states will be important in Algorithms 2-4:

Σ𝑟𝑒𝑎𝑐ℎ and Σ𝑝𝑙𝑎𝑛 . Σ𝑟𝑒𝑎𝑐ℎ contains all states known to be reachable

from the initial state via planning. Σ𝑝𝑙𝑎𝑛 contains all states from

which a plan to the goal 𝜎̃𝑔 is known.

Algorithm 2 (solve) begins with the agent performing an OWFS

(open-world forward search) of the symbolic space specified by the

task. If a plan is found (line 7), the agent attempts to execute the

plan (line 9). If unexpected states are encountered such that the

agent cannot perform the next operator, it will call Algorithm 3

(learn). Otherwise, the agent continues with the next operator

until all the operators in a plan are complete. If the goal conditions

are satisfied (line 16), the algorithm returns success. Otherwise, it

turns to learn.

3.3 Learning Operator Policies

Broadly, in Algorithm 3 (learn), the agent follows an exploration

policy 𝜋𝑒𝑥𝑝𝑙 , e.g., 𝜖-greedy, to explore the environment, spawning

Algorithm 1: spotter(T)
Input: T: Integrated Planning Task

1: impasse← true
2: 𝐿 ← {ℓ𝑒𝑥𝑝𝑙 }
3: while impasse do
4: 𝑠0 ∼ 𝑇 .𝑀.𝜄 (·)
5: impasse, 𝐿 ← solve(T , 𝑠0, ∅, ∅, 𝜏 , false, 𝐿))
6: end while

7: return T

Algorithm 2: solve(T , 𝑠 , Σ𝑟𝑒𝑎𝑐ℎ , Σ𝑝𝑙𝑎𝑛 , 𝜏 , impasse, 𝐿)

Input: T: Integrated Planning Task

Input: 𝑠 : Initial MDP state from which to plan

Input: Σ𝑟𝑒𝑎𝑐ℎ : Set of reachable fluent states
Input: Σ𝑝𝑙𝑎𝑛 : Set of plannable fluent states
Input: 𝜏 : Value threshold parameter

Input: impasse: true if this algorithm was called from learn

Input: 𝐿: A set of learners

1: 𝜎 ← 𝑇 .𝑑 (𝑠)
2: if T .𝜎̃𝑔 ⊆ 𝜎 then

3: return impasse, 𝐿
4: end if

5: 𝜋𝑇 , visitedNodes← owfs(T .𝑇 , 𝜎)
6: Σ𝑟𝑒𝑎𝑐ℎ .add(visitedNodes)
7: if 𝜋𝑇 ≠ ∅ then
8: Σ𝑝𝑙𝑎𝑛 .add(all visitedNodes along 𝜋𝑇)
9: for operator 𝑜𝑖 in 𝜋𝑇 do

10: 𝑠 ← execute(T .𝑒 (𝑜𝑖), 𝑠)
11: 𝜎 ← T .𝑑 (𝑠)
12: if 𝑝𝑟𝑒 (𝑜𝑖+1) ⊈ 𝜎 then

13: return learn(T , 𝑠 , Σ𝑟𝑒𝑎𝑐ℎ , Σ𝑝𝑙𝑎𝑛 , 𝜏 , 𝐿)
14: end if

15: end for

16: if T .𝜎̃𝑔 ⊆ 𝜎 then

17: return impasse, 𝐿
18: else

19: return learn(T , 𝑠 , Σ𝑟𝑒𝑎𝑐ℎ , Σ𝑝𝑙𝑎𝑛 , 𝜏 , 𝐿)
20: end if

21: else

22: return learn(T , 𝑠 , Σ𝑟𝑒𝑎𝑐ℎ , Σ𝑝𝑙𝑎𝑛 , 𝜏 , 𝐿)
23: end if

RL agents which attempt to construct policies to reach particular

partial fluent states fromwhich the goal 𝜎̃𝑔 is reachable by planning.

These partial fluent states correspond to operator effects. For each

such set of effects, the system attempts to find sets of preconditions

fromwhich that operator can consistently achieve high value; when

one such set of preconditions is found, the policy along with the

corresponding set of preconditions and effects is used to define a

new operator and its corresponding executor, which are added to

the IPT.

Algorithm receives as input, among other things, a set of learners

𝐿 (which may grow during execution, as described below). 𝐿 in-

cludes an exploration agent ℓ𝑒𝑥𝑝𝑙 with corresponding policy 𝜋𝑒𝑥𝑝𝑙
(initialized in Algorithm 1). 𝐿 also contains a set of offline “subgoal”

learners, which initially is empty.

In each time step, learn executes an action 𝑎 according to its

exploration policy 𝜋𝑒𝑥𝑝𝑙 , with resulting MDP state 𝑠 ′ and corre-

sponding fluent state 𝜎 (lines 4-6). The agent will attempt to check if

𝜎 is a fluent state from which it can plan to the goal. First the agent

checks if 𝜎 is already known to be a state from which it can plan to

the goal (𝜎 ∈ Σ𝑝𝑙𝑎𝑛 ; line 7). If not, the agent attempts to plan from

𝜎 to the goal (line 10). If there is a plan, then the agent regresses

each operator in the plan in reverse order (𝑜𝑛, · · · , 𝑜1). As described
in Section 2.1, after regressing through 𝑜𝑖 , the resulting fluent state

𝜎̃𝑖−1 is the most general possible partial fluent state (i.e., containing

the least possible fluents) such that executing ⟨𝑜𝑖 , · · · , 𝑜𝑛⟩ from
𝜎̃𝑖−1 results in 𝜎̃𝑔 ; this makes each 𝜎̃𝑖−1 a prime candidate for some

new operator 𝑜★’s effects. That is, assuming 𝑠𝑡𝑎𝑡𝑖𝑐 (𝑜) = ∅, 𝜎̃𝑖−1
guarantees that ⟨𝑜𝑖 , · · · , 𝑜𝑛⟩ is a plan to 𝜎̃𝑔 , while allowing the cor-

responding executor to terminate in the largest possible set of fluent

states. Each such partial fluent state 𝜎̃𝑠𝑔 is chosen as a subgoal, for

which a new learner ℓ𝜎̃𝑠𝑔 is spawned and added to 𝐿 (lines 12-18).

𝜎̃𝑠𝑔 is also added to the set of “plannable” fluent states Σ𝑝𝑙𝑎𝑛 .
Each subgoal learner ℓ𝜎̃𝑠𝑔 is trained each time step using as re-

ward the indicator function 1𝜎⊇𝜎̃𝑠𝑔 , which returns 1 if that learner’s
subgoal is satisfied by 𝑠 ′ and 0 otherwise (lines 23-25).

While in this case the exploration learner ℓ𝑒𝑥𝑝𝑙 may be conceived

as an RL agent whose reward function is 1 whenever any such

subgoal is achieved (line 22) and whose exploration policy 𝜋𝑒𝑥𝑝𝑙
is 𝜖-greedy, nothing prevents it from being defined differently as a

random agent or even symbolic learner as discussed in Section 6.

Algorithm 3: learn(T , 𝑠, Σ𝑟𝑒𝑎𝑐ℎ, Σ𝑝𝑙𝑎𝑛, 𝜏, 𝐿)
Input: T: Integrated Planning Task

Input: 𝑠 : Initial MDP state

Input: Σ𝑟𝑒𝑎𝑐ℎ : Set of reachable fluent states
Input: Σ𝑝𝑙𝑎𝑛 : Set of plannable fluent states
Input: 𝜏 : Value threshold

Input: 𝐿: set of learners

1: 𝑑𝑜𝑛𝑒 ← false
2: 𝜎 ← 𝑇 .𝑑 (𝑠)
3: while ¬𝑑𝑜𝑛𝑒 do

4: 𝑎 ∼ 𝜋𝑒𝑥𝑝𝑙 (· | 𝑠)
5: 𝑠′ ∼ 𝑇 .𝑝 (· | 𝑠, 𝑎)
6: 𝜎 ← T .𝑑 (𝑠′)
7: if 𝜎 ⊇ 𝜎̃ for some 𝜎̃ ∈ Σ𝑝𝑙𝑎𝑛 then

8: 𝑑𝑜𝑛𝑒 ← true
9: else

10: 𝜋𝑇 , visitedNodes← owfs(T .𝑇 , 𝜎)
11: if 𝜋𝑇 ≠ ∅ then
12: 𝜎̃𝑠𝑔 ← 𝜎̃𝑔

13: for 𝑜𝑖 in reversed(𝜋𝑇) do
14: 𝜎̃𝑠𝑔 ← 𝛿−1 (𝜎̃𝑠𝑔, 𝑜𝑖)
15: Σ𝑝𝑙𝑎𝑛 .add(𝜎̃𝑠𝑔)
16: ℓ𝜎̃𝑠𝑔 ← spawnLearner(𝜎̃𝑠𝑔)
17: 𝐿 ← 𝐿 ∪ {ℓ𝜎̃𝑠𝑔 }
18: end for

19: 𝑑𝑜𝑛𝑒 ← true
20: end if

21: end if

22: ℓ𝑒𝑥𝑝𝑙 .train(𝑠, 𝑎, 1𝑑𝑜𝑛𝑒=true, 𝑠′)
23: for ℓ𝜎̃𝑠𝑔 ∈ 𝐿 do

24: ℓ𝜎̃𝑠𝑔 .train(𝑠, 𝑎, 1𝜎⊇𝜎̃𝑠𝑔 , 𝑠′)
25: end for

26: 𝑠 ← 𝑠′

27: end while

28: for ℓ𝜎̃𝑠𝑔 ∈ 𝐿 do

29: for 𝜎̃𝑝𝑟𝑒 ∈ gen-precon(ℓ𝜎̃𝑠𝑔 , Σ𝑟𝑒𝑎𝑐ℎ, 𝜏) do
30: 𝑜★ ← ⟨𝜎̃𝑝𝑟𝑒 , 𝜎̃𝑠𝑔, ∅⟩
31: 𝑥★ ← makeExecutor(ℓ𝜎̃𝑠𝑔 , 𝑜★)
32: T .addOperator(𝑜∗, 𝑥★)
33: end for

34: end for

35: return solve(T , 𝑠 , Σ𝑟𝑒𝑎𝑐ℎ , Σ𝑝𝑙𝑎𝑛 , 𝜏 , true, 𝐿)

Upon reaching a state from which a plan to the goal exists, the

agent stops exploring. For each of its subgoal learners ℓ𝜎̃𝑠𝑔 ∈ 𝐿,
it attempts to construct sets of preconditions (characterized as a

partial fluent state 𝜎̃𝑝𝑟𝑒) from which its policy can consistently

achieve the subgoal state 𝜎̃𝑠𝑔 (see Section 3.4) (lines 28-34). If any

such precondition sets 𝜎̃𝑝𝑟𝑒 exist, the agent constructs the operator

𝑜★ such that 𝑝𝑟𝑒 (𝑜★) = 𝜎̃𝑝𝑟𝑒 , eff (𝑜★) = 𝜎̃𝑠𝑔 , and without static

fluents (all other variables are unknown once the operator is exe-

cuted; 𝑠𝑡𝑎𝑡𝑖𝑐 (𝑜★) = ∅). The corresponding executor is constructed

as makeExecutor(ℓ𝜎̃𝑠𝑔 , 𝑜★) = ⟨𝐼𝑥★, 𝜋𝑥★, 𝛽𝑥★⟩, where

𝐼𝑥★ = {𝑠 ′ ∈ 𝑆 : 𝑇 .𝑑 (𝑠 ′) ⊇ 𝑝𝑟𝑒 (𝑜★)}

𝜋𝑥★ (𝑎 | 𝑠𝑖𝑛𝑖𝑡 , 𝑠) =

1 if 𝑎 = argmax

𝑎′∈𝑇 .𝑀.𝐴

ℓ𝜎̃𝑠𝑔 .𝑞(𝑠, 𝑎)

0 otherwise

𝛽𝑥★ (𝑠𝑖𝑛𝑖𝑡 , 𝑠) =
{
1 if 𝑇 .𝑑 (𝑠) ⊇ 𝜎̃𝑠𝑔
0 otherwise.

Note that while the definition of the Operator Discovery Problem

allows the constructed operators’ executors to depend on 𝑠𝑖𝑛𝑖𝑡 , in

practice the operators are ordinary options. Options are sufficient,

provided the operators being constructed have no static fluents.5 Con-
structing operators with static fluents is a topic for future work.

Constructed operators and their corresponding executors are

added to the IPT (line 32), which ideally becomes plannable as a

result, solving the Operator Discovery Problem. Because the agent

is currently in a state from which it can plan to the goal, control is

passed back to solve (with impasse set to true because this episode
required learning).

3.3.1 Learning operator policies in GridWorld. The puzzle shown in
Figure 1 presents a Stretch-IPT for which a solution exists in terms

of the MDP-level actions, but no planning solution exists. Thus,

SPOTTER enters learn, and initially moves around randomly (the

exploration policy has not yet received a reward). Eventually, in

the course of random action, the agent moves the ball out of the

way (Algorithm learn, line 11). From this state, the action plan

𝜋𝑇 = 𝑔𝑜𝑇𝑜𝑂𝑏 𝑗 (𝑎𝑔𝑒𝑛𝑡, 𝑘𝑒𝑦);𝑝𝑖𝑐𝑘𝑈𝑝 (𝑎𝑔𝑒𝑛𝑡, 𝑘𝑒𝑦);
𝑔𝑜𝑇𝑜𝑂𝑏 𝑗 (𝑎𝑔𝑒𝑛𝑡, 𝑑𝑜𝑜𝑟);𝑢𝑠𝑒𝐾𝑒𝑦 (𝑎𝑔𝑒𝑛𝑡, 𝑑𝑜𝑜𝑟)

achieves the goal 𝜎̃𝑔 = {𝑜𝑝𝑒𝑛(𝑑𝑜𝑜𝑟)}. Regressing through this plan

from the goal state (Algorithm learn, lines 13-17), the agent iden-

tifies the subgoal

𝜎̃𝑠𝑔 = {𝑛𝑒𝑥𝑡𝑇𝑜𝐹𝑎𝑐𝑖𝑛𝑔(𝑎𝑔𝑒𝑛𝑡, 𝑏𝑎𝑙𝑙),
ℎ𝑎𝑛𝑑𝑠𝐹𝑟𝑒𝑒 (𝑎𝑔𝑒𝑛𝑡), 𝑖𝑛𝑅𝑜𝑜𝑚(𝑎𝑔𝑒𝑛𝑡, 𝑘𝑒𝑦),
𝑖𝑛𝑅𝑜𝑜𝑚(𝑎𝑔𝑒𝑛𝑡, 𝑑𝑜𝑜𝑟), 𝑙𝑜𝑐𝑘𝑒𝑑 (𝑑𝑜𝑜𝑟),

¬ℎ𝑜𝑙𝑑𝑖𝑛𝑔(𝑎𝑔𝑒𝑛𝑡, 𝑘𝑒𝑦),¬𝑏𝑙𝑜𝑐𝑘𝑒𝑑 (𝑑𝑜𝑜𝑟)}

(as well as other subgoals corresponding to the suffixes of 𝜋𝑇), and

constructs a corresponding subgoal learner, ℓ𝜎̃𝑠𝑔 which uses RL to

learn a policy which consistently achieves 𝜎̃𝑠𝑔 .

5
This also indicates why we used our open-world planning formalism: in closed-world

planning, all fluents not in the effects are static, requiring executors which depend

on 𝑠𝑖𝑛𝑖𝑡 . By specifying static fluents for each operator, we can leverage handmade

operators which (largely) satisfy the closed-world assumption while allowing the

operators returned by SPOTTER to be open-world.

3.4 Generating Preconditions

The prior algorithms allow an agent to plan in the symbolic space,

and when stuck explore a subsymbolic space with RL learners. We

noted that each learner is connected to a particular subgoal – from

which the agent can generate a symbolic plan – which in turn,

maps onto the effects of a potential new operator. What remains

is to define the preconditions of such an operator. Algorithm 4

(gen-precon) incrementally generates increasingly general sets

of preconditions for each learner.

gen-precon begins with initializing a set of above-threshold

fluent states Σ>𝜏 to empty. This set will represent the output of

the algorithm, which in turn is essentially a form of graph search

over the space of possible sets of preconditions. More specifically,

gen-precon first adds all the fluent states in the set of reachable

fluent states Σ𝑟𝑒𝑎𝑐ℎ to the search queue and to Σ>𝜏 (lines 3-7). The

learner ℓ has visited states in the MDP and has been updating its

Q-table as part of learn (see line 24 in learn). We probe this

Q-table and extract the fluent states that the agent has visited and

populate a set of “been” fluent states Σ𝑏𝑒𝑒𝑛 (line 9). While there are

fluent states (or partial fluent states) in the queue, a set of “succes-

sor” nodes is computed for each one (node) by capturing the set

of fluents common to both the node and a particular “been” fluent

state 𝜎 ′, for each 𝜎 ′ ∈ Σ𝑏𝑒𝑒𝑛 . If the average value (according to ℓ’s

𝑞 function) of all states satisfying 𝜎̃𝑐𝑜𝑚𝑚𝑜𝑛 is above the threshold 𝜏 ,

then the above-threshold common partial fluent state 𝜎̃𝑐𝑜𝑚𝑚𝑜𝑛 is

added to Σ>𝜏 . The idea here is to only allow sets of preconditions

which are guaranteed reachable by the planner (generalizations

of elements of Σ𝑟𝑒𝑎𝑐ℎ), and to compute the set of all such sets of

preconditions for which the agent can consistently achieve the

learner’s subgoal 𝜎̃𝑠𝑔 (where for the purposes of this paper, a set

of preconditions 𝜎̃𝑝𝑟𝑒 “consistently achieves” 𝜎̃𝑠𝑔 if the average

value of all MDP states satisfying 𝜎̃𝑝𝑟𝑒 is above the threshold 𝜏).

Algorithm 4: gen-precon(ℓ, Σ𝑟𝑒𝑎𝑐ℎ, 𝜏)
Input: ℓ : Learner along with Q-tables

Input: Σ𝑟𝑒𝑎𝑐ℎ : Fluent states reachable from the initial state

Input: 𝜏 : Value threshold

1: Σ>𝜏 ← ∅
2: queue← ∅
3: for 𝜎 in Σ𝑟𝑒𝑎𝑐ℎ do

4: if value(𝜎) > 𝜏 then

5: queue.add(𝜎)
6: Σ>𝜏 .add(𝜎)
7: end if

8: end for

9: Σ𝑏𝑒𝑒𝑛 ← getFluentStatesFromQ(ℓ)
10: while queue do
11: 𝑛𝑜𝑑𝑒 ← queue.pop()
12: for 𝜎′ in Σ𝑏𝑒𝑒𝑛 do

13: 𝜎̃𝑐𝑜𝑚𝑚𝑜𝑛 ← 𝑛𝑜𝑑𝑒 ∩ 𝜎′
14: if value(𝜎̃𝑐𝑜𝑚𝑚𝑜𝑛) > 𝜏 ∧ 𝜎̃𝑐𝑜𝑚𝑚𝑜𝑛 not in Σ>𝜏 then

15: queue.add(𝜎̃𝑐𝑜𝑚𝑚𝑜𝑛)
16: Σ>𝜏 .add(𝜎̃𝑐𝑜𝑚𝑚𝑜𝑛)
17: end if

18: end for

19: end while

20: return Σ>𝜏

gen-precon can be terminated at any time during the while loop,

and will yield zero or more plausible preconditions for a partic-

ular learner-operator. If terminated before any nodes have been

expanded, gen-precon will simply yield elements from Σ𝑟𝑒𝑎𝑐ℎ .
However, allowing this algorithm to run longer will yield more

general preconditions, i.e., those with fewer fluents.

3.4.1 Precondition generation in GridWorld. Returning to the puz-

zle in Figure 1, the precondition generation algorithm uses the value

function for the subgoal learner ℓ𝜎̃𝑠𝑔 to determine a conjunction

of fluents such that the MDP states satisfying those fluents have a

high average state value (say, > 0.9), and which is plannable from

the environment’s start state.
6
This conjunction specifies the new

operator’s preconditions. The operator is added to the planning

domain, and this augmented domain can be solved using planning

alone, and can be used in other plans to achieve other goals in the

environment.

4 EXPERIMENTS

We evaluate SPOTTER on MiniGrid [5], a platform based on pro-

cedurally generated 2D gridworld environments populated with

objects – agent, balls, doors and keys. The agent can navigate the

world, manipulate objects, and move between rooms.

To establish the fact that (1) operator discovery is possible, and

(2) that the symbolic operators discovered by SPOTTER are useful

for performing new tasks in the environment, we structure our

evaluation into three puzzles that the agent must solve in sequence,

much like three levels in puzzle video games (Fig. 1). The envi-

ronment in each level consists of two rooms with a locked door

separating them. The agent and the key to the room are randomly

placed in the leftmost room. In puzzle 1, the agent’s task is to pickup

the key, and use it to open the door. The episode terminates, and

the agent receives a reward inversely proportional to the number

of elapsed time steps, when the door is open. In puzzle 2 the agent’s

goal is again to open the door, but a ball is placed directly in front

of the door, which the agent must pick up and move elsewhere

before picking up the key (this is the running example). Puzzle 3

is identical to puzzle 2, except that the agent’s goal is now not to

open the door, but to go to a goal location (green square) in the far

corner of the rightmost room. The high-level planning domain and

low-level RL actions are as defined for the running example.

The evaluation is structured so that for almost all initial condi-

tions in puzzle 1, SPOTTER’s planner can produce a plan that can

be successfully executed to reach the goal state. In puzzle 2, the

door is blocked by the ball, and the agent has no operator represent-

ing “move the ball out of the way” (and no combination of existing

operators can safely achieve this effect given the agent’s planning

domain). The agent must discover such an operator. Finally, puzzle

3 is designed to test whether the learned operator can be used in

the execution of different goals in the same environment.

Figure 2 shows the average results of running SPOTTER 10

times on puzzles 1 through 3. The algorithm was allowed to re-

tain any operators/executors discovered between puzzles 2 and 3.

In each case we employed a constant learning rate 𝛼 = 0.1, dis-

count factor 𝛾 = 0.99, and an 𝜖-greedy exploration policy with

6
The preconditions produced are too lengthy to include in this paper, but can be found

in the supplementary material.

Figure 2: Experimental performance across three tasks. We

report mean cumulative reward (and standard deviation in

lighter color) obtained by our approach (SPOTTER) and

three baseline algorithms: tabular Q-learning over primitive

actions (VQL), tabular Q-learning with primitive and high-

level action executors (HLAQL), and HLAQL with q-updates

trickling down from HLAs to primitives (HLALQL).

decaying exploration constant 𝜖 beginning at 0.9 and decaying to-

wards 0.05. 𝜖 is decayed exponentially using the formula 𝜖 (𝑡) =
𝜖𝑚𝑖𝑛 + (𝜖𝑚𝑎𝑥 − 𝜖𝑚𝑖𝑛)𝑒−𝜆𝑡 , where 𝜆 = −𝑙𝑜𝑔(0.01)/𝑁 , 𝑁 being the

maximum number of episodes. The value threshold was set to

𝜏 = 0.9. We ran for 10,000 episodes on puzzle 1, 20,000 episodes on

puzzle 2, and 10,000 episodes on puzzle 3.

The experimental results show that SPOTTER achieved higher

overall rewards than the baselines in the given time frame and did

so more quickly.
7
Crucially, the agent learned the missing oper-

ator for moving the blue ball out of the way in Level 2, and was

immediately able to use this operator in Level 3. This is demon-

strated both by the fact that the agent did not experience any drop

in performance when transitioning to Level 3 and also we know

from running the experiment that the agent did not enter learn or

gen-precon in Level 3. It is important to note that the baselines

did converge at around 800,000 - 1,000,000 episodes, significantly

later than SPOTTER.
8
.

The results suggest that SPOTTER significantly outperformed

comparable baselines. The HLAQL and HLALQL baselines have

their action space augmented with the same high-level executors

provided to SPOTTER. SPOTTER does not use any function approx-

imation techniques and the exploration and subgoal learners are

tabular Q-learners themselves. Accordingly, we did not compare

against any deep RL baselines. We also did not compare transfer

learning and curriculum learning approaches as these approaches

7
Code implementing SPOTTER and the baselines along with experiments will be made

available post-review.

8
In the supplementary material, we provide the learned operator described in PDDL,

learning curves for the baselines over 2,000,000 episodes, and videos showing SPOT-

TER’s integrated planning and learning.

do not handle cases where new representations need to be learned

from the environment.

4.1 Experiment 2

Ordinarily, as soon as SPOTTER discovers an operator exceeding

the value threshold, that operator is incorporated into the plan-

ning agent’s model. We dispensed with this assumption and ran

SPOTTER on puzzle 2 for 50,000 episodes, allowing the system to

continue learning operator policies and generating preconditions

throughout this time. Every 50 episodes, SPOTTER logged the new

operators it had created. (Operators were not logged if their precon-

ditions were specifications of preconditions for which an operator

had already been discovered.) Figure 3 shows the results for one

particular operator learner (i.e., each of the output operators has

the same postconditions and the same underlying policy, but has

a unique set of preconditions). As Figure 3a indicates, by episode

29,500 this learner discovered 9,049 unique operators; no further

operators were discovered after this episode.

Figures 3b and 3c demonstrate that with additional exploration,

the agent can construct more general operators. Recall that an op-

erator with a set of preconditions is accepted whenever the average

value of all MDP states satisfying those preconditions is greater

than the value threshold (in this experiment, 0.9). As the values of

additional MDP states increase past the threshold, more general

operators (with fewer preconditions) cross this threshold. Figure 3b

plots, for each operator discovered, the episode in which it was

logged and its total number of preconditions. Note that there are

several “waves” of precondition generalization. Beginning with

the discovery of the first viable set of preconditions, as additional

states cross the threshold there is a rapid discovery of new opera-

tors with additional preconditions. Eventually (a little after 10,000

episodes), the existing operators are sufficiently general that many

rarely-seen MDP states would have to be thoroughly explored be-

fore more general preconditions can be found. For a while, any new

operators discovered (while they are not merely specifications of

existing operators) have a larger number of preconditions. This ulti-

mately culminates in a “second wave” in which enough MDP states

have been explored that more general operators can be produced,

ultimately surpassing the first wave.

Figure 3c shows that operators created later not only have fewer

preconditions than earlier operators, but dominate earlier operators
(in that the preconditions of the dominated operator are a strict

superset of the preconditions of the dominating operator). Orange

bars represent dominated operators, blue bars those for which

a superior operator has not yet been found. Relatively few non-

dominated operators persist by step 30,000, and nearly all that

do were created in the last few thousand episodes, suggesting that

running SPOTTER for longer before incorporating operators allows

the construction of strictly better (more general) operators.
9

5 DISCUSSION

The SPOTTER architecture assumes the existence of a planning do-

main with operators which correspond to executors which are more

9
An animated version of this chart, showing how operators are constructed and then

dominated as the agent continues exploring, appears in the supplementary material.

(a) The number of unique sets of precondi-

tions discovered for which average value is

above threshold increases as SPOTTER is al-

lowed to continue exploring.

(b) Generation of operators with decreas-

ing numbers of preconditions proceeds in

“waves” as the value estimates of additional

MDP states converge.

(c) By episode 30,000, almost all operators

have been dominated (replaced by superior

operators), and almost all non-dominated op-

erators were created late in the run.

Figure 3: Results of precondition generalization experiment for a single subgoal learner on puzzle 2.

or less correct. It does not assume that these executors are reward-

optimal. Further, some tasks can be more efficiently performed if

they are not first split into subgoals. Thus, the performance of raw

RL systems eventually overtakes that of SPOTTER on any particular

environment. This is not a serious flaw – SPOTTER also produces

knowledge that can be more easily applied to perform other tasks

in the same environment.

The environments used to test SPOTTER (puzzles 1 through 3)

are deterministic. In stochastic environments, it is often difficult to

design planning domains where operators have guaranteed effects.

While SPOTTER can handle stochastic environments, it would need

more robust metrics for assessing operator confidence.

Future work could also emphasize adapting this work to high-

dimensional continuous state and action spaces using deep rein-

forcement learning. “Symbolizing” such spaces can be difficult, and

in particular such work would have to rethink how to generate

candidate preconditions, since the existing approach enumerates

over all states, which clearly would not work in deep RL domains.

The key advantage of SPOTTER is that the agent can produce

operators that can potentially be applied to other tasks in the same

environment. Because these operators’ executors are policies (here,

policies over finite, atomic MDPs), they do not generalize particu-

larly well to environments with different dynamics or unseen start

states (e.g., an operator learned in puzzle 2 could not possibly be

applied in puzzle 3 if the door was moved up or down by even one

cell). While function approximation could be helpful to solving this

problem, an ideal approach might be a form of program synthe-

sis [27], in which the agent learns programs that can be applied

regardless of environment.

Furthermore, in this work, we manually sequenced the three

tasks to elicit the discovery of operators that would be useful in the

final task environment. A possible avenue for future work would

be to develop automated task sequencing methods (i.e., curriculum

learning [22]) as to improve performance in downstream tasks.

6 RELATEDWORK

In this section, we review related work that overlaps with various

aspects of the proposed integrated planning and learning literature.

6.1 Learning Symbolic Action Models

Early work in the symbolic AI literature explored how agents can

adjust and improve their symbolic models through experimentation.

Gill proposed a method for learning by experimentation in which

the agent can improve its domain knowledge by finding missing

operators [10]. The agent is able design experiments at the symbolic

level based on observing the symbolic fluent states and comparing

against an operator’s preconditions and effects. Other approaches

(to name a few: [11, 17, 21, 25, 26, 30]), comprising a significant

body of literature, have explored recovering from planning failures,

refining domain models, and open-world planning.

These approaches do not handle the synthesis of the underly-

ing implementation of an operator as we have proposed. That is,

they synthesize new operators, but no executors. That said, the

rich techniques offered by these approaches can be useful in inte-

grating into our online learner. As we describe in Section 3.3, the

online learner follows an 𝜖-greedy exploration policy. Future work

will explore how our online learner could be extended to conduct

symbolically-guided experiments as these approaches suggest.

More recently, there has been a growing body of literature ex-

ploring how domain models can be learned from action traces

[3, 14, 16, 36]. The ARMS system learns PDDL planning operators

from examples. The examples consist of successful fluent state and

operator pairs corresponding to a sequence of transitions in the

symbolic domain [35]. Subsequent work has explored how domains

can be learned with partial knowledge of successful traces [2, 6],

and with neural networks capable of approximating from partial

traces [33] and learning models from pixels [4, 7].

In the RL context, there has been recent work in learning sym-

bolic concepts [18] from low-level actions. Specifically, Konidaris

et al. assume the agent has available to it a set of high-level actions,

couched in the options framework for hierarchical reinforcement

learning. The agent must learn a symbolic planning domain with

operators and their preconditions and effects. This approach to

integrating planning and learning is, in a sense, a reverse of our

approach. While their use case is an agent that has high-level ac-

tions but no symbolic representation, ours assumes that we have

(through hypothesizing from the backward search) most of the

symbolic scaffolding, but need to learn the policies themselves.

6.2 Learning Action Executors

There has been a tradition of research in leveraging planning do-

main knowledge and symbolically provided constraints to improve

the sample efficiency of RL systems. Grzes et al. use a potential func-

tion (as a difference between source and destination fluent states)

to shape rewards of a Q-learner [13]. While aligned with our own

targeted Q-learners, their approach requires the existence of sym-

bolic plans, which our agent does not possess. A related approach

(PLANQ) combines STRIPS planning with Q-learning to allow an

agent to converge faster to an optimal policy [12]. Planning with

Partially Specified Behaviors (PPSB) is based on PLANQ, and takes

as input symbolic domain information and produces a Q-values for

each of the high-level operators [1]. Like Grzes et al., PLANQ and

PPSB assume the existence of a plan, or at least a plannable task.

Other recent approaches have extended these ideas to incorporate

using partial plans [15]. The approach proffered by Illanes et al.

improves the underlying learner’s sample efficiency, but can also

be provided with symbolic goals. However, their approach assumes

the agent has a complete (partial order) plan for its environment,

and can use that plan to construct a reward function for learning

options to accomplish a task. One key difference between their

work and ours is that we construct our own operators, whereas

they use a set of existing operators to learn policies.

Generally, while these methods learn action implementations,

they assume the existence of a successful plan or operator defini-

tion. In the proposed framework, the agent has neither and must

hypothesize operators and their corresponding executors.

RL techniques have also been used to improve the quality of

symbolic plans. The DARLING framework uses symbolic planning

and reasoning to constrain exploration and reduce the search space,

and uses RL to improve the quality of the plan produced [19]. While

our approach shares the common goal of reducing the brittleness

of planning domains, they do not modify the planning model. The

PEORL framework works to choose a plan that maximizes a re-

ward function, thereby improving the quality of the plan using

RL [34]. More recently Lyu et al. propose a framework (SDRL) for

generalizing the PEORL framework with intrinsic goals and inte-

gration with a deep reinforcement learning (DRL) machinery [20].

However, neither PEORL nor SDRL synthesizes new operators or

learns planning domains. Our work also differs from the majority

of model-based RL approaches [23, 32] in that we are interested in

STRIPS-like explicit operators that are useful in symbolic planning,

and thereby transferable to a wide range of tasks within a domain.

7 CONCLUSION

Automatically synthesizing new operators during task performance

is a crucial capability needed for symbolic planning systems. As we

have examined here, such a capability requires a deep integration

between planning and learning, one that benefits from leveraging

RL to fill in missing connections between symbolic states. While

exploring the MDP state space, SPOTTER can identify states from

which symbolic planning is possible, use this to identify subgoals

for which operators can be synthesized, and learn policies for these

operators by RL. SPOTTER thus allows a symbolic planner to ex-

plore previously unreachable states, synthesize new operators, and

accomplish new goals.

8 ACKNOWLEDGEMENTS

This work was funded in part by NSF grant IIS-2044786 and DARPA

grant W911NF-20-2-0006.

REFERENCES

[1] Javier Segovia Aguas, Jonathan Ferrer-Mestres, and Anders Jonsson. 2016. Plan-

ning with Partially Specified Behaviors.. In CCIA. 263–272.
[2] Diego Aineto, Sergio Jiménez, and Eva Onaindia. 2019. Learning STRIPS action

models with classical planning. arXiv preprint arXiv:1903.01153 (2019).
[3] Ankuj Arora, Humbert Fiorino, Damien Pellier, Marc Métivier, and Sylvie Pesty.

2018. A review of learning planning action models. The Knowledge Engineering
Review 33 (2018).

[4] Masataro Asai and Alex Fukunaga. 2017. Classical planning in deep latent space:

Bridging the subsymbolic-symbolic boundary. arXiv preprint arXiv:1705.00154
(2017).

[5] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. 2018. Minimalistic

Gridworld Environment for OpenAI Gym. https://github.com/maximecb/gym-

minigrid.

[6] Stephen N Cresswell, Thomas Leo McCluskey, and Margaret M West. 2013. Ac-

quiring planning domain models using LOCM. Knowledge Engineering Review
28, 2 (2013), 195–213.

[7] Andrea Dittadi, Thomas Bolander, and Ole Winther. 2018. Learning to Plan from

Raw Data in Grid-based Games.. In GCAI. 54–67.
[8] Richard E Fikes and Nils J Nilsson. 1971. STRIPS: A new approach to the applica-

tion of theorem proving to problem solving. Artificial intelligence 2, 3-4 (1971),
189–208.

[9] Malik Ghallab, Dana Nau, and Paolo Traverso. 2016. Automated planning and
acting. Cambridge University Press.

[10] Yolanda Gil. 1994. Learning by experimentation: Incremental refinement of

incomplete planning domains. In Machine Learning Proceedings 1994. Elsevier,
87–95.

[11] Evana Gizzi, Mateo Guaman Castro, and Jivko Sinapov. 2019. Creative Problem

Solving by Robots Using Action Primitive Discovery. In 2019 Joint IEEE 9th
International Conference on Development and Learning and Epigenetic Robotics
(ICDL-EpiRob). IEEE, 228–233.

[12] Matthew Grounds and Daniel Kudenko. 2005. Combining reinforcement learn-

ing with symbolic planning. In Adaptive Agents and Multi-Agent Systems III.
Adaptation and Multi-Agent Learning. Springer, 75–86.

[13] Marek Grzes and Daniel Kudenko. 2008. Plan-based reward shaping for rein-

forcement learning. In 2008 4th International IEEE Conference Intelligent Systems,
Vol. 2. IEEE, 10–22.

[14] Chad Hogg, Ugur Kuter, and Hector Munoz-Avila. 2010. Learning methods to

generate good plans: Integrating htn learning and reinforcement learning. In

Twenty-Fourth AAAI Conference on Artificial Intelligence. Citeseer.
[15] León Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A McIlraith. 2020. Symbolic

Plans as High-Level Instructions for Reinforcement Learning. In Proceedings
of the International Conference on Automated Planning and Scheduling, Vol. 30.
540–550.

[16] Sergio Jiménez, Tomás De La Rosa, Susana Fernández, Fernando Fernández, and

Daniel Borrajo. 2012. A review of machine learning for automated planning. The
Knowledge Engineering Review 27, 4 (2012), 433–467.

[17] Saket Joshi, Paul Schermerhorn, Roni Khardon, and Matthias Scheutz. 2012.

Abstract planning for reactive robots. In 2012 IEEE International Conference on
Robotics and Automation. IEEE, 4379–4384.

[18] George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. 2018. From

skills to symbols: Learning symbolic representations for abstract high-level plan-

ning. Journal of Artificial Intelligence Research 61 (2018), 215–289.

[19] Matteo Leonetti, Luca Iocchi, and Peter Stone. 2016. A synthesis of automated

planning and reinforcement learning for efficient, robust decision-making. Arti-
ficial Intelligence 241 (2016), 103–130.

[20] Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. 2019. SDRL: in-

terpretable and data-efficient deep reinforcement learning leveraging symbolic

planning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
2970–2977.

[21] TomMMitchell, RichardMKeller, and Smadar TKedar-Cabelli. 1986. Explanation-

based generalization: A unifying view. Machine learning 1, 1 (1986), 47–80.

[22] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor,

and Peter Stone. 2020. Curriculum Learning for Reinforcement Learning Domains:

A Framework and Survey. Journal of Machine Learning Research 21, 181 (2020),

1–50. http://jmlr.org/papers/v21/20-212.html

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid
http://jmlr.org/papers/v21/20-212.html

[23] Jun Hao Alvin Ng and Ronald PA Petrick. 2019. Incremental Learning of Planning

Actions in Model-Based Reinforcement Learning.. In IJCAI. 3195–3201.
[24] Vasanth Sarathy and Matthias Scheutz. 2018. MacGyver problems: Ai challenges

for testing resourcefulness and creativity. Advances in Cognitive Systems 6 (2018),
31–44.

[25] Wei-Min Shen. 1989. Learning from the environment based on percepts and actions.
Ph.D. Dissertation. Carnegie Mellon University.

[26] Wei-Min Shen and Herbert A Simon. 1989. Rule Creation and Rule Learning

Through Environmental Exploration.. In IJCAI. Citeseer, 675–680.
[27] Armando Solar-Lezama. 2009. The sketching approach to program synthesis. In

Asian Symposium on Programming Languages and Systems. Springer, 4–13.
[28] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-

duction. MIT press.

[29] Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and

semi-MDPs: A framework for temporal abstraction in reinforcement learning.

Artificial intelligence 112, 1-2 (1999), 181–211.
[30] Kartik Talamadupula, J Benton, Subbarao Kambhampati, Paul Schermerhorn, and

Matthias Scheutz. 2010. Planning for human-robot teaming in open worlds. ACM
Transactions on Intelligent Systems and Technology (TIST) 1, 2 (2010), 1–24.

[31] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[32] John Winder, Stephanie Milani, Matthew Landen, Erebus Oh, Shane Parr, Shawn

Squire, Marie desJardins, and Cynthia Matuszek. 2019. Planning with Ab-

stract Learned Models While Learning Transferable Subtasks. arXiv preprint
arXiv:1912.07544 (2019).

[33] Zhanhao Xiao, Hai Wan, Hankui Hankz Zhuo, Jinxia Lin, and Yanan Liu. 2019.

Representation Learning for Classical Planning from Partially Observed Traces.

arXiv preprint arXiv:1907.08352 (2019).
[34] Fangkai Yang, Daoming Lyu, Bo Liu, and Steven Gustafson. 2018. Peorl: Inte-

grating symbolic planning and hierarchical reinforcement learning for robust

decision-making. arXiv preprint arXiv:1804.07779 (2018).
[35] Qiang Yang, Kangheng Wu, and Yunfei Jiang. 2007. Learning action models from

plan examples using weighted MAX-SAT. Artificial Intelligence 171, 2-3 (2007),
107–143.

[36] Terry Zimmerman and Subbarao Kambhampati. 2003. Learning-assisted auto-

mated planning: looking back, taking stock, going forward. AI Magazine 24, 2
(2003), 73–73.

	Abstract
	1 Introduction
	1.1 Running example: GridWorld

	2 Background
	2.1 Open-World Symbolic Planning
	2.2 Reinforcement Learning

	3 Proposed SPOTTER Framework
	3.1 The Operator Discovery Problem
	3.2 Planning and Execution
	3.3 Learning Operator Policies
	3.4 Generating Preconditions

	4 Experiments
	4.1 Experiment 2

	5 Discussion
	6 Related Work
	6.1 Learning Symbolic Action Models
	6.2 Learning Action Executors

	7 Conclusion
	8 Acknowledgements
	References

