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Abstract Climatic changes have decreased the stability of the Gulf Stream (GS), increasing the
frequency at which its meanders interact with the Mid-Atlantic Bight (MAB) continental shelf and slope
region. These intrusions are thought to suppress biological productivity by transporting low-nutrient water
to the otherwise productive shelf edge region. Here we present evidence of widespread, anomalously
intense subsurface diatom hotspots in the MAB slope sea that likely resulted from a GS intrusion in July
2019. The hotspots (at ~50 m) were associated with water mass properties characteristic of GS water
(~100 m); it is probable that the hotspots resulted from the upwelling of GS water during its transport

into the slope sea, likely by a GS meander directly intruding onto the continental slope east of where

the hotspots were observed. Further work is required to unravel how increasingly frequent direct GS
intrusions could influence MAB marine ecosystems.

Plain Language Summary As the climate has warmed, the changing large-scale circulation
of the northwest Atlantic has resulted in increasing western boundary current instability. As a
consequence, onshore intrusions of Gulf Stream (GS) water into the Northeast U.S. continental shelf have
become increasingly frequent. The impacts of this shift on marine ecosystems have yet to be resolved.
While these intrusions of low-nutrient GS water have been thought to potentially diminish biological
productivity, we present evidence of an unexpectedly productive subsurface diatom bloom resulting from
the direct intrusion of a GS meander toward the continental shelf. These results suggest that changing
large-scale circulation has consequences for regional productivity that are not detectable by satellites by
virtue of their occurrence well below the surface.

1. Introduction

The Mid-Atlantic Bight (MAB) region of the Northeast U.S. continental shelf is one of the world's most
productive marine ecosystems (O'Reilly & Busch, 1984; O'Reilly et al., 1987) and is critical to regional com-
mercial fisheries (Sherman et al., 1996). Unlike the MAB continental shelf and shelfbreak front (e.g., Ryan
et al., 1999; Zhang et al., 2013), the MAB slope sea to the south is generally characterized by lower biomass
(e.g., Xuet al., 2011), with summer subsurface chlorophyll (Chl) maximum layers dominated by nanoplank-
ton (O'Reilly & Zetlin, 1998).

MAB net community production is highly sensitive to ocean circulation (Friedrichs et al., 2019), but the re-
sponse of the region’s marine ecosystems to recent changes in northwest Atlantic circulation remains poorly
constrained. Over the past two decades, the destabilization point of the Gulf Stream (GS) has shifted west-
ward, resulting in more vigorous meandering of the GS south of the MAB (Andres, 2016). Consequently,
the influence of the GS on the MAB has increased through both direct intrusion of GS water (Gawarkiewicz
et al.,, 2012) and indirect interactions associated with more frequent GS shedding of anticyclonic warm-core
rings (WCRs) (Gangopadhyay et al., 2019; Gawarkiewicz et al., 2018). To first order, increasing intrusions
of GS water have been expected to decrease slope sea biological productivity (e.g., Brown et al., 1985; Zhang
& Gawarkiewicz, 2015) as surface GS water is more oligotrophic than the slope (Brown et al., 1985; Olson
et al., 1994). Here, we show observations from the MAB slope sea suggesting that the opposite can also occur.
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Figure 1. (a—c) Sea surface temperature (SST) showing the evolution of large-scale features in the Mid-Atlantic Bight (MAB) in the weeks leading up to TN368;
(d) histogram of historical slope sea (depth>200 m) chlorophyll (Chl) maxima measurements made from June-September from a MAB climatology (Zhang

et al., 2013; Figure S1), including TN368 profiles (black bars), plotted with a histogram of TN368 hotspot Chl maximum concentrations (gray bars), with cast
100 and casts with Chl maxima >4 pg/L highlighted; (e) 7-day composite sea surface height (SSH) from Aviso+ with 10 cm contours; (f) VIIRS NOAA-20 1-day
1-km composite Chl during TN368. In (a), the white star shows location of the Gulf Stream (GS) endmember profile used to initialize the 1D model. In (c),
striped lines indicate Video Plankton Recorder (VPR) tows 2 (red), 7 (blue), and 8 (green) shown in Figure 2; cyan star shows the location of station SLP (Cast
100), used for 1D model validation; magenta circle at the intersection of VPR tows 2 and 8 shows the location of REMUS mission 4a (at a much smaller scale).
In (e), arrows on the cyclonic feature show a possible transport pathway of GS water to the edge of the shelf and hotspot region. In (f), white diamonds show
locations of conductivity-temperature-depth casts at a hotspot, and magenta dots show locations of hotspots found by the VPR.

In July 2019, we observed unexpected diatom hotspots at the base of the euphotic zone in the slope sea
with Chl concentrations several times higher than the climatological mean. We hypothesize that this fea-
ture resulted from the northward intrusion of a GS meander into the slope sea and was fueled by nutrients
upwelled in GS water. Observatory data show occurrences of similar subsurface blooms in the slope sea in
other recent years. Such widespread subsurface blooms of siliceous plankton may be important when con-
sidering the impacts of changing large-scale circulation patterns on MAB regional productivity.

Details of our methods are provided in Text S1-S12.

2. Subsurface Diatom Hotspots Found at High Salinities

In July 2019, the R/V Thomas G. Thompson cruise TN368 embarked to investigate the dynamics controlling
primary productivity in the northern MAB shelfbreak region. In addition to traditional conductivity-tem-
perature-depth (CTD) rosette sampling, high-resolution surveys of physical and biological properties in the
upper water column (<100 m) were conducted with a Video Plankton Recorder (VPR) and autonomous
underwater vehicle REMUS 600.

At the time of the cruise (July 6-18), a WCR was impinging on the MAB shelfbreak and entraining cooler
shelf water at its periphery, drawing it into the warmer slope sea by its anticyclonic (clockwise) motion.
This created a “streamer” of shelf water (e.g., Morgan & Bishop, 1977) at the eastern edge of the WCR
(Figures 1b, 1c, and 1f). About 350 km to the east (at 67 W), a meander of the GS was transporting warmer
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Figure 2. Video Plankton Recorder (VPR) tows 2, 7, and 8. (a) Salinity; (b) temperature; (c) chlorophyll (Chl) concentration; (d) corresponding T-S diagram
from the tows, colored by Chl concentration, with the black line showing the Gulf Stream T-S profile from 69.5 E, 37 N from 1/10 summer objectively analyzed
climatological means from the National Centers for Environmental Information Northwest Atlantic Regional Ocean Climatology, with the same Chl color bar
used in (c); (e) relative diatom rod concentration; (f) two example VPR images: one classified as a “diatom rod,” the other a T. diporocyclus diatom colony.

GS water northward toward the shelfbreak. During the weeks preceding sampling, the WCR was migrating
westward (e.g. Nof, 1983), while the meander was traveling eastward. In the broadening area between these
anticyclonic features, satellite altimetry revealed a cyclonic (counterclockwise) feature (Figure 1e).

Directly east of the streamer, unexpected Chl hotspots were detected at ca. 50 m below the surface (Fig-
ure 2). These subsurface features were found in the oligotrophic slope sea east of the WCR in the following
locations: (a) A narrow band on the eastern edge of the shelf water streamer, (b) along the offshore edge
of the shelfbreak, and (c) within the cyclonic feature between the WCR and the GS meander (Figures le
and 1f). We encountered hotspots at ~1/3 of all VPR profiles in the slope sea east of the WCR (Figure 4, VPR
tows 7 and 8). The hotspots occurred where salinities were greater than 35.6 (Figure 2). This high-salinity
water associated with the hotspots had water mass properties of GS water typically found hundreds of kilo-
meters south of the shelf-break and 50 m deeper in the water column (Figure S2). This GS water (salinity
>35.6) was ubiquitous in the slope sea sampled during TN368: It was present within the top 50 m at >99%
of all slope sea profiles (VPR tows 7 and 8).

The hotspots were highly anomalous compared to typical Chl levels in the slope sea. The hotspot Chl con-
centrations were 1.9-8.8 standard deviations greater than the mean slope sea climatological Chl maximum
(1.3 + 1.1 ug L"), with 4/10 of the hotspot casts reaching a Chl maximum concentration greater than the
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Figure 3. Imaging FlowCytobot (IFCB) classification and image subset from station SLP (Cast 100). (a) The relative
biovolume of major phytoplankton groups at depths sampled; (b) the diatom taxa comprising the diatom assemblages
in (a); (c) a collage of example IFCB images subset from 51 m depth.

highest summer slope sea Chl maximum documented in the World Ocean Database (Figure 1d). Usually,
in oligotrophic waters, the depth of the Chl maximum tends to be decoupled from the maximum in phyto-
plankton biomass due to photoacclimation (Cullen, 2015; Fennel & Boss, 2003). The hotspots we observed
bore high concentrations of particulate organic nitrogen and carbon, however, suggesting that they were
high in biomass. They also corresponded to elevated biogenic silica concentrations and increased silicate
drawdown relative to nitrate and ammonium, indicative of high diatom biomass (Figure S3).

Imaging FlowCytobot (IFCB) images affirmed that the plankton community within the Chl hotspots was
dominated by diverse assemblages of diatoms (Figure 3). VPR image classification revealed that the Chl
hotspots corresponded to large concentrations of rod-shaped diatoms (Figure 2¢), as well as an abundance
of colonial phytoplankton identified as Thalassiosira sp. from IFCB images. Accordingly, the diatom 18S
rDNA pool at all hotspot sites was dominated (30%-73% relative abundance, Figure S5) by the mucilagi-
nous, colony-forming diatom Thalassiosira diporocyclus, which has been previously observed in association
with GS WCRs (Fryxell et al., 1984). Numerous centric diatoms and chain-forming, pennate diatoms were
also present within the hotspots (Figure 3). T. diporocyclus was not observed on the shelf, but was present at
lower relative abundance (~10%) in nonhotspot slope waters.
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(Figure 4) included measurements from a Submersible Ultraviolet Ni-
Figure 4. Video Plankton Recorder (a-c) and REMUS (d-e) transects trate Analyzer and confirmed elevated nitrate concentrations at the
plotted against distance, showing chlorophyll hotspots and elevated 0s = 26.0 kg m~3 isopycnal. We note that these conditions only held east

nitrate where thf 05 = 26.0 kg m™” isopycnal receives adequate irradiance.  of the shelf water streamer; high salinity and high Chl hotspots were not
0p = 26.0 kg m™" isopycnal depth is plotted in white where salinity >35.6; 1 .
gray where fresher. The range of estimated euphotic depth (depth of 1% detected within the WCR (Figure 4a).

light, +1 standard deviation) is shown by black lines.

3. Upwelling of Deep Gulf Stream Water

The slope sea hotspots were typically observed at ~50 m. At the northern

edge of the GS, however, the temperature-salinity signature associated
with the slope sea hotspots occurs at ~100 m, about 50 m deeper than observed in the slope sea (Figure 5).
We propose that the upward transport of this deep GS water during its northward intrusion in the MAB
slope sea supplied deeper nutrients to the base of the euphotic zone, driving subsurface hotspots.

We tested the plausibility that upwelling of GS water properties could reproduce observations of physi-
cal and biogeochemical properties, particularly the high Chl maximum value, at station SLP (Cast 100),
the TN368 slope sea station (cyan star in Figure 1c). We applied an upward vertical velocity typical of
submesoscale features in the region (e.g., Zhang & Partida, 2018) to characteristic GS profiles of tempera-
ture, salinity, and nutrients. This analysis was performed using a one-dimensional model (Price et al., 1986)
of the upper ocean (0-150 m) coupled to a nitrate-phytoplankton-zooplankton-detritus biogeochemical
model (modified from Fennel et al., 2006; Powell et al., 2006). The upward vertical velocity varied linearly
with water depth, starting from zero at the sea surface. We applied a maximum vertical velocity at 150 m
of 10*ms™ (~6 md™" at 150 m and ~2 m d™" at 50 m). After 12 days, the model closely matched obser-
vations of temperature, salinity, nitrate, and Chl below the surface mixed layer at station SLP (Figure 5a),
supporting the plausibility that the observed subsurface hotspots resulted from the upwelling of GS water
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Figure 5. 1D and conceptual models of Gulf Stream water upwelling: (a) 1D model initial profiles (gray) and output at
day 12 (green), versus observations from SLP (Cast 100; black); (b) north-south schematic of slope sea hotspots.

from south of the MAB, despite neglecting the horizontal advective mechanisms at play during its transport
into the slope sea euphotic zone.

4. Discussion and Conclusions
4.1. Transport Pathways

Hotspot formation likely occurred shortly before the cruise. As the GS meander moved northeastward toward
the shelfbreak, it carried filaments of warm GS water along its western edge (Figure 1b). These filaments
may have been transported northward by the cyclonic feature formed in the slope sea (Lee et al., 1991,
Figure 1e). This background cyclonic gyre typifies the MAB slope sea (Csanady & Hamilton, 1988), with
the density surface os = 26.0 kg m™~ doming to the base of the euphotic zone (~50 m) in summer regional
climatologies of the Northwest Atlantic (Seidov, 2016). Isopycnals are known to shoal at the northern edges
of anticyclonic meanders (Bower & Rossby, 1989), transporting nutrients into the euphotic zone and stim-
ulating phytoplankton growth (Flierl & Davis, 1993). Upwelling may also have occurred in a divergent flow
at the western meander edge (e.g., Hitchcock et al., 1993; Olson et al., 1994). It is thus plausible that GS
water was vertically transported along isopycnals and into the euphotic zone during its northward transport
by the slope sea cyclonic feature, though a high-resolution 3D model is required to determine the actual
driving mechanism(s).

Surface GS waters are oligotrophic and nutrient-poor; however, nutrient concentrations at depth are greater
within the GS relative to the waters of the same isopycnals in the slope sea (Csanady, 1990; Palter & Lozi-
er, 2008; Pelegri & Csanady, 1991). Schollaert et al. (2004) suggested the flux of nutrient-rich subsurface
waters of the GS could explain interannual variability in the magnitude of the spring bloom in the slope sea;
our study shows nutrient supply from the GS influences subsurface summer productivity. Hotspots within
the slope sea were generally found where there was slight uplift of the o = 26.0 kg m™> isopycnal into the
photic zone (Figures 4a and 4b), which may have driven episodic new production (e.g., Goldman, 1988).
Observed water mass characteristics suggest interleaving of slope and GS waters. We thus propose both
slope and GS waters were upwelled by isopycnal doming by the cyclonic eddy (Figure 5b; Yoder et al., 1981).
Hotspots occurred only in those places where the subsurface GS waters (salinity >35.6) were sufficiently
upwelled to be illuminated (Figure 5). Deformation or stretching of the filaments of GS water generated
from baroclinic instability at the meander edge (Figures 1b and 1c) may have also resulted in GS/slope
water frontogenesis (Mied et al., 1996; Zhang & Partida, 2018). The associated upward velocities may have
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enhanced or driven the increased illumination of the nutrient-rich oo = 26.0 kg m™ isopycnal (e.g., Lévy
et al., 2001; Mahadevan, 2016).

Subsurface Chl hotspots were also observed at the shelf/slope water interface, which was found near the
shelfbreak and at the eastern streamer edge. At the shelf/slope water interface the euphotic depth shoals
with the transition from clear slope water to turbid shelf water (Figure 4). Consequently, while under shelf
water the os = 26.0 kg m ™ isopycnal does not receive adequate photosynthetically active radiation to sup-
port significant phytoplankton growth (Figure 5b). The hotspots at the streamer edge (Figure 4, VPR tran-
sect 2) may have originated near the shelfbreak before being advected southward by the anticyclonic cur-
rents at the edge of the WCR along with the shelf water streamer.

4.2. Implications

The anomalous subsurface diatom hotspots reached from the shelf edge to the southern and eastern bound-
aries of our sampling area, and the GS water associated with the hotspots was present in the top 50 m
at >99% of VPR slope profiles (Figure 2). It is therefore probable that our snapshot observations did not
capture the full extent of the diatom hotspots in the slope sea. The hotspots were anomalous relative to the
summer slope sea Chl climatology, but similar high-salinity, high-Chl events may not be uncommon in the
region: Such events were recorded by summer glider measurements from the Ocean Observatories Initiative
(OO0I) Pioneer Array (Trowbridge et al., 2019) in three of the past 5 years in the MAB slope sea (Figure S10).
During the 2 years where such an event was not captured by gliders (2017 and 2018), the shelfbreak front
extended south of the glider area, and slope water was not measured. High-salinity, high-Chl events could
still have occurred in the slope sea during these periods. A shoaling nutricline giving rise to episodic dia-
tom-dominated new production at low light has also been well documented in other parts of the ocean (e.g.,
Goldman, 1988; Goldman & McGillicuddy, 2003); our observations suggest this potential mechanism in the
MAB slope sea corresponded with the intrusion of GS water. Given that GS intrusions have become more
frequent and persistent in recent decades, these subsurface hotspots may be important when considering
the integrated effects of changing North Atlantic circulation on regional ecosystems and carbon export.

Western boundary current systems worldwide have shown shifting trends. For example, increasing instabil-
ity has been documented for the East Australian Current (Sloyan et al., 2016) and Agulhas Current (Beal &
Elipot, 2016), and the Kuroshio Extension undergoes decadal shifts between stable and unstable states (Qiu
& Chen, 2010). To understand the influence of changing western boundary currents on marine ecosystems,
we must unravel the mechanisms by which meanders, WCRs, and other intrusions influence light and
nutrient conditions for both surface and subsurface phytoplankton growth. Assessing the long-term tra-
jectory of primary productivity with respect to an increasingly meandering western boundary current will
require a deeper mechanistic understanding of the phenomena described in this study, for which further
and persistent subsurface observations and process-oriented coupled physical-biogeochemical modeling
are needed. Continued monitoring of the slope sea by the OOI Pioneer Array offshore moorings, gliders,
and autonomous underwater vehicles will be key to achieving this understanding. Finally, this study high-
lights the potential for disparate regional impacts of changing large-scale circulation on marine ecosystems:
Whereas our findings suggests that direct interaction of the GS with the continental shelf and slope could
drive enhanced productivity at the Chl maximum in the subtropical Atlantic, a slower nutrient steam could
suppress subarctic primary productivity in future climate scenarios (Whitt & Jansen, 2020).

Data Availability Statement

All CTD, VPR, and bottle fields are archived at the SPIROPA project page at the Biological & Chemical
Oceanography Data Management Office (BCO-DMO) with DOIs 10.26008/1912/bco-dmo.807119.2,
10.26008/1912/bco-dmo.848898.1, and 10.26008/1912/bco-dmo.849340.1. SPIROPA IFCB images are avail-
able at https://ifcb-data.whoi.edu/timeline?dataset=SPIROPA. Amplicon sequence variants read counts
are included in Data-set S1.
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