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Abstract—Transient analysis is vital to the planning and oper-

ation of electric power systems. Traditional transient analysis

utilizes numerical methods to solve the differential-algebraic

equations (DAEs) to compute the trajectories of quantities in

the grid. For this, various numerical integration methods have

been developed and used for decades. On the other hand, solving

the DAEs for a relatively large system such as power grids is

computationally intensive and is particularly challenging to per-

form online. In this paper, a novel machine learning (ML) based

approach is proposed and developed to predict post-contingency

trajectories of a generator in the time domain. The training

data are generated by using an off-line simulation platform

considering random disturbance occurrences and clearing times.

As a proof-of-concept study, the proposed ML-based approach

is applied to a single generator. A Long Short Term Memory

(LSTM) network representation of the selected generator is

successfully trained to capture the dependencies of its dynamics

across a sufficiently long time span. In the online assessment

stage, the LSTM network predicts the entire post-contingency

transient trajectories given initial conditions of the power system

triggered by system changes due to fault scenarios. Numerical

experiments in the New York/New England 16-machine 86-bus

power system show that the trained LSTM network accurately

predicts the generator’s transient trajectories. Compared to

existing numerical integration methods, the post-disturbance

trajectories of generator’s dynamic states are computed much

faster using the trained predictor, offering great promises for

significantly accelerating both offline and online transient studies.

I. INTRODUCTION

A key objective of transient analysis is to determine whether
all the generators in a power system can maintain synchronism
after a major disturbance such as transmission line fault or
generator trip, which is of significant interests for power
system planners and operators. Traditionally, there are two
categories of methods for transient analysis. One is per-
formed by numerically solving differential algebraic equations
(DAEs) that characterize the power grid [1], and another
one is the direct method [2]. The numerical solutions provide
the evolution of the system dynamic behaviors. This process
has been common practice and feasible. However, it is very
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time-consuming, and often has numerical issues especially
for large-scale power networks. This can be exacerbated
by the need for evaluating many more scenarios to capture
the uncertainties of increasing renewable generation in the
power grid. While parallelization of the numerical integration
methods can be explored to speed up the computation, it is
highly resource consuming. The direct method, on the other
hand, is based on the energy function or Lyapunov function
defined for a dynamic system, which is system specific and
usually very difficult for a relatively large system [2]. In
addition, it produces the stability margin but not the system
state trajectories that are often needed as well. As such, there
has not been functioning online transient contingency analysis
for realistic sized power grids, where full numerical solutions
of large-scale DAEs need to be computed for thousands of
contingency scenarios within a few minutes.

We identify that the major challenge for transient analysis,
especially in an online manner, is the extremely heavy compu-
tational efforts and time. To address this challenge, high hopes
have been given to machine learning (ML) based approaches
for this type of applications, as researched in a large body
of work (see, e.g., [3] [4]). However, the existing ML-
based transient studies primarily focus on the development of
Transient Stability Assessment (TSA) system for determining
system stability given the input disturbances, i.e., a binary
indicator of whether the system is stable or not under a
specific disturbance. The ML-based TSA tool can be fast,
but is however insufficient as a tool for the system planners
or operators, who would also like to know the trajectories of
various quantities in the grid during and after the disturbances.
Such trajectories are crucial for examining if there will be
any voltage or frequency violation that may trigger load
shedding. On generating full trajectories, recent ML-based
ordinary/partial differential equation solvers [5] have seen
successes in power systems of small sizes [6]. However,
major challenges arise when using these approaches for large-
scale dynamic contingency analysis, a) as the dimensions of
the ODEs increase (e.g., as the size of the power system
increases), and b) when there are structural changes in the
system due to, e.g., faults that change the underlying ODEs.

In this study, an innovative ML-based approach is proposed
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to learn from and then predict the time-domain responses of
the system states, where we leverage the capability of dy-
namic neural networks, in particular, long-short-term-memory
(LSTM) networks. Recognizing that the grid dynamics are
dominated by the generators and their associated control, the
focus of this study is to obtain an LSTM network for a single
generator to reproduce the generator dynamics, trained using
time-domain simulation data of post-disturbance generator
dynamics. In particular, starting from any given initial con-
dition, the trained predictor is applied iteratively to generate
the entire trajectories of generator states, reproducing the
ground-truth dynamics by solving the DAEs. The capability
of the trained LSTM network is demonstrated by accurately
predicted trajectories under many different disturbances. As
such, the proposed approach is different from the existing
ML applications in TSA analyses and can be considered an
important step to develop a platform for the full ML-based

transient analysis for power systems.
The remainder of the paper is organized as follows. Section

II formulates the problem. The overall methodology and de-
tailed discussions are presented in Section III. Section IV pro-
vides numerical case studies. Section V presents conclusions
and future research on a roadmap to develop a full transient
analysis platform based on the proposed ML approach.

II. PROBLEM DESCRIPTION

We consider a power system whose dynamics are deter-
mined by a set of DAEs,

ẋ = f(x, z) (1)
0 = g(x, z) (2)

where x is a collection of generator state variables and z the
algebraic variables representing, e.g., voltages and currents.
f mainly represents the generator dynamics such as inertial
dynamics and control. g indicates the power balance in the
transmission network that connect generators and load. Given
an initial set of values of x and z (e.g., as a result of
a disturbance occurred in the system), (1) and (2) can be
solved together via various numerical integration methods to
determine the subsequent trajectories of all the quantities over
time. Since the grid dynamics are dominated by generators
and the associated controls, in this paper, we limit our scope
to computing the trajectories of the state variables of a single
generator. In the context of this paper, we let the state variables
of a generator be

x = [|V |, 6 V, �,!, Pmech, Pgen, Qgen]
T , (3)

where V represents the bus complex voltage, � is the rotor
angle, ! is the rotor speed, Pmech is the mechanical power
input to the geneartor, Pgen is the real power generation,
and Qgen is the reactive power generation. We note that,
the internal generator state variables that we consider in our
simulations include more than the above. In other words, the
state variables (3) are the “agent’s state”, rather than the state
of the world. Nonetheless, we will show that (3) as the agent’s
state is sufficient for training predictors of full trajectories.

Instead of using conventional methods of numerically solv-
ing the DAEs (1) and (2), we propose to use a machine-
learning-based method that computes, using the outputs of
a trained predictor, the trajectories of the state variables
given any initial condition. Specifically, a) every generator
is connected with the rest of the system via line(s) to a
neighboring bus (see. e.g., Fig. 6 and 7, where Generator 1,
located at bus 53, is connected to the system via a single line
between bus 53 and 2), b) for the generator of interest, we
assume that the current dynamics on its connecting line(s) and
the voltage dynamics on its neighboring bus(es) are given as
external inputs, and c) based on the initial condition of the
generator and these external inputs, we seek to compute the
subsequent trajectories of all or a subset of the state variables
of this generator.

In essence, we replace the numerical solver of the DAE
with a trained predictor which is iteratively applied to the
trajectories over time, starting from an initial condition, to
generate the full trajectories. Such a trained predictor can
be viewed as a neural network (NN) representation of the
dynamics of the generator. With the ML-based method, we
aim to greatly accelerate the computation of the trajectories
compared to the traditional numerical solvers of DAEs.

III. PROPOSED METHODOLOGY

We now provide the details of the proposed methodology
of ML-based fast computation of generator dynamics.

A. Machine-Learning-Based Computation of Trajectories

A high level diagram for the training and use of the
predictor is depicted in Fig. 1. The overall methodology con-
sists of three elements for ML applications: data generation,
offline training, and online assessment. The data for transient
trajectories of a power system are generated considering a
large number of faulted scenarios with 60% of the data for
training, 20% for validation, and 20% for testing.

A depiction of the input and output for an NN representa-
tion of a generator is shown in Fig. 2. For a generator at bus k
that connects to the system via line jk at a neighboring bus j,
the state variables xk(t) are as specified in (3), and the external
input variables are the current injection Ijk(t) on line jk and
the voltage Vj(t) at bus j. we seek to train a predictor that,
at time t, a) takes in the current state variables xk(t) and the
external inputs z(t) that consists of Ijk(t) and Vj(t), and b)
outputs the state variables at the next time step xk(t+1). Note
that Ijk(t) can be calculated by using Vj(t), Vk(t), and the
line impedance Zjk(t). Iteratively applying such a predictor
will then produce the full trajectories of all the state variables
for this generator. Importantly, the predicted state variables
are fed back as (part of) the input in the next time step.
This implementation process is better illustrated by using the
sequential data flow unrolled over time in Fig. 3.

To obtain such a predictor, we utilize extensive offline data
generation and training. The trained predictor is then applied
in an online fashion to new initial conditions unseen in the
training data. While the data generation and training may
take a reasonably long time, they are performed offline with
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Fig. 1: Overview of the proposed approach for ML-based transient analysis.
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Fig. 3: The flow of data in the implementation of the ML-
based trajectory computation.

abundant computation resources. Moreover, The use of the
trained predictor in the testing stage is very fast, and thus
fulfilling our objective of accelerating the online computation
of full trajectories of generator dynamics. This shares a spirit
similar to the Learning-to-Infer method developed in [7].

a) Data Generation and Off-line Training: We simulate
power system dynamics under varying initial conditions (cf.

Section IV-A later for more details). The training, validation
and testing data are obtained by collecting the trajectories of
the generator dynamics as well as that of the external inputs.
For a trajectory of generator dynamics, we denote it by x =
[x1, x2, ..., xT ], where xt consists of all the state variables at
time step t. Note that subscript k is dropped since generator
k is the only one considered here and we denote x(t) as xt

and z(t) as zt for simplicity.
As our prediction is for the next time step’s state variables,

the training labels are freely built-in: y = [y1, y2, ..., yT�1],
where yt = xt+1. Given a collection of N pairs of training
samples {x(n), y(n)}Nn=1, we train the predictor model to
minimize a Mean Square Error (MSE) objective function L
over the NN parameters ✓:

L(✓) =
1

D

1

N

1

T

DX

i=1

NX

n=1

TX

t=1

(ỹ(n)i,t � y(n)i,t )
2, (4)

where ỹ(n) is the predictor’s output and D is the dimension
of y(n)t , i.e., the number of state variables which equals 7 in
our context (cf. (3)).

b) Online Assessment: In the testing stage, we compute,
via iterative prediction, the entire trajectories [x1, x2, ..., xT ]
based on the initial condition x1 as well as the external inputs
[z1, z2, ..., zT ]. As such, all that is performed are T�1 queries
of the trained predictor, which is a lot faster than numerically
solving the DAEs to compute the generator dynamics.

B. Neural Network Architecture

To efficiently represent the generator dynamics, the neural
network architecture employed in the predictor plays an im-
portant role. Due to the time-series nature of the trajectories of
interest, we consider incorporating recurrent neural networks
(RNNs) to model the predictor as opposed to using only fully
connected (FC) multilayer perceptron (MLP).

A traditional RNN unit maps the current (at time t) input
xt to a hidden state ht according to the previous hidden state
ht�1. To further improve the memory encoding capability,

2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 03,2021 at 15:38:57 UTC from IEEE Xplore.  Restrictions apply. 



Ⓧ
⊕

tanh

sigmoidsigmoid sigmoid tanh

Ⓧ

Ⓧ

ct

ht

ct-1

ht-1
xt

ht

Fig. 4: LSTM Cell.

Initial
Condition

Fully Connected
Layer

LSTM 1

LSTM 2

Fully Connected
Layer

LSTM 1

LSTM 2

External
Data

External
Data

Fully Connected
Layer

LSTM 1

LSTM 2

External
Data

···

!"! !"" !"#

c11
h11

c21
h21

c12
h12

c22
h22

c13
h13

c23
h23

Fig. 5: NN architecture and implementation.

an RNN layer can consist of multiple RNN units, and an
RNN model can consist of multiple RNN layers. Specifically,
we employ a well-established type of RNN unit — Long
Short Term Memory (LSTM) unit [8] — in our RNN. The
architecture of an LSTM unit is depicted in Fig. 4 [9].
Notably, LSTM provides the capability to not only capture
inter-temporal dynamics but also resolve the vanishing and
exploding gradient problems commonly observed in simple
RNNs. These favorable features make LSTM-based archi-
tectures able to achieve outstanding performance in a wide
range of sequence learning tasks. Specifically, we employ two
LSTM layers followed by one FC layer. The detailed NN
architecture in our implementation is depicted in Fig. 5, which
instantiates the structure depicted in Fig. 3.

IV. CASE STUDY AND DISCUSSION

A. Data Generation

We perform time-domain simulations to generate system
trajectories using a software tool EPTOOL that was developed
based on the Power System Toolbox (PST) [10]. In particular,
we generate a library of system dynamic responses to a variety
of disturbances.

The simulations are performed on the New York/New Eng-
land 16-generator 68-bus power system (cf. Fig. 6). The full
generator dynamics are modeled and simulated with turbine
governor, excitation systems, and power system stabilizers
(PSSs), even though only a subset of generator states are
selected to be reproduced using the NN (3). The load buses
contain 50% of constant current load and 50% of constant
impedance load. We then introduce N�2 contingencies to the
system which would cover most of the potential contingencies
in practice. Each contingency consists of double permanent

TABLE I: Hyperparameters of the Network

Parameter Value
# nodes in LSTM1 400
# nodes in LSTM2 400

# nodes in Fully Connected Layer 7
Learning Rate 0.001
Minibatch size 200
Gradient clip 0.0001

3-phase transmission line faults at either of the two terminal
buses of the faulted lines. We adopt the fault patterns in a
practical power system as presented in [11]: The fault duration
(i.e., the period between the start and the clearance of a fault)
follows a normal distribution with a mean value of 100.0ms (6
cycles) and a standard deviation of 11.11ms. We assume that
the system is in steady-state operating condition before each
contingency. Two transmission lines are picked at random
from the entire system, and both faults are applied at 0.01s.
Each contingency is simulated for a length of 9.0s with a
sampling rate of 100Hz, and hence each trajectory contains
900 samples. The two transmission lines are then set as off-
service after the faults are cleared at near ends and far ends
of the lines. In total we simulate 3, 000 N � 2 contingencies
and collect the corresponding data of trajectories.

We focus on Generator 1 located at bus 53. We col-
lect the post-fault-clearance trajectories of Generator 1’s
[|V |, 6 V, �,!, Pmech, Pgen, Qgen]

T . Since Bus 53 is con-
nected to the system via Bus 2 (cf. Fig. 7), we further collect
a) trajectories of [|V |, 6 V ]T at Bus 2, and b) trajectories
of current injection on line 2-53, denoted by I . To avoid
discontinuities, ±2⇡ are added appropriately to the angle data,
i.e. 6 V, 6 I and �. In sum, the training data set is denoted by
x = [x1, x2, ..., xT ], where

xt = [|V53,t|, 6 V53,t, �t,!t, Pmech,t, Pgen,t, Qgen,t,

|It|, 6 It, |V2,t|, 6 V2,t]
(5)

is an 11-dimensional input vector to the LSTM network. We
note that there’s a slight abuse of notation here, as we have
included external inputs z into x (5) as well. Meanwhile, we
construct labels y = [y1, y2, ..., yT ], where

yt = [|V53,t+1|, 6 V53,t+1, �t+1,!t+1, Pmech,t+1,

Pgen,t+1, Qgen,t+1]
(6)

is a 7-dimensional vector.

B. Training Details

We provide the hyperparameters of the LSTM-based neural
network (cf. Fig. 5) and the training algorithm in Table I.
Here, the number of LSTM units are set relatively large as
over-parameterization tend to speed up training progress and
improve generalization capability [12]. We employ the Adam
optimizer [13] for training.

We perform the training and testing on a desktop computer
with a 2nd generation 3.60-Ghz Intel Xeon CPU with 32GB
RAM. An nVidia GTX 1060 GPU is configured to support
efficient machine learning library PyTorch [14].
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Fig. 6: Schematic diagram of IEEE 16-machine 68-bus sys-
tem. The generator to be investigated is in the shaded area.

Fig. 7: Local connections of generator 1
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Fig. 8: Relative RMSE as training progresses.

C. Numerical Experiment Results

To evaluate the performance of the trained predictor, we
introduce the following metric of Relative RMSE to fairly
account for quantities of different units:

Relative RMSE =
1

D

1

M

DX

i=1

MX

m=1

q
1
T

PT
t=1(ỹ

(m)
i,t � y(m)

i,t )2
q

1
T

PT
t=1(y

(m)
i,t � y(m)

i )2

(7)
where y(n)i is the mean of y(n)i,t over t and M is the size of
validation data set. The progression of the Relative RMSE
over the training and validation data set as the training pro-
gresses is depicted in Fig. 8. We observe almost no overfitting
as the gap between training and validation performance is
almost zero. We summarize the achieved testing MSE and
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Fig. 9: Two testing samples. The voltage and rotor angles
are re-wrapped in the plot (whereas in our computation
they are unwrapped to be continuous). LSTM has a relative
RMSE of 0.0434 for sample 1 and 0.0261 for sample 2.
RNN captures the temporal dynamics less accurately with
undesirable oscillations at various places. MLP’s predicted
trajectories are nonsensical and not plotted.

Relative MSE in Table II, compared with those achieved with
a “vanilla” RNN. We see that the LSTM-based NN performs
significantly better than the vanilla RNN. We further note that,
we also evaluated the performance with MLP as opposed to
LSTM/RNN, and the performance of MLP is much worse and
not at all acceptable. These demonstrate that the use of LSTM
is crucial for performance improvement.

To provide an intuitive observation of the achieved perfor-
mance, we plot in Fig. 9 the ground-truth and predicted gener-
ator state trajectories for two representative sample cases, each
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TABLE II: Performance Comparison of Different Predictor
Models

Model MSE Relative RMSE
LSTM 9.6 · 10�5 0.0269

Vanilla RNN 0.0208 0.3850

TABLE III: Comparison of Computational Efficiency

Model

Offline
Processing

time
[min]

Offline
Compute
Memory
[MB]

Online
Compute

Time
[s]

Online
Compute
Memory
[MB]

LSTM 165.9 4014 0.4445 60

Vanilla
RNN 28.1 3642 0.4052 18

Numerical - - 71.5⇤ 182

corresponding to an N � 2 contingency. The trajectories of
all the predictor outputs — the 7 state variables of Generator

1 (3) — are plotted. We observe that the ground-truth and
LSTM-predicted trajectories overlap very closely. As such,
the trained LSTM-based NN is capable to precisely predict the
7-dimensional generator dynamics given just the generator’s
initial condition as well as the external inputs. We also observe
that RNN is less desirable than LSTM with evident deviations
from the ground-truth as well as significant oscillations at
various places (corresponding to the thick stripes in the plots).

Next, we provide the computation times and memories in
both the offline training and online testing stages, comparing
the LSTM-based NN, the vanilla RNN, and the conventional
numerical solver of DAE. All the results are based on the desk-
top machine as described in Section IV-B, and are summarized
in Table III. We observe that, while LSTM achieves almost the

same accuracy as the conventional solver, it is more than two

orders of magnitude faster. This demonstrates that our objec-
tive of greatly accelerating the transient analysis/computation
of generator dynamics is successfully achieved by the pro-
posed method. Here, we would like to clarify that, while the
testing time in Table III is for predicting the dynamics of a
single generator, in comparison, the conventional numerical
solver is used to compute on the entire power system with 16
generators. Nonetheless, even by multiplying the testing time
of the LSTM-based predictor by 16, which assumes a naive
sequential computation for all the generators, the total testing
time would be 0.4445s/gen ⇤ 16 generators = 7.112s. This
is still 10x faster than the conventional numerical solver. We
note that the predictor based trajectory computation for all the
generators can be trivially parallelized and hence more gain
in computation speed can be easily achieved.

V. CONCLUSION

This paper proposes a novel ML-based method for post-
contingency generator transient simulation for the purpose of
comprehensive transient analysis. The generation of training,
validation and testing data was performed by an automated
contingency generation and simulation in a PST-based sim-
ulation platform. An LSTM network is utilized to learn the

intrinsic characteristics of the generator dynamics. In the New
York/New England 68-bus 16-machine power system, we have
trained an LSTM network for a single generator’s dynamic
trajectories, and have shown it to reproduce the ground-truth
trajectories very accurately. The proposed approach in this
paper is fundamentally different from the existing ML-based
transient analysis, and is considered a promising technique
that can potentially replace the numerical integration methods
in the area of online/real-time transient analyses with much
faster computation.

The effectiveness and speed of the proposed approach make
it an important first step and lay the foundation toward the
development of complete transient analysis platform for entire
power systems, which will be the focus of our future work.
Leveraging the physics of the grid together with the proposed
ML approach is currently being explored to achieve the goal of
large-scale online transient analysis. In addition to line faults,
other events such as line switching and load changes can also
be easily taken into account.
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