
28

Decreasing the Miss Rate and Eliminating the Performance

Penalty of a Data Filter Cache

MICHAEL STOKES and DAVID WHALLEY, Florida State University

SONER ONDER, Michigan Technological University

While data filter caches (DFCs) have been shown to be effective at reducing data access energy, they have
not been adopted in processors due to the associated performance penalty caused by high DFC miss rates.
In this article, we present a design that both decreases the DFC miss rate and completely eliminates the DFC
performance penalty even for a level-one data cache (L1 DC) with a single cycle access time. First, we show
that a DFC that lazily fills each word in a DFC line from an L1 DC only when the word is referenced is more
energy-efficient than eagerly filling the entire DFC line. For a 512B DFC, we are able to eliminate loads of
words into the DFC that are never referenced before being evicted, which occurred for about 75% of the words
in 32B lines. Second, we demonstrate that a lazily word filled DFC line can effectively share and pack data
words from multiple L1 DC lines to lower the DFC miss rate. For a 512B DFC, we completely avoid accessing
the L1 DC for loads about 23% of the time and avoid a fully associative L1 DC access for loads 50% of the
time, where the DFC only requires about 2.5% of the size of the L1 DC. Finally, we present a method that
completely eliminates the DFC performance penalty by speculatively performing DFC tag checks early and
only accessing DFC data when a hit is guaranteed. For a 512B DFC, we improve data access energy usage for
the DTLB and L1 DC by 33% with no performance degradation.

CCS Concepts: • Computer systems organization→ Embedded hardware;

Additional Key Words and Phrases: Data filter cache, line fills, data cache compression, guaranteeing cache
hits

ACM Reference format:

Michael Stokes, David Whalley, and Soner Onder. 2021. Decreasing the Miss Rate and Eliminating the Per-
formance Penalty of a Data Filter Cache. ACM Trans. Archit. Code Optim. 18, 3, Article 28 (April 2021), 22
pages.
https://doi.org/10.1145/3449043

This work was supported in part by the US National Science Foundation (NSF) under grants DUE-1259462, IIA-1358147,

CCF-1533828, CCF-1533846, DGE-1565215, DRL-1640039, CRI-1822737, CCF-1823398, CCF-1823417, CCF-1900788, and

CCF-1901005. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the

authors and may not reflect the views of the NSF.

Authors’ addresses:M. Stokes andD.Whalley, 1004AcademicWay, Computer ScienceDepartment, Florida State University,

Tallahassee, Florida 32306-4530; emails: {mstokes, whalley}@cs.fsu.edu; S. Onder, 1400 Townsend Drive, Department of

Computer Science, Michigan Technological University, Houghton, Michigan 49931; email: soner@mtu.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).

1544-3566/2021/04-ART28

https://doi.org/10.1145/3449043

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.

https://doi.org/10.1145/3449043
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3449043


28:2 M. Stokes et al.

1 INTRODUCTION

It has been estimated that 28% of embedded processor energy is due to data supply [3]. Thus,
reducing data access energy on such processors is a reasonable goal. A data filter cache (DFC),
sometimes also known as a level-zero data cache (L0 DC), has been shown to be effective at
reducing energy usage, since it requires much less energy to access than the much larger level-
one data cache (L1 DC) and can still service a reasonable fraction of the memory references [10,
11]. However, a conventional DFC has disadvantages that have prohibited its use in contemporary
embedded or high performance processors. First, a DFC has a relatively high miss rate due to its
small size. A conventional DFC is accessed before the L1 DC causing the L1 DC to be accessed later
than it would traditionally be accessed within the instruction pipeline, resulting in degradation of
performance on DFC misses. Second, a single cycle filter cache (FC) line fill as proposed in many
prior studies [4–6, 10, 11, 20] has been shown to be unrealistic, as it can adversely affect L1 DC area
and significantly increase the energy usage for each L1 DC access [1]. A multicycle DFC line fill
can also be problematic, as it can interfere with subsequent accesses to the DFC or L1 DC. These
issues must be resolved for a DFC to be a practical alternative in a processor design.
We propose a new design that utilizes a DFC without the aforementioned problems. Our design

for effectively using a DFC makes the following contributions: (1) We show that it is more energy-
efficient on a DFCmiss to lazily fill only a single word into a DFC line when the word is referenced
and not resident than to eagerly fill every word of an entire DFC line. (2) As far as we are aware, we
provide the first data compression technique for a DFC or for any first-level cache that shares and
packs data words in a single cache line at the granularity of individual words from different lines or
sublines in the next level of the memory hierarchywithout increasing the cache access time. (3)We
present a method that completely eliminates the DFC miss performance penalty by speculatively
performing the DFC tag check early and only accessing DFC data when a hit is guaranteed.

2 BACKGROUND

Figure 1 shows the address fields for accessing the DTLB, L1 DC, and DFC, which are frequently
referenced in the remainder of the article. The nonbold portion shows the virtual and physical
addresses used to access the DTLB and L1 DC, respectively. The virtual page number is used to
access the DTLB to produce the corresponding physical page number. The page offset remains the
same. The L1 block number uniquely identifies the L1 DC line. The L1 offset indicates the first byte
of the data in the L1 DC line. The L1 index is used to access the L1 DC set. The L1 tag contains
the remaining bits that are used to verify if the line resides in the L1 DC. The bold portion shows
the fields for accessing the DFC. The DFC fields are similar to the L1 fields. But due to the DFC
containing smaller lines and less total data than an L1 DC, the DFC offset and DFC index fields are
smaller and the DFC tag field is larger.
Each data word filled in a DFC line will require a read from the L1 DC and a write to the DFC.

Placing a data word in a DFC line will only be beneficial for reducing energy usage when the data
word is subsequently referenced due to temporal locality or when multiple individual portions
(e.g., bytes) of the word are referenced due to spatial locality within the word. Energy usage will
be reduced when n L1 DC accesses are replaced by a single L1 DC access and n DFC accesses
requiring less energy, where n is greater than one.

3 TECHNIQUES TO IMPROVE DFC EFFICIENCY

We describe three general techniques in this article to improve the efficiency of a DFC. First, we
describe how energy usage can be reduced by filling data words into a DFC line only when they
are first referenced. Second, we illustrate how the DFC miss rate can be decreased by sharing a

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



Decreasing the Miss Rate and Eliminating the Performance Penalty of a Data Filter Cache 28:3

Fig. 1. Address fields.

Fig. 2. Components of a DFC lazy word filled line.

DFC line between multiple L1 DC (sub)lines. Finally, we outline how the DFC miss penalty can
be eliminated by performing a DFC tag check early and only accessing the DFC data when it is
known to reside in the DFC. Thus, we can reduce energy usage by eliminating unnecessary loads
of words into a DFC and improving the DFC miss rate and at the same time not have any adverse
effect on performance.

3.1 Lazily Filling Data Words into a DFC Line

In most caches, an eager line fill strategy is used where an entire cache line is filled with data
from the next level of the memory hierarchy when there is a cache miss. Eagerly filling cache
lines on a cache miss can improve performance as it increases the cache’s hit rate, thus avoiding
accessing the next level of the memory hierarchy to retrieve the data. However, a single cycle is
required to load a word from an L1 DC in many embedded processors, meaning that introducing
a DFC that is always accessed before the L1 DC can only degrade performance due to DFC misses.
We will show in Section 3.3 that the performance degradation associated with DFC misses can
be completely eliminated by only loading a value from the DFC when a hit is guaranteed. In this
context, eagerly filling words into a DFC line on a DFC miss should only be performed if it can
improve energy efficiency.
Many prior FC studies have proposed to fill an FC line in a single cycle to minimize the FC miss

penalty [4–6, 10, 11, 20]. Fetching an entire DFC line of data in a single cycle has been asserted to
be unrealistic, as a large bitwidth to transfer data between the CPU and the L1 DC can adversely
affect L1 DC area and significantly increase the energy usage for each L1 DC access [1]. Given that
a sizeable fraction of the data memory references will access the L1 DC due to a typically high
DFC miss rate, it is best to utilize an L1 DC configuration that is efficient for L1 DC accesses.
We use a DFC lazy word fill strategy where each word is only filled when the word is referenced

and is not resident in the DFC. We assume a uniform L1 DC bus width of 4 bytes. So when a load
byte or load halfword instruction is performed and the word is not resident, the entire word from
the L1 DC is copied into the DFC and the appropriate portion of the word is extended and sent to
the CPU. Alignment requirements are enforced by the compiler we used so a load or a store never
spans more than one word or a DFC line boundary. Figure 2 shows the information in the DFC
line that is used for our DFC lazy word fill strategy. An f (filled) bit is associated with each word
in the DFC line indicating if the word is resident, which can be viewed as the valid bit vector of
a sectored cache [18]. A DFC word hit requires both a DFC tag match and the f bit to be set. This
cache organization can be viewed as an extreme instance of subblocking, where each subblock is

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



28:4 M. Stokes et al.

the size of one word. We assume a DFC write through and write allocate policy for a DFC line miss

(DFC line is not resident) or for a DFC line hit+word miss (DFC line is resident, but the referenced
word within the line is not resident) as we are only writing a single word to the line at a time.
However, we do not allocate a word on a line hit+word misswhen there is a byte or halfword store,
as we would have to read the word from the L1 DC first to ensure that the entire word is resident
in the DFC.
One advantage of eagerly filling an entire DFC line is that only a single L1 DC tag check is

required for the entire DFC line fill. With our lazy fill approach, DFC line hits+word misses are
common where the DFC line corresponding to the L1 DC (sub)line that holds the data is resident,
but the desired word is not. To still provide a benefit for these cases, we store the L1 DC way
corresponding to the L1 DC (sub)line that holds the data along with the DFC line, as shown in
Figure 2. When there is a DFC line hit+word miss, the L1 DC way field is used to access the L1 DC
without an L1 DC tag check. Other approaches for memoizing the L1 DC way have been used
in the past [12, 19, 21]. In addition, only a single L1 DC data array is accessed to load the word
from the L1 DC into the DFC line. Only a DFC line miss will require an L1 DC tag check and a
set-associative L1 DC data access. Note the DFC in our design is inclusive, where the data in each
DFC line is guaranteed to be resident in the L1 DC. Thus, both DFC eagerly and lazily filled line
approaches can avoid redundant L1 DC tag checks and set associative L1 DC data accesses.
L1 DC line evictions can occur due to conventional L1 DCmisses or multiprocessor invalidation

requests. We perform a DFC tag check to invalidate DFC lines whenever an L1 DC line is evicted.
Thus, no additional changes are needed to the DFC in each core to provide multiprocessor support.
Having a write-through policy means that for each store a value is written to both the DFC and

L1 DC, which can result in more energy usage for stores. However, utilizing the L1 DC way in the
DFC to avoid an L1 DC tag check on DFC hits can offset some of the extra energy for writing the
data value in both the DFC and L1 DC.
DFC lines are also more frequently evicted than L1 DC lines due to more capacity misses, which

can result in words never being referenced that were eagerly filled in a DFC line. In contrast, each
word in a lazily filled DFC line is referenced at least once.
Another DFC eager line fill strategy is to fill the entire DFC line one word at a time over mul-

tiple cycles, which will be more energy-efficient than filling a DFC line in one cycle. A multicycle
DFC line fill will be problematic if it will delay subsequent accesses to the DFC or L1 DC. Also,
dealing with multiple outstanding DFC line fills will require more complex logic. After a DFC line
is allocated, each word that is filled in that line using either an eager or lazy approach will require
an L1 DC read and a DFC write. However, a DFC lazy word fill approach is much simpler and
will not fill words that are never referenced before the line is evicted. Furthermore, we will later
show that many of the words that will be filled over multiple cycles will not be referenced and
thus needlessly loaded into the DFC, wasting energy.

3.2 Decreasing the DFC Miss Rate by Line Sharing and Data Packing

We proposed in Section 3.1 a DFC lazy word filled approach that can be more energy-efficient
than an aggressive DFC eager line fill approach when a DFC causes no performance penalty. We
now present optimizations to the lazy word filled DFC that improve its hit rate. Much of the space
available in a lazy word filled DFC line goes unused, as some words in the line will not be filled,
because they are not referenced before the DFC line is evicted. To make better use of this available
space in a lazy word filled DFC line, we allow multiple L1 DC (sub)lines to share the same DFC
line. As long as the L1 DC (sub)lines refer to words in different parts of the DFC line, the DFC can
simultaneously hold values from different L1 DC (sub)lines. This approach can decrease the DFC
miss rate, as there will be fewer DFC line evictions and can increase the amount of data the DFC

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



Decreasing the Miss Rate and Eliminating the Performance Penalty of a Data Filter Cache 28:5

Fig. 3. DFC line metadata.

Table 1. DFC Metadata for

Sharing Data Words

Code Interpretation

0 4-byte value
1 not resident

Fig. 4. Example of line sharing.

will likely hold. However, if multiple L1 DC (sub)lines refer to words corresponding to the same
position in the DFC line, then only the most recently referenced word is retained.
In this section, we assume a direct-mapped DFC where a single DFC line is associated with each

DFC set. We allow one, two, or four L1 DC (sub)lines to share each DFC line, depending on the
hardwired DFC configuration. There must be a tag and other metadata for each L1 DC (sub)line
that shares a single DFC line. Thus, there are multiple DFC tag arrays, but only a single DFC data
array. There will be DFC metadata associated with each L1 DC (sub)line that currently shares a
DFC line denoting which words of the L1 DC (sub)line are resident. Figure 3 shows that this DFC
metadata for each L1 DC (sub)line will include a valid bit, a tag, an L1 DC way, and metadata
about each data word. LRU information for the L1 DC (sub)lines that share a DFC line is used to
determine which L1 DC (sub)line to evict on a DFC line miss, but is not shown in the figure.
Table 1 shows one option where different words within distinct L1 DC (sub)lines can reside in

the same DFC line at the same time. We refer to this option as DFC line sharing (LS). Only a
single bit of metadata is required for each word within each L1 DC (sub)line to indicate if the word
is resident or not, replacing the f (filled) bit in Figure 2. At most a single value from two (four)
corresponding words in the L1 DC (sub)lines can reside in the DFC line at one time as we allow
two (four) L1 DC (sub)lines to share a single DFC line. This requires DFC word evictions if two or
more words are referenced from multiple L1 DC (sub)lines that correspond to the same word in
the DFC line.
Figure 4 shows an example of two L1 DC lines sharing a DFC line (2xLS). These two L1 DC lines

i and j are depicted with the first three values shown in each line. The DFC line shows both the

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



28:6 M. Stokes et al.

Table 2. DFC Metadata for Sharing+Packing Data Words

Code Interpretation Can Pack with

00 zero value 00, 01, 10, 11
01 1-byte (4xLS) or 2-byte (2xLS) value 00, 01, 11
10 4-byte value 00, 11
11 not resident 00, 01, 10, 11

data words and the metadata codes to the right of each word, using the metadata codes shown in
Table 1. Word 0 in line i is resident and word 1 in line j is resident. Word 2 is not resident for either
L1 DC line. This type of DFC line sharing may be beneficial when different portions of different
L1 DC (sub)lines that map to the same DFC line are being accessed close in time. We will later
show how some of the other values in L1 DC lines i and jmay also be placed in the same DFC line.
Table 2 shows an extension to line sharingwhere values associated with the same corresponding

words from distinct L1 DC (sub)lines can sometimes reside in the same word within a DFC line at
the same time. We refer to this option as DFC line sharing and data packing (LS+DP). Rather
than evicting words from a DFC line if multiple L1 DC (sub)lines attempt to share the same DFC
word, we allow multiple L1 DC (sub)lines to share the same word if the multiple values taken
together can fit in four bytes. This approach will decrease the miss rate, as there will be fewer DFC
word evictions and the amount of data stored inside the DFC will increase.
We require two bits of metadata for each word within each L1 DC (sub)line sharing the same

DFC line to support data packing, as shown in Table 2. When a word is loaded from the L1 DC, the
processor checks if the value is narrow width, meaning that the value can be represented in fewer
bytes than a full data word. If only two distinct L1 DC (sub)lines are allowed to share the same
DFC line (2xLS+DP), then narrow width means that the value can be represented in two bytes.
If four distinct L1 DC (sub)lines are allowed to share the same DFC line (4xLS+DP), then narrow

widthmeans that the value can be represented in one byte. Otherwise, the value is considered full
width (code 10). Zero can be viewed as a special narrow-width value, where the data value is not
actually stored in the DFC line. Thus, a zero value (code 00) can be packed in the same word with
any other value. A nonzero narrow width value (code 01) can be packed into the same word with
any value that is not full width.
The placement within the word of nonzero narrow-width values for a given L1 DC (sub)line

will be based on the DFC metadata way of the L1 DC (sub)line, as shown in Figure 3. When only
two L1 DC (sub)lines can share the DFC line, a nonzero narrow width value will be placed in the
lower halfword if the DFC metadata way was zero and the upper halfword if the DFC metadata

way was one. Likewise, a nonzero narrow width value would be placed in the corresponding byte
based on the DFC metadata way of the L1 DC (sub)line that is sharing that DFC line when four
L1 DC (sub)lines can share the DFC line.
Figure 5 shows an example of line sharing and data packing with two L1 DC lines sharing a DFC

line (2xLS+DP). These two L1 DC lines have the same values as in Figure 4. The DFC metadata for
these two lines use the metadata codes shown in Table 2. Word 0 in each of the two L1 DC lines
can be packed into word 0 of the DFC line, as both values are narrow width (can be represented
in 2 bytes). Word 1 in each of the two L1 DC lines can be packed into word 1 of the DFC line, as
word 1 of L1 DC line j is zero and is not stored in the DFC line. At most one value for word 2 can
be stored as the values in word 2 for both L1 DC lines i and j are full width. It may be the case that
the value from word 2 in L1 DC line i has not yet been referenced from the time the L1 DC line i
was allocated in the DFC and thus has not yet been filled.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



Decreasing the Miss Rate and Eliminating the Performance Penalty of a Data Filter Cache 28:7

Fig. 5. Example of line sharing and data packing.

Fig. 6. DFC data value taxonomy.

Figure 6 shows the taxonomy of the data values stored in a DFC when applied to the SPECint
2006 benchmark suite. On average, 18.5% were zero values, which do not require an access to the
DFC data. 23.6% could be represented in a single byte and 13.7% required two bytes. 44.1% of the
values required three or four bytes to be represented. Thus, 55.9% of the values can be potentially
packed into a word with a value from a different L1 DC line.
The DFC word metadata is organized into arrays, where there is a separate array for each set of

corresponding words of DFCmetadata from the L1 DC (sub)lines. The specific array to be accessed
is determined by the DFC word offset (see Figure 1) value. The specific DFC word metadata within
the set of corresponding DFC words is selected by which DFC tag matches and this metadata will
indicate if the word is resident.
LS requires that multiple tags be checked in parallel, just like a set-associative cache. However,

we are only accessing a single data word where a set-associative cache would access multiple data
words. The LS check to determine if the word is resident may take slightly longer than a direct-
mapped cache without LS, as we have to not only perform a tag check for the tags associated with
that DFC line, but also check if theword is resident for the tag that matched. The access time should
still be less than a set-associative DFC, as there is no need to access multiple data words from the
lines in the set through a multiplexor, as only a single data word is accessed. In addition, we are
assuming the 4-way set associative L1 DC can be accessed in a single cycle. The DFC associative
tag memory is much smaller than the L1 DC tag memory and will require less time to access.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



28:8 M. Stokes et al.

Fig. 7. Modified datapath to support guaranteed DFC hits.

3.3 Eliminating the DFC Miss Penalty by Only Accessing DFC Data on DFC Hits

It is desirable to not degrade performance when a value is not resident in the DFC, as DFC miss
rates can be fairly high. We revised a traditional instruction pipeline that only loads data from a
DFC when a DFC word hit is guaranteed. We guarantee DFC word hits by speculatively accessing
the DFC metadata using the upper bits of the base register when the offset is small. If the addition
of the base register and the offset does not cause these upper bits to change, then the speculation
is successful and we can access the DFC data if the metadata shows the word is resident or we
can use the L1 DC way if the metadata shows that the line is resident but the word is not. Other-
wise, if we (1) are not able to speculate because the offset was too large, (2) speculatively access
the metadata, but the calculation of the effective address modifies the bits we used to access the
metadata, or (3) have a line miss in the metadata, then we must access the L1 DC, but now with
no performance penalty. Figure 7 shows a classical five-stage pipeline modified to support access
to a DFC with no performance penalty. Only the datapath for ALU and load instructions is shown
with no forwarding to simplify the figure.
Assume a load instruction is being processed in the pipeline. The virtual page number (VPN)

field (see Figure 1) of the base register value is used to speculatively access the DTLB during the
EX stage. The DTLB is small enough to be accessed so the physical page number can be compared
to a physical tag stored in the DFC in a single cycle. Unless the VPN is modified when calculating
the effective address by adding the displacement, the physical page number that is output from
the DTLB will be valid. The DFC index field (see Figure 1) of the base register value is used in the
EX stage to speculatively access the DFC tag arrays so a DFC tag check can be performed. The
processor will check that the DFC index field of the address is unaffected by the effective address
addition by ensuring that the displacement is less than the DFC block size and inspecting the
carry out of the DFC offset field. The DFC index field is also used to access the DFC word metadata.
The processor will access the L1 DC during the MEM stage when the DFC block number field (see
Figure 1) is affected by the effective address calcuation, a DFC line miss occurs, or the specified
word is not resident in the DFC line. If there is a DFC line hit+word miss, then only a single L1 DC
data array is accessed with no L1 DC tag check, as the L1 DC way field in the DFC line indicates
which L1 DC way to access. If the DFC word metadata indicates that the value is zero, then the
DFC data is not accessed. Otherwise, a DFC word hit for a nonzero value occurred, the DFC data
will be accessed in the MEM stage, and the word metadata obtained during the EX stage will be
used to determine how to extract the value from the word in the DFC line.
For DFC word hits that load a value of zero, the value is obtained after the EX stage instead of

the MEM stage. Although this feature could be used to provide a small performance improvement,
it was not evaluated in this study.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



Decreasing the Miss Rate and Eliminating the Performance Penalty of a Data Filter Cache 28:9

The DFC in our design will not be able to service every load due to DFC line misses, DFC line

hits+word misses, and when the DFC block number field (see Figure 1) is affected by the effective
address calculation. Thus, it would be desirable to load the data from the L1 DC in the MEM stage
when the data cannot be supplied by the DFC in the EX stage. We use an inclusive cache policy
and a DFCwrite-through policy to ensure that the L1 DC always has the most recent data. A write-
through policy is much simpler to implement than a write-back policy in our DFC, as we do not
have to deal with writing back dirty DFC lines over multiple cycles when a DFC line is replaced.
Eviction of DFC lines due to L1 DC line evictions is also simpler, as the evicted DFC lines simply
need to be invalidated.
Although not shown in Figure 7, the DFC tag comparison and DFC word metadata access is

performed again in the MEM stage when the effective address calculation affects the DFC block

number. If there is not a DFC tag match (DFC line miss), then the appropriate L1 DC (sub)line
is allocated in the DFC line. The word loaded from the L1 DC is placed in the DFC line if there
is either a DFC line miss or DFC line hit+word miss. If there is a DFC tag match and the word is
resident on a store instruction, then both the DFC and L1 DC are updated in the MEM stage. In
the few cases when the effective address calculation affects the virtual page number, we access
the DTLB again in the MEM stage and do not allow a DTLB access in the EX stage of the next
instruction during the same cycle.
The logic to speculatively perform a DFC tag check is similar to past work where a speculative

L1 DC tag check was performed in the EX stage [2]. In that work the authors provided an RTL
implementation synthesized using the Synopsis Design Compiler. The logic that we propose in
this article is much simpler, as the tag arrays of a DFC are much smaller than the tag arrays of an
L1 DC due to fewer lines in the DFC. Hence, we do not anticipate any increase in the processor
cycle time.
The DFC tag memory and DFC data memory only need to have a single port for a single issue

processor. We do not do any DFC operations in parallel except for accessing the DFC tag memory
in the EX stage and the DFC data in the MEM stage for two different memory access instructions.
If there is ever a structural hazard, then we give priority to the instruction that entered the pipeline
first and access the L1 DC for the data for the instruction that entered the pipeline later. On an
invalidation of an L1 DC line due to a line being replaced in a lower level of the memory hierarchy
or due to a multiprocessor invalidation request, we invalidate the appropriate DFC lines while the
entire processor is stalled.

3.4 Summary of the Techniques to Improve DFC Efficiency

We summarize in this subsection how the techniques described in the preceding three subsections
interact. Figure 8 shows the DFC actions that are taken in the EX and MEM pipeline stages.
In the EX stage, we check if the DFC line is resident as a metaline. If the metaline is not resident,

then we always allocate a DFC metaline since we are using a write allocate policy, will mark each
word within that metaline as invalid, and indicate that there was a word miss in the EX/MEM
pipeline register. IF the metaline is resident, then we access the existing word metadata for the
accessed word and write that information to the EX/MEM pipeline register. Note that the word
metadata can either come from the DFC word metadata store or can be forwarded from the MEM
stage if that same word was updated by a load word miss or a store in the previous instruction.
We also indicate which metaline will be accessed in the DFC data during the MEM stage.
In the MEM stage, we take different actions, depending on whether the access was a load or

a store. If the access was a load and we detected a word miss in the EX stage, then we load the
word from the L1 DC and pack the word with the corresponding words in the other metalines.
If the access was a load and we detected a word hit in the EX stage, then we unpack the value

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



28:10 M. Stokes et al.

Fig. 8. Pseudocode showing DFC actions taken in EX and MEM pipeline stages.

from the DFC data. We always send the loaded data to the CPU. If the access was a store and
the word is resident or an entire word is being stored, then we pack the new word value with
the corresponding data words in the other metalines for that DFC line and update the DFC word
metadata. We always write the store data value through to the L1 DC to keep the data values in
the DFC and the L1 DC consistent.

4 EVALUATION ENVIRONMENT

In this section, we describe the experimental environment used to evaluate the previously de-
scribed DFC techniques. We use the 9 C benchmarks from the SPECint 2006 benchmark suite,
which are compiled using gcc with the -03 option. We use the ADL simulator [15] to simulate
both a conventional MIPS processor as the baseline and a modified processor, as described in this
article. Note that in this article, we only address the data memory hierarchy within a processor
for a simple low-end embedded processor. This simulator performs a more realistic simulation
than many commonly used simulators (in ADL data values are actually loaded from the caches,

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



Decreasing the Miss Rate and Eliminating the Performance Penalty of a Data Filter Cache 28:11

Table 3. Benchmark Information

Name Description Insts Simulated Data Pages Accessed L1 DC Miss Rate

bzip2 text compression 10,143,879,979 2,858 0.024

gcc C compiler 5,519,277,424 1,507 0.021

gobmk plays game of Go 842,235,543 2,047 0.003

h264ref video compression 107,222,101,484 3,382 0.006

hmmer protein sequence analysis 2,165,534,715 65 0.002

libquantum quantum comp simulation 304,226,199 29 0.009

mcf vehicle scheduling 4,242,148,053 24,783 0.288

perlbench Perl interpreter 1,513,785 44 0.011

sjeng chess program 19,251,684,223 22,358 0.004

Table 4. Processor Configuration

page size 4KB, assume page coloring to support VIPT organization
L1 DC 32KB, 64B line size, 4-way associative, 1 cycle access time
DTLB 32 entries, fully associative
DFC direct mapped, 32B line size, 128B to 1KB cache size, 1 cycle access time

Table 5. Energy for L1 DC and DTLB Components

Component Energy

Read L1 DC Tags - All Ways 0.782 pJ
Read L1 DC Data 4 Bytes - All Ways 8.192 pJ
Read L1 DC Data 32 Bytes - All Ways 256.300 pJ
Write L1 DC Data 4 Bytes - One Way 3.564 pJ
Read L1 DC Data 4 Bytes - One Way 1.616 pJ
Read DTLB - Fully Associative 0.880 pJ

values are actually forwarded through the pipeline, etc.), which helps to ensure that the described
techniques are correctly implemented. The description of the benchmarks along with some statis-
tics are shown in Table 3. Table 4 shows other details regarding the processor configuration that
we utilize in our simulations. We use the ADL simulator combined with CACTI [13, 14] for the
energy evaluation to model processor energy. CACTI was used assuming a 32-nm CMOS process
technology with low standby power (LSTP) cells and power gating. Table 5 shows the energy
for accessing various components in the L1 DC and DTLB. Table 6 shows the dynamic energy for
accessing various components of the DFC. CACTI does not provide energy values for very small
caches. Thus, we estimated the energy for accessing the smaller DFCs by using the same rate of
decrease in energy usage going from a 2KB L1 DC to a 1KB L1 DC with the same associativity and
line size. Likewise, we made similar estimations of the energy usage for accessing DFC word meta-
data. The DFC metadata in the table includes the tag comparison along with accessing the word
metadata. We do perform a DFC tag check whenever an L1 DC line is invalidated to determine
which DFC lines need to be invalidated, and we account for this in the energy results. Leakage en-
ergy was gathered assuming a 1 GHZ clock rate. Our evaluation is for a simple low-end embedded
processor. We did not simulate any memory hierarchy level after the L1 DC, as our approach will
not affect the number of references to these other levels of the memory hiearchy.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



28:12 M. Stokes et al.

Table 6. Energy for DFC Components

Compo- LS+DP Energy for Different DFC Sizes
nent Config 128B 256B 512B 1024B

1 0.036 pJ 0.060 pJ 0.098 pj 0.162 pJ
Read 2xLS 0.039 pJ 0.065 pJ 0.109 pj 0.183 pJ
DFC 2xLS+DP 0.040 pJ 0.068 pJ 0.116 pj 0.199 pJ

Metadata 4xLS 0.062 pJ 0.109 pJ 0.190 pj 0.332 pJ
4xLS+DP 0.069 pJ 0.120 pJ 0.210 pj 0.367 pJ

1 0.143 pJ 0.169 pJ 0.199 pj 0.236 pJ
Write 2xLS 0.234 pJ 0.271 pJ 0.314 pj 0.363 pJ
DFC 2xLS+DP 0.276 pJ 0.311 pJ 0.352 pj 0.397 pJ

Metadata 4xLS 0.395 pJ 0.471 pJ 0.561 pj 0.669 pJ
4xLS+DP 0.405 pJ 0.485 pJ 0.582 pj 0.697 pJ

Read DFC Data 0.046 pJ 0.097 pJ 0.205 pj 0.434 pJ
Write DFC Data 0.126 pJ 0.240 pJ 0.455 pj 0.866 pJ

Fig. 9. Fraction of eagerly filled DFC lines referenced before eviction by benchmark.

5 RESULTS

This section describes the results of applying the proposed techniques in this article. We first
show results of applying the lazily filling DFC data words, as described in Section 3.1. We next
show results of sharing lines and packing data in a DFC, as described in Section 3.2. Finally, we
show results after modifying the pipeline to speculatively perform a DFC tag check early and
only access DFC data when a DFC hit has been guaranteed as described in Section 3.3. Since our
combined techniques have no effect on performance, we do not provide any performance results.
Figure 9 shows the fraction of eagerly filled DFC lines with a 32B line size that are referenced

before eviction by benchmark. The libquantum benchmark had the highest fraction of a line ref-
erenced before eviction, as many of its references are made when sequentially striding through a
large structure. On average, the fractions are quite small due to frequent conflicts between DFC
lines even though we counted the initial referenced word that caused the line to be filled as being
referenced. Thus, even a 1,024B DFC with eager line filling has about 72% of the words within a
line not referenced before the line is evicted.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



Decreasing the Miss Rate and Eliminating the Performance Penalty of a Data Filter Cache 28:13

Fig. 10. Taxonomy of DFC accesses.

Fig. 11. Data access energy with eager vs. lazy filling.

Figure 10 shows the ratio of DFC lazy fill word hits and the ratio of DFC lazy fill line hits+word
misses. Note that the height of each stacked bar is equal to the ratio of DFC word hits if a one-cycle
eager line fill strategy was used. The space above the bar is the ratio of DFC lazy line misses. As
the DFC size increases, the ratio of DFC lazy fill word hits increases, since there are fewer capacity
miss evictions of DFC lines. The results show that a large fraction of the memory references do
not need to access the L1 DC at all (word hits) and do not need to perform an L1 DC tag check and
can access a single L1 DC data array when accessing the L1 DC (line hits+word misses).
Figure 11 shows the data access energy when eagerly filling an entire DFC line in a single cycle

versus lazily filling the demanded word when the word is not resident in the DFC. Data access
energy in this article is the energy used for accessing the DTLB, L1 DC, and DFC for both loads
and stores. The baseline at 1.0 is for a processor without a DFC. We simulated L1 DC bitwidth
configurations using the energy associated with a DFC eager line fill strategy (32-byte access that
fills an entire DFC line in a single cycle) and a DFC lazy word fill strategy (4-byte access that fills
a word in the DFC line only when the word is first referenced after the line is allocated). When
eagerly filling an entire DFC line in a single cycle, the entire line from each L1 DC way must
be read, resulting in more energy usage, as shown in Table 5. We label the height of the eager
fill bars rather than showing the entire bar, since a DFC eager one-cycle filled line strategy uses
significantly more data access energy than a processor without a DFC. These results confirm that
a one cycle eager fill DFC approach is just not practical. For the lazy fill bar in the figure, an
L1 DC tag check and associative L1 DC data array is accessed for each DFC line hit+word miss.
For the lazy fill + memoize L1 DC way bar in the figure, no L1 DC tag check is performed and a
single L1 DC array is accessed for each DFC line hit+word miss. For a 512B DFC, using lazy fill and

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



28:14 M. Stokes et al.

Fig. 12. DFC data utilization.

Fig. 13. DFC data utilization by benchmark for a 512B DFC.

memoizing the L1 DC way reduces data access energy for the DTLB, DFC, and L1 DC by about
42%, as compared to a baseline with no DFC.
Figure 12 shows the average utilization of words in the DFC for the different line sharing (LS) and

data packing (DP) techniques. Utilization in this graph indicates the average number of resident
words that are in the DFC after each 1,000 cycles. The results are compared to a baseline at 1.0
in the graph that represents a lazy word filled DFC with no line sharing or data packing. Line
sharing and data packing are both shown to be quite effective for increasing the DFC utilization.
However, as the DFC size increases, the relative utilization improvement decreases as compared
to the baseline, since more of each application’s working set fits into the DFC.
Figure 13 shows the utilization results by benchmark for a 512B DFC. In general, both increas-

ing LS and DP improved the utilization. Note that improved utilization often does not result in
comparable improvements in hit rates.
Figure 14 shows the fraction of memory references that are word hits and line hits+word misses

in the DFC with different sizes and configurations. The space above the bars represent DFC line

misses. Data packing increases the number of word hits within the line but does not typically
change the number of line misses. Thus, the height of the bars with and without data packing
are approximately the same when sharing the same number of L1 DC (sub)lines. As the DFC size

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



Decreasing the Miss Rate and Eliminating the Performance Penalty of a Data Filter Cache 28:15

Fig. 14. DFC data hit rates.

Fig. 15. DFC data hit rates by benchmark for a 512B DFC.

increases, the sum of the DFC word hits and line hits+word misses also increases. The figure also
shows how valuable line sharing and data packing are for improving the DFC word hit rate. For
instance, a 256 byte DFC that shares 4 L1DC sublines with data packing (4xLS+DP) provides almost
the same DFC word hit rate (42%) as a 1,024 byte DFC with no line sharing (43%). These results
show that line sharing and data packing provide more flexibility so the DFC can often better adapt
to the data reference patterns in an application. Compressing cache data has a greater opportunity
to decrease the DFC miss rate compared to decreasing the miss rates of larger caches, since an
application’s working set is less likely to fit in a smaller uncompressed DFC.
Figure 15 shows the DFC data hit rates by benchmark for a 512B DFC. The libquantum bench-

mark had very little temporal locality, as most of its references were striding through a large
structure. Thus, the various techniques did not increase the hit rate much, since there were few
conflict misses and most hits were due to spatial locality.
Figure 16 shows the average data access energy usage for the different combinations of line

sharing and data packing techniques varied for different DFC sizes. Data access energy includes the
energy for all accesses to the DTLB, DFC, and L1 DC. The baseline at 1.0 is for a processor without
a DFC. The figure shows that with smaller DFC sizes, energy usage is reduced when sharing more
L1 DC lines and packing more data words as the DFC miss rate is more effectively lowered due to
reducing contention for DFC lines. With larger DFC sizes, there is less contention for DFC lines

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



28:16 M. Stokes et al.

Fig. 16. Data access energy with line sharing and data packing.

Fig. 17. Component data access energy.

and the extra overhead of additional DFC tag comparisons and word metadata accesses outweighs
a smaller improvement in the DFC miss rate. The best data access energy usage is with sharing
four lines (4xLS or 4xLS+DP) for a DFC size of 512 bytes. While Figures 12 and 14 showed that data
packing improved both DFC utilization and hit rates, the energy used to access the word metadata
mitigates most of those benefits. So the total energy usage with data packing was about the same
as without data packing. Note that we started the y-axis at 0.5 and ended it at 0.75 so the reader
can more easily distinguish between the 4xLS and 4xLS+DP lines in the figure.
Figure 17 shows the average data access energy usage for each component for the best config-

uration of line sharing and data packing with each DFC size, as shown in Figure 16. A DFC size of
zero indicates no DFC was used. Using a DFC significantly reduces L1 DC read energy. Note that
L1 DC write energy stays constant due to using a DFC write-through policy. Likewise, the DTLB
energy stays constant as the DTLB is accessed for each memory reference. The DFC energy grows
as the DFC size increases. One can see that the increase in DFC energy surpasses the decrease
in L1 DC read energy when moving from a 512 byte to a 1,024 byte DFC. The 512 byte DFC has
slightly lower total data access energy than a 256 byte DFC.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



Decreasing the Miss Rate and Eliminating the Performance Penalty of a Data Filter Cache 28:17

Table 7. DFC Metadata

Data Organi- Metadata Metadata /
Size zation tags valid word L1DC way LRU Total Data Size

128B

1xLS 100 bits 4 bits 32 bits 8 bits 0 bits 18 bytes 0.14
2xLS 200 bits 8 bits 64 bits 16 bits 4 bits 36.5 bytes 0.29

2xLS+DP 200 bits 8 bits 128 bits 16 bits 4 bits 44.5 bytes 0.35
4xLS 400 bits 16 bits 128 bits 32 bits 20 bits 74.5 bytes 0.58

4xLS+DP 400 bits 16 bits 256 bits 32 bits 20 bits 90.5 bytes 0.71

256B

1xLS 192 bits 8 bits 64 bits 16 bits 0 bits 27 bytes 0.11
2xLS 384 bits 16 bits 128 bits 32 bits 8 bits 71 bytes 0.28

2xLS+DP 384 bits 16 bits 256 bits 32 bits 8 bits 87 bytes 0.34
4xLS 768 bits 32 bits 256 bits 64 bits 40 bits 145 bytes 0.57

4xLS+DP 768 bits 32 bits 512 bits 64 bits 40 bits 177 bytes 0.69

512B

1xLS 368 bits 16 bits 128 bits 32 bits 0 bits 52 bytes 0.10
2xLS 736 bits 32 bits 256 bits 64 bits 16 bits 138 bytes 0.27

2xLS+DP 736 bits 32 bits 512 bits 64 bits 16 bits 170 bytes 0.33
4xLS 1,536 bits 64 bits 512 bits 128 bits 80 bits 290 bytes 0.57

4xLS+DP 1,536 bits 64 bits 1,024 bits 128 bits 80 bits 354 bytes 0.69

1KB

1xLS 704 bits 32 bits 256 bits 64 bits 0 bits 100 bytes 0.10
2xLS 1,408 bits 64 bits 512 bits 128 bits 32 bits 268 bytes 0.26

2xLS+DP 1,408 bits 64 bits 1,024 bits 128 bits 32 bits 332 bytes 0.32
4xLS 2,816 bits 128 bits 1,024 bits 256 bits 160 bits 548 bytes 0.54

4xLS+DP 2,816 bits 128 bits 2,048 bits 256 bits 160 bits 676 bytes 0.66

Table 7 shows the size of each DFC’s metadata based on the size of the data and the organization.
The largest contributing factor is the size of the tags. We are assuming a 32-bit address size and
a 32 byte DFC line size. Thus, each tag in the 128B DFC is 25 bits (32 bits for the address size—2
bits for the set index—5 bits for the line offset). The number of tags and the number of valid bits
are the number of lines of DFC data times the line sharing factor. The word metadata size for
the 1xLS, 2xLS, 4xLS organizations is 1 bit for each data word in the DFC times the line sharing
factor. Note the f (filled) bit serves this purpose for the 1xLS organization. The word metadata size
for the 2xLS+DP and 4xLS+DP organizations is 2 bits for each data word in the DFC times the
line sharing factor. Each L1 DC way is 2 bits, since the L1 DC in these experiments is 4-way set
associative. Thus, the number of bits for the L1 DC ways will be twice the number of lines of DFC
data times the line sharing factor. The size of the LRU information is the number of DFC sets *
ceiling(log2(n!)), where n is the number of L1 DC (sub)lines that can map to each DFC line. The
ratio of the metadata to the data size of the DFC shows that it increases with larger line sharing
factors and data packing. Note the larger metadata sizes associated with using the techniques we
evaluated did have an impact on the data access energy shown in Figure 16, but we were still able
to obtain significant reductions in the energy usage of the L1 DC reads, as shown in Figure 17.
Note also that even the largest DFC configuration is only 5% of the size of the L1 DC (34,128 bytes
of data and metadata) that we simulated. The 512B DFC 4xLS+DP configuration provided the best
energy results and was only 2.5% of the L1 DC size.
Figure 18 shows the taxonomy of loads accessing the DFC for different sizes. The word hits

indicate how often the value was obtained from the DFC, which ranged from 14.3% for a 128B
DFC to 27.0% for a 1,024B DFC. The line hits+word misses indicate how often the line was resident
in the DFC, but the word was not resident. Note that a line hit+word missmeans that the value can

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



28:18 M. Stokes et al.

Fig. 18. Taxonomy of load accesses with guaranteed DFC hits.

Fig. 19. Data access energy with guaranteed DFC hits.

be obtained from the L1 DC during the MEM stage without an L1 DC tag check and with accessing
only a single L1 DC data array. A lazy fill line hit+word miss is equivalent to a first reference to a
word that is a hit in an eagerly filled DFC line. The line misses indicate that the DFC tag and word
metadata were accessed and that either the entire line was not resident or the speculative address
generation caused the DFC block number to change, so the wrong DFC set was accessed. The sum
of the three portions of the bar are the same regardless of the DFC size. This sum represents the
fraction of loads when a speculative DFC tag access occurred. The space above each bar indicates
that the DFC was not accessed due to the displacement of the load instruction being larger than
the DFC line size.
Figure 19 shows the data access energy when accessing DFC data (1) only on guaranteed hits

and (2) without speculation (accessing DFC metadata after address generation) for each DFC size
with its best configuration. Data access energy includes the energy for all accesses to the DTLB,
DFC, and L1 DC. All configurations shown share 4 L1 DC (sub)lines per DFC line and include data
packing (4xLS+DP). Results are shown for both a 32 byte and 64 byte line size. The energy usage
is higher with guaranteed hits (with speculation), which is due to two reasons. First, useless DFC
and DTLB accesses occur due to speculation failures when the DFC block number was affected by
the effective address calculation. Second, loading data that resides in the DFC cannot be exploited

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



Decreasing the Miss Rate and Eliminating the Performance Penalty of a Data Filter Cache 28:19

when the displacement is larger than the DFC block size or when speculation failures occur. The
data access energy using guaranteed hits is much less for a 64 byte line size, as there are fewer
speculation failures and fewer displacements larger than 64 as opposed to 32. The data access
energy reduction using guaranteed DFC hits is still significant. For a 64 byte line size, the energy
reduction ranges from 27.9% for a 128B DFC to 32.6% for a 512B DFC. Note that a DFC without
speculation will cause a performance degradation due to a one cycle miss penalty on DFC misses.
A longer execution time will require more energy, which is not shown in Figure 19.
We have shown in this section that three complementary techniques can be utilized to make a

DFC more effective. The following benefits were obtained for a 512B DFC, which was our most
energy-efficient DFC size. By using a lazy DFC fill approach, we eliminate loads of words into the
DFC that are never referenced before being evicted, which occurred for about 75% of the words
in each line. By sharing and packing data words from multiple L1 DC lines to lower the DFC
miss rate and storing the L1 DC way when a DFC word is not resident, we completely avoid
accessing the L1 DC for loads about 23% of the time and avoid a fully associative L1 DC access
for loads over 50% of the time. Our 512B DFC with metadata is only about 2.5% of the L1 DC
size. By completely eliminating the DFC performance penalty by only accessing DFC data when
a hit is guaranteed, we improve data access energy usage for the DTLB and L1 DC by 33% with
no performance degradation. Assuming that 28% of the embedded processor energy is due to data
supply [3], this would result in an overall reduction of about 9% for embedded processor energy.

6 RELATEDWORK

There has been a number of prior studies on compressing data in first-level data caches or using
common values to avoid data accesses in a first-level data cache. A small frequent value cache

(FVC) has been proposed that is accessed in parallel to the L1 DC and is used to improve the
miss rate as the FVC effectively functions as a victim cache [26]. The FVC is very compact, as
it uses 3 bits to represent codes for seven frequent word values and an eighth code is used to
represent that the value is nonfrequent and not resident in the FVC. The FVC was later adapted
so a separate frequent value L1 DC data array was accessed first to avoid the regular L1 DC data
array if the value was frequent [23]. This approach reduced L1 DC energy usage at the expense
of delaying access to a nonfrequent value by a cycle. A compression cache (CC) that serves as a
replacement for an L1 DC has also been designed to hold frequent values [25]. Each CC line holds
either a single uncompressed line or two compressed lines when half or more of the words in the
line are frequent values. A separate bit mask is used to indicate if a word value is frequent, and if
not, then indicates where the word is located within the line. This cache designwill result in amore
complicated access and likely a longer access time. It appears in both the FVC and CC designs that
a separate profiling run was performed to acquire the frequent values for each benchmark that
was simulated, which will limit the automatic utilization of these designs. An approach similar to
the CC was developed that allows two lines to be compressed into the size of one line, but does
not increase the L1 DC access latency [17]. One proposed technique was to require that all words
be representable in two bytes (narrow width) and another technique allows a couple of words in
the two lines to not be narrow width where additional halfwords in the line are used to store the
upper portions. Dynamic zero compression adds a zero indicator bit (ZIB) to every byte in a
cache [22]. This ZIB is checked and the access to the byte is disabled when the ZIB is set. This
approach requires more space overhead and may possibly increase the cache access time, but was
shown to reduce energy from data cache accesses. The zero-value cache (ZVC) contains a bit
vector of the entire block, where each bit indicates if the corresponding byte or word contains
the value zero[8]. Blocks are placed in the ZVC (exclusive of the L1 DC) when a threshold of zero
values for bytes/words within a block is met. The ZVC allows the access for loads and stores to

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



28:20 M. Stokes et al.

the L1 DC to be completely avoided. ZVC misses may result in execution time penalties, though
the authors claim the ZVC is small enough to be accessed before the L1 DC with no execution
time penalty. The same authors later developed the narrow-width cache (NWC) containing 8-
bit values to reduce the miss rate [9]. The NWC is accessed in parallel to the L1 DC cache and
blocks are placed in the NWC if a threshold of narrow values within the block is met. The NWC
is used to reduce the miss rate. While all of these cache techniques either decrease the cache miss
rate or reduce energy usage, we are unaware of any prior DFC or first-level cache technique that
shares and packs data from different lines in the next level of the memory hierarchy into the same
line at the current level of the memory hierarchy at the granularity of individual words without
increasing the access time.
The conventional approach to support a fast L1 DC load access is to use a virtually indexed,

physically tagged organization so in parallel the processor can access the DTLB to obtain the
physical page number, access the L1 DC tag arrays to compare all the L1 DC tags in the indexed
L1 DC set to the tag bits associated with the physical page number obtained from the DTLB, and
access all the L1 DC data arrays to load a data word from each line within the L1 DC set. The data
is selected based on which tag matches. This conventional approach is energy-inefficient, as the
data can reside in at most one L1 DC way.
The data cache access memoization (DCAM) approach has been used to memoize the L1 DC

way and DTLB way with the base register used to access memory [19]. This approach avoids an
L1 DC tag and DTLB accesses when the calculated address shows the same cache line that was
memoized with the base register. In addition, only a single data way within the L1 DC need be
accessed when this information can be memoized. This approach does not work when the base
register value is overwritten or when the displacement in the load or store instruction is too large.
Our approach could be used in addition to the DCAM approach to avoid more L1 DC tag checks,
DTLB accesses, and set-associative L1 DC data array accesses. Other approaches for memoizing
the L1 DC way have also been used [12, 21].
Instead of using memoization, way prediction can be used to predict the L1 DC way to be ac-

cessed to reduce energy usage. If the way is correctly predicted, then only a single way of tag
and data need to be accessed. Conventional way prediction accesses the tag and the data of the
most recently used (MRU) way first and then accesses the remaining ways in parallel if there is
a miss [7]. A technique that combines selective direct-mapping and way prediction where a pre-
dictor predicts if the line is in a direct-mapped position or set associative position [16]. Another
approach used multiple MRU predictors by using the least significant bits of the address to disam-
biguate among the tags [24]. A final approach used another level of prediction for misses [27]. If
a miss is predicted, then a phased cache access is performed where the tags are accessed before
accessing the data. If a hit is predicted, then way prediction is used. Unlike our proposed approach,
way prediction can increase the execution time when the prediction is incorrect. Way prediction
is also complementary to our approach, as way prediction can still be used in an L1 DC when the
value cannot be accessed from the DFC in the preceding cycle.
The speculative tag access approach is used to reduce the energy for accessing the L1 DC [2]. It

speculatively performs an L1 DC tag check and DTLB access during the address generation stage
using the index and tag fields from the base register value. If adding the displacement does not
affect the index and tag fields, then only a single L1 DC data way is accessed during the MEM
stage. We use a similar speculative tag access approach, but instead speculatively access the DFC
tag and word metadata during the address generation stage to only access the DFC data during
the MEM stage when a hit is guaranteed.
There have been a few DFC designs that have been proposed to eliminate the DFC miss penalty.

Small alterations to the original FC design have been explored, where these new designs assume

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



Decreasing the Miss Rate and Eliminating the Performance Penalty of a Data Filter Cache 28:21

that DFC tag comparison is performed within the execute stage after the effective address has
been computed [4]. This approach requires a very small DFC and/or a slow clock rate to be fea-
sible. The practical DFC (PDFC) speculatively performs a DFC tag check in parallel with the
effective address generation [1]. The speculative DFC access is only attempted when the load or
store displacement is small so theDFC index field is unlikely to be updated. The PDFC also assumed
the DFC data could be accessed in the address generation stage, but after the computation of the
DFC offset field. Another approach speculatively accesses a filter data cache (FDC) in the MEM
stage when an FDC reference is predicted to hit by performing a partial tag comparison [12]. This
approach results in a performance delay when the prediction is incorrect. A small overall execu-
tion time benefit was provided by assuming a two-cycle L1 DC access time so one-cycle FDC hits
would improve performance. How a DFC or FDC line can be efficiently filled in a single cycle is
not addressed in References [4] or [12]. In contrast to these approaches, our design can support
a much larger DFC due to timing issues, since our DFC data access occurs in the MEM pipeline
stage only after a DFC hit has been guaranteed in the EX stage.
Our line sharing approach is conceptually similar to a decoupled sector cache. A sector cache

has sectors that consist of several contiguous cache blocks that are associated with a single address
tag. A decoupled sector cache has multiple address tags for each sector and allows blocks to be
associated with any one of these address tags [18]. A block in a sector cache is the size of the
unit that is fetched from the next level of the memory hierarchy when the referenced block is not
resident. We believe that decoupled sector cache organizations have not been successfully applied
in DFCs or L1 DCs, as spatial locality needs to be exploited in small cache line sizes. In our line
sharing approach, each DFC line can be viewed as a sector and each word in the DFC line as a
block.

7 CONCLUSIONS

We have described a design that allows a DFC to reduce energy usage and not degrade perfor-
mance. The following benefits were obtained for a 512B DFC, which was our most energy-efficient
DFC size. We showed that a DFC lazy word fill approach is more energy-efficient than a DFC eager
line fill approach. We are able to eliminate loads of words into the DFC that are never referenced
before being evicted, which occurred for about 75% of the words in each line. We also demon-
strated that it is possible to share and pack multiple L1 DC lines into a single DFC line at the
granularity of individual words to improve the DFC hit rate, which results in completely avoiding
L1 DC accesses for loads about 23% of the time and avoid a fully associative L1 DC access for loads
about 50% of the time. This was accomplished with a DFC that is only about 2.5% of the size of
the L1 DC. Finally, we improve data access energy usage for the DTLB and L1 DC by 33% with no
performance degradation by speculatively performing a DFC tag check early and only accessing
DFC data when a DFC hit is guaranteed.

ACKNOWLEDGMENT

We appreciate the suggestions by the reviewers that helped to improve this article.

REFERENCES

[1] A. Bardizbanyan, M. Själander, D. Whalley, and P. Larsson-Edefors. 2013. Designing a practical data filter cache to

improve both energy efficiency and performance. ACM Trans. Archit. Compiler Optim. 10, 4 (Dec. 2013), 54:1–54:25.

[2] A. Bardizbanyan, M. Själander, D. Whalley, and P. Larsson-Edefors. 2013. Speculative tag access for reduced energy

dissipation in set-associative L1 data caches. In Proceedings of the IEEE International Conference on Computer Design

(ICCD’13). 302–308.

[3] W. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. Harting, V. Parikh, J. Park, and D. Sheffield. 2008. Efficient embedded

computing. IEEE Comput. 41, 7 (July 2008), 27–32.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.



28:22 M. Stokes et al.

[4] N. Duong, T. Kim, D. Zhao, and A. Veidenbaum. 2012. Revisiting level-0 caches in embedded processors. In Proceedings

of the IEEE International Conference on Compilers, Architecture, and Synthesis for Embedded Systems. ACM, New York,

NY, 171–180.

[5] S. Hines, P. Gavin, Y. Peress, D. Whalley, and G. Tyson. 2009. Guaranteeing instruction fetch behavior with a looka-

head instruction fetch engine (LIFE). In Proceedings of the ACM SIGPLAN Conference on Languages, Compilers, and

Tools for Embedded Systems. 119–128.

[6] S. Hines, D. Whalley, and G. Tyson. 2007. Guaranteeing hits to improve the efficiency of a small instruction cache. In

Proceedings of the ACM SIGMICRO International Symposium on Microarchitecture. 433–444.

[7] Koji Inoue, Tohru Ishihara, and Kazuaki Murakami. 1999. Way-predicting set-associative cache for high performance

and low energy consumption. In Proceedings of the IEEE International Symposium on Low Power Design (ISLPED’99).

273–275.

[8] Mafijul Islam and Per Stenstrom. 2009. Zero-value caches: Cancelling loads that return zero. In Proceedings of the IEEE

International Conference on Parallel Architectures and Compilation Techniques. 237–245.

[9] Mafijul Islam and Per Stenstrom. 2010. Characterization and exploitation of narrow-width loads: The narrow-width

cache approach. In Proceedings of the International Conference on Compilers, Architectures, and Synthesis for Embedded

Systems. 227–236.

[10] J. Kin, M. Gupta, and W. H. Mangione-Smith. 1997. The filter cache: An energy efficient memory structure. In Pro-

ceedings of the IEEE International Symposium on Microarchitecture. 184–193.

[11] J. Kin, M. Gupta, and W. H. Mangione-Smith. 2000. Filtering memory references to increase energy efficiency. IEEE

Trans. Comput. 49, 1 (Jan. 2000), 1–15.

[12] J. Lee and S. Kim. 2015. Filter data cache: An energy-efficient small L0 data cache architecture driven by miss cost

reduction. IEEE Trans. Comput. 64, 7 (July 2015), 1927–1939.

[13] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P. Jouppi. 2009. McPAT:

An integrated power, area, and timing modeling framework for multicore and manycore architectures. 469–480.

DOI:https://doi.org/10.1145/1669112.1669172
[14] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman, and Norman P. Jouppi. 2011. CACTI-P: Architecture-level mod-

eling for SRAM-based structures with advanced leakage reduction techniques. 694–701. DOI:https://doi.org/10.1109/
ICCAD.2011.6105405

[15] Soner Önder and Rajiv Gupta. 1998. Automatic generation of microarchitecture simulators. In Proceedings of the IEEE

International Conference on Computer Languages. Chicago, 80–89.

[16] Michael D. Powell, Amit Agarwal, T. N. Vijaykumar, Babak Falsafi, and Kaushik Roy. 2001. Reducing set-associative

cache energy via way-prediction and selective direct-mapping. In Proceedings of the ACM/IEEE IEEE International

Symposium on Microarchitecture (MICRO’01). 54–65.

[17] Prateek Pujara and Aneesh. 2005. Restrictive compression techniques to increase level 1 cache capacity. In Proceedings

of the International Conference on Computer Design. 327–333.

[18] Andre Seznec. 1994. Decoupled sectored caches: Conciliating low tag implementation cost and low miss ratio. In

Proceedings of the International Symposium on Computer Architecture. 384–393.

[19] Michael Stokes, Ryan Baird, Zhaoxin Jin, David Whalley, and Soner Onder. 2019. Improving energy efficiency by

memoizing data access information. In Proceedings of the ACM/IEEE International Symposium on Low Power Electronics

and Design. 6.

[20] W. Tang, R. Gupta, and A. Nicolau. 2001. Design of a predictive filter cache for energy savings in high performance

processor architectures. In Proceedings of the International Conference on Computer Design. IEEE Computer Society,

Washington, DC, 68–73.

[21] E. Vasilakis, V. Papaefstathiou, P. Trancoso, and I. Sourdis. 2019. Decoupled fused cache: Fusing a decoupled LLCwith

a DRAM cache. ACM Trans. Archit. Compiler Optim. 15, 4 (Jan. 2019), 23.

[22] L. Villa, M. Zhang, and K. Asanovic. 2000. Dynamic zero compression for cache energy reduction. In Proceedings of

the IEEE/ACM International Symposium on Microarchitecture. 214–220.

[23] Jun Yang and Rajiv Gupta. 2002. Energy efficient frequent value data cache design. In Proceedings of the ACM/IEEE

International Symposium on Microarchitecture. 197–207.

[24] C. Zhang, X. Zhang, and Y. Yan. 1997. Two fast and high-associativity cache schemes. IEEE Micro 17, 5 (1997), 40–49.

[25] Youtao Zhang, Jun Yang, and Rajiv Gupta. 2000. Frequent value compression in data caches. In Proceedings of the

ACM/IEEE International Symposium on Microarchitecture. 258–265.

[26] Youtao Zhang, Jun Yang, and Rajiv Gupta. 2000. Frequent value locality and value-centric data cache design. In

Proceedings of the International Symposium onArchitecture Support for Programming Languages andOperating Systems.

150–159.

[27] Z. Zhu and X. Zhang. 2002. Access-mode predictions for low-power cache design. IEEE Micro 22, 2 (2002), 58–71.

Received July 2020; revised January 2021; accepted February 2021

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 28. Publication date: April 2021.

https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1109/ICCAD.2011.6105405
https://doi.org/10.1109/ICCAD.2011.6105405

