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Quantifying the Role of Ocean Dynamics in Ocean Mixed Layer Temperature Variability

CASEY R. PATRIZIO® AND DAVID W. J. THOMPSON?®

& Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado
(Manuscript received 22 June 2020, in final form 21 December 2020)

ABSTRACT: Understanding the role of the ocean in climate variability requires first understanding the role of ocean
dynamics in the ocean mixed layer and thus sea surface temperature variability. However, key aspects of the spatially and
temporally varying contributions of ocean dynamics to such variability remain unclear. Here, the authors quantify the
contributions of ocean dynamical processes to mixed layer temperature variability on monthly to multiannual time scales
across the globe. To do so, they use two complementary but distinct methods: 1) a method in which ocean heat transport is
estimated directly from a state-of-the-art ocean state estimate spanning 1992-2015 and 2) a method in which it is estimated
indirectly from observations between 1980-2017 and the energy budget of the mixed layer. The results extend previous
studies by providing quantitative estimates of the role of ocean dynamics in mixed layer temperature variability throughout
the globe, across a range of time scales, in a range of available measurements, and using two different methods. Consistent
with previous studies, both methods indicate that the ocean-dynamical contribution to mixed layer temperature variance is
largest over western boundary currents, their eastward extensions, and regions of equatorial upwelling. In contrast to
previous studies, the results suggest that ocean dynamics reduce the variance of Northern Hemisphere mixed layer tem-
peratures on time scales longer than a few years. Hence, in the global mean, the fractional contribution of ocean dynamics to
mixed layer temperature variability decreases at increasingly low frequencies. Differences in the magnitude of the ocean
dynamical contribution based on the two methods highlight the critical need for improved and continuous observations of
the ocean mixed layer.
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Interannual variability; Interdecadal variability; Oceanic variability

1. Introduction role in climate variability (Frankignoul and Hasselmann 1977,
Barsugli and Battisti 1998). But if the SST variability is also
driven by ocean dynamical processes, then the ocean can play a
much more active role in the climate system.

The role of ocean dynamics in mixed layer temperature
variability can be conceptualized from the pedagogical models
shown in Fig. 1. In all three models, we assume that variations
in SSTs are linearly proportional to variations in mixed layer
temperatures. In the simplest model (Fig. 1a), atmospheric
temperatures 7, are driven by weather “noise” &, and ocean
mixed layer temperatures 7, are, in turn, driven by the re-
sulting turbulent and radiative fluxes of heat at the sea surface
Q,(F). Mixed layer temperatures are damped by the linear
term —A,7,, which parameterizes the damping due to the
surface heat fluxes. In this model, the mixed layer integrates
the input atmospheric noise Z yielding a reddened SST re-
sponse, where the reddening is a function of the heat capacity
C, and thus the depth of the mixed layer. This model is widely
used as a starting point for understanding atmosphere—ocean
interaction, especially in the midlatitudes (e.g., Hasselmann
1976; Frankignoul and Hasselmann 1977).

A more realistic model of the mixed layer can be formed by
allowing temperatures in the atmosphere and ocean to respond
to each other (Fig. 1b; Barsugli and Battisti 1998). In this case,
the surface fluxes between the atmosphere and ocean respond to
the temperature difference between both media [Q(T, — T,)].
This thermodynamic coupling between atmosphere and ocean
surface temperatures results in “‘reduced thermal damping,”
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edu temperatures but also atmospheric temperatures.

Ocean dynamics play an essential role in governing the long-
term mean climate. Wind-driven western boundary currents
and meridional overturning circulations transport heat pole-
ward to high latitudes where heat is released to the atmosphere
(e.g., Dijkstra 2008; Hartmann 2015). The surface cooling at
high latitudes promotes deep convection and mixing that links
the upper ocean to the deep ocean on time scales of years to
millennia (e.g., Dijkstra 2008; Pedlosky 2013). Overall, the
ocean circulation accounts for nearly a third of the long-term
mean meridional heat transport in the combined atmosphere—
ocean system (Trenberth and Caron 2001).

The role of ocean dynamics in climate variability is less well
understood. It is clear that they are fundamental to El Nifio—
Southern Oscillation (e.g., Philander 1983; Jin 1997; McPhaden
et al. 2006). It is less clear whether they play a similarly im-
portant role in other aspects of climate variability, particularly
at extratropical latitudes. Part of the problem lies in the rela-
tively subtle response of the atmosphere to extratropical sea
surface temperature (SST) anomalies (e.g., Kushnir et al.
2002). Another part lies in our still-evolving understanding
ocean mixed layer dynamics, and thus the role of ocean dy-
namics in driving SST anomalies across the globe in the first
place. If the SST variability over a particular region is driven
predominantly by the surface heat fluxes associated with at-
mospheric processes, then the ocean plays a relatively passive

DOI: 10.1175/JCLI-D-20-0476.1

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).
Brought to you by Colorado State University Libraries | Unauthenticated | Downloaded 03/24/21 09:34 PM UTC


mailto:casey.patrizio@colostate.edu
mailto:casey.patrizio@colostate.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses

2568 JOURNAL OF CLIMATE VOLUME 34
Passwle Ocean Dynamic Ocean
[ \
(a) aTa (b) aTa (C) aTa
2 E o a E
Qs(F) Qs
/ )\()710 I / )‘()T'()
- (2()

FIG. 1. Passive and dynamic ocean mixed layer models. (a) Atmospheric-noise forced ocean mixed layer (e.g., Frankignoul and
Hasselmann 1977), (b) thermally coupled ocean mixed layer (e.g., Barsugli and Battisti 1998), and (c) an extension of (b) to include ocean
dynamics. Here, & is the atmospheric heat transport, Qy is the surface heat flux (latent, sensible and radiative), Q, is the ocean heat
transport, C, and C, are the heat capacities of the mixed layer and ocean, respectively, 7, and T, are mixed layer and atmospheric

temperatures, respectively, and A, is the mixed layer damping parameter. The models are discussed in more detail in the text.

The models shown in Figs. 1la and 1b are ‘“‘passive ocean
models” in that there is no explicit ocean heat transport. The
models are often viewed as null hypotheses for SST variability;
that is, they reflect the SST variability that would arise in
the absence of ocean dynamics. Despite their simplicity, both
models are able to capture aspects of observed and simulated
midlatitude climate variability, such as the observed power
spectrum of midlatitude SSTs (e.g., Frankignoul and Hasselmann
1977; Frankignoul 1985; Barsugli and Battisti 1998) and the co-
variability between the surface heat fluxes and SSTs (e.g., Cayan
1992a,b).

The models in Figs. 1a and 1b can be extended to include
ocean dynamical processes by explicitly including an ocean
heat transport term (Q, in Fig. 1c). The ocean heat transport
term reflects a variety of processes, including the advection
of heat by the Ekman flow, large-scale geostrophic currents,
eddy-induced currents, and vertical mixing at the bottom of the
ocean mixed layer.

To what extent does ocean heat transport (i.e., Q, in Fig. 1¢)
contribute to observed SST variability? Numerous studies have
investigated this question using a variety of methods, including
use of both observations and climate models. The answer de-
pends on the location, and on the spatial and time scales of the
variability. For examples: Deser et al. (2003) and de Coétlogon
and Frankignoul (2003) found that the warm-season shoaling
of the mixed layer and subsequent cold-season reemergence of
sequestered temperature anomalies contributes substantially
to the persistence of SSTs on interannual time scales. Roberts
et al. (2017) estimated the ocean heat transport as a residual in
the mixed layer energy budget, and argued that ocean dy-
namics play an important role in driving interannual variability
of upper-ocean temperatures in the equatorial oceans, the
western boundary currents, and the Antarctic circumpolar
current. Bishop et al. (2017) and O’Reilly and Zanna (2018)
estimated the role of ocean heat transport from the lead-lag
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correlations between observed surface heat fluxes and SSTs
across the global oceans, and reached broadly similar conclu-
sions. Buckley et al. (2014, 2015) estimated ocean heat trans-
port directly from an observation-assimilating ocean model
and found that ocean dynamics play a dominant role in driving
interannual to interdecadal variability in upper-ocean tem-
peratures in the Gulf Stream and North Atlantic subpolar gyre.
Finally, many studies have shown that mesoscale ocean dy-
namics play an important role in atmosphere—ocean interac-
tions in both observations (e.g., Small et al. 2008; Frenger et al.
2013; Ma et al. 2015) and climate models (e.g., Kirtman et al.
2012; Ma et al. 2016; Siqueira and Kirtman 2016; Putrasahan
et al. 2017; Saravanan and Chang 2019; Small et al. 2019, 2020).

Despite rapid improvements in our understanding of the
role of ocean dynamics in SST variability, key aspects remain
unclear. In large part, this is due to the difficulties inherent in
observing and simulating ocean variability. Consider, for ex-
ample, the cases of decadal SST variability in the North Pacific
and North Atlantic Oceans. The most important pattern of
decadal variability in the North Pacific sector is the so-called
Pacific decadal oscillation (PDO; Mantua et al. 1997). Both
atmospheric and ocean dynamical processes seemingly con-
tribute to variability in the PDO, but their relative roles remain
uncertain. Some studies have argued that the PDO is driven
primarily by internal atmospheric noise and the extratropical
atmospheric response to ENSO (e.g., Alexander et al. 2002;
Newman et al. 2003; Deser et al. 2004). But others have argued
that the PDO is also driven by ocean dynamical processes
such as dynamic adjustment of the North Pacific Gyre and
Kuroshio—-Oyashio Extension (e.g., Latif and Barnett 1994;
Schneider et al. 2002; Qiu et al. 2007; Kwon and Deser 2007,
Alexander et al. 2010; Newman et al. 2016; Wills et al. 2019b) and
the seasonal reemergence of North Pacific SSTs (Alexander and
Deser 1995; Deser et al. 2003; Alexander et al. 2010; Newman
et al. 2016)



1 APRIL 2021

The picture is even less clear in the case of the Atlantic
multidecadal oscillation (AMO; Folland et al. 1986; Schlesinger
and Ramankutty 1994). Several studies have argued that the
spatial structure and time variability of the AMO are due pri-
marily to atmospheric processes. As evidence they note that 1) the
structure of the AMO can be recovered in numerical simulations
run on slab-ocean models (Clement et al. 2015), 2) the lag rela-
tionships between the surface heat fluxes and SSTs associated with
the AMO can be recovered in idealized models of the mixed layer
that are primarily forced by stochastic atmospheric dynamics as
shown in Fig. 1a (Cane et al. 2017), and 3) decadal variability in the
AMO is consistent with the surface temperature response to an-
thropogenic aerosol loading (Booth et al. 2012; Murphy et al. 2017,
Bellomo et al. 2018). However, other studies have argued that the
AMO is fundamentally dependent on ocean dynamical processes.
As evidence they argue that 1) in observations, the surface heat
fluxes act to damp rather than drive the SST anomalies associated
with the AMO (e.g., Gulev et al. 2013; O’Reilly et al. 2016; Zhang
et al. 2016; Zhang 2017) and 2) in numerical models, the ocean
meridional overturning circulation contributes to variations in the
simulated AMO (e.g., Zhang and Wang 2013; Buckley and
Marshall 2016; Delworth et al. 2017; Zhang 2017; Kim et al. 2018;
Yan et al. 2018; Wills et al. 2019a; Zhang et al. 2019). Whether
ocean dynamical processes contribute to SST anomalies associated
with the PDO and AMO has important implications for un-
derstanding and predicting the role of both phenomena in the
climate system.

The goal of this paper is to provide a comprehensive survey
of the role of ocean dynamics in driving ocean mixed layer
temperature variability across the globe and across a range of
time scales. To do so, we use two different but complementary
methods: 1) a method in which ocean heat transport is calcu-
lated directly from a state-of-the-art ocean state estimate, as in
Buckley et al. (2014, 2015) and 2) a method in which the ocean
heat transport is calculated indirectly from observations and
the energy equation for the ocean mixed layer, as in Roberts
et al. (2017). The work extends previous studies in several
important ways:

e Previous work based on ocean state estimates has generally
focused on select regions (e.g., Buckley et al. 2014, 2015).
Previous work has not explicitly compared the role of ocean
dynamics as inferred from observations with that derived
from state estimates (e.g., Roberts et al. 2017; Small
et al. 2020).

Previous studies have frequently relied on the use of lead-lag
correlations to infer causal relationships between the surface
heat fluxes and SSTs (e.g., Gulev et al. 2013; O’Reilly et al.
2016; Bishop et al. 2017; O’Reilly and Zanna 2018). Here we
use a diagnostic equation for the temperature variance to
infer causal relationships, and highlight shortcomings of
results based on lead/lag correlations.

Previous studies have not explored the role of ocean dynam-
ics in SST variability as a function of time scale using both
observations and ocean state estimates across the global
ocean. Here we exploit such analyses to reveal novel and
important aspects of the role of ocean dynamics in SST
variability at increasingly low-frequency time scales.
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The paper is divided into four subsequent sections. The data
and methods are reviewed in section 2. Results are presented in
section 3. Key results and findings are discussed in section 4.
Section 5 provides concluding remarks.

2. Methods and data

This section includes two parts. In section 2a we derive the
equation that we use to diagnose the drivers of mixed layer tem-
perature variance across the globe. In section 2b we describe how the
equation is used to estimate ocean heat transport using two different
methods: a method where ocean heat transport is estimated directly
from an ocean state estimate, and a method where ocean heat
transport is estimated indirectly from observed sea surface
temperatures/surface heat fluxes and the energy budget of the mixed
layer. Note that we do not use lead-lag correlations between the
surface heat fluxes and mixed layer temperature variability to infer
the role of ocean dynamics in temperature variability, as done by
Gulev et al. (2013), O’Reilly et al. (2016), Bishop et al. (2017), and
O'Reilly and Zanna (2018). As discussed in section 4, the use of
lead-lag correlations does not unambiguously identify the role of
ocean dynamics in mixed layer temperature variability.

a. The diagnostic equation for mixed layer temperature
variance

The details of the following are provided in appendix A.
Here we summarize the most salient aspects of the derivation.

The first law of thermodynamics for month-to-month tem-
perature variability in the ocean mixed layer can be ex-
pressed as

— oT’
C
o (’.)t

=0+ 0, )

where primes denote monthly mean anomalies; the overbar de-
notes the climatological mean; C, is the heat capacity of the mixed
layer; T is the monthly mean mixed layer temperature; Qq is the
net surface heat flux (i.e., the sum of the latent, sensible, and net
shortwave and longwave fluxes at the surface); and Q,, is the heat
flux convergence due to all ocean dynamics, including both ad-
vective processes (e.g., wind-driven Ekman flow and geostrophic
currents) and diffusive processes. The climatological mean heat
capacity of the mixed layer is estimated as C, = pc,h, where  is
the climatological-mean mixed layer depth averaged over all
months. The mean mixed layer depth is estimated from the
ECCO ocean state estimate, as described in the next subsection,
and is shown in Fig. 2a. Note that in the above we have neglected
variations in the heat capacity. This is consistent with Roberts
et al. (2017) and Buckley et al. (2014), who both used a time-
invariant mixed layer depth, except that they use the max-
imum—rather than mean—mixed layer depth drawn from the
12-month climatology. We found that use of the maximum mixed
layer depth leads to a systematic overestimate of ocean mixed
heat storage when estimating the heat storage tendency in ob-
servations. It would be interesting to investigate the role of the
seasonal cycle in mixed layer depths on the results in future work.

The diagnostic equation for the ocean mixed layer temper-
ature variance is formed by squaring both sides of (1), time



2570

30°N

30°5 | WE———
60° ! S
0°E 60°E 120°E 180°  120°W  60°W
100 150 200 250
m
60°N
30°N§
05
30°S
60°S S
60°E 120°E 180°  120°W  60°W
10° 108
Ksw!

FIG. 2. (a) Climatological mean mixed layer depth z (m) from
ECCO. (b) The « coefficient (K s W) from (4) computed from
ECCO mixed layer temperatures and mixed layer depths. As dis-
cussed in section 2a, a corresponds to the ability of surface heat
fluxes and ocean heat transport to generate mixed layer tempera-
ture variability.

averaging, and taking the centered finite difference of the
temperature tendency term so that

) 2AF —
G~ 2 (7 + 02 +20,0)), @)
")

where 0% is the mixed layer temperature variance, r, is the mixed
layer temperature lag-2 autocorrelation and At is the sampling
time period (one month). Using (1) to substitute the temperature
tendency for one Q) + Q! term in (2) and defining

2
[C,(A=r)]
yields the simple diagnostic relationship
O-ZT ~ Qs + Qo ’ (4)
where
~ aT'
0,=a"-0; (42)

is defined as the contribution of the surface heat fluxes to the
temperature variance and

~ T’
0,=a"-0,

at [ (4b)
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is defined as the contribution of the ocean heat transport to the
temperature variance.

Note using (2) the surface heat flux and ocean dynamical
contributions can also be expressed as

a

0,=¢ (07 +0:0), (4c)
and
0,= % (07 +0,0)). (4d)

o

From (4a)—(4d), it is clear that the surface heat flux and ocean
heat transport contributions to temperature variance can be
found as either 1) the product of the temperature tendencies
and the surface heat fluxes/ocean heat transport (4a) and (4b)
or 2) the sum of the variances of the surface heat fluxes/ocean
heat transport and their covariance (4c) and (4d). Here, the
contribution of ocean dynamics (or surface heat fluxes) to the
monthly mean mixed layer temperature variance at any given
location is found using (4a) and (4b)—that is, by calculating the
covariance between the ocean heat transport (or surface heat
fluxes) and the time tendency of mixed layer temperatures, and
then scaling the results by a. These equations state that ocean
dynamics (or surface heat fluxes) contribute to mixed layer
temperature variance in regions where the temperature ten-
dency and ocean heat transport (or surface heat fluxes) are
positively correlated. For example, if the heat transport and
temperature tendency are both positive, then the diagnostic
equation indicates that ocean heat transport is contributing to
the temperature variance. The « coefficient, in turn, quantifies
the ability of the fluxes or transport to generate temperature
variance. As is evident from Figs. 2a and 2b, « is dominated by
the term C, ! and thus closely resembles the spatial pattern of
h~!. Thus covariability between the surface heat fluxes or
ocean heat transport and the temperature tendency are most
effective in generating mixed layer temperature variability in
regions such as the subtropics and tropics where 4 and thus the
heat capacity is small.

As summarized in appendix A, similar approaches to that
outlined above were used by Yu and Boer (2006), Buckley
et al. (2014) and Roberts et al. (2017) to understand the drivers
of upper-ocean temperature variability.

b. “Direct” and “indirect” methods for estimating ocean
heat transport

The contributions of the surface heat fluxes and ocean heat
transport to mixed layer temperature variance (i.e., O, and Q,,,
respectively) are quantified from Egs. (4a) and (4b) using two
methods: 1) a method in which the ocean heat transport Q/, is
estimated directly from the ECCO ocean state estimate and
2) a method in which the ocean heat transport Q/, is estimated
indirectly from observations and the energy budget of the
ocean mixed layer. In all analyses, the seasonal cycle is re-
moved from the data by subtracting the long-term climato-
logical means for each calendar month. All time series are
detrended to minimize the effects of climate change on the
results. A Butterworth filter is applied in cases where results
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are calculated as a function of frequency band. In this case, the
temperature and flux data are filtered before calculating all
covariances.

In the case where the ocean heat transport is calculated directly,
the surface heat fluxes Qf, ocean heat transport Q' , and mixed layer
temperatures 7" are all derived from v4r3 of the ECCO ocean state
estimate (Forget et al. 2015; Fukumori et al. 2017). ECCO provides
estimates of ocean heat transport, temperature and the surface
fluxes for 19922015 at 1° horizontal resolution throughout the
global ocean. In brief, the ECCO output is produced as follows [see
Forget et al. (2015) and Fukumori et al. (2017) for more details].
First, a vast quantity of ocean observations is fit in a least squares
sense to a state-of-the-art ocean GCM (the MITgem). The best fit
to the observations is accomplished by iteratively adjusting the
model initial conditions, mixing coefficients, and surface forcings.
Note that the ECCO surface fluxes are included in the adjustment.
The adjusted input is then integrated forward in a free-running
configuration of the MITgem to produce the ocean state estimate.
The key aspects of the ECCO output are that 1) the fitting proce-
dure ensures that the output is consistent with the observations
within their estimated uncertainties and 2) running the model in a
free-running configuration ensures that the output is consistent with
the laws of physics and thermodynamics, as they are represented
in the numerical model. The temperature profiles used to constrain
the model are sourced from gridded products (e.g., Reynolds et al.
2007), as well as a variety of in situ measurements, including from
Argo floats (Argo 2000), expendable bathythermographs (XBT),
and conductivity—temperature-depth (CTD) sensors.

In the case where the ocean heat transport is estimated indi-
rectly, the surface heat fluxes and sea surface temperatures are
estimated from observations, and the ocean heat transport is
found as a residual in the energy budget of the ocean mixed layer
[ie., Eq. (1)]. The primary data sources are the objectively an-
alyzed surface turbulent heat fluxes (i.e., the sum of the latent
and sensible heat fluxes) from OAFlux (Yu et al. 2008), SST data
from the NOAA Optimum Interpolation (OI) SST analysis
produced by Reynolds et al. (2007), and surface radiative heat
fluxes and wind stress from MERRA-2 reanalysis (Gelaro et al.
2017). We use the OAFlux product since it provides global
coverage of the air—sea heat fluxes across multiple decades and is
derived using state-of-the-art bulk flux parameterizations (Yu
et al. 2008). All data are applied over the period 1980-2017 and
at 1° resolution. For brevity we refer to the combined O AFlux/
NOAA OI SST/MERRA-2 data as the “OAFlux” dataset
throughout the rest of the paper, although it should be under-
stood that radiative fluxes are from MERRA-2. We also tested
the robustness of select OAFIlux results to the use of different
atmospheric reanalyses, including MERRA-2, ERAS (Hersbach
and Dee 2016), and the NOAA-CIRES-DOE Twentieth Century
Reanalysis, version 3 (Slivinski et al. 2019).

Note that indirect estimates of ocean heat transport are in-
evitably influenced by biases in the SST and surface heat flux
data (e.g., Hall and Bryden 1982; Talley 1984; Bryden and
Imawaki 2001). The uncertainties in the OAFlux air-sea heat
fluxes due to biases in the various input data are provided in the
OAFlux product. The contributions of observational error to
uncertainties in the mixed layer temperature variance [i.e.,
uncertainty in Egs. (4c) and (4d)] is reviewed in appendix A.
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The equations used to estimate ocean heat transport and
temperature variance [Egs. (1)—(4)] are based on mixed layer
temperatures, but we use observations of sea surface tem-
peratures since mixed layer temperatures are not as widely
available. Sea surface and mixed layer temperatures are line-
arly related to each other but have different amplitudes. For
example, Fig. 3a shows the SST variances og; from the NOAA
OI product and Fig. 3b the mixed layer temperature variances
o2 from ECCO. The patterns of the variances are nearly
identical, with maxima in the western boundary currents and
the equatorial Pacific. However, as shown in Fig. 3d, the am-
plitudes are very different, with larger SST variances found at
subtropical and extratropical latitudes but larger mixed layer
temperature variances found in the deep tropics. Note that a
very similar pattern of variance ratios arises between mixed
layer and sea surface temperatures derived from ECCO (3e),
which reveals that the differences in Fig. 3d are not solely a
result of differences between the ECCO SST and NOAA SST.

From Fig. 3d, it is clear that using SSTs rather than mixed
layer temperatures in Eq. (1) would systematically overesti-
mate the importance of ocean heat transport in the extratropics
but underestimate it in the tropics. To avoid this bias, we lin-
early scale the observed SST tendencies by the square root of
the ratio of the 1) ECCO mixed layer temperature variance to
2) the ECCO SST variance. That is, we estimate the observed
mixed layer temperature tendencies for Eq. (1) as

T _ 0% gcco 9SST )
ot O%stEcCO O

where T denotes mixed layer temperatures. The above scaling
provides an estimate of the “observed” mixed layer tempera-
ture tendencies that 1) are perfectly correlated with the ob-
served SST tendencies and 2) preserve the ratio of SST
variances to mixed layer temperature variances found in
ECCO. Figure 3c shows the resulting “observed” mixed layer
temperature variances and Fig. 3f shows the corresponding
(log) ratio of the observed to ECCO mixed layer temperature
variances. The differences between the OAFlux estimate of o2
and the ECCO o2 are generally small.

Select results are reproduced using mixed layer tempera-
tures derived from version 4.1.1 of the Met Office Hadley
Centre gridded analyses of in situ ocean temperature profiles
(EN4; Good et al. 2013). The main sources for EN4 analyzed
temperature profiles are the World Ocean Database (WODO09;
Boyer et al. 2009), the Global Temperature and Salinity Profile
Program (GTSPP) (U.S. National Oceanographic Data Center
2006), and Argo floats. The EN4 temperature profiles provide
an additional residual estimate of ocean heat transport based
on observed mixed layer rather than sea surface temperatures.

3. Results

a. Diagnosis of monthly mean mixed layer temperature
variability

Figures 4a and 4b show the variances of ocean mixed layer
temperatures from the observations (left) and ECCO output
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FIG. 3. (a) Monthly SST variance (K?) from OAFlux. (b) Monthly mixed layer temperature variance (K?) from
ECCO. (c) OAFlux estimate of monthly mixed layer temperature variance (K?) from Eq. (5). (d) Log ratio of the
OAFlux monthly SST variance to the ECCO monthly mixed layer temperature variance. (e) Log ratio of the ECCO
monthly SST variance to the ECCO monthly mixed layer temperature variance (K?). (f) Log ratio of the OAFlux
estimate of monthly mixed layer temperature variance to the ECCO monthly mixed layer temperature vari-

ance (K?).

(right). Recall that the observed mixed layer temperature
variances are derived from observed SSTs using Eq. (5).
Figures 4c—f show the associated contributions of ocean dy-
namics and the surface heat fluxes to the temperature variances
(0, and Q,). As a check on the analyses, we confirmed that the
sums of O, and Q, are equal to the total variances in the top
row (not shown). Figures 5a—d show the same results as
Figs. 4c—f, but here the ocean dynamical and surface heat flux
contributions are shown as a fraction of the total temperature
variances. Recall that 1) the ocean dynamical contributions
include heat transport by both advection and diffusion and 2)
the surface fluxes are a combination of the radiative fluxes and
the turbulent fluxes of latent and sensible heat. The decom-
position of the ocean dynamical contributions into its various
components is discussed further below.

The ocean dynamical contributions to mixed layer tem-
perature variance provided by the observations and ECCO
exhibit similar patterns but different amplitudes (Figs. 4c,d).
Both methods indicate that ocean dynamics contribute most
to mixed layer temperature variance in the vicinity of the
Kuroshio—Oyashio and its downstream extension; the Gulf
Stream and its downstream extension; the Agulhas Current;
the Malvinas Current; and in various regions throughout the
tropics, including the eastern tropical Pacific cold tongue and
the equatorial Atlantic. The most pronounced differences
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between the methods are found in the extratropics, where the
observational estimates of the ocean dynamical contributions
are nearly twice as large as the ECCO-based estimates. The
differences are even more clear when the ocean dynamical
contributions are shown as a fraction of the total variances in
mixed layer temperatures (Figs. 5a,b).

The surface heat flux contributions provided by the obser-
vations and ECCO likewise exhibit similar spatial patterns but
different amplitudes (Figs. 4e,f). Both methods indicate that
the surface fluxes act to drive SST variability (i.e., they are
positive) everywhere except in the equatorial cold tongue re-
gions, where they act to damp SST variability. Both observa-
tions and ECCO also indicate maxima in Qs in the subtropics,
which are most clear when O, is scaled by the total temperature
variances (Figs. Sc,d). The subtropical maxima are consistent
with large variability in the latent heat fluxes at subtropical
latitudes (e.g., Chiang and Vimont 2004; Xie and Carton 2004,
Amaya et al. 2017). As anticipated, the most pronounced dif-
ferences between the observational and ECCO-based results
are again found in the extratropics, where the ECCO-based
estimates of O, are roughly twice as large as the observational-
based estimates (Figs. 5c,d). Note that in general the surface
flux results in Fig. 5 are dominated by the turbulent fluxes of
latent and sensible heat, and that the radiative fluxes play a
relatively small role (not shown).
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FIG. 4. (a),(b) Monthly mixed layer temperature variance o2 (K?) from OAFIlux and ECCO, respectively. As
discussed in section 2b, the OAFlux mixed layer temperature variance is estimated from Eq. (5). (c),(d) Ocean heat
transport contribution to mixed layer temperature variance Q, (K?) derived from the indirect method using
OAFlux and the direct method using ECCO. (e),(f) Surface heat flux contribution to mixed layer temperature

variance Q, (K?) for OAFlux and ECCO.

The relative importance of the surface heat fluxes and ocean
heat transport for mixed layer temperature variability is sum-
marized in Figs. Se and 5f, which show the differences in the
fractional contributions from the top panels. Warm colors indi-
cate regions where the surface heat fluxes account for a larger
fraction of the mixed layer temperature variance than ocean
dynamics, and vice versa. Both the observational and ECCO-
based results indicate that ocean heat transport dominates
mixed layer temperature variability in the tropical oceans (blue
shading in Figs. 5e and 5f). But as noted above, the two methods
differ widely in the extratropics. The observations suggest that
ocean dynamics account for a slightly larger fraction of the
temperature variance than the surface heat fluxes over most of
the extratropics (Fig. 5e). In contrast, the ECCO-based results
suggest that the surface heat fluxes account for the predomi-
nance of the temperature variance at extratropical latitudes
(Fig. 5f), with notable exceptions found in major current regions
such as the Kuroshio, Gulf Stream, Agulhas Current, Malvinas
Current, and Antarctic Circumpolar Current.

Figures 6 and 7 explore the decomposition of the total ocean
heat transport contributions into various physical processes.
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The top row in Fig. 6 shows the total ocean dynamical con-
tributions reproduced from Figs. 4c and 4d. Subsequent
rows show the contributions from the horizontal Ekman heat
transport computed using the surface wind stresses from
MERRA-2 (Fig. 6¢) and ECCO (Fig. 6d), and the residuals due
to all other ocean dynamical processes, found as the differences
between the top and middle panels (Figs. 6e,f). Figure 7
shows a different decomposition of the ocean dynamical con-
tributions based on the ECCO estimates of diffusive and ad-
vective heat transport. Here the top panel shows the total ocean
dynamical contributions from ECCO (reproduced from Fig. 4d).
But now the middle panel shows the components due to diffu-
sive mixing (Fig. 7b) and the bottom panel the components due
to advective heat transport (Fig. 7c). Note that Fig. 7b includes
mixing due to convective processes and parameterized isopycnal
diffusion (Redi 1982; Gaspar et al. 1990), whereas Fig. 7c in-
cludes advective heat transport due to explicitly resolved large-
scale currents and eddy-induced transport as parameterized by
the Gent and McWilliams (1990) scheme.

The observational and ECCO-based estimates of horizontal
Ekman heat transport are nearly identical (Figs. 6¢,d). Hence,
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the resulting residual contributions from all other ocean dy-
namical processes differ greatly between the two methods
(Figs. 6e,f). As such, the horizontal Ekman heat transport ac-
counts for roughly half of the total ocean dynamical contri-
butions to mixed layer temperature variability in the ECCO
product, but a much smaller fraction of the total ocean dy-
namical contributions in the observations. Additionally, the
differences in the total ocean dynamical contributions to SST
variability shown in Figs. 6a and 6b arise almost entirely from
non-Ekman processes. As evidenced in Fig. 7, diffusive pro-
cesses account for a very small fraction of the temperature
variance on monthly mean time scales. However, as shown in
the next section, diffusive processes play a more important role
on lower-frequency time scales.

The results in Figs. 4-7 provide novel and comprehensive
estimates of the ocean dynamical contributions to mixed layer
temperature variability. They are broadly consistent with re-
sults shown in recent studies (e.g., Bishop et al. 2017; Roberts
et al. 2017; Small et al. 2020), and indicate that ocean dynamics
play an important role in monthly mean mixed layer temper-
ature variability in equatorial regions and in the vicinity of the
major extratropical boundary currents. However, the results
also reveal important inconsistencies in the ocean dynamical
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contributions estimated from observations and the ECCO
product. In general, the observations suggest a much larger
role for ocean dynamical processes in SST variability than the
ECCO output does. The inconsistencies have potentially im-
portant implications for our understanding of the role of the
ocean in extratropical climate variability.

It is unclear why the observations suggest a larger role for
ocean dynamical processes. One possible explanation is that
the 1° ECCO product used here underestimates the role of
mesoscale ocean dynamics in driving mixed layer temperature
variability. Mesoscale ocean processes play an important role
in facilitating atmosphere-ocean interactions (Ma et al. 2016;
Siqueira and Kirtman 2016; Saravanan and Chang 2019; Small
et al. 2019, 2020) and substantial differences in vertical and
horizontal ocean heat transports arise in simulations with fine
(~0.1°) ocean resolution relative to more coarse (~1°) reso-
lution (Griffies et al. 2015). It would be interesting to assess
higher-resolution ocean state estimates using the methods
described in this paper in future work.

b. Time scale dependence

Here we explore the contributions of ocean dynamics to
mixed layer temperature variance in data that have been
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FIG. 6. (a),(b) Ocean heat transport contribution to mixed layer temperature variance Q, (K?) derived from the
indirect method using OAFlux and the direct method using ECCO, respectively. (c),(d) Horizontal Ekman
transport contribution to mixed layer temperature variance Q. (K?), calculated using surface wind stress from
MERRA-2 reanalysis in (c) and surface wind stress from ECCO in (d). (¢),(f) Non-Ekman transport contribution to

mixed layer temperature variance Q(,
for OAFlux and ECCO, respectively.

low-pass filtered with a Butterworth recursive filter. Note that
the temperature and flux data are filtered before calculating
the covariances in Eq. (4). We first explore the spatial patterns
of 4-yr low-pass filtered variability. We then explore the sen-
sitivity of the results to different filter cutoffs. As done above
for unfiltered data, we confirmed that the sums of O, and O,
are equal to the total variances in all low-pass filtered results
(not shown).

Figures 8a and 8b show the 4-yr low-pass filtered mixed
layer temperature variances from the observations and
ECCO products. In general, the low-pass filtered variances
are very similar to their unfiltered counterparts, albeit with
small amplitudes (cf. Figs. 4a,b and 8a,b). Both exhibit cen-
ters of action in the eastern tropical Pacific, the extratropical
North Pacific, and the vicinity of the Gulf Stream and its
extension. In contrast, the contributions of ocean dynamics to
the temperature variances (Figs. 8c,d) are dramatically dif-
ferent between the low-pass filtered and unfiltered data,
particularly in the Northern Hemisphere. Ocean dynamics
act to enhance mixed layer temperature variability through-
out the NH when all time scales are included in the analysis
(Figs. 4c,d). In contrast, the ocean dynamics appear to oppose
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Q. (K?), calculated as the difference between the top and middle panels

mixed layer temperature variance in regions throughout the
North Pacific and in the Gulf Stream Extension region of the
North Atlantic on time scales longer than 4 years (Figs. 8c,d).
The result is reproducible in both the observations and
ECCO output. Thus the discrepancies between the observed
and ECCO-derived estimates of O, highlighted in Fig. 4 are
primarily due to ocean dynamics on time scales between one
month and four years.

The apparent suppression of multiannual mixed layer
temperature variance by ocean dynamics in the North
Pacific and North Atlantic is surprising. Ocean dynamics
are generally believed to play an increasingly important
role in SST variability on low-frequency time scales (e.g.,
Bjerknes 1964; Gulev et al. 2013; Buckley et al. 2014;
O’Reilly et al. 2016). Decadal SST variability in the North
Pacific has been frequently linked to dynamic adjustments
of the North Pacific Gyre and Kuroshio—Oyashio Extension
that occur via oceanic Rossby wave propagation (e.g., Latif
and Barnett 1994; Kwon and Deser 2007; Wills et al.
2019b). Also, previous studies have linked multidecadal
SST variability in the North Atlantic to variations in the
Atlantic meridional overturning circulation (e.g., Buckley and
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Marshall 2016; Kim et al. 2018; Yan et al. 2018; Zhang et al.
2019). It is possible that ocean dynamics play an important role
on time scales longer than those that can be resolved in the
relatively short records afforded by the ECCO and OAFlux
products (1992-2015 and 1980-2017, respectively). However,
the results in Fig. 8 suggest that—on the time scales resolvable
in the analysis—multiannual mixed layer temperature vari-
ability in both the North Pacific and North Atlantic is generally
damped by ocean dynamics.

Why do ocean dynamics suppress mixed layer tempera-
ture variance on multiannual time scales? As discussed
above, the ocean dynamical contributions to mixed layer
temperature variability arise from advective heat transport
and diffusion by convective and parameterized isopycnal
mixing at the base of the mixed layer. Figure 9 shows the
advective and diffusive contributions for 4-yr low-pass fil-
tered data. The key result in Fig. 9 is that while convective
and parameterized isopycnal mixing play a very small role in
the unfiltered data (Fig. 7b), they play a prominent role on
low-frequency time scales (Fig. 9b). Hence the results sug-
gest that the role of diffusive mixing overwhelms the role of
advection in mixed layer temperature variability on time
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scales longer than a few years in the extratropical northern
oceans.

To more clearly illustrate the time scale dependency of the
results, Fig. 10 explores the contributions of the surface heat
fluxes and ocean heat transport to SST variability as a function
of low-pass filter length. Results are shown for variances av-
eraged over the globe, the extratropical NH and SH, and the
tropics (note that the results show the spatial averages of the
variances, not the variances of the spatial averages). The top
half of the plot (marked OAFlux) indicates results derived
from the observations over the period 1980-2017: the first row
shows the total area-averaged mixed layer temperature vari-
ance (black), the contributions to temperature variance due to
ocean dynamics (blue), and the contributions to temperature
variance due to surface fluxes (green); the second row shows
the fractional rather than total contributions due to ocean
dynamics (blue shading) and surface fluxes (green shading).
The uncertainties in the variance estimates due to uncertainties
in the observations are indicated by the transparent colored
shadings in the top row (see appendix A for details of the un-
certainty analysis). The bottom half of the plot (marked
ECCO) shows the same results, but calculated for ECCO over
the ECCO period of record 1992-2015. The figure highlights
three key results:

1) As expected, temperature variances—and thus the ocean
dynamical and heat flux contributions to temperature
variances—decrease as the filter length is increased.

2) The contributions of ocean dynamics to the mixed layer
temperature variances are roughly twice as large in obser-
vations as they are in ECCO output at all time scales. In the
case of unfiltered data (i.e., filter length 0), the observations
suggest that ocean dynamics account for ~55% of unfil-
tered mixed layer temperature variability averaged over
the extratropical Northern Hemisphere, ~65% averaged
over the extratropical Southern Hemisphere, and ~65%
averaged over the globe. In contrast, in the ECCO output,
ocean dynamics account for only ~30%, ~35%, and ~45%
averaged over the same respective domains. The differences
between the unfiltered OAFlux and ECCO results are not
explained by uncertainties in the OAFlux estimates (trans-
parent shading in the top row). They are also reproducible
when the OAFlux results are computed for the ECCO period
of record (not shown).

3) Both the observations and ECCO indicate that the frac-
tional contribution of ocean dynamics to NH mixed layer
temperature variability decreases at increasingly low fre-
quencies (blue shading in Figs. 10b and 10f). In fact, the
contribution of ocean dynamics to NH temperature vari-
ance is negative at filter lengths longer than ~3 years (blue
lines in Figs. 10b and 10f). The striking differences between
the contributions of the surface fluxes and ocean dynamics
far exceed the uncertainties in the OAFlux estimates (green
and blue transparent shading in Fig. 10b, top). We repeated
the analysis shown in Fig. 10 for the extratropical North
Pacific and North Atlantic basins separately (see Figs. Bla,f
and B2a,f in appendix B). Both datasets indicate that ocean
dynamics play a vanishingly small role in driving SST
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FIG. 8. As in Fig. 4, but for 4-yr low-pass (LP) filtered data.

variability in both basins on time scales longer than ~4
years (Figs. Bla,f and B2a,f) and that the results are robust
to the uncertainty estimates provided in the OAFlux
product (transparent shading in Figs. Bla and B2a). Both
datasets also indicate that the ocean dynamical contribu-
tions are weakly negative (i.e., that they suppress SST
variance-at frequencies longer than a few years in the
North Pacific; Figs. Bla,f). Only ECCO indicates that the
ocean dynamical contributions are negative in the North
Atlantic (Figs. B2a,f). The signature of increasingly small
fractional contributions of ocean dynamics at increasingly
low frequencies is less pronounced in the tropics or
Southern Hemisphere (Figs. 10c,d,g,h) but is apparent in
the global mean (Figs. 10a,e).

Clearly, the vanishingly small contribution of ocean dynamics
to multiannual mixed layer temperature variability in the
Northern Hemisphere has important implications for under-
standing the drivers of North Pacific and North Atlantic climate
variability. Figure 11 tests the reproducibility of this key result in
four other data sources: output from the MERRA-2 and ERAS
reanalysis products (Figs. 1la,b), output from the NOAA-
CIRES-DOE Twentieth Century Reanalysis (20CR; Fig. 11c),
and a combination of the OAFlux fluxes with mixed layer tem-
perature tendencies from EN4 (Fig. 11d). All results are based on
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the 1980-2017 period to facilitate comparison with the observa-
tional (OAFlux) results shown in Fig. 10. Figure 11 shows results
integrated over the Northern Hemisphere; Figs. Blb-d and
B2b-d show results integrated over the North Atlantic and Pacific
basins, separately. Note that the analysis of the combined EN4—
OAFlux data allows us to better understand how the observa-
tional results depend on the scaling used to convert SST to mixed
layer temperature variances [Eq. (5)].

As evidenced in Fig. 11, the increasingly small fractional
contributions of ocean dynamics to low-frequency Northern
Hemisphere mixed layer temperature variability is reproducible
in all datasets considered in the figure. The contributions are
negative, indicating that ocean dynamics are suppressing low-
frequency temperature variance, in all data sources except for
mixed layer temperatures derived from EN4. But even in this
case, the fractional contribution of ocean dynamics to the tem-
perature variance is considerably less than that associated with
the surface heat fluxes, albeit the uncertainties in the EN4 esti-
mates calculated using the formulation in appendix A are large
on time scales longer than a few years. Note that output from all
the observational data sources indicates a larger role for ocean
dynamics in unfiltered data than output from ECCO (roughly
60% for observations versus 30% for ECCO). Thus, the differ-
ences in O, between the indirect method and direct method are
not due to the SST-tendency scaling given in Eq. (5).
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The observational results in Figs. 10 and 11 are based on the
period of record following 1980. That is because remotely
sensed data are widely available from the late 1970s, and thus
major reanalyses such as ERA5 and MERRA2 are only
available after 1979. However, the 20CR product is available
extending back to 1836. We reproduced the results in Fig. 11c
using the 20CR product over periods of record extending from
1950-2017 and 1900-2017 (not shown). As in Fig. 1lc, the
ocean dynamical contributions to mixed layer temperature
variability decrease more rapidly than the surface heat flux
contributions at increasingly low frequencies. Unlike Fig. 11c,
the ocean dynamical contributions do not become negative at
low frequencies. However, the SST and flux measurement data
are relatively sparse and exhibit more notable biases during the
early and middle twentieth century (e.g., Kent et al. 2017;
Davis et al. 2019, and references therein). Thus we view esti-
mates of ocean dynamics for the early and middle twentieth
century as much more uncertain than estimates for the last few
decades.

4. Discussion

The results in the previous section highlight two surprising
results: 1) The fractional contribution of ocean dynamics to
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NH-mean and global-mean mixed layer temperature vari-
ability deceases as the time scale increases, and 2) over certain
areas of the extratropical North Atlantic and North Pacific,
ocean dynamics act to reduce rather than increase the tem-
perature variance on multiannual time scales. The results
emerge from analyses of the temperature variance budget, as
summarized in section 2. And they are reproducible in esti-
mates of ocean heat transport derived both indirectly from
observations of surface heat fluxes and SSTs, and directly using
the ECCO ocean state estimate. However, they also contradict
previous findings in which the role of ocean dynamics in SST
variability is inferred from lag correlations between the surface
heat fluxes and SSTs. Here we comment on the differences and
similarities between the methods used here and in previous
analyses.

Numerous studies have used lag correlations between SSTs
and the surface heat fluxes to infer the role of ocean dynamics
in SST variability (e.g., Gulev et al. 2013; O’Reilly et al. 2016;
Bishop et al. 2017; Zhang 2017; O’Reilly and Zanna 2018). The
reasoning is as follows: If the surface heat fluxes Q; (defined
positive down) are positively correlated with SSTs when
leading the SST field, then the surface heat fluxes enhance
temperature anomalies. Conversely, if the fluxes Q; are nega-
tively correlated with SSTs when leading the SST field, then the
surface heat fluxes damp SST anomalies and thus the tem-
perature anomalies must be driven by ocean heat transport. On
the basis of this logic, previous studies have interpreted posi-
tive correlations between QO and increasing SSTs on monthly
and annual time scales as evidence that the surface heat fluxes
are driving high-frequency SST variability. Likewise, they have
interpreted negative correlations between Q; and increasing
SSTs on multiannual to multidecadal time scales as evidence
that ocean dynamics are driving low-frequency SST variability
(e.g., Gulev et al. 2013; O’Reilly et al. 2016; Bishop et al. 2017;
Zhang 2017; O’Reilly and Zanna 2018).

However, as also emphasized in Cane et al. (2017), the sign
of the lag correlation between SSTs and the surface heat fluxes
does not unequivocally identify the role of ocean dynamics.
Consider the North Atlantic as an example. Our results suggest
that ocean dynamics play a fractionally smaller role in driving
SST variability as the time scale of the variability increases,
with ocean dynamics suppressing SST variability over the Gulf
Stream region on time scales longer than ~4 years (Figs. 8c,d).
In contrast, Gulev et al. (2013), O’Reilly et al. (2016) and
others have used lead-lag correlations between SSTs and the
surface heat fluxes to argue that ocean dynamics must play a
key role in driving North Atlantic SST variability at low
frequencies.

Figures 12 and 13 make clear how our results relate to those
in previous studies, and highlight the shortcomings of using lag
correlations between the surface heat fluxes and the SSTs to
infer the role of ocean dynamics. The left column in Fig. 12 is
derived from the left column of Fig. 4 but is focused on the
North Atlantic. The top panel shows the total variance in
mixed layer temperatures, the middle the contributions of
ocean dynamics, and the bottom the contributions of the sur-
face heat fluxes. All results are derived from the indirect
method with OAFlux data. The right column is similar to the
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left column of Fig. 8, and shows the respective results for 5-yr
low-pass filtered data. As discussed earlier in the text, ocean
heat transport contributes substantially to temperature vari-
ance in the Gulf Stream Extension region in the unfiltered data
(Fig. 12b) but acts to decrease temperature variance in the Gulf
Stream region at lower frequencies (Fig. 12¢).

Figure 13 shows the lead/lag correlations between SSTs and
the surface heat fluxes (top) and ocean heat transport (bottom)
averaged over the Gulf Stream Extension region (as indicated
by the dashed boxes in Fig. 12). Negative lags denote that the
fluxes or transport lead the SST field. The sign of the heat fluxes
and ocean heat transport is positive into the local ocean mixed
layer. To facilitate comparison between the lag-correlation
method and the method outlined in section 2, the contributions
of the surface heat fluxes and ocean dynamics to the temper-
ature variance (i.e., Q, and Q,, respectively) averaged over this
region are indicated in the bottom left of each panel. Note that
the results in the bottom panels (Figs. 13b,d) are comparable to
Figs. 2a and 2b from O’Reilly et al. (2016).
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Starting with the unfiltered results (left column): The cor-
relations between Q; and the SSTs are positive when the fluxes
lead SSTs and negative when the fluxes lag SSTs (Fig. 13a;
recall that Qy is positive down). According to the logic dis-
cussed previously, this suggests that O, enhances SST anoma-
lies and hence contributes to SST variability. In this case,
inferences based on lag correlations are consistent with the
results derived from our Eq. (4). In particular, Eq. (4a) states
that the contribution of O to temperature variability is given
by the covariance between Qy and the SST tendency, which
relates to the change in the correlation across lag zero. This can
be clearly seen by expanding the temperature tendency in the
following:

— o1’
— )
0,=0%

~QOT(+A)— QO T'(t—Ar).  (6)

The first term on the RHS of (6) relates to the correlation at
negative lags (i.e., Q; leads SST), and the second term relates to
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Twentieth Century Reanalysis (20CR), and (d) the combined
EN4-OAFlux dataset. The transparent shading in the top panels of
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the correlation at positive lags (i.e., O, lags SST). In the case of
Fig. 13a, the correlation at negative lags exceeds the correla-
tion at positive lags and hence Q, = Q/(9T"/at) > 0. That is, QO
contributes to SST variability because Q; is positively corre-
lated with the temperature tendencies 97/dt.

Importantly, the correlations between ocean heat transport
and the SSTs are also positive when the transport leads SSTs
(Fig. 13b), which suggests that ocean dynamics enhances
temperature anomalies and hence drive SST variability in the
unfiltered data. As is the case with the surface heat fluxes, the
results inferred from lag correlations are consistent with the re-
sults derived from our Eq. (4); that is, Q, is positive since the
transport Q, is positively correlated with the temperature ten-
dencies (i.e., the change in the correlation across lag zero has the
same sign as the case for Q). Importantly, the positive contri-
butions of ocean dynamics to SST variance could not have been
unequivocally inferred from the lag correlations between surface
heat fluxes and SSTs alone.

The results for low-pass filtered data (right column) are
more nuanced. In this case, the correlations between Q, and
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the SSTs are negative when the fluxes lead the SST field
(Fig. 13c); that is, the surface heat fluxes are out of the ocean
prior to the peak in the SST field. The sign of the correlations
suggests that O, damps SST anomalies, and thus that ocean
heat transport must play an essential role in driving the
anomalies. The positive correlations between O, and the SSTs
at negative lags appear to support this conclusion (Fig. 13d).

At first glance, the signs of the correlations at negative lags
in Figs. 13c and 13d appear inconsistent with the results
derived from Eq. (4). As noted above, previous research
has interpreted the signs of the correlations to indicate that
1) the surface heat fluxes damp the positive SST anomalies at
negative lags while 2) ocean heat transport enhances the SST
anomalies. In contrast, our results suggest that on time scales
longer than 5 years 1) the surface heat fluxes drive SST vari-
ability and 2) ocean heat transport suppresses SST variability.
This apparent contradiction stems from the fact that the sur-
face heat flux contribution to the SST variance Q, is a function
not of the lag relationships between O, and the temperature,
but of the covariance between O, and the temperature ten-
dency, as shown by (6). Thus, as previously discussed, it is the
change in the correlation between Q; and SST across lag zero
that determines the contribution of the surface heat fluxes to
the temperature variance. In the case of Fig. 13c, the surface
heat fluxes are negative (out of the ocean mixed layer) during
periods preceding the SST anomaly, but they are even more
negative after the peak in the SST anomaly. In this case, the
sign of the change in the correlation across lag zero is the same
as for the unfiltered case (Fig. 13a) and hence Q; increases the
low-frequency temperature variance.

Likewise, the ocean heat transport anomalies are positive
(into the ocean mixed layer) during periods preceding the SST
anomaly, but are even more positive after the peak in the SST
anomaly. The change in the correlation across lag zero for Q,, is
therefore opposite of that for Q, (Fig. 13c) and hence Q, re-
duces the low-frequency temperature variance.

Why do ocean dynamics suppress SST variance on multi-
annual time scales? To answer this, we revisit Fig. 9, which
shows the decomposition of ocean heat transport contribution
into its diffusive (Fig. 9b) and advective (Fig. 9c) components.
Importantly, Fig. 9 reveals that 1) advective ocean processes
contribute to multiannual SST variance [Q;, 4, (07"/9t) > 0]
but that 2) diffusive ocean processes suppress multiannual
SST variance [Q), 4(07'/9t) <O0]. Thus, as the time scale of
the mixed layer variability increases, it appears that the nega-
tive contribution from diffusion becomes increasingly large
and—over certain regions of the ocean—overwhelms the
positive contribution from advection. For example, in the
boxed midlatitude region shown in Fig. 12, the contribution to
5-yr low-pass filtered temperature variance from advection
Q,,‘adv is ~0.07 K2, while the contribution from diffusion Q(,,dif
is ~—0.18 K>,

Overall, the interpretations provided here are consistent
with those in Cane et al. (2017). Cane et al. (2017) use a series
of idealized models to demonstrate that the signs of the lag
correlations between Qg and SST do not unambiguously
identify the relative importance of ocean dynamics. For ex-
ample, it is possible for the atmosphere to dominate the forcing
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FIG. 12. Asin the left column of Fig. 4, but focused on the North Atlantic sector. (a) Monthly
mixed layer temperature variance from OAFlux. (b) Ocean heat transport contribution to
mixed layer temperature variance derived from the indirect method using OAFlux. (c) Surface
heat flux contribution to mixed layer temperature variance for OAFlux. (d)—(f) As in the left

column of Fig. 8, but for 5-yr low-pass filtered data.

of SSTs but for the correlations between Q; and SST to be
negative at low frequencies, which suggests that the surface
fluxes are damping low-frequency SST variability. This occurs
in simple models as long as there is at least some amount of
stochastic forcing from ocean dynamics, and is a consequence
of quasi-equilibrium in the surface heat balance at low-
frequency time scales.

Finally, we note that a key advantage of our approach is that
it directly relates the variance in SSTs to the variances of the
fluxes [Eqgs. (4c) and (4d)]. As such, the increasingly small
contributions of ocean dynamics to SST variance at lower
frequencies indicates that—as the time scale increases—the
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variance of the ocean heat transport is decreasing more rapidly
than the variance of the surface fluxes. This is depicted in
Fig. 14, which shows the log ratios of the variances in Q; to the
variances in Q, for both unfiltered and 5-yr low-pass filtered
data. Clearly, the variability of the surface heat fluxes exceeds
the variability of ocean heat transport in the boxed midlatitude
region on longer time scales. We view Fig. 14 as compelling
evidence that ocean heat transport plays a decreasingly im-
portant role in driving SST variance at multiannual time scales.

In summary, the diagnostic equation for temperature vari-
ance used here provides important insights into the relative
roles of the surface heat fluxes and ocean dynamics in driving
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FIG. 13. (a) Lag correlations between the surface heat fluxes Q; and SSTs for unfiltered
monthly data averaged over the boxed midlatitude region (38°-50°N, 15°-55°W) shown in
Fig. 12. (b) As in (a), but for lag correlations between the ocean heat transport Q, and SSTs.
(c),(d) As (a) and (b), but for 5-yr low-pass (LP) filtered data. Negative lags correspond to
periods when the surface fluxes and ocean heat transport lead SSTs. The signs of O, and Q,, are
such that positive values are into the local mixed layer. The contributions from the surface heat
fluxes and ocean heat transport to the mixed layer temperature variance (i.e., O, and Q,)
averaged over the boxed midlatitude region are shown in the bottom left of each panel.

mixed layer temperature variance that cannot be readily de-
duced from the sign of the lag correlation between O, and the
SSTs. We have shown that the sign of the correlations between
Q, and the SSTs when the fluxes lead the SSTs does not de-
termine the role of ocean dynamics in mixed layer temperature
variance (Fig. 13). In particular, we argue that it is the change
in the lag correlations about lag zero that indicates the con-
tributions of different processes to the temperature variance,
not the absolute sign of the correlations. This is most relevant
on longer time scales, where the change in the correlation
across lag zero is small and hence may be easily overlooked.

5. Concluding remarks

The results in this study add to an increasing body of liter-
ature that explores the role of ocean heat transport in driving
SST variability. The primary novel aspects of the analyses are
that 1) we provide a global survey of ocean heat transport using
two distinct but complementary methodological approaches,
one in which ocean heat transport is calculated directly from a
state-of-the-art ocean state estimate (ECCO) and another in
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which it is calculated indirectly from observations; 2) we ex-
plore the resulting contributions of ocean heat transport to
SST variability using a diagnostic rather than prognostic
equation for the temperature variance; and 3) we probe the
roles of ocean heat transport as a function of time scale across
the globe in both the observations and the ECCO ocean state
estimate.

The results provide novel quantitative estimates of the role
of ocean dynamics in driving SST variance across the globe.
Consistent with previous studies, they indicate that the largest
contributions of ocean dynamics to mixed layer—and thus sea
surface—temperature variability are found in the western
boundary currents and their eastward extensions, the Antarctic
Circumpolar Current, and the equatorial regions (e.g., Bishop
et al. 2017; Roberts et al. 2017; Small et al. 2020). To leading
order, the results based on the observations and the ECCO
ocean state estimate yield similar spatial patterns throughout
the global oceans. However, they also indicate important dis-
crepancies in amplitude: In general, the contributions of ocean
heat transport to temperature variance estimated indirectly
from observations are twice as large as those estimated directly
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using the ocean state estimate. The reasons for the differences
in amplitude may arise from the representation of mesoscale
ocean processes in the 1° ECCO product but this remains to be
explored in future work.

A key result of the current study is that ocean dynamics
generally play an increasingly small role in mixed layer tem-
perature variability at the low-frequency time scales that are
resolvable in the ECCO and OAFlux products (the records
span 1992-2015 and 1980-2017, respectively). The signature of
decreasing fractional contributions from ocean dynamics to
mixed layer temperature variance is most clear in the Northern
Hemisphere oceans, and is reproducible in a number of at-
mospheric reanalyses spanning 1980-2017. The decreases in
the ocean dynamical contributions to mixed layer temperature
variability on multiannual time scales are sufficiently large that
they extend to the global average: In the case of the observa-
tions, ocean heat transport accounts for ~65% of the globally
integrated variance in mixed layer temperatures on time scales
of a month and longer, but only ~30% of the globally inte-
grated variance on time scales longer than about four years.
The results challenge the notion that ocean dynamics are in-
creasingly important for SST variability at increasingly low
frequencies (e.g., Bjerknes 1964; Gulev et al. 2013; Buckley
et al. 2014; O’Reilly et al. 2016) and they support the hypoth-
esis that observed low-frequency variability in the North
Atlantic can be explained on the basis of stochastic processes
with only a weak contribution from ocean dynamics (e.g.,
Clement et al. 2015; Cane et al. 2017). As discussed in section 4,
the time scale—dependent contributions of ocean heat trans-
port to mixed layer temperature variability revealed here
cannot be readily inferred from the sign of the lag correlation
between the surface heat fluxes and the SSTs.

Another key result is that over large regions of the Northern
Hemisphere oceans, ocean dynamics act to reduce the variance
of the SST field on time scales longer than a few years. Analyses
of the ECCO product suggest that the suppression of SST
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variance arises from ocean diffusive processes: Advective ocean
process contribute to SST variability across a range of time
scales, but their contributions are overwhelmed by diffusion as
the time scale of the SST variability increases. These results are
consistent with a recent study by Murphy et al. (2020, manuscript
submitted to J. Climate), who found weaker Atlantic multi-
decadal SST variability in a fully coupled GCM (CESM) relative
to a slab-ocean configuration of the model. It would be inter-
esting to explore the dependence of the results shown here on
the amplitude of the convective processes and parameterized
isopycnal mixing that comprise the diffusive term, as well as the
spatial resolution of the ocean model.

The results shown here are derived from analyses of data
extending back to 1980 (OAFlux) and 1992 (ECCO). We are
hesitant to make inferences on the role of the ocean in climate
variability over a longer period of record by applying a similar
analysis procedure to sea surface temperatures and surface
fluxes derived from, say, the 20CR product. The sea surface
temperature and surface flux observations required to make
such inferences are increasingly sparse and exhibit notable
biases prior to ~1970 (e.g., Kent et al. 2017; Davis et al. 2019).
The findings revealed here thus highlight the critical impor-
tance of continued high-quality observations of the upper
ocean for understanding the role of the ocean in multidecadal
climate variability.

Acknowledgments. CP was supported by the NASA Earth
and Space Science Fellowship SONSSC18K1345 and partially
supported by the NSF Climate and Large-Scale Dynamics
program. DWIJT is supported by the NSF Climate and Large-
Scale Dynamics program. We thank Laure Zanna and two
anonymous reviewers for their helpful comments on the
manuscript.

Data availability statement. All data are freely accessible online:
OAFlux (http:/oaftux.whoi.edu/), ECCO (https:/ecco.jpl.nasa.gov/),


http://oaflux.whoi.edu/
https://ecco.jpl.nasa.gov/

2584

MERRA-2 reanalysis (https://gmao.gsfc.nasa.gov/reanalysis/
MERRA-2/), ERAS reanalysis (https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era5), NOAA-CIRES-
DOE Twentieth Century Reanalysis (https://psl.noaa.gov/
data/gridded/data.20thC_ReanV3.html), and gridded analyses
of ocean temperatures from the EN4 database (https://www.
metoffice.gov.uk/hadobs/en4/).

APPENDIX A

Derivation of the Diagnostic Equation for Mixed Layer
Temperature Variance and Uncertainty Contributions

To derive the diagnostic equation for monthly mixed layer
temperature variance, i.e., Eq. (4), we start with the monthly
mixed layer energy budget:

T_p 4
C() at Q Q

(A1)
Here, C, is the heat capacity of the ocean mixed layer (i.e.,
C, = cyph, where h is the ocean mixed layer depth), T is the
monthly mean mixed layer temperature, Q; is the net surface
heat flux (sum of latent, sensible, and radiative heat fluxes),
and Q, is the heat convergence due to ocean dynamics, in-
cluding wind-driven Ekman currents and vertical mixing. Since
we are interested in understanding the processes that drive
temperature anomalies, we expand each of C,, T, Oy, and Q,
into the sum of a climatological mean (denoted by overbars)
and the departure from the mean (denoted by primes). As
discussed in section 2, we also remove both the linear trend and
seasonal cycle from the anomalies in C,, T, O, and Q,.
Inserting the above yields the following equation for the tem-
perature anomalies:

— T
C—=0.+0Q..

A2
o (A2)

To form an equation involving the mixed layer temperature
variance [i.e., T"(¢)*] we take the finite centered difference of
the temperature tendency term in (A2), square both sides, and
then average over time:

p

ST/ = T+ AT/ (1 = An)] = (Q; + Q).

(A3)

[\

Az2

where At is the sampling period (i.e., one month). Denoting
T'(t)* as 05 and using T'(t + AD)T'(t — Ar) = T'(0)) T'(t — 2A¢) =
rzm, where r, is the lag-2 autocorrelation of the mixed layer
temperature, we can rewrite (A3) as

A= O T 0.
(1 )
Note that (A4) is analogous to Eq. (6) from Yu and
Boer (2006).
Equation (4) that is derived in the main text is formed by
using the mixed layer energy budget, (A2), to substitute the

(A4)
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temperature tendency for one of the Q) + Q! terms in (A4),
and defining a = 2A%/[C,(1 — 1)]:

aT’ EVA
of~ ( 0, + Q:,>.

The above is analogous to the ““fraction of variance” (FOV)
metric used by Buckley et al. (2014) and Roberts et al. (2017) to
understand the drivers of upper-ocean heat content variability,
H = pc,hT. Buckley et al. (2014) express the fraction of vari-
ance 0H/dt that is explained by Q,, which we denote as FOV

[(6HIat), Q,], as the following:
02 +20 0O
FOV (ﬁ Q ) =L 20,0,
a e OH"\,
(&)

Here, we define the ocean contribution to the temperature
variance as follows:

(AS)

(A6)

Q{)

N A s B oo
=a"-0, =207 + 0/0)). (A7)
o

Thus, both (A6) and (A7) relate to the sum of the variance of
0, and the covariance between Q, and Q,. The main justifi-
cation for using a single covariance term in our definition of the
Q, contribution (i.e., we have Q'Q’ instead of 2Q’Q’) is to
enable the contributions to sum to the total temperature var-
iance (i.e., 0% = 0, + Q,). However, note that the covariance
terms contribute equally to the surface heat flux and ocean
dynamical contributions, and thus are not essential to under-
standing the relative contributions of Q, and Q, to tempera-
ture variance.

To quantify the contributions of observational error to the
mixed layer temperature variance (as shown in Figs. 10a—c,
Bla, and B2a), we start with

< aT’
o, =

T+ eor Q) *2,), (A8)

J—
a2kl v
ot

where &(3775 and gg, are the observational estimates of un-
certainty in the temperature tendency and surface heat fluxes,
respectively. Using ;770 = &7/At where g7 is the uncertainty
in the mixed layer temperature and expanding the RHS of
(AS8) yields

~ 8T’ 6T’
/ + + / T + °r
0= Q at oo, Q‘At QAL

(A9)
The error in the surface heat flux contribution is then defined as

aT’ o €,

S0 (A10)

g5, =—¢, + 0\—

o a s At

The uncertainty in the ocean heat transport contribution is

estimated from the error in the temperature variance g2 and

the error in the surface heat flux contribution using the fol-
lowing relation:
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F1G. B1. (a)-(f) Asin Figs. 10b, 10f, and 11a—d, but for results averaged over the North Pacific sector (defined as 20°-60°N, 120°-270°E).
Results in (a)—(e) are based on the period of record 1980-2017. Results in (f) are based on the ECCO period of record 1992-2015.

€, =80, T 8p2 - (A11) e, =2Te, + €. (A13)
: T
This is consistent with the fact that the indirect estimate of
Q, is calculated from the observed SSTs and surface heat
APPENDIX B

fluxes as a residual in the mixed layer energy budget. Note

that the error in the mixed layer temperature variance is : o .
Time Scale Dependency of the Contributions to Mixed

found from
Layer Temperature Variance for the North Atlantic
and North Pacific
or=(T"= ‘GT)2 =T7+2Te; + 6} (Al12) Figures B1 and B2 show the spatially averaged contributions
from the surface heat fluxes and the ocean heat transport as a
so that function of low-pass filter length as in Figs. 10 and 11, except
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(a)—(e) are based on the period of record 1980-2017. Results in (f) are based on the ECCO period of record 1992-2015.

for the North Atlantic and North Pacific basins. Figure Bl
shows results for the North Pacific, and Fig. B2 shows results
for the North Atlantic.
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