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Abstract
For any smooth Riemannian metric on an (n + 1)-dimensional compact manifold
with boundary (M, ∂M) where 3 ≤ (n + 1) ≤ 7, we establish general upper bounds
for the Morse index of free boundary minimal hypersurfaces produced by min–max
theory in the Almgren–Pitts setting. We apply our Morse index estimates to prove
that for almost every (in the C∞ Baire sense) Riemannan metric, the union of all
compact, properly embedded free boundary minimal hypersurfaces is dense in M . If
∂M is further assumed to have a strictly mean convex point, we show the existence
of infinitely many compact, properly embedded free boundary minimal hypersurfaces
whose boundaries are non-empty. Our results prove a conjecture of Yau for generic
metrics in the free boundary setting.
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1396 Q. Guang

1 Introduction

In his celebrated 1982 Problem Section, S.-T. Yau raised the following question:

Question 1.1 ([33]) Does every closed three-dimensional Riemannian manifold
(M3, g) contain infinitely many (immersed) minimal surfaces?

Back in 1960s, Almgren [1,2] initiated an ambitious program to find minimal
varieties, in arbitrary dimensions and codimensions, inside any compact Rieman-
nian manifold (with or without boundary) using variational methods. He proved that
weak solutions, in the sense of stationary varifolds, always exist. The interior regular-
ity theory for codimension one hypersurfaces was developed about 20 years later by
Pitts [24] and Schoen-Simon [25]. As a consequence, they showed that in any closed
manifold (Mn+1, g) there exists at least one embedded closed minimal hypersurface,
which is smooth except possibly along a singular set of Hausdorff codimension at
least 7. These fascinating results partly motivated Question 1.1 asked by Yau. In a
very recent work [13], the second and the last author developed a version of min–max
theory for manifolds with boundary and proved up-to-the-boundary regularity for the
free boundary minimal hypersurfaces produced by their theory, hence completing the
program set out by Almgren in the hypersurface case.

The foundational work of Almgren and Pitts left open an important (and very
difficult) question of determining the Morse index of such minimal hypersurfaces
produced by min–max methods. According to finite dimensional Morse theory, one
expects the Morse index of the critical point produced using k-parameter families
should be at most k. There had been no progress to this question for almost 30 years
until the recent striking advances led by Marques and Neves. For instance, a precise
control of the Morse index plays a significant role in their remarkable solution to the
Willmore conjecture [16]. Later in [17], they established the generalMorse index upper
bounds for minimal hypersurfaces produced by Almgren–Pitts theory for compact
manifolds without boundary (the one-parameter case was studied earlier in the works
of Marques–Neves [15] and the last author [34,35]). In [19], they raised the question
where similar index bounds hold in othermin–max constructions as e.g. in [4–6,21,37].

In this paper, we prove general Morse index upper bounds analogous to the ones
in [17] arising from the min–max theory developed in [13] for compact manifolds
with boundary in the Almgren–Pitts setting. Our main result can be stated roughly as
follow:

Theorem 1.2 (General index upper bound, simplified version) If� is themin–max free
boundary minimal hypersurface in a compact Riemannian manifold with boundary
produced by min–max over a k-dimensional homotopy class, then

index(spt (�)) ≤ k.

Here, the Morse index of the support of � = m1�1 + · · · +mk�k is defined to be the
sum of the indices of its components

index(spt (�)) := index(�1) + · · · + index(�k).
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Min–max theory for free boundary minimal... 1397

A more precise statement can be found in Theorem 2.1 in Sect. 2. We will explain
the technical aspects of our main result later towards the end of this section. Before
that, we present a few applications of our general Morse index upper bounds.

A. Song’s proof of Yau’s conjecture for closed Riemannianmanifolds

In the last few years, we have witnessed substantial progress towards Yau’s conjecture
Question 1.1 leading to a complete solution by Song [28] for closed Riemannian
manifolds. Marques and Neves [18] made the first progress by settling Yau’s conjec-
ture for closed manifolds with positive Ricci curvature, or more generally, for closed
manifolds satisfying the “Embedded Frankel Property”. Song was able to localize
the arguments in [18] to produce infinitely many minimal hypersurfaces inside any
domain � bounded by stable minimal hypersurfaces. The minimal hypersurfaces he
constructed are limits of free boundary minimal hypersurfaces obtained from the min–
max theory developed in [13]. As pointed out in [28, Sect. 2.3], it was not known at that
time whether the p-width ωp(M, g) of a compact manifold with non-empty bound-
ary is achieved by an integral varifold since the free-boundary analogue of the index
bounds in [17] was not yet available in the literature. Our general Morse index upper
bounds together with the compactness theorem in [11] provides the missing piece (see
Proposition 7.3), hence simplifying some of the arguments in [28].

Denseness of free boundaryminimal hypersurfaces for generic metrics

Using the Weyl Law for the volume spectrum [14], Irie, Marques and Neves [12]
proved Yau’s conjecture for generic metrics. In fact, they proved a stronger property
that the union of all closed, smoothly embedded minimal hypersurfaces is dense in
any closed manifold M with a generic (in the C∞ Baire sense) Riemannian metric g.
As an application of our main index estimates, we prove the same result for compact
manifolds with boundary.

Theorem 1.3 (Denseness of minimal hypersurfaces) Let (Mn+1, ∂M) be a compact
manifold with boundary and 3 ≤ (n + 1) ≤ 7. Then for a C∞-generic Riemannian
metric g on M, the union of all compact, properly embedded, free boundary minimal
hypersurfaces is dense.

In particular, this provides an affirmative answer in the generic case to Yau’s con-
jecture Question 1.1 for compact manifolds with boundary. In fact, we will prove a
much stronger property (Proposition 7.8) that there are infinitely many compact, prop-
erly embedded, free boundary minimal hypersurfaces intersecting any given relatively
open set in M . Note that with the genericity assumption, we are even able to prove the
denseness results within the smaller class of properly embedded free boundary mini-
mal hypersurfaces instead of the almost properly embedded ones (see [13, Definition
2.6] for the definitions). This is achieved by a perturbation argument in Proposition
7.7.
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1398 Q. Guang

Existence of minimal hypersurfaces with non-empty free boundary

Our last application addresses a major problem in many of the constructions of free
boundaryminimal surfaces, as for example in [8,13], that theminimal surface produced
may in fact be closed (i.e. without boundary). In [13], the second and the last author
proved that there exist infinitely many properly embedded free boundary minimal
hypersurfaces, provided that the ambient manifold is compact with nonnegative Ricci
curvature and strictly convex boundary (note that no closed minimal hypersurfaces
exist in such manifolds by [9, Lemma 2.2]). Without any topological or curvature
assumptions, it is in general very difficult to prevent the free boundary components
from degenerating through the limit process (see e.g. [3] and [11,29]). Making use of
our strong denseness result (Proposition 7.8), we are able to prove the same result by
merely assuming strict mean convexity at one point of the boundary ∂M for a generic
metric.

Theorem 1.4 (Non-trivial free boundary) Let (Mn+1, ∂M) be a compact manifold
with non-empty boundary and 3 ≤ (n + 1) ≤ 7, equipped with a generic Riemannian
metric g as in Theorem 1.3. Suppose that ∂M has a strictly mean convex point x,
i.e. H(x) > 0. Then there exist infinitely many distinct compact, smooth, properly
embedded minimal hypersurfaces in M with non-empty free boundary.

Proof We prove by contradiction. Assuming on the contrary that there are only finitely
many distinct compact, smooth, properly embedded minimal hypersurfaces in M with
non-empty free boundary, we can always take a point p ∈ ∂M and r > 0 so that
H(p) > 0 and no such hypersurface intersects Br (p), where Br (p) is the geodesic
ball in M with center p and radius r .

Since H(p) > 0, the maximum principle of White ([31, Theorem 1]) implies that
there exists an ε > 0 (we may assume ε < r ) such that any minimal hypersurface �

having no boundary inside Br (p) must satisfy dist(p, �) > ε. By Theorem 1.3, we
know that there exists a properly embedded free boundary minimal hypersurface �

with�∩Bε(p) �= ∅. By the choice of ε, it follows that� has non-empty free boundary
in Bε(p). However, this contradicts our choices of p and r . �	
Remark 1.5 From the proof of Theorem 1.4 we see that the union of the boundary of
all compact, properly embedded, free boundary minimal hypersurfaces is also dense
(as a subset of ∂M) in the strictly mean convex portion of ∂M . In particular, if ∂M is
strictly mean convex everywhere, then the union of their free boundaries is dense as a
subset of ∂M .

Main ideas of the proof

We now explain themajor ideas in proving the general index upper bounds in Theorem
2.1. While our arguments follow the basic strategy of [17], the presence of a boundary,
however, poses additional difficulties that have to be overcome.

First of all, the notion ofMorse index for a free boundaryminimal hypersurface� in
M is a subtle issuewhen� is improper (in other words, the touching set (�∩∂M)\∂�

is non-empty). Although it was shown in [13] that the hypersurface � is smooth and
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Min–max theory for free boundary minimal... 1399

minimal even across the touching set, a-priori it is not clear whether one should
consider second variations moving the touching set. Motivated by the compactness
result in [11], we argue that the appropriate notion of Morse index should only count
the negative second variations supported away from the touching set. This is natural
already at the level of first variation as the stationarity of a varifold in M are taken
with respect to the diffeomorphisms of M generated by vector fields tangent to ∂M .
As � is necessarily tangent to ∂M along the touching set, any normal variations on �

should vanish on the touching set.
Second, the min–max theory for compact manifolds with boundary developed in

[13] is formulated in terms of the space of (equivalence classes) of relative cycles
consisting of integer-rectifiable currents; while theWeyl Law for the volume spectrum
estabilshed in [14] was formulated using the space of relative cycles consisting of
integral currents. The first formulation has the advantage that the regularity result of
Grüter [10] can be readily deployed (the boundary regularity was irrelevant in the
work of [14]) and the second formulation follows the original setup in Almgren’s
isomorphism theorem [1]. Since we need both results in this paper, we give a rigorous
proof of the equivalence of two formulations in Sect. 3.

Third, the min–max theory in [13] is formulated in terms of sequences of maps
defined on the vertices of finer and finer grids measured with respect to the mass
topology. While this is essential for the regularity theory, for applications it is more
useful to formulate a continuous min–max theory where maps are defined on the full
parameter space and are continuous with respect to the F-topology. In Sect. 4, we
explain how to use the original discretized setting to obtain a min–max theory for
maps that are continuous in the F-topology as above. A similar construction for the
mass topology was done by the second and the last author in [13]. We prove the Min-
Max Theorem (Theorem 4.5) and Deformation Theorem (Theorem 5.8) as in [17] in
the continuous setting.

Finally, another crucial ingredient in proving the general Morse index bounds in
[17] is Sharp’s generic finiteness result [26] for minimal hypersurfaces with bounded
index and area. Such a generic finiteness result was very difficult to establish for free
boundary minimal hypersurfaces (see [11,29]) due to boundary degenerations and
multiplicities. For our purpose of this paper, we only need the countability of free
boundary minimal hypersurfaces with bounded index and area in any compact man-
ifold with boundary equipped with a bumpy metric. We give a more direct inductive
proof of this weaker result in Sect. 5.1. Combining the Deformation Theorem with the
generic countability result, we argue as in [17] to prove the desired index bounds.

Theorganization of this paper is as follows. InSect. 2,we set up somebasic notations
for the rest of the article and give a precise statement of our general Morse index
bounds. In Sect. 3, we recall the two formulations of min–max theory for manifolds
with boundary and prove their equivalence. In Sect. 4, we describe the min–max
theory in a continuous setting using the F-topology and prove the Min-max theorem
(Theorem 4.5). In Sect. 5, we prove the generic countability result (Proposition 5.3)
and the Deformation Theorem (Theorem 5.8), which is similar to [17, Deformation
Theorem A] with slightly modifications. Using results in earlier sections, we prove
our general Morse index upper bounds in Sect. 6. Finally in Sect. 7, we give the proof
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1400 Q. Guang

of the denseness theorem (Theorem 1.3) as a corollary. In the appendix, we recall a
construction for the logarithmic cut-off trick used in this paper.

2 Definitions andmain results

We now give amore precise statement of our generalMorse index upper bounds in this
section. Let (Mn+1, ∂M, g) be an (n+1)-dimensional compact Riemannian manifold
with boundary and 3 ≤ (n + 1) ≤ 7. Denote G to be either the group Z or Z2. Let
X be a simplicial complex of dimension k and � : X → Zn(Mn+1, ∂M;F;G) be
a continuous map. Here, Zn(M, ∂M;G) is the space of integer rectifiable n-currents
T in M with coefficients in G and ∂T ⊂ ∂M , modulo an equivalence relation (see
Sect. 3.1). The notation Zn(M, ∂M;F;G) indicates that the space Zn(M, ∂M;G) is
endowed with the F-topology, to be defined later in Sect. 3.1. Basically, continuity in
F-topology means that continuity in both the flat and the varifold topologies.

Let 	 denote the set of all continuous maps 
 : X → Zn(M, ∂M;F;G) such that
� and 
 are homotopic to each other in the flat topology. The width of 	 is defined
to be the min–max invariant:

L(	) := inf

∈	

sup
x∈X

{M(
(x))},

where M(τ ) denotes the mass of the equivalence class τ = [T ] ∈ Zn(M, ∂M;G),
which is equal to the n-dimensional area of the canonical representative of τ

(see Sect. 3.1). Given a sequence {�i }i∈N ⊂ 	 of continuous maps from X into
Zn(M, ∂M;F;G), we set

L({�i }i∈N) := lim sup
i→∞

sup
x∈X

M(�i (x)).

When L({�i }i∈N) = L(	), we say {�i }i∈N is a min–max sequence in the homotopy
class 	.

Our main result below (Theorem 2.1) says that the width L(	) can be realized
by an integral varifold V which is stationary in M with free boundary (see [13,
Definition 2.1]) and supported on a finite union ∪N

j=1� j of smooth, almost prop-
erly embedded, free boundary minimal hypersurfaces � j whose sum of indices is at
most k, the dimension of the parameter space X . Recall from [13, Definition 2.6] that
(�, ∂�) ⊂ (M, ∂M) is an almost properly embedded hypersurface if � is an embed-
ded hypersurface in M whose ∂� is contained in ∂M . Such a hypersurface is called
a free boundary minimal hypersurface (FBMH) if the mean curvature of � vanishes
and� meets ∂M orthogonally along ∂�. Given an almost properly embedded FBMH
� in M , there are several notions of Morse indices (see [11]) on �. The quadratic
form of � associated to the second variation formula is defined as

Q�(v, v) :=
∫

�

(
|∇⊥v|2 − RicM (v, v) − |A� |2|v|2

)
dμ� −

∫
∂�

h∂M (v, v) dμ∂�,
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Min–max theory for free boundary minimal... 1401

where v is a section of the normal bundle of �, RicM is the Ricci curvature of M , A�

and h are the second fundamental forms of the hypersurface � and ∂M , respectively.
Note that we do not need to assume � to be two-sided. Denoting the touching set of
� in M by

Touch(�) := (� ∩ ∂M)\∂�,

we define the Morse index of �, denoted by index(�), as the maximal dimen-
sion of a linear subspace of sections of normal bundle N� compactly supported
in �\Touch(�) such that the quadratic form Q�(v, v) is negative definite on this
subspace. (Note that this is the same notion as the Morse index of � on the proper
subset defined in [11].)

With the definitions above (and the notions regarding varifolds in Sect. 3), we can
now state ourmain theorem on the generalMorse index upper bounds for themin–max
minimal hypersurfaces with free boundary.

Theorem 2.1 (General index upper bounds) Let (Mn+1, g) be a smooth compact (n+
1)-dimensional Riemannian manifold with boundary and 3 ≤ (n+1) ≤ 7. Let X be a
simplicial complex of dimensional k and� : X → Zn(M, ∂M;F;G) be a continuous
map. Denote	 as the associated homotopy class of�with respect to the flat topology.
Then there exists an integral varifold V ∈ Vn(M) such that

(i) ‖V ‖(M) = L(	);
(ii) V is stationary in M with free boundary;
(iii) there exist N ∈ N and mi ∈ N, 1 ≤ i ≤ N, such that V = ∑N

i=1 mi |�i |,
where each � is a smooth, compact, connected, almost properly embedded free
boundary minimal hypersurface in M. Moreover,

N∑
i=1

index(�i ) ≤ k.

We will separate the proof of Theorem 2.1 into two parts. The first part (Theorem
4.5) handles the regularity theory for the min–max theory in a continuous setting. The
second part (Theorem 6.3) gives the required index bounds.

3 Equivalence of two formulations

In this section, we describe the two different formulations of min–max theory for
manifolds with boundary introduced in [13] and [14]. The goal is to show that the two
formulations are equivalent. The arguments are simple but a bit tedious. Readers can
skip this section and refer back to the definitions later if necessary.

Let (Mn+1, g) be a smooth compact connected Riemannian manifold with
nonempty boundary ∂M . Without loss of generality, we can regard M as a compact
domain of a closed Riemannian manifold M̃ of the same dimension, which is isomet-
rically embedded into RL for some L large enough. We recall some basic notations in
geometric measure theory essentially following [13].
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1402 Q. Guang

We use Vk(M) to denote the closure of the space of k-dimensional rectifiable
varifolds in R

L with support contained in M . Let G be either the group Z or Z2.
Let Rk(M;G) (resp. Rk(∂M;G)) be the space of k-dimensional rectifiable currents
in R

L with coefficients in G which are supported in M (resp. in ∂M). Denote by
spt T the support of T ∈ Rk(M;G). Given any T ∈ Rk(M;G), denote by |T | and
‖T ‖ the integer rectifiable varifold and the Radon measure in M associated with T ,
respectively. The mass norm and the flat metric on Rk(M;G) are denoted by M and
F respectively; see [7]. As we can regard any T ∈ Rk(M;Z2) as an element in
Rk(M;Z), we use spt2 T and spt0 T to denote the support of T when regarded as
an elements inRk(M;Z2) andRk(M;Z) respectively. Similarly, we useM2(T ) and
M0(T ) to denote their respective mass norms.

3.1 Formulation using integer rectifiable currents

We now recall the formulation in [13] using equivalence classes of integer rectifiable
currents. Let

Zk(M, ∂M;G) := {T ∈ Rk(M;G) : spt (∂T ) ⊂ ∂M}. (3.1)

We say that two elements T , S ∈ Zk(M, ∂M;G) are equivalent if T − S ∈
Rk(∂M;G). We use Zk(M, ∂M;G) to denote the space of all such equivalence
classes. For any τ ∈ Zk(M, ∂M;G), we can find a unique T ∈ τ such that
T �∂M = 0. We call such T the canonical representative of τ as in [13]. For any
τ ∈ Zk(M, ∂M;G), its mass and flat norms are defined by

M(τ ) := inf{M(T ) : T ∈ τ } and F(τ ) := inf{F(T ) : T ∈ τ }.

The support of τ ∈ Zk(M, ∂M;G) is defined by

spt (τ ) :=
⋂
T∈τ

spt (T ).

By [13, Lemma 3.3], we know that for any τ ∈ Zk(M, ∂M;G), we have M(T ) =
M(τ ) and spt (τ ) = spt (T ), where T is the canonical representative of τ .

Recall that the varifold distance function F on Vk(M) is defined in [24, 2.1 (19)],
which induces the varifold weak topology on the set Vk(M) ∩ {V : ‖V ‖(M) ≤ c}
for any c. We also need the F-metric on Zk(M, ∂M;G) defined as follows: for any
τ, σ ∈ Zk(M, ∂M;G)with canonical representatives T ∈ τ and S ∈ σ , theF-distance
between τ and σ is

F(τ, σ ) := F(τ − σ) + F(|T |, |S|),

where F on the right hand side denotes the varifold distance on Vk(M).
For any τ ∈ Zk(M, ∂M;G), we define |τ | to be |T |, where T is the unique canonical

representative of τ and |T | is the rectifiable varifold corresponding to T .

123



Min–max theory for free boundary minimal... 1403

We assume that Zk(M, ∂M;G) have the flat topology induced by the flat met-
ric. With the topology of mass norm or the F-metric, the space will be denoted by
Zk(M, ∂M;M;G) or Zk(M, ∂M;F;G).

3.2 Formulation using integral currents

We now recall the formulation in [14] using equivalence classes of integral cycles.
For k ≥ 1, let Ik(M;Z2) denote those elements of Rk(M;Z2) whose boundary lies
inRk−1(M;Z2). The space Ik(∂M;Z2) is defined similarly with M replaced by ∂M .
We also consider the space

Zk,rel(M, ∂M;Z2) := {T ∈ Ik(M;Z2) : spt2 ∂T ⊂ ∂M}, (3.2)

endowed with the flat topology. We say that two elements T , S ∈ Zk,rel(M, ∂M;Z2)

are equivalent if T − S ∈ Ik(∂M;Z2) and the space of such equivalence classes is
denoted by Zk,rel(M, ∂M;Z2). The mass norm and the flat metric on this space are
defined respectively as follows:

M(τ ) := inf{M(T ) : T ∈ τ } and F(τ ) := inf{F(T ) : T ∈ τ },

where τ ∈ Zk,rel(M, ∂M;Z2).

3.3 Equivalence of two formulations

We now prove that the spaces Zn(M, ∂M;Z2) and Zn,rel(M, ∂M;Z2) defined in
(3.1) and (3.2) are isomorphic to each other. We begin by stating a preliminary lemma,
which was proven in [13] for Z coefficients. The same proof actually works for Z2
coefficients as well (c.f. [14, Theorem 2.3]).

Lemma 3.1 (cf. [13, Lemma 3.8]) Given T ∈ Zk(M, ∂M;Z2), there exists a sequence
Ti ∈ Zk,rel(M, ∂M;Z2) such that Ti −T ∈ Rk(∂M;Z2) and limi→∞ M(Ti −T ) = 0
(and thus limi→∞ F(Ti − T ) = 0).

Now we prove the main result of this section.

Proposition 3.2 The spaces Zn(M, ∂M;Z2) and Zn,rel(M, ∂M;Z2), endowed with
the flat topology, are homeomorphic. In fact, they are isometric with respect to F and
M.

Proof Step I: Construction of amap ι from Zn,rel(M, ∂M;Z2) toZn(M, ∂M;Z2).
Let τ ∈ Zn,rel(M, ∂M;Z2) and T ∈ τ . Then T is an element in Zn(M, ∂M;Z2).

Moreover, if T ′ and T are equivalent in Zn,rel(M, ∂M;Z2), they are also equiva-
lent in Zn(M, ∂M;Z2). Thus we get a well-defined map ι : Zn,rel(M, ∂M;Z2) →
Zn(M, ∂M;Z2).

Step II: Construction of a map η from Zn(M, ∂M;Z2) to Zn,rel(M, ∂M;Z2).
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1404 Q. Guang

Let κ ∈ Zn(M, ∂M;Z2), Lemma 3.1 gives an element S ∈ κ such that ∂S ∈
Rn−1(∂M;Z2). Hence S ∈ Zn,rel(M, ∂M;Z2) by definition in Sect. 3.2. Denote by
τS the equivalence class of S in Zn,rel(M, ∂M;Z2). Define the map

η : Zn(M, ∂M;Z2) → Zn,rel(M, ∂M;Z2)

by η(κ) := τS . We now prove that η is well-defined. Suppose we have another S′ ∈ κ

satisfying ∂S′ ∈ Rn−1(∂M;Z2), then we have S − S′ ∈ In(M;Z2). Recall that
S, S′ ∈ κ implies that spt (S − S′) ⊂ ∂M . Hence S − S′ ∈ In(∂M;Z2), which means
that S and S′ are equivalent in Zn,rel(M, ∂M;Z2). Thus η is well-defined.

Step III: Check that ι and η are inverses to each other.
Indeed, take τ ∈ Zn,rel(M, ∂M;Z2) and T ∈ τ . Note that T ∈ In(M;Z2). By

definition, we have τ = τT = η(ι(τ )). Hence, η ◦ ι = id. To prove that ι ◦ η = id,
we take κ ∈ Zn(M, ∂M;Z2) and S ∈ κ such that ∂S ∈ Rn−1(∂M;Z2). Note that
S ∈ τS . Therefore, ι(η(κ)) = ι(τS) = κ .

Step IV: Show that ι and η are isometries with respect to F and M.
It is clear from the definitions that both ι and η are linear maps. Let ν = F or

M. Taking τ ∈ Zn,rel(M, ∂M;Z2) and Tj ∈ τ so that ν(Tj ) → ν(τ), we observe
that ν(Tj ) ≥ ν(ι(τ )) since Tj ∈ ι(τ ). It follows that ν(ι(τ )) ≤ ν(τ). On the other
hand, taking κ ∈ Zn(M, ∂M;Z2) and S j ∈ κ so that ν(S j ) → ν(κ), by Lemma 3.1
there exists a sequence S′

j ∈ Zn,rel(M, ∂M;Z2) so that S′
j − S j ∈ Rn(∂M;Z2) and

M(S′
j − S j ) < 1/ j . From the definition of η, we have S′

j ∈ η(κ). Thus,

ν(η(κ)) ≤ lim
j→∞ ν(S′

j ) = lim
j→∞ ν(S j ) = ν(κ).

Together with η ◦ ι = id and ι ◦ η = id, we conclude that ν(κ) = ν(η(κ)) and
ν(τ) = ν(ι(τ )). �	

4 Min–max theory in continuous setting

In this section, we describe the min–max theory for manifolds with boundary in con-
tinuous setting. Recall that in [13] the Almgren-Pitts min–max theory for compact
manifolds with boundary deals with discrete families of elements in Zk(M, ∂M;G).
The essential tools connecting the discrete and continuous settings are the discretiza-
tion theorem (see [13, Theorem4.12]) and the interpolation theorem (see [13, Theorem
4.14]).

Let Im = [0, 1]m denote the m-dimensional cube. Suppose that X is a subcomplex
of dimension k of Im . We adopt the notations for cell complex as in Definition 4.1
of [13]. In particular, the cube complex X( j) denotes the set of all cells of I (m, j)
whose support is contained in some cell of X , and X( j)p denotes the set of all p-cells
in X( j).

Suppose that� : X → Zn(M, ∂M;F;G) is a continuousmapwith respect to theF-
metric.We use	 to denote the set of all continuousmaps
 : X → Zn(M, ∂M;F;G)

such that � and 
 are homotopic to each other in the flat topology.
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Definition 4.1 (Width and min–max sequences) The width of 	 is defined by

L(	) = inf
�∈	

sup
x∈X

M(�(x)).

A sequence {�i }i∈N ⊂ 	 is called amin–max sequence ifL(�i ) = supx∈X M(�i (x))
satisfies

L({�i }i∈N) = lim sup
i→∞

L(�i ) = L(	).

Definition 4.2 (Critical set) The image set of {�i }i∈N is defined by

�({�i }i∈N) = {V ∈ Vn(M) : ∃ sequences {i j } → ∞, xi j ∈ X

such that lim
j→∞F(|�i j (xi j )|, V ) = 0}.

Let {�i }i∈N be a min–max sequence in 	 such that L = L({�i }i∈N). The critical set
of {�i }i∈N is defined by

C({�i }i∈N) = {V ∈ �({�i }i∈N) : ‖V ‖(M) = L}.

Note that for any min–max sequence {�i }i∈N ⊂ 	, by the tightening construction
(see [13, Proposition 4.17]), we can find another min–max sequence {�′

i }i∈N ⊂ 	

such that C({�′
i }i∈N) ⊂ C({�i }i∈N) and each V ∈ C({�′

i }i∈N) is stationary in M
with free boundary (see [13, Defintion 2.1]).

Lemma 4.3 If � : X → Zn(M, ∂M;F;G) is a continuous map with respect to the
F-metric, then � has no concentration of mass.

Proof This lemma follows from the definition directly (c.f. [17, p.472]). �	
The next theorem tells us that we can construct a continuous map in the M-norm

out of a discrete map with small fineness.

Theorem 4.4 (Interpolation Theorem; [13, Theorem 4.14], [14, Theorem 2.11]) Let
Mn+1 be a compact Riemannian manifold with boundary and m ∈ N. Then there exist
C0 > 0 and δ0 > 0 depending only on M and m such that if X is a cubical subcomplex
of I (m, l) and

φ : X0 → Zn(M, ∂M;G)

has fM(φ) < δ0 [13, Definition 4.2], then there exists a map

� : X → Zn(M, ∂M;G)

which is continuous in theM-topology and satisfying

(i) �(x) = φ(x) for all x ∈ X0;
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1406 Q. Guang

(ii) for any p-cell α in X p, �|α depends only on the restriction of φ on the vertices
of α and

max{M(�(x) − �(y)) : x, y ∈ α} ≤ C0fM(φ).

We remark that in the above theorem, the map � is called the Almgren extension of φ.
Next, we will formulate the min–max theory for manifolds with boundary in con-

tinuous setting (cf. [17, Theorem 3.8]).

Theorem 4.5 (Min–max Theorem) Let 3 ≤ n + 1 ≤ 7. Suppose that L(	) > 0 and
{�i }i∈N ⊂ 	 is a min–max sequence. Then there exists a varifold V ∈ C({�i }i∈N)

such that

(i) ‖V ‖(M) = L(	);
(ii) V is stationary in M with free boundary;
(iii) V is supported on a smooth, compact, almost properly embedded free boundary

minimal hypersurface.

Proof The proof is parallel to the one in [17, Theorem 3.8]. Here, we adapt the argu-
ments in the proof of [17, Theorem 3.8] and make necessary modifications. By the
tightening construction, we may assume that every element of C({�i }i ) is stationary
with free boundary.

Step one: The discretization process. For any �i : X → Zn(M, ∂M;F;G), by
Lemma 4.3, we know that �i has no concentration of mass. By the Discretization
Theorem, [13, Theorem 4.12] (see also [14, Theorem 2.10]), there is a sequence of
maps

φ
j
i : X(kij )0 → Zn(M, ∂M;G)

with kij < kij+1 and a sequence of positive constants δij → ∞ as j → ∞ such that

(1) Si = {φ j
i } j∈N is an (X ,M)-homotopy sequence of mappings intoZn(M, ∂M;G)

with fineness fM(φ
j
i ) < δij ;

(2)

sup{F(φ
j
i (x) − �i (x)) : x ∈ X(kij )0} ≤ δij ;

(3)

sup{M(φ
j
i (x)) : x ∈ X(kij )0} ≤ sup{M(�i (x)) : x ∈ X} + δij ;

(4) there exists a sequence lij → ∞ as j → ∞ such that for any y ∈ X(kij )0,

M(φ
j
i (y)) ≤ sup{M(�i (x)) : α ∈ X(lij ), x, y ∈ α} + δij .

123



Min–max theory for free boundary minimal... 1407

Since �i is continuous with respect to the F-metric, we have that x ∈ X �→
M(�i (x)) is continuous. Then property (4) implies that there exists ηij → 0 as j → ∞
such that for any y ∈ X(kij )0,

M(φ
j
i (y)) ≤ M(�i (y)) + ηij . (4.1)

By [13, Lemma 3.13], for any τ, τk ∈ Zn(M, ∂M;G), k ∈ N, then F(τ, τk) → 0 if
and only ifF(τ, τk) → 0 andM(τk) → M(τ ) as k → ∞. This together with property
(2), (4.1) and a standard compactness argument gives that

sup{F(φ
j
i (x),�i (x)) : x ∈ X(kij )0} → 0 as j → ∞. (4.2)

Step two: The diagonal argument. Now combining properties (1)-(4) and (4.2),
for each i , we can choose j(i) → ∞ as i → ∞ such that the diagonal sequence

ϕi = φ
j(i)
i : X(kij(i))0 → Zn(M, ∂M;G)

satisfies

• sup{F(ϕi (x),�i (x)) : x ∈ X(kij(i))0} ≤ ai with limi→∞ ai = 0;

• sup{F(�i (x),�i (y)) : x, y ∈ α, α ∈ X(kij(i))} ≤ ai ;
• the fineness fM(ϕi ) tends to zero as i → ∞.

Moreover, using the interpolation result (Theorem 4.4), we can approximate ϕi by
a continuous map 


j(i)
i : X → Zn(M, ∂M;M;G), which is called the Almgren

extension of ϕi . By property (2) and [14, Proposition 2.12], we can also require that



j(i)
i is homotopic to �i in the flat topology.
Now we consider the sequence S = {ϕi }i∈N and we have

L(S) = lim sup
i→∞

max{M(ϕi (x)) : x ∈ X(kij(i))0}.

By (4.1), we have L(S) ≤ L({�i }i ) = L(	). Since the Almgren extension 

j(i)
i is

homotopic to �i , we have 

j(i)
i ∈ 	. This implies that L({�i }i ) = L(	) ≤ L(S).

Hence,

L(S) = L({�i }i ) = L(	).

We can also prove that C(S) = C({�i }i ). By the choice of C({�i }i ), we know that
every element of C(S) is stationary with free boundary.

Next, we claim that there exists an element V ∈ C(S) such that V is almost
minimizing in small annuli with free boundary (see [13, Definition 4.19]). Otherwise,
we can deform S homotopically to another sequence S̃ as in the proof of [13, Theorem
4.21] such that L(S̃) < L(S), which is a contradiction.

Finally, the conclusion follows directly from the regularity results in [13, Theorem
5.2] (when G = Z) and Theorem 4.6 (when G = Z2). This completes the proof. �	
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Based on the work of Pitts [24], Schoen-Simon [25] andGrüter [10], the second and
the last author [13] proved the regularity for stationary varifolds which is Z-almost
minimizing in small annuli with free boundary. As we explain below, the arguments
also extend to Z2-coefficients.

Theorem 4.6 (Regularity ofZ2-almost minimizing varifolds) Let 2 ≤ n ≤ 6. Suppose
V ∈ Vn(M) is a varifold which is

• stationary in M with free boundary and
• Z2-almost minimizing in small annuli with free boundary,

then there exist N ∈ N and ni ∈ N, i = 1, ..., N, such that

V =
N∑
i=1

ni |�i |,

where each (�i , ∂�i ) ⊂ (M, ∂M) is a smooth, compact, connected, almost properly
embedded free boundary minimal hypersurface.

Proof The interior regularity of V follows from [18, Theorem 2.11]. The regularity
of V on the boundary follows from a similar procedure as the proof in [13]. The only
difference is to show the regularity of replacements (see [13, Proposition 5.3] for def-
inition) for a Z2-almost minimizing varifold with free boundary. The last statement
follows from [13, Lemma 5.5] (where regularity of replacements for Z-almost mini-
mizing varifold with free boundary was proved) by replacing [23, Regularity Theorem
2.4] with Theorem 4.7. �	

Finally, we establish the regularity for locally area-minimizers with respect to Z2
coefficients. A similar result was obtained earlier by Grüter [10] for Z coefficients.

Theorem 4.7 (Regularity of Z2-minimizers) Let S ⊂ R
n+1 be an n-dimensional sub-

manifold of class C2 and let U be an open set such that ∂S ∩ U = ∅. Suppose
T ∈ Rn(R

n+1;Z2) with spt2 T ⊂ U and spt2 ∂T ∩U ⊂ S such that

M2
W (T ) ≤ M2

W (T + X) (4.3)

for all open W ⊂⊂ U and X ∈ Rn(U ;Z2) with spt2 X ⊂ W and spt2 ∂X ∩ U ⊂ S.
Then we have

• sing(T ) = ∅ if 2 ≤ n ≤ 6;
• sing(T ) is discrete if n = 7;
• dim(sing(T )) ≤ n − 7 if n > 7.

In case x ∈ S∩reg(T )we know that S and T intersect orthogonally in a neighborhood
of x.

Proof It suffices to consider the regularity for p ∈ S∩ spt2 T . Denote by Br = Br (p).
Take r small enough so that Br (p) ∩ S is a n-ball and separates Br into B+

r and B−
r .

123



Min–max theory for free boundary minimal... 1409

Without loss of generality, we can assume that spt2 T ∩ B−
r = ∅ (see [10, Sect. 3] for

more details).
For x ∈ Br , denote by σ the reflection across S (see [10, Remark 3.1]). We have

σ 2 = id and set

T̃ = T − σ#T .

Then spt2 T̃ ⊂ Vr and spt2 ∂ T̃ ⊂ ∂Vr , where Vr = B+
r ∪ (S ∩ Br ) ∪ σ(B+

r ).
Furthermore, Br/3 ⊂ Vr andM2(T̃ ) < ∞. Then by Slicing Lemma [27, §28], we can
take α ∈ (1/4, 1/3) so that

T ′ := T̃ �Bαr ∈ In(Bαr ;Z2).

Recall that T1 ∈ Rn(Bαr ;Z) is a representative modulo 2 (see [22, Page 227]) of
T ′ if T1 is of multiplicity one such that T1 = T ′ (mod 2) and M(T1) = M2(T ′).

Now since ∂Bα is simply connected and Hn(spt2 ∂T ′) = 0, applying [22, Lemma
4.2] (letting X1 = T ′ and X2 be half of ∂Bα separated by spt2 ∂T ′ therein), T ′ has a
representative modulo two, denoted as T1, so that spt0 ∂T1 = spt2 ∂T ′. Set

R := T1�B+
αr .

We now prove that R is a Z-area minimizer, and hence the regularity follows from
[10, Theorem 4.7]. To prove this, let W ⊂⊂ Bαr be an open set and X ∈ Rn(Bαr ;Z)

with spt X ⊂ W and spt ∂X ∩U ⊂ S. Then by the definition of M2, we have

M0
W (R + X) ≥ M2

W (R + X) = M2
W (X + R�B+

αr ).

As we can see R = T ′�B+
αr = T̃ �B+

αr = T �Bαr (mod 2), the inequality becomes

M0
W (R + X) ≥ M2

W (X + T �Bαr ). (4.4)

Note that (4.3) gives that

M2
W (X + T �Bαr ) ≥ M2

W (T �Bαr ) = M0
W (R).

Together with (4.4), we conclude that R is area minimizing in the sense of [10] and
we are done. �	

5 Deformation theorem

Our goal in this section is to prove the Deformation Theorem (Theorem 5.8) which is
a crucial ingredient in the proof of the Morse index estimates in the next section. We
also establish a few preliminary results including the generic countability of FBMHs
with bounded index and area and the notion of instability in the context of varifolds.
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5.1 Generic countability

As remarked in the introduction, the generic finiteness result for FBMH was proved
in [11,29]. The construction of Jacobi fields in the aforementioned papers is rather
technical and complicated, especially for the higher multiplicity case in [29]. For the
purpose of this paper, we only need generic countability instead of finiteness. We now
give a more direct proof of this weaker result based on the work of [11]. (Recall Sect.
2 for our definition of index(�) for almost properly embedded FBMH � in M .)

Definition 5.1 For any � > 0 and I ∈ N, we let M(�, I ) be the collection of
all smooth, almost properly embedded FBMH � in M with Area(�) ≤ � and
index(�) ≤ I .

First, we show that a sequence of FBMHs inM(�, I ) with the same index would
converge, after passing to a subsequence, to a limiting FBMH in M(�, I ) which is
either degenerate or has strictly lower index.

Proposition 5.2 Let {� j } j∈N be a sequence of FBMHs inM(�, I )with index(� j ) =
I for all j . Then after passing to a subsequence, � j will converge away from finitely
many points locally smoothly (with multiplicity) to some � ∈ M(�, I ). Moreover,
either index(�) ≤ I − 1 or � is degenerate, i.e. � admits a non-trivial Jacobi field.

Proof If � j smoothly converges globally to � with multiplicity one, then � admits a
non-trivial Jacobi field by the arguments in [11].

It remains to consider the case that� j does not globally smoothly converge to�.We
assume that index(�) = k. Since the convergence is not smooth, there exists p ∈ � so
that for any r > 0, Br (p)∩� j does not smoothly converge to Br (p)∩�.We nowprove
that index(� j ) ≥ k+1 for some j large,which implies that k ≤ index(� j )−1 = I−1.

Let X1, ..., Xk be k linearly independent normal vector fields on � so that they
span a linear subspace on which Q� is negative-definite. By normalization, we can
assume

∫
�

|Xi |2 = 1 for 1 ≤ i ≤ k. Since Xi vanishes along the touching set of �i ,
we can extend each Xi to a smooth vector field on M which is tangential to ∂M . Let
us still denote the extended vector field by Xi .

By shrinking the radius r if necessary,we can assume that {Xi |�\Br (p)}ki=1 is linearly
independent. Let ξr be a logarithmic cut-off function (see Appendix A) satisfying
0 ≤ ξr ≤ 1 and ξr |Br (p) = 0 and

∫
�

|∇ξr |2 → 0 and ξr → 1 as r → 0. A direct
computation yields that for 1 ≤ i ≤ k,

Q�(ξr Xi , ξr Xi ) ≤ Q�(Xi , Xi ) + C
∫

�

|∇ξr |2.

Since Q�(Xi , Xi ) < 0, for r small enough we have for 1 ≤ i ≤ k

Q�(ξr Xi , ξr Xi ) < 0.

Recall that δ2� j (ξr Xi , ξr Xi ) → mQ�(ξr Xi , ξr Xi ) as j → ∞, where m ∈ N is the
multiplicity. Then for sufficiently large j , we have

δ2� j (ξr Xi , ξr Xi ) < 0 for 1 ≤ i ≤ k. (5.1)
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On the other hand, since � j ∩ Br (p) does not smoothly converge to � ∩ Br (p),
� j cannot be stable away from touching set in Br (p) for some j by the compactness
theorem in [11, Theorem 1.4]. Hence for this j , we can find a normal vector field of
� j (vanishing on touching set, so it can be extended to all of M and tangential to ∂M)
such that spt X ⊂ Br (p) and

δ2� j (X , X) < 0. (5.2)

Therefore, (5.1) and (5.2) together imply that index(� j ) ≥ k + 1. This finishes the
proof. �	

We can now use an inductive argument to prove the generic countability result.
Recall that a Riemannian metric g on the compact manifolds M with non-empty
boundary is said to be bumpy if no almost properly embedded FBMH in M admits a
non-trivial Jacobi field.

Proposition 5.3 (Generic countability) Let (M, ∂M) be a compact manifold with
boundary equipped with a bumpy metric g. Then M(�, I ) is at most countable for
any fixed �, I ≥ 0.

Proof We prove it by induction. It follows from Proposition 5.2 and the bumpiness of
g thatM(�, 0) is finite. To establish the induction hypothesis, suppose thatM(�, I )

is countable for some I ≥ 0. Then for any r > 0, M(�, I + 1)\ ∪�∈M(�,I ) B
F
r (�)

is finite by Proposition 5.2. Since

M(�, I + 1) =
∞⋃
k=1

(
M(�, I + 1)\

⋃
�∈M(�,I )

B
F
1/k(�)

)
,

we conclude thatM(�, I +1) is countable. This completes the proof by induction. �	
Remark 5.4 The proof of Proposition 5.3 can also be used to obtain countability of
Wk+1 in the proof of [36, Theorem 3.6] without assuming that every � ∈ Ph is
properly embedded in the definition of good pair in [36, Section 3.3].

5.2 Unstable varifolds

To prove the Deformation Theorem, one needs to generalize the concept of Morse
index for almost properly embedded FBMHs to the context of varifolds. In what

follows, we use Bk to denote the open unit ball (centered at origin) in R
k and B

F
r (V )

to denote the closed ball of radius r > 0 centered at V ∈ Vn(M) with respect to the
F-metric. A bar above it would denote its closure (in the corresponding metric).

Definition 5.5 (cf. [17, Definition 4.1]) Let � ∈ Vn(M) be stationary in M with free
boundary and ε ≥ 0. We say that � is k-unstable in an ε-neighborhood if there exist
0 < c0 < 1 and a smooth k-parameter family {Fv}v∈Bk ⊂ Diff(M) with F0 = Id,

F−v = F−1
v for all v ∈ B

k
such that, for any V ∈ B

F
2ε(�), the smooth function

AV : Bk → [0,∞), AV (v) = ‖(Fv)#V ‖(M)
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satisfies:

• AV has a unique maximum at m(V ) ∈ Bk
c0/

√
10
;

• − 1
c0
Id ≤ D2AV (u) ≤ −c0 Id for all u ∈ B

k
.

Here (Fv)# denotes the push-forward operation. Also, because � is stationary in M
with free boundary, we necessarily have m(�) = 0.

We say that � is k-unstable if it is stationary and k-unstable in an ε-neighborhood
for some ε > 0.

Remark 5.6 If � is a smooth, almost properly embedded FBMH with index(�) ≥ k,
then� is k-unstable in the sense of Definition 5.5 (c.f. [17, Proposition 4.3]). However,
the converse may not be true in general (e.g. when the touching set of � has a positive
Hn-measure).

Lemma 5.7 For any δ < 1/4, there exists T = T (δ, ε,�, {Fv}, c0) ≥ 0 such that for

any V ∈ B
F
2ε(�) and v ∈ B

k
with |v − m(V )| ≥ δ, we have

AV (φV (v, T )) < AV (0) − c0
10

, and |φV (v, T )| >
c0
4

.

Here {φV (·, t)}t≥0 is the one-parameter diffeomorphisms of B
k
generated by the vector

field

u �→ −(1 − |u|2)∇AV (u), u ∈ B
k
.

Proof The proof is the same as that of [17, Lemma 4.5]. �	

5.3 Deformation theorem

We now prove the key Deformation Theorem. Suppose that X is a cubical com-
plex of dimension k. Let {�i }i∈N be a sequence of continuous maps from X into
Zn(M, ∂M;F;G). Set

L = L({�i }i∈N) := lim sup
i→∞

sup
x∈X

M(�i (x)).

We will adapt the Deformation Theorem A in [17] to our setting. Basically, the defor-
mation theorem can produce another sequence which is homotopic to {�i }i∈N such
that the new sequence avoids free boundary minimal hypersurfaces with large index.

Theorem 5.8 (Deformation Theorem) Suppose that

(1) � ∈ Vn(M) is stationary in M with free boundary and (k + 1)-unstable;
(2) K ⊂ Vn(M) is a subset such that F(�, K ) > 0 and F(|�i |(X), K ) > 0 for all

i ≥ i0;
(3) ‖�‖(M) = L.
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Then there exist ε̄ > 0, j0 ∈ N, and another sequence {
i }i∈N of maps from X into
Zn(M, ∂M;F;G) so that

(i) 
i is homotopic to �i in the F-topology for all i ∈ N;
(ii) L({
i }i∈N) ≤ L;

(iii) F(|
i |(X),B
F
ε̄ (�) ∪ K ) > 0 for all i ≥ j0.

Remark 5.9 Note that the subset K may not be compact in our applications.

Proof of Theorem 5.8 Since the strategy of the proof follows from those of [17, The-
orem 5.1], we will only sketch the main steps and point out necessary modifications
for the free boundary setting.

Let d = F(�, K ) > 0. By assumption (1), there exists a constant ε > 0 such that
� is (k+1)-unstable in an ε-neighborhood. Suppose that {Fv}v∈Bk+1 and c0 are given
as in Definition 5.5. Since F(�, K ) > 0, by possibly changing {ε, {Fv}, c0}, we may

assume that for any V ∈ B
F
2ε(�),

min
v∈Bk+1

F((Fv)#V , K ) >
d

2
. (5.3)

For each fixed i ∈ N, since �i : X → Zn(M, ∂M;F;G) is continuous, we may
assume that X(ki ) is a sufficiently fine subdivision of X such that

F(|�i (x)|, |�i (y)|) < δi

for any x, y belonging to the same cell in X(ki )with δi = min{2−(i+k+2), ε/4}. Recall
that for τ ∈ Zn(M, ∂M;F;G), |τ | is defined to be |T | where T ∈ Zn(M, ∂M;G) is
the unique canonical representative of τ .

Note that AV : Bk+1 → [0,∞) is a smooth function for anyV ∈ B
F
2ε(�), sowe can

assume that for any x, y belonging to the same cell in X(ki ) with F(|�i (x)|, �) ≤ 2ε
and F(|�i (y)|, �) ≤ 2ε, we have

|m(|�i (x)|) − m(|�i (y)|)| < δi .

For any η > 0, we use Ui,η to denote the union of all cells σ ∈ X(ki ) so that
F(|�i (x)|, �) < η for all x ∈ σ . Then Ui,η is a subcomplex of X(ki ). If a cell
β /∈ Ui,η, then there exists some point x ′ ∈ β such that F(|�i (x ′)|, �) ≥ η. Hence,
for any y ∈ β, we have

F(|�i (y)|, �) ≥ η − δi . (5.4)

In the following, for any x ∈ Ui,2ε , we will use the notation

Ax
i = A|�i (x)|, mi (x) = m(|�i (x)|) and φx

i = φ|�i (x)|.

Following the construction in [17, Theorem 5.1], we can construct a continuous homo-
topy

Ĥi : Ui,2ε × [0, 1] → Bk+1
2−i (0) so that Ĥi (x, 0) = 0 ∀ x ∈ Ui,2ε,
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and
inf

x∈Ui,2ε
|mi (x) − Ĥi (x, 1)| ≥ ηi > 0 for some ηi > 0. (5.5)

The key idea is that the subspaces

Ai = {(x, 0) ∈ X × B
k+1 : x ∈ Ui,2ε} and

Bi = {(x,mi (x)) ∈ X × B
k+1 : x ∈ Ui,2ε}

have both dimension at most k and are contained in a space of dimension 2k + 1. So
it is possible to perturb Ai slightly such that Ai ∩ Bi = ∅ which gives (5.5).

Let c : [0,∞) → [0, 1] be a cutoff function which is non-increasing, and c is equal
to 1 in a neighborhood of [0, 3ε/2], and 0 in a neighborhood of [7ε/4,∞). By (5.4),
if y /∈ Ui,2ε , then F(|�i (y)|, �) ≥ 2ε − δi ≥ 7ε/4, since δi ≤ ε/4. Therefore,

c(F(|�i (y)|, �)) = 0 for any y /∈ Ui,2ε .

We now consider a map Hi : X × [0, 1] → Bk+1
2−i (0) given by

Hi (x, t) = Ĥi (x, c(F(|�i (x)|, �))t) if x ∈ Ui,2ε

and

Hi (x, t) = 0 if x ∈ X\Ui,2ε .

Then Hi is continuous.
Now we are ready to construct the new sequence {
i } of maps from X into

Zn(M, ∂M;F;G). With ηi given by (5.5), let Ti = Ti (ηi , ε,�, {Fv}, c0) be given

by Lemma 5.7. Set Di : X → B
k+1

such that

Di (x) = φx
i

(
Hi (x, 1), c(F(|�i (x)|, �))Ti

)
if x ∈ Ui,2ε

and

Di (x) = 0 if x ∈ X\Ui,2ε .

Then Di is continuous. Now we define


i : X → Zn(M, ∂M;F;G), 
i (x) = (FDi (x))#(�i (x)).

In particular, we have


i (x) = �i (x), if x ∈ X\Ui,2ε .

Since the map Di is homotopic to the zero map in B
k+1

, we obtain that 
i is
homotopic to �i in the F-topology for all i ∈ N. Following the steps in [17, Theorem
5.1], one can check 
 is the desired map. �	
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6 Index estimates

In this section, we will use the deformation theorem (Theorem 5.8) to prove the
index estimates. We will first prove such estimates for manifolds with bumpy metrics.
Recall that a metric is bumpy if every smooth almost properly embedded FBMH is
non-degenerate, i.e. admits no non-trivial Jacobi field (which can be non-zero on the
touching set). It was proved byWhite (see [30,32]) and Ambrozio–Carlotto–Sharp [3]
(in the free boundary setting) that bumpy metrics are generic in the Baire sense.

Theorem 6.1 (Index estimates for bumpy metrics) Let (Mn+1, ∂M) be a compact
manifold with boundary equipped with a bumpy metric g and 3 ≤ (n + 1) ≤ 7. Let X
be a k-dimensional cubical complex and� : X → Zn(M, ∂M;F;G) be a continuous
map. Let 	 be the class of all continuous maps �′ : X → Zn(M, ∂M;F;G) such
that � and �′ are homotopic to each other in the flat topology. Suppose that {�i }i∈N
is a min–max sequence in 	 such that

L = L({�i }i∈N) = L(	) > 0.

Then there is � ∈ C({�i }i∈N) with support a smooth, compact, almost properly
embedded, free boundary minimal hypersurface such that

L(	) = ‖�‖(M) and index(spt�) ≤ k.

Proof By the compactness result [11, Theorem 1.1] for free boundary minimal hyper-
surfaces, it suffices to show that for any r > 0, there exists a varifold �̃ ∈ Vn(M)

which is stationary in M with free boundary and whose support is a smooth compact
embedded minimal hypersurface such that F

(
�̃,C({�i }i∈N)

)
< r ,

L(	) = ‖�̃‖(M), and index(spt �̃) ≤ k.

Once we have this, we can choose �̃ j ∈ Vn(M) such that F
(
�̃ j ,C({�i })

)
< j−1 and

thus the varifold limit �̃ of �̃ j satisfies �̃ ∈ C({�i }).
Let W be the set of all stationary varifolds V in M with free boundary such that

‖V ‖(M) = L and the support of V is a smooth compact embedded free boundary
minimal hypersurface. Now we fix r > 0 and set

W(r) := {V ∈ W : F(
V ,C({�i }i )

) ≥ r}.

We can easily argue by contradiction to obtain the following result. �	
Lemma 6.2 There exist i0 ∈ N and ε0 > 0 such that F(|�i |(X),W(r)) > ε0 for all
i ≥ i0.

LetWk+1 be the collection of elements inW whose support has index greater than
or equal to (k + 1). Now it suffices to show W\(W(r) ∪ Wk+1) is non-empty.
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Since the metric g is bumpy, the set Wk+1 is countable by Proposition 5.3. So we
can write

Wk+1\BF
ε0

(W(r)) = {�1, �2, �3, . . .}.

Note that for any i ∈ N, �i satisfies index(spt�i ) ≥ (k + 1) and thus �i is (k + 1)-
unstable. Then our argument from here is the same as that of [17], and we also present
it here for the sake of completeness.

Using our Deformation Theorem (Theorem 5.8) with K = B
F
ε0

(W(r)) and� = �1
(recall that F(|�i |(X), K ) > 0 for all i ≥ i0 by Lemma 6.2), we can find ε1 > 0,
i1 ∈ N, and {�1

i }i∈N so that

• �1
i is homotopic to �i in the F-topology for all i ∈ N;

• L({�1
i }i ) ≤ L;

• F(|�1
i |(X),B

F
ε1

(�1) ∪ B
F
ε0

(W(r))) > 0 for all i ≥ i1;

• no � j belongs to ∂B
F
ε1

(�1).(This can be easily satisfied since {�1, �2, · · · } is a
countable set.)

Next, we consider �2. If �2 /∈ B
F
ε1

(�1), then we apply Theorem 5.8 again with

K = B
F
ε1

(�1) ∪ B
F
ε0

(W(r)) and find ε2, i2 ∈ N, and {�2
i }i∈N so that

• �2
i is homotopic to �i in the F-topology for all i ∈ N;

• L({�2
i }i ) ≤ L;

• F(|�2
i |(X),B

F
ε2

(�2) ∪ B
F
ε1

(�1) ∪ B
F
ε0

(W(r))) > 0 for all i ≥ i2;

• no � j belongs to ∂B
F
ε1

(�1) ∪ ∂B
F
ε2

(�2).

If �2 ∈ BF
ε1

(�1), we skip �2 and repeat the procedure with �3.
We keep applying the above procedure and eventually there are two possibilities.

The first case is that we can find for all l ∈ N, there exist a sequence {�l
i }i∈N, εl ,

il ∈ N, and � jl ∈ Wk+1\BF
ε0

(W(r)) for some jl ∈ N so that

(i) �l
i is homotopic to �i in the F-topology for all i ∈ N;

(ii) L({�l
i }i ) ≤ L;

(iii) F(|�l
i |(X),∪l

q=1B
F
εq

(� jq ) ∪ B
F
ε0

(W(r))) > 0 for all i ≥ il ;

(iv) {�1, . . . , �l} ⊂ ∪l
q=1B

F
εq

(� jq );

(v) no � j belongs to ∂B
F
ε1

(�1) ∪ · · · ∪ ∂B
F
εl
(� jl ).

The second case is that the process stops in finitely many steps. This means that we can
find some m ∈ N, a sequence {�m

i }i∈N, ε1, . . . , εm > 0, im ∈ N, and � j1, . . . , � jm ∈
Wk+1\BF

ε0
(W(r)) so that

(a) �m
i is homotopic to �i in the F-topology for all i ∈ N;

(b) L({�m
i }i ) ≤ L;

(c) F(|�m
i |(X),∪m

q=1B
F
εq

(� jq ) ∪ B
F
ε0

(W(r))) > 0 for all i ≥ im ;

(d) {� j : j ≥ 1} ⊂ ∪m
q=1B

F
εq

(� jq ).
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For either case, we will choose a min–max sequence so that we can apply the Min–
max Theorem (Theorem 4.5). For the first case, we can choose a diagonal sequence
{�l

pl }l∈N and set
l = �l
pl , where {pl}l∈N is an increasing sequence such that pl ≥ il

(the condition (iii) is satisfied) and

sup
x∈X

‖�l
pl (x)‖(M) ≤ L + 1

l
.

For the second case, we simply choose the last sequence {�m
l }l and set pl = l and


l = �m
l . Now it is easy to see that for both cases, the new sequence {
l}l∈N satisfies

the following conditions:

(1) 
l is homotopic to �pl in the F-topology for all l ∈ N;
(2) L({
l}l) ≤ L;
(3) C({
l}l) ∩ (Wk+1 ∪ W(r)

) = ∅.
Note that the condition (3) follows directly from (iii) or (c). Then Theorem 4.5 implies
that there exists a varifold V ∈ C({
l}l) such that V is stationary in M with free
boundary, and V is supported on a smooth compact embedded free boundary mini-
mal hypersurface. By (3), we know that W\(Wk+1 ∪ W(r)

)
is non-empty and this

completes the proof of index estimates for bumpy metrics. �	
Now we are ready to prove the general index estimates using Theorem 6.1 and the

compactness result of [11].

Theorem 6.3 (Index estimates for generalmetrics) Suppose that (Mn+1, g) is a smooth
compact manifold with boundary and 3 ≤ (n+1) ≤ 7. Let X be a cubical complex of
dimensional k and � : X → Zn(M, ∂M;F;G) be a continuous map. Let 	 denote
the associated homotopy class of�. Then there exists a varifold V ∈ Vn(M) such that

(i) ‖V ‖(M) = L(	);
(ii) V is stationary in M with free boundary;
(iii) there exists N ∈ N and mi ∈ N, 1 ≤ i ≤ N, such that V = ∑N

i=1 mi |�i |,
where each�i is a smooth, compact, connected, almost properly embedded, free
boundary minimal hypersurface in M. Moreover,

index(spt V ) =
N∑
i=1

index(�i ) ≤ k.

Proof Since bumpy metrics are generic in the Baire sense [3], we can take a sequence
{g j } j∈N of bumpy metrics converging smoothly to g. For each g j , we use L j to
denote the width of 	 with respect to g j . By Theorem 6.1, we know that there exists a
varifold Vj ∈ Vn(M)which is stationary inM with free boundary andwhose support is
a smooth, compact, almost properly embedded, free boundary minimal hypersurface.
Moreover,

L j = ‖Vj‖(M) and index(spt Vj ) ≤ k.
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Since the width is continuous with respect to metrics, we know that L j → L(	) as
j → ∞. The conclusion then follows directly from the compactness theorem in [11].

�	

7 Denseness of free boundaryminimal hypersurfaces

In the final section, we give a proof of the denseness result (Theorem 1.3). We shall
need the notions of p-widths for compact Riemannian manifolds (with or without
boundary). We will first recall the definitions and state the relevant results in the free
boundary setting.

7.1 Width

Let X denote a cubical subcomplex of the m-dimensional cube Im = [0, 1]m .
Definition 7.1 Given p ∈ N, a continuous map in the flat topology

� : X → Zn(M, ∂M;Z2)

is called a p-sweepout if the p-th cup power of λ = �∗(λ̄) is non-zero in H p(X;Z2)

where 0 �= λ̄ ∈ H1(Zn(M, ∂M;Z2);Z2) ∼= Z2. We denote by Pp(M) the set of
all p-sweepouts that are continuous in the flat topology and have no concentration of
mass ([18, Sect. 3.7]).

Definition 7.2 The p-widthof aRiemannianmanifold (M, g)with boundary is defined
by

ωp(M, g) := inf
�∈Pp(M)

sup{M(�(x)) : x ∈ dmn(�)},

where dmn(�) is the domain of �.

The following proposition says that the p-widthωp is realized by the area (counting
multiplicities) of min–max free boundary minimal hypersurfaces, which is an appli-
cation of our Min-max Theorem (Theorem 4.5) and general Morse index estimates
(Theorem 6.3), together with the compactness result of [11, Theorem 1.1].

Proposition 7.3 (cf. [12, Proposition 2.2]) Suppose 3 ≤ (n + 1) ≤ 7. Then for each
k ∈ N, there exist a finite disjoint collection {�1, ..., �N } of smooth, compact, almost
properly embedded FBMHs in (M, ∂M; g), and integers {m1, ...,mN } ⊂ N, such that

ωk(M, g) =
N∑
j=1

m j Areag(� j ) and
N∑
j=1

index(� j ) ≤ k.
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Proof Choose a sequence {�i }i∈N ⊂ Pk(M) such that

lim
i→∞ sup{M(�i (x)) : x ∈ Xi = dmn(�i )} = ωk(M, g). (7.1)

Without loss of generality, we can assume that the dimension of Xi is k for all i (see
[17, Sect. 1.5] or [12, Proof of Proposition 2.2]).

By the Discretization Theorem [13, Theorem 4.12] and the Interpolation Theorem
(Theorem 4.4), we can assume that �i is a continuous map to Zn(M, ∂M;Z2) in
the F-metric. Denote by 	i the homotopy class of �i . This is the class of all maps
�′

i : Xi → Zn(M, ∂M;Z2), continuous in the F-metric, that are homotopic to �i in
the flat topology. In particular, �′

i
∗
(λ̄) = �∗

i (λ̄). Continuity in the F-metric implies
no concentration of mass (see Lemma 4.3), hence every such �′

i is also a k-sweepout
in the sense of Definition 7.1. �	
Claim 1 limi→∞ L(	i ) = ωk(M, g).

Proof of Claim 1 Note that

L(	i ) ≤ sup{M(�i (x)) : x ∈ Xi }. (7.2)

Letting i → ∞, the right hand side tends to ωk(M, g) by (7.1). On the other hand,
since that each element in 	i is also a k-sweepout, then

ωk(M, g) ≤ inf
�′∈	i

sup{M(�′(x)) : x ∈ Xi } = L(	i ).

Together with (7.2), the desired result follows. �	
Toproceedwith the arguments, Theorem6.3 implies the existence of a finite disjoint

collection {�i,1, ..., �i,Ni } of almost properly embedded FBMHs in (M, ∂M), and a
sequence of integers {mi,1, ...,mi,Ni } ⊂ N, such that

L(	i ) =
Ni∑
j=1

mi, j Areag(�i, j ), and
Ni∑
j=1

index(�i, j ) ≤ k.

Note that the areas of non-trivial almost properly embedded FBMHs in (M, ∂M; g)
are uniformly bound away from zero. Hence the number of components Ni and the
multiplicitiesmi, j are uniformly bounded from above. The desired results then follow
immediately from the compactness theorem [11, Theorem 1.1]. �	

Since the two formulations of min–max theory for manifolds with boundary
were shown to be equivalent in Section 3, our p-widths defined using the space
Zn(M, ∂M;Z2) also satisfy a Weyl Law as in [14].

Theorem 7.4 (Weyl Law for the Volume Spectrum; [14]) There exists a constant α(n)

such that, for every compact Riemannian manifold (Mn+1, g) with (possibly empty)
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boundary, we have

lim
k→∞ ωk(M, g)k− 1

n+1 = α(n)Vol(M, g)
n

n+1 .

It is known that the normalized p-width is a locally Lipschitz function of themetric,
with a uniform local Lipschitz constant independent of p.

Lemma 7.5 ([12, Lemma 2.1], [20, Lemma 1]) Let g0 be a C2 Riemannian met-
ric on (M, ∂M), and let C1 < C2 be positive constants. Then there exists K =
K (g0,C1,C2) > 0 such that

|p− 1
n+1 ωp(M, g) − p− 1

n+1 ωp(M, g′)| ≤ K · |g − g′|g0
for all C2 metrics g, g′ such that C1g0 ≤ g ≤ C2g0, C1g0 ≤ g′ ≤ C2g0 and any
p ∈ N.

7.2 Perturbation results

Given a Riemannian manifold (M, ∂M; g) with boundary and an almost properly
embedded free boundary minimal hypersurface� ⊂ M , in general� could be degen-
erate and improper. We first prove that under a smooth perturbation of g, we can make
� non-degenerate.

Proposition 7.6 (cf. [12, Proposition 2.3], [20, Lemma 4]) Let� be a compact, smooth
almost properly embedded FBMH in (M, ∂M; g). Then there exists a sequence of
metrics gi on M, i ∈ N, converging to g smoothly such that � is a non-degenerate,
almost properly embedded FBMH in (M, ∂M; gi ) for each i ∈ N.

Proof If � is equal to the union of some components of ∂M , the result follows from
[12, Proposition 2.3]. Otherwise, the points {xi } in [20, Lemma 4] can be chosen to
lie in the interior of M . Therefore, � is still a FBMH under the locally conformally
perturbed metrics. Finally, using the arguments in [20, Lemma 4], the perturbations
of g therein make � non-degenerate. �	

Next, we prove that under suitable perturbation of the metrics and the hypersurface
�, we can make the FBMHs properly embedded.

Proposition 7.7 Let � be a compact, smooth almost properly embedded FBMH in
(M, ∂M; g). Then there exist a sequence of metrics gi on M, and a sequence of
hypersurfaces �i in M so that

• gi converges to g in the smooth topology;
• �i smoothly converges to �;
• �i is a properly embedded FBMH in (M, ∂M; gi ) for each i .

Proof Recall that (M, g) can be regarded as a domain of a closedRiemannianmanifold
(M̃, g̃) of the same dimension. Let d be the signed distance to ∂M in M̃ so that∇d|∂M
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is the unit normal vector field on ∂M pointing out of M . Let V be an open set of M̃
so that V ∩ ∂� = ∅ and Touch(�) ⊂ V . Let ξ be a nonnegative cut-off function
supported in V such that ξ(x) = 1 for all x ∈ Touch(�) and ξ∇d is a smooth vector
field on M̃ . Denote by {Ft }t∈[0,1] the family of diffeomorphisms of M̃ generated by
ξ∇d.

Now let gi = F∗
1/i g̃ and �i = (F1/i )−1(�). Since Ft is a diffeomorphism of M̃ ,

gi → g and �i → � smoothly. Note that � is a properly embedded FBMH in
(Ft (M), g̃). In other words, �i is a properly embedded FBMH in M with respect to
the metric gi . This completes the proof. �	

7.3 Proof of Theorem 1.3

As in the proof of [12, Main theorem], Theorem 1.3 follows once we have proved the
following proposition.

Proposition 7.8 Let (Mn+1, ∂M; g) be a compact Riemannian manifold with bound-
ary and 3 ≤ (n + 1) ≤ 7. Let M be the space of all smooth Riemannian metrics
on M, endowed with the smooth topology. Suppose that U ⊂ M is a non-empty rel-
atively open subset. Let MU be the set of metrics g ∈ M such that there exists a
non-degenerate, properly embedded FBMH � in (M, g) which intersects U. Then
MU is open and dense inM in the smooth topology.

Proof Let g ∈ MU and � be as in the statement of the proposition. Because � is
properly embedded and non-degenerate, from the Structure Theorem of White [30,
Theorem 2.1] (see [3, Theorem 35] for a version in the free boundary setting), for every
Riemannian metric g′ sufficiently close to g, there exists a unique non-degenerate
properly embedded FBMH �′ close to �. This implies MU is open.

It remains to show the setMU is dense. Let g be an arbitrary smooth Riemannian
metric on M and V be an arbitrary neighborhood of g in the C∞ topology. By the
Bumpy Metrics Theorem ([30, Theorem 2.1], [3, Theorem 9]), there exist g′ ∈ V
such that every compact, almost properly embedded FBMH with respect to g′ is non-
degenerate. If one of these hypersurfaces is almost properly embedded and intersects
U , then by Proposition 7.7, there exist a sequence of metrics gi on M , and a sequence
of hypersurfaces �i so that

• gi converges to g′ in the smooth topology;
• �i smoothly converges to �;
• �i is a properly embedded FBMH in (M, ∂M; gi ) for each i ∈ N.

Then for i large enough, gi ∈ V and �i is a properly embedded FBMH with respect
to gi so that �i ∩U �= ∅. This implies that gi ∈ MU and we are done.

Hence we can suppose that every almost properly embedded FBMHwith respect to
g′ is contained in the complement ofU . Since g′ is bumpy, it follows from Proposition
5.3M(�, I ) is countable with respect to g′ for any � > 0 and I ∈ N. Therefore, the
set

C :=
⎧⎨
⎩

N∑
j=1

m j Areag′(� j )

∣∣∣ N ∈ N, {m j } ⊂ N, {� j } disjoint collection of almost
properly embedded FBMHs in (M, ∂M; g′)

⎫⎬
⎭
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is countable. Following the arguments in [12, Proposition 3.1] and using theWeyl Law
(Theorem 7.4) and Proposition 7.3, there exists g′′ ∈ V so that (M, ∂M; g′′) admits
an almost properly embedded FBMH intersectingU . Then by Proposition 7.6 and 7.7,
we have V ∩ MU �= ∅. �	
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Appendix A. logarithmic cut-off trick

We recall a construction of the logarithmic cut-off functions used in this paper.

Lemma A.1 Let (Mn+1, g) be a Riemannian manifold with n + 1 ≥ 3 and � be a
hypersurface in M. For p ∈ �, there exists a family of cut-off functions {ξr } on M
satisfying

(1) ξr |Br (p) = 0 and 0 ≤ ξr (x) ≤ 1 for x ∈ M;
(2)

∫
�

|∇ξr |2 → 0 and ξr → 1 as r → 0.

Proof For simplicity, we denote |x | := dist(x, p). Now define ξr (x) as follows:

ξr (x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, |x | ≤ r;
2 − 2 log |x |

log r
, r < |x | ≤ √

r;
1, |x | >

√
r .

One can check directly that such a cut-off function satisfies all the requirements. �	
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