GigaScience, 2017, 1-12

Manuscript in Preparation
Paper

n
GIGAL .

PAPER

Ariel Rokem’™* and Kendrick Kay>*

!Department of Psychology and the eScience Institute, University of Washington, Seattle, WA and *Center
for Magnetic Resonance Research, University of Minnesota, Twin Cities, MN

*arokem@uw.edu; kay@umn.edu

Background: Ridge regression is a regularization technique that penalizes the L2-norm of the coefficients in linear
regression. One of the challenges of using ridge regression is the need to set a hyperparameter («) that controls the
amount of regularization. Cross-validation is typically used to select the best « from a set of candidates. However,
efficient and appropriate selection of « can be challenging. This becomes prohibitive when large amounts of data are
analyzed. Because the selected « depends on the scale of the data and correlations across predictors, it is also not
straightforwardly interpretable.

Results: The present work addresses these challenges through a novel approach to ridge regression. We propose to
reparameterize ridge regression in terms of the ratio y between the L2-norms of the regularized and unregularized
coefficients. We provide an algorithm that efficiently implements this approach, called fractional ridge regression, as
well as open-source software implementations in Python and MATLAB (https://github.com/nrdg/fracridge). We show
that the proposed method is fast and scalable for large-scale data problems. In brain imaging data, we demonstrate that
this approach delivers results that are straightforward to interpret and compare across models and datasets.

Conclusion: Fractional ridge regression has several benefits: the solutions obtained for different -y are guaranteed to vary,
guarding against wasted calculations, and automatically span the relevant range of regularization, avoiding the need for
arduous manual exploration. These properties make fractional ridge regression particularly suitable for analysis of large
complex datasets.

Key words: Generalized linear model; Hyperparameters; Brain imaging; Open-source software

» desirable properties, in practical applications where noise is
s present, they tend to overfit the coefficient parameters to the
» hoise present in the data. Moreover, they tend to cause un-
s stable parameter estimates in situations where predictors are
highly correlated.

Consider the standard linear model setting Y = X solved for 3,
where Y is a data matrix of dimensionality d by t (d data points
in each of t targets), X is the design matrix with dimensionality *

d by p (d data points for each of p predictors), and B is a coef-
ficient matrix with dimensionality p by t (with p coefficients,
one for each predictor, for each of the targets). Ordinary least-
squares regression (OLS) and regression based on the Moore-.
Penrose pseudoinverse (in cases where p > d) attempt to find
the set of coefficients B that minimize squared error for each of ..
the targets y. While these unregularized approaches have some »;

Ridge regression [1] addresses these issues by trading off
the addition of some bias for the reduction of eventual error
(e.g., measured using cross-validation [2, 3]). It does so by pe-
nalizing not only the sum of the squared errors in fitting the
data for each target, but by also minimizing the squared L2-
norm of the solution, |13112 = 3 (32). Fortunately, this form
of regularization does not incur a substantial computational

Compiled on: October 20, 2020.
Draft manuscript prepared by the author.

https://github.com/nrdg/fracridge

24

26
27
28
29

30

43
4
45
46
47
48
49

50

59
60

61

62
63
64
65
66
67

68

Key Points

to interpret and compare across models and datasets.

- Ridge regression is a powerful and popular technique for regularizing linear regression, but finding the optimal degree of
regularization can be challenging, particularly in large datasets.

- We propose a technique, fractional ridge regression, that reparameterizes ridge regression in terms of the ratio between
the L2-norms of the regularized and unregularized coefficients.

- Fractional ridge regression is fast and scalable for large-scale data problems and delivers results that are straightforward

cost. This is because it can be implemented using the same 4
numerical approach for solving unregularized regression, with s
the simple addition of a diagonal matrix «I to the standard ma- s
trix equations. Thus, the computational cost of solving ridge s
regression is essentially identical to that of the unregularized
solution. Thanks to its simplicity, computational expedience,
and its robustness in different data regimes, ridge regression is

a very popular technique, with the classical references describ-
ing the method [1, 4] cited more than 25,000 times according
to Google Scholar.

However, beneath the apparent simplicity of ridge regres-
sion is the fact that for most applications, it is impossible to &
determine a priori the degree of regularization that yields the s
best solution. This means that in typical practice, researchers &
must test several different hyperparameter values « and se-
lect the one that yields the least cross-validation error on a set
of data specifically held out for hyperparameter selection. In
large-scale data problems, the number of data points d, num-
ber of predictors p, and/or number of targets t can be quite large.
This has the consequence that the number of hyperparameter *
values that are tested, f, can pose a prohibitive computational *
barrier. o

Given the difficulty of predicting the effect of « on solution "
outcomes, it is common practice to test values that are widely ”
distributed on a log scale (for example, see [5]). Although this ”
approach is not grounded in a particular theory, as long as
the values span a large enough range and are spaced densely
enough, an approximate minimum of the cross-validation er-
ror is likely to be found. But testing many « values can be
quite costly, and the practitioner might feel tempted to cull s
the set of values tested. In addition, it is always a possibil- 9
ity that the initial chosen range might be mismatched to the s
problem at hand. Sampling « values that are too high or too o
low will produce non-informative candidate solutions that are
either over-regularized (« too high) or too similar to the unreg-s
ularized solution (o« too low). Thus, in practice, conventional
implementations of ridge regression may produce poor solu-
tions and/or waste substantial computational time. o2

Here, we propose a simple reparameterization of ridge re-
gression that overcomes the aforementioned challenges. Our
approach is to produce coefficient solutions that have an L2-
norm that is a pre-specified fraction of the L2-norm of the un-
regularized solution. In this approach, called fractional ridge re-
gression (FRR), redundancies in candidate solutions are avoided '3
because solutions with different fractional L2-norms are guar-«
anteed to be different. Moreover, by targeting fractional L2-ws
norms that span the full range from 0 to 1, the FRR approach s
explores the full range of effects of regularization on p values
from under- to over-regularization, thus assuring that the best
possible solution is within the range of solutions explored. We
provide a fast and automated algorithm to calculate FRR, and
provide open-source software implementations in Python and
MATLAB. We demonstrate in benchmarking simulations that
FRR is computationally efficient for even extremely large data
problems, and we show that FRR applies successfully to real-ws

107

108

world data and delivers clear and interpretable results. Over-
all, FRR may prove particularly useful for researchers tackling
large-scale datasets where automation, efficiency, and inter-
pretability are critical.

Consider the dataset Y with dimensionality d (number of data
points) by t (number of targets). Each column in Y represents
a separate target for linear regression:

y=Xp+e (®

where y is the measured data for a single target (dimensionality
d by 1), X is the “design” matrix with predictors (dimensional-
ity d by p), B are the coefficients (dimensionality p by 1), and e
is a noise term. Our typical objective is to solve for 3 in a way
that minimizes the squared error. If X is full rank, the ordinary
least squares (OLS) solution to this problem is:

BOLS = (XTX)T'XTy,)
where X7 is the transpose of X. This solution optimally finds
the values of 3 that provide the minimal sum-of-squared error
on the data: 3 (y - XB)2. In cases where X is not full rank, the
OLS solution is no longer well-defined and the Moore-Penrose
pseudoinverse is used instead. We will refer to these unregu-
larized approaches collectively as OLS.

To regularize the OLS solution, ridge regression applies a
penalty («) to the squared L2-norm of the coefficients, leading
to a different estimator for 3:

BRR = (XTX + al) XTy 3)

where « is a hyperparameter and I is the identity matrix [1, 4].
For computational efficiency, it is well known that the original
problem can be rewritten using singular value decomposition
(SVD) of the matrix X [6]:

X = USVT (4)

with U having dimensionality d by p, S having dimensionality
p by p, and V having dimensionality p by p.

Note that S is a square matrix:

110

12

13

14

15

16

n7

18

19

124

125

126

127

128

129

?\1 (o]
0 A, O
s=| 0 0 A3 o0

with A; as the singular values ordered from largest to smallest.
Replacing the design matrix X with its SVD, we obtain: 130

y=USVTB +e. (5)
Given that U and V are unitary (e.g., UTU is I), left-
multiplying each side with UT produces:

UTy =SVTR +UTe. (6)

Let j = Uly, = VT, and & = Ute. These are transforma-"
tions (rotations) of the original quantities (y, B, and €) through
the unitary matrices U! and V!. In cases where p < d, this also
projects the quantities into a lower-dimensional space of di-
mensionality p. The OLS solution can be obtained in this space:

132

133

BOLS = (sTs)71sT, (1) e

135
which simplifies to: 16

BOLS = 572(5T§), (8)
where
137

138

é 0 139
0 %2 0 140
2 141
§2 - 0 0 é 0 -
143
1
i o o0 o |

is the inverse of the square of the singular value matrix S. Thus,
for a single coordinate i in the lower-dimensional space, we can

solve the OLS problem with a scalar multiplication: 14s
146

147

(9)

xoLs _ 1 ~
i M
i

which simplifies finally to

148

- i 10y

1 150

éOLs_&.

151

The SVD-based reformulation of regression described above ,,,

is additionally useful as it provides insight into the nature of ;,

ridge regression [7]. Specifically, consider the ridge regression
solution in the low-dimensional space:

154
155
156
157

BRR = (STS + ol) 15T (11) s

To compute this solution, we note that:

7\12 + o (o] .
0 A3+ o 0
2
SIS+ ol = 0 0 Ajrax 0 (12)
0 0 0 7\5 +
the inverse of which is:
- ;
)\%+oc ?
)\%Hx 0
(StS+ o)t = 0 0 M 0 (13)
1
i 0 0 0 el
Finally, plugging into equation 11, we obtain:
X A .
BRR (14)

- A2+ ocyi
i

This shows that in the low-dimensional space, ridge regres-
sion can be solved using scalar operations.

To further illustrate the relationship between the ridge re-
gression and OLS solutions, by plugging equation 10 into equa-
tion 14, we observe the following:

x A2
BR% = Pa Bors (15)
In other words, the ridge regression coefficients are simply
scaled-down versions of the OLS coefficients, with a different
amount of shrinkage for each coefficient. Coefficients associ-
ated with larger singular values are less shrunken than those
with smaller singular values.

To obtain solutions in the original space, we left-multiply
the coefficients with V:

(16)

o

p=V

We now turn to fractional ridge regression (FRR). The core
concept of FRR is to reparameterize ridge regression in terms
of the amount of shrinkage applied to the overall L2-norm of
the solution. Specifically, we define the fraction v as:

_ HBRRII,

= —= 1

l1BoLs| |, o
Because V is a unitary transformation, the L2-norm of a coeffi-
cient solution in the low-dimensional space, || 3|1, is identical
to the L2-norm of the coefficient solution in the original space,
[1B1],. Thus, we can operate fully within the low-dimensional
space and be guaranteed that the fractions will be maintained
in the original space.

In FRR, instead of specifying desired values for «, we in-
stead specify values of v between 1 (no regularization) and o
(full regularization, corresponding to shrinking all the coeffi-
cients to 3 = 0). But how can one compute the ridge regression
solution for a specific desired value of v? Based on equations 9

159

163

164

165

166

167

168

169

170

71

172

173
174

175

176
177
178

179

and 14, it is easy to calculate the value of v corresponding to a
specific given « value:
188

189

_ Ry, | 2 G 18"
[1BOLS]|,, Z()}%)z 192

193

In some special cases, this calculation can be considerably'94
simplified. For example, if the singular value spectrum of X is
flat (A; = A; for any i # j), we can set all the singular values to™
A, yielding the following: o

198
199

200

2 72 A
_ (?\2+oc)zzyi _ AN+ _ A2 (19)20'
- ~ - -)
Gryiz & Mre

203

This recapitulates the result obtained in [1], equation 2.6. We
can then solve for «: 204

205
206

207

a=A2(L -y (20)
Y 208

209
Thus, in this case, there is an analytic solution for the appro-,,
priate « value, and one can proceed to compute the ridge re-,,
gression solution using equation 14. -

Another special case is if we assume that the absolute values 21
of ﬁiOLS are all the same. In this case, we can use a few simpli—u

fications to calculate the shrinkage in terms of Li1-norm: 215
216

217

2 AOLS ”

- Z)‘i fgi 8

|||§RR||l AZ+a 29

[1BOLS|| X0LS
Chent I M5}

- 222

A5 i
LA A? ;‘ 223
>)\;"+tx 5 A (21)
-)\i2+oc
i Vi
=k
A2
£
= 225
P

226

227

Notice that this is the average of the shrinkages for individual ,
coefficients from equation 15. The sum of these shrinkages ,
(this quantity multiplied by p):

230
231
232

(22) >

234

2
Aj

Z}\i2+oc

235
has been defined as the effective degrees of freedom of ridge re—ss
gression (See [8], pg. 68). Note that the L1-norm here refers
to the rotated space and may not be identical to the L1-norm.ss
in the original space. 239

These two special cases have the appealing feature that the
regularization level can be controlled on the basis of examin-«
ing only the design matrix X. However, they rely on strong
assumptions that are not guaranteed to hold in general. Thus,**
for accurate ridge regression outcomes, we see no choice but to?:
develop an algorithm that uses both the design matrix X and

the data values y. 245
246

247

Our proposed algorithm for solving FRR is straightforward: it
evaluates vy for a range of « values and uses interpolation
to determine the o« value that achieves the desired fraction
v. Although this method relies on brute force and may not
seem mathematically elegant, it achieves accurate outcomes
and, somewhat surprisingly, can be carried out with minimal
computational cost.

The algorithm receives as input a design matrix X, target
variables Y, and a set of requested fractions y. The algorithm
calculates the FRR solutions for all targets in Y, returning esti-
mates of the coefficients {3 as well as the values of hyperparam-
eter « that correspond to each requested y. In the text below,
we indicate the lines of code that implement each step of the
algorithm (see also section Software implementation below) in
the MATLAB (designated with “M”) and Python (designated
with “P”) implementations.

i. Compute the SVD of the design matrix, USVT = X (M251,
P151). To avoid numerical instability, very small singular val-
ues of X are treated as 0.

ii. The data are transformed y = UTy (M258, P62).
iii. The OLS problem is solved with one broadcast division
operation (equation 10) (M276, P64).
iv. The values of « that correspond to the requested y value
are within a range that depends on the singular values of
X (by equation 18). A series of initial candidate values of «
are selected to span a log-spaced range from 10‘37\5, much
smaller than the smallest singular value of the design ma-
trix, to 103A2, much larger than the largest singular value
of the design matrix (M302, P165-168). Based on testing on
a variety of regression problems, we settled on a spacing of
0.2 logyp units within the range of candidate « values. This
provides fine enough gridding such that interpolation results
are nearly perfect (empirical fractions are approximately 1%
or less from the desired fractions).

v. Based on equation 15, a scaling factor for every value of
o and every singular value A is calculated as (M316, P173):

SF;j = AT+ o)

; (23)

vi. The main loop of the algorithm iterates over targets. For
every target, the scaling in equation 23 is applied to the com-
puted OLS coefficients (from Step 3), and the L2-norm of
the solution at each «; is divided by the L2-norm of the OLS
solution to determine the fractional length, Yj (M336-349,
P188-191). Because the relationship between « and v may be
different for each target, the algorithm requires looping over
targets and cannot take advantage of broadcasting across tar-
gets.

vii. Interpolation is used with «; and v; to find values of
o that correspond to the desired values of v (M367, P194).
These target « values are then used to calculate the ridge re-
gression solutions via equation 15 (M373, P203).

viii. After the iteration over targets is complete, the solutions
are transformed to the original space by multiplying = st
(M422, P207).

In terms of performance, this algorithm requires just one
(potentially computationally expensive) initial SVD of the de-
sign matrix. Operations done on a per-target basis are gen-
erally inexpensive, relying on fast vectorized array operations,
with the exception of the interpolation step. Although a large
range of candidate « values are evaluated internally by the algo-
rithm, these values are eventually discarded, thereby avoiding
costs associated with the final step (multiplication with V).

https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L251
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L151
https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L258
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L62
https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L276
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L64
https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L302
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L165-L168
https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L316
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L173
https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L336-L349
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L188-L191
https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L367
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L194
https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L373
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L203
https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L422
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L207

249
250
251
252
253
254
255
256
257
258

259

272
273
274
275
276

277

289
290
291
292
293
294
295
296
297
298

299

We implemented the algorithm described in section Algorithm
in two different popular statistical computing languages: MAT-
LAB and Python (example code in Figure 1). The code for
both implementations is available at https://github.com/nrdg/
fracridge and released under an OSI-approved, permissive
open-source license to facilitate its broad use. In both MATLAB
and Python, we used broadcasting to rapidly perform compu-
tations over multiple dimensions of arrays.

There are two potential performance bottlenecks in the code.
One is the SVD step which is expensive both in terms of mem-
ory and computation time. In the case where d < p (the number
of data points is smaller than the number of parameters), the
number of singular values is set by d. In the case where d > p
(the number of data points is larger than the number of pa-
rameters), the number of singular values is set by p, and our
implementation exploits the fact that we can replace the sin-
gular values of X by the square roots of the singular values of
XTX, which is only p by p. This optimization requires less mem-
ory for the SVD computation than an SVD of the full matrix X.
The other potential performance bottleneck is the interpolation
performed for each target. To optimize this step, we used fast
interpolation functions that assume sorted inputs.

MATLAB

The MATLAB implementation of FRR relies only on core MAT-
LAB functions and a fast implementation of linear interpolation
[9], which is copied into the fracridge source code, together
with its license, which is compatible with the fracridge license.
The MATLAB implementation includes an option to automati-
cally standardize predictors (either center or also scale the pre-
dictors) before regularization, if desired.

Python

The Python implementation of FRR depends on Scipy [10] and
Numpy [11]. The object-oriented interface provided conforms
with the API of the popular Scikit-Learn library [12, 13], includ-
ing automated tests that verify compliance with this API (us-
ing Scikit Learn’s check_estimator function, which automati-
cally confirms this compliance). In addition to an estimator
that fits FRR, a cross-validation object is implemented, using
Scikit Learn’s grid-search cross-validation API. Unit tests are
implemented using pytest [14]. Documentation is automat-
ically compiled using sphinx, with sphinx-gallery examples
[15]. The Python implementation also optionally uses Numba
[16] for just-in-time compilation of a few of the underlying
numerical routines used in the implementation. This function-
ality relies on an implementation provided in the hyperlearn
library [17] and copied into the fracridge source-code, together
with its license, which is compatible with the fracridge license.
In addition to its release on GitHub, the software is available
to install through the Python Package Index (PyPI) through
the standard Python Package Installer (pip install fracridge).
For Python, we did not implement standardization procedures,
as those are implemented as a part of Scikit-Learn.

Numerical simulations were used to characterize FRR and com-

pare it to a heuristic approach for hyperparameter selection.,,,
Simulations were conducted using the MATLAB implementa-,,
tion. We simulated two simple regression scenarios. The num-,,
ber of data points (d) was 100, and the number of predictors ,,,
(p) was either 5 or 100. In each simulation, we first created a,,,
design matrix X (d, p) using the following procedure: (i) gener-,,
ate normally distributed values for X, (ii) induce correlation be-

Matlab

randn(100,1);
X = randn(100,10);

% Calculate coefficients with naive OLS

coef = inv(X’*X)*X’*y;

% Call the fracridge function:
[coef2, alphal = fracridge(X, 0.3, y);

% Calculate coefficients with naive RR
alphal = alpha*eye(size(X, 2));
coef3 = inv(X’*X + alphal)*X’*y;

norm(coef)
norm(coef2)
norm(coef2) ./ norm(coef)

norm(coef2-coef3)

Python

import numpy as np
from numpy.linalg import inv, norm
from fracridge import fracridge

np.random.randn(100)

o<
I n

= np.random.randn(100, 10)

Calculate coefficients with naive OLS
coef = inv(X.T @ X) e X.T @y

Call fracridge function:
coef2, alpha = fracridge(X, y, 0.3)

Calculate coefficients with naive RR
alphal = alpha * np.eye(X.shape[1])
coef3 = inv(X.T @ X + alphal) @ X.T @ y

print (norm(coef))

print (norm(coef2))

print (norm(coef2) / norm(coef))
print (norm(coef2 - coef3))

sklearn-compatible object-oriented API:
from fracridge import FracRidgeRegressor
fr = FracRidgeRegressor (fracs=0.3)
fr.fit(X, y)

coef_oo = fr.coef_

alpha_oo = fr.alpha_

print (norm(coef_oo) / norm(coef))

sklearn-style grid search cross-validation:

from fracridge import FracRidgeRegressorCV

frcv = FracRidgeRegressorCV(frac_grid=np.arange(0.1, 1, 0.1))
frev.fit (X, y)

best_frac = frcv.best_frac_

print (best_frac)

print (norm(frcv.coef_) / norm(coef))

Figure 1. Code examples. Top: MATLAB examples that demonstrate the soft-
ware API and correctness of the implementation. Bottom: Python examples
demonstrate a similar API and correctness. Python examples include the Scikit-
Learn-compatible API.

tween predictors by selecting two predictors at random, setting
one of the predictors to the sum of the two predictors plus nor-
mally distributed noise, and repeating this procedure 2p times,
and (iii) z-scoring each predictor. Next, we created a set of
“ground truth” coefficients g with dimensions (p,1) by draw-
ing values from the normal distribution. Finally, we simulated

https://github.com/nrdg/fracridge
https://github.com/nrdg/fracridge
https://github.com/nrdg/fracridge

334
335
336

337

353
354
355
356
357
358

359

responses from the model (y = Xp3) and added normally dis—»
tributed noise, producing a target variable y with dimensionss
(d) 1) . 381

Given design matrix X and target y, cross-validated regres—s.
sion was carried out. This was done by splitting X and y intoss
two halves (50/50 training/testing split), solving ridge regres—s,
sion on one half (training) and evaluating generalization per—ss
formance of the estimated regression g weights on the otherss
half (testing). Performance was quantified using the coeffi—s;
cient of determination (R?). For standard ridge regression, we ss
evaluated a grid of « values that included 0 and ranged fromsss
104 through 1055 in increments of 0.5 log;o units. For FRR o
we evaluated a range of fractions v from 0 to 1 in increments s
of 0.05. Thus, the number of hyperparameter values was f = 213

in both cases. 393
The code that implements these simulations is available ins,
the “examples” folder of the software. 395

To characterize the performance of fractional ridge regression’’
(FRR) and standard ridge regression (SRR) approaches, a set™”’
of numerical benchmarks was conducted using the MATLAB *"
implementation. A range of regression scenarios were con-"
structed. In each experiment, we first constructed a design*”
matrix X (d, p) consisting of values drawn from a normal dis—"**
tribution. We then created “ground truth” coefficients g (p, t)*”
also by drawing values from the normal distribution. Finally,406
we generated a set of data Y (d, t) by predicting the model re-""
sponse (y = Xp) and adding zero-mean Gaussian noise with*"
standard deviation equal to the standard deviation of the data*”
from each target variable. Different levels of regularization (f)“°
were obtained for SRR by linearly spacing « values on a log;o "
scale from 1074 to 105 and for FRR by linearly spacing fractions “*
from 0.05 to 1 in increments of 0.05.

Two versions of SRR were implemented and evaluated.
The first version (naive) involves a separate matrix pseudo-
inversion for each hyperparameter setting desired. The second
version (rotation-based) involves using the SVD decomposition
method described above (see section Background and theory,
specifically equation 14).

All simulations were run on an Intel Xeon E5-2683 2.10 Ghz
(32-core) workstation with 128 GB of RAM, a 64-bit Linux oper-"’
ating system, and MATLAB 8.3 (R2014a). Execution time was e
logged for model fitting procedures only and did not include **
generation of the design matrix or the data. Likewise, memory*”
requirements were recorded in terms of additional memory us-""
age during the course of model fitting (i.e. zero memory usage
corresponds to the total memory usage just prior to the start
of model fitting). Benchmarking results were averaged across
15 independent simulations to reduce incidental variability. **

The code that implements these benchmarks is available in”
the “examples” folder of the software. 7

416

428

429

430

431
Brain functional magnetic resonance imagining (fMRI) data:
were collected as part of the Natural Scenes Datasets:
(http://naturalscenesdataset.org). Data were acquired in a 7.
Tesla MRI instrument, at a spatial resolution of 1.8 mm and a s
temporal resolution of 1.6 s and using a matrix size of [81 1044
83]. This yielded a total of 783,432 voxels. Over the course
of 40 separate scan sessions, a neurologically healthy partic-s
ipant viewed 10,000 distinct images (3 presentations per im-ss
age) while fixating a small dot placed at the center of the im-.o
ages (see Figure 3A). The images were 8.4 deg by 8.4 deg in size...
Each image was presented for 3 s and was followed by a 1s gap..

Standard pre-processing steps were applied to the fMRI data
to remove artifacts due to head motion and other confounding
factors. To deal with session-wise nonstationarities, response
amplitudes of each voxel were z-scored within each scan ses-
sion. Responses were then concatenated across sessions and
averaged across trials of the same image, and then a final z-
scoring of each voxel’s responses was performed. The partic-
ipant provided informed consent and the experimental proto-
col was approved by the University of Minnesota Institutional
Review Board. For the purposes of the example demonstrated
here, only the first 37 of the 40 scan sessions are provided (data
are being held out for a prediction challenge), yielding a total
of 9,841 distinct images.

A regression model was used to predict the response ob-
served from a voxel in terms of local contrast present in the
stimulus image. In the model, the stimulus image is pre-
processed by taking the original color image (425 pixels by 425
pixels by 3 RGB channels), converting the image to grayscale,
gridding the image into 25 by 25 regions, and then computing
the standard deviation of luminance values within each grid re-
gion (Figure 4B). This produced 625 predictors, each of which
was then z-scored. The design matrix X has dimensionality
9,841 images by 625 stimulus regions, while Y has dimension-
ality 9,841 images by 783,432 voxels.

Cross-validation was carried out using a 80/20 train-
ing/testing split. For standard ridge regression, we evaluated
a grid of alpha values that included o and ranged from 1074
to 105-> in increments of 0.5 log;o units. For fractional ridge
regression, we evaluated a range of fractions from o0 to 1 in
increments of 0.05. Cross-validation performance was quan-
tified in terms of variance explained on the test set using the
coefficient of determination (R2).

The code that implements these analyses is available in the
“examples” folder of the software.

In simulations, we demonstrate that the fractional ridge re-
gression (FRR) algorithm accurately produces the desired frac-
tions v (Figure 2 A,B second row, right column in each). We
compare the results of FRR to results of standard ridge regres-
sion (SRR), in which a commonly-used heuristic is used to se-
lect « values (log-spaced values spanning a large range). For
the SRR approach, we find that the fractional L2-norm is very
small and virtually indistinguishable for large values of «, and
is very similar to the OLS solution (fractional L2-norm approx-
imately 1) for several small values of « (Figure 2 A, B second
row, left column). In addition, cross-validation accuracy is in-
distinguishable for many of the values of « evaluated in SRR.
Only very few values of « produce cross-validated R? values
that are similar to the value provided by the best « (Figure 2 A,
B first row, left column).

The SRR results can also be re-represented using effective
degrees of freedom (DOF; Figure 2 A, B first row, middle col-
umn): several values of « result in essentially the same num-
ber of DOF, because these values are either much larger than
the largest singular value or much smaller than the smallest
singular value of X. In contrast to SRR, FRR produces a nicely
behaved range of cross-validated R? values and dense sampling
around the peak R?.

Another line of evidence highlighting the diversity of the
solutions provided by FRR is given by inspecting coefficient
paths: in the log-spaced case, coefficients start very close to
0 (for high «) and rapidly increase (for lower «). Even when

https://github.com/nrdg/fracridge/blob/1.2/examples/paper_figures/Fig1.m
https://github.com/nrdg/fracridge/blob/1.2/examples/paper_figures/Fig2.m
https://github.com/nrdg/fracridge/blob/1.2/examples/paper_figures/Fig3.m

443

44h

445

Standard Ridge Regression

>

Fractional Ridge
Regression

B

[o2]
o

N
o

Ny
o

Training R? (%)
Testing R? (%)

L2-norm of
beta weights

L2-norm of
beta weights

o

Beta weight

4 2 0 -2
Logm(alpha)

4 0 2 4
Degrees of freedom

0 2 46 81
Fraction

Standard Ridge Regression

Fractional Ridge
Regression

—_
o
o

u
o

Training R? (%)

Beta weight

42 024 0

20 40
Degrees of freedom

02 46 81

Log10(alpha) Fraction

Figure 2. Fractional ridge regression (FRR) achieves desired outcomes. (A) Example regression scenario (d = 100, p = 5). The first two columns show the
results of standard ridge regression in which log-spaced « values are used to obtain different levels of regularization. Whereas the first column shows results as a

function of logyo(«), the second column shows results as a function of « values co:

nverted to effective degrees of freedom (see Methods). The third column shows

the results of fractional ridge regression in which different regularization levels are achieved by requesting specific fractional L2-norm (v). Solid blue dots mark

peak cross-validation performance. Vertical gray lines in the third column indica

te regression solutions obtained by the FRR method (requested fractions range

from 0 to 1 in increments of 0.05). The corresponding locations of these regression solutions in the first and second columns are also shown using vertical gray

lines. The bottom row shows coefficient paths, i.e., the values of g as a function
(d = 100, p = 100). Same format as panel A. Notice that in both scenarios, only th
with gradually changing coefficient paths.

re-represented using DOF, the coefficient paths exhibit some s
redundancy. In contrast, FRR provides more gradual change.»
in the coefficient paths, indicating that this approach explores.s.
the space of possible coefficient configurations more uniformly..s
Taken together, these analyses demonstrate that FRR provides .
a more useful range of regularization levels than SRR. 483

484

A question of relevance to potential users of FRR is whether
using the method incurs significant computational cost. We,ss
compare FRR to two alternative approaches. The first approach s,
is a naive implementation of the matrix inversion specified in s
equation 3, in which the Moore-Penrose pseudo-inverse (im-s,
plemented as pinv in Matlab and numpy.1linalg.pinv in Python),s,
is performed independently for each setting of hyperparameter
«. The second approach takes advantage of the computational,,.
expedience of the SVD-based approach: instead of a matrix in—,;
version for each « value, a single SVD is performed, a transfor,
mation (rotation) is applied to the data, and different values of
o are plugged into equation 14 to compute the regression co-,s
efficients. This approach comprises a subset of the operations,,,
taken in FRR. Therefore, it represents a lower bound in terms,s
of computational requirements. 499
Through systematic exploration of different problem sizes,soo
we find that FRR performs quite favorably. FRR differs from so
the rotation-based approach only slightly with respect tos.:
execution-time scaling in the number of data points (Figureso:
34, left column), in the number of parameters (Figure 3A, rightso.
column), and in f, the number of hyperparameter values con-sos
sidered (Figure 3A, third column). The naive matrix-inversionsos
approach is faster than both SVD-based approaches (FRR and,,,
rotation-based) for f < 20, but rapidly becomes much more,,
costly for values above 20. This approach also scales rather,,,
poorly for p > 5,000. 510
In terms of memory consumption, the mean and maximum s
memory usage are very similar for FRR and the naive ands:

of logio(«), degrees of freedom, or fraction y. (B) Example regression scenario
e FRR method achieves regression solutions whose L2-norms increase linearly,

rotation-based SRR solutions. These results suggest that for
each of these approaches, the matrix inversion (for the naive
implementation of SRR) or the SVD (for FRR and the rotation-
based SRR) represents the main computational bottleneck. Im-
portantly, despite the fact that FRR uses additional gridding
and interpolation steps, it does not perform substantially worse
than either of the other approaches.

To demonstrate the practical utility of FRR, we explore its appli-
cation in a specific scientific use-case. Data from a functional
magnetic resonance imaging (fMRI) experiment were analyzed
with FRR and the results of this analysis were compared to a
standard ridge regression (SRR) approach where « values are
selected using a log-spaced heuristic. Different parts of the
brain process different types of information, and a large swath
of the cerebral cortex is known to respond to visual stimu-
lation. Experiments that combine fMRI with computational
analysis provide detailed information about the responses of
different parts of the brain [18]. In the experiments analyzed
here, a series of images are shown and the blood-oxygenation-
level-dependent (BOLD) signal is recorded in a sampling grid
of voxels throughout the brain (Figure 4A). In the cerebral cor-
tex, each voxel contains hundreds of thousands of neurons. If
these neurons respond vigorously to the visual stimulus pre-
sented, the metabolic demand for oxygen in that part of cor-
tex will drive a transient increase in oxygenated blood in that
region, and the BOLD response will increase. Thus, a model
of the BOLD response tells us about the selective responses of
neurons in each voxel in cortex.

Because neurons in parts of the cerebral cortex that respond
to visual stimuli are known to be particularly sensitive to local
contrast, we model responses with respect to the standard devi-
ation of luminance in each region of the image, rather than the
luminance values themselves (Figure 4B). In the model, Y con-
tains brain responses where each target (column) represents

-©- Standard Ridge Regression (naive)

-©- Fractional Ridge Regression

Standard Ridge Regression (rotation-based)

@e—o—o——° 4 250 300
2% d=5000 f=20
2 40 600 200 250
£ ; 200
c 30 50
) 400 150
E 100
3 20 100
o 200
g 10 50 50
0 0 0
0 10000 20000 5000 10000 15000 0 25 50 75 100 O 25000 50000

o

7
— 6
m
o} 5
= 4
g 3
S 2
N I
0! 0
0 10000 20000 5000 10000 15000
Number of Number of
data points (d) predictors (p)

—— Maximum memory usage --

-- Mean memory usage

o = N W » 01O N

0
100 0

0 25 50 75

Number of
hyperparameters (f)

25000

Number of
targets ()

50000

Figure 3. Computational efficiency. We benchmarked different methods for performing ridge regression: (1) a naive implementation of standard ridge regression
(involving log-spaced « values) in which matrix inversion is performed for each « value, (2) an implementation of standard ridge regression in which solutions
are computed in a rotated space based on singular value decomposition of the design matrix, and (3) the FRR method. Starting from a base case (d = 5,000,
p = 5,000, f = 20, b = 1,000; parameter settings marked by vertical lines), we systematically manipulated d, p, f, and b (columns one through four, respectively).
(A) Execution time. The execution time of each method is shown in seconds. (B) Memory usage. The maximum memory usage of each method is shown as a solid
line, whereas the time-averaged memory usage is shown as a dotted line. Overall, FRR is quite fast and has relatively modest memory requirements.

the responses in a single voxel. Each row contains the response s
of all voxels to a particular image. The design matrix X con-u
tains the local contrast in every region of the image, for everyss
image. This means that the coefficients B represent weightss.s
on the stimulus image and indicate each voxel’s spatial selec-
tivity - i.e., the part of the image to which the voxel responds
[19]. Therefore, one way to visualize { is to organize it accord-
ing to the two-dimensional layout of the image (Figure 4C&D,
bottom two rows). 548
549
Using FRR, we fit the model to voxel responses, and find ro—so
bust model performance in the posterior part of the brain where ss
visual cortex resides (left part of the horizontal slice presented ss
in the top row of Figure 4C). The performance of the modelss:
can be observed in either the cross-validated R? values (Figure ss.
4C, top row, left and middle panels) or the value of v corre—sss
sponding to the best cross-validated R? (top row, right panel).ss
The v values corresponding to best performance provide addi-ss
tional information about the differences between different tar-ss
gets, providing additional interpretation of the data. For exam-sss
ple, we can focus on the two voxels highlighted in the middleseo
panel of the top row in Figure 4C. One voxel, whose character-s«
istics are further broken down in Figure 4D has lower cross-—s:
validated R? = 4% and requires stronger relative regularizationss
(v = 0.15). The spatial selectivity of this voxel’s responses be-ss,
comes very noisy at large y values and R? approaches 0. On the s
other hand, the voxel in Figure 4E has a higher best v = 0.35s¢s
and a higher cross-validated R? = 13%. Moreover, this voxelss
appears more robust with higher values of v producing lessses
spatially noisy results. The map of R? and v illustrated in Fig-e
ure 4C also show that these trends hold more generally: vox—s.

els with more accurate models require less relative regulariza-
tion. This demonstrates the additional interpretable informa-
tion provided by the best v values in individual targets and by
inspecting spatial maps of these best -y values.

The main theoretical contribution of this work is a novel ap-
proach to hyperparameter specification in ridge regression. In-
stead of the standard approach in which a heuristic range of val-
ues for hyperparameter « are evaluated for their accuracy, the
fractional ridge regression (FRR) approach focuses on achiev-
ing specific fractions for the L2-norms of the solutions rela-
tive to the L2-norm of the unregularized solution. In a sense,
this is exactly in line with the original spirit of ridge regres-
sion, which places a penalty on the L2-norm of the solution.
The main practical contribution of this work is the design and
implementation of an efficient algorithm to solve FRR and vali-
dation of this algorithm on simulated and empirical data. Note
that the FRR algorithm can be viewed as method for finding ap-
propriate « values that are adapted to the data such that they
span the range of possible regularization strengths. Thus, it
is fundamentally still a method that solves the standard ridge
regression problem.

We emphasize that in theory, FRR and SRR are not expected
to give different solutions to the linear regression problem.
However, in practice, the solutions may very well differ and
this will depend on the heuristic set of alpha values used in
the SRR approach. What fractional ridge regression provides is
a method to automatically ensure proper setting of alpha val-

573

574

575

Fixation
dot

Grayscale

Std dev

Grid (25 x 25)

Brain Local Beta) d = 9,841 images
responses contrast weights Residuals _ .
M dxt dxp pxt dxt P=625locations
3s ~_ N/ _— f = 20 hyperparameters
eee | 1|_|S L Lee Y=XB+€ t =783,432 voxels

Example voxel shown in

Smaller alphas —>»

Beta weights

Higher fractions =

Cross-validation performance

-0.08

Fraction

20% 1
15% 08
0.6
0.4
0.2

0

10%

5%

0%

panel D

E

Standard Ridge Regression Fractional Ridge

Standard Ridge Regression Fractional Ridge

T | Regression T] Regression
210 i Tg
el 10
< D
25 5 5
k= 3
o [
= o0

0 300 600

[2]
£ 06
S
©
2 04
k]
€ 02
[e]
S
V]
- 42 0-2-4 0 300 600 42 0-2-4 0 300 600

Logm(alpha) DOF Fraction Logm(alpha) DOF Fraction

Smaller alphas —>

Beta weights

Higher fractions =

Example voxel shown in panel E

-0.16

Figure 4. Demonstration on real-world data. (A) Visual fMRI experiment. Functional MRI measurements of brain activity were collected from a human participant
while s/he viewed a series of natural images. (B) Model of brain activity. Images were converted to grayscale and gridded, and then standard deviation of luminance
values within each grid element was calculated. This produced measures of local contrast. Brain responses at every voxel were modeled using a weighted sum of
local contrast. (C) Results obtained using FRR. Cross-validated performance (variance explained) achieved by the model is shown for an axial brain slice (middle).
These results are thresholded at 5% and superimposed on an image of brain anatomy for reference (left). The fraction (y) corresponding to the best cross-validation
performance is also shown (right). (D) Detailed results for one voxel (see green squares in panel C). The main plots that depict training and testing performance and
L2-norm are in the same format as Figure 1. The inset illustrates coefficient solutions for different regularization levels. The blue box highlights the regularization
level producing highest cross-validation performance. (E) Detailed results for a second voxel. Same format as panel D.

ues. Note that in the examples of SRR that we presented (e.g.s:s
Figure 2 and Figure 4), well-selected heuristic ranges of alphas;
values were used. This is done deliberately, as poor ranges of s:s
alpha values would have resulted in examples that are not verys:»
informative for this manuscript. However, in everyday prac-

tice, a user of the standard ridge regression approach might
inadvertently use an inappropriate range of alpha values and
obtain poor results. Overall, we suggest that FRR can serve as
a default approach to solving ridge regression.

581

647

648
i. Theoretically-motivated and principled. The results
demonstrate that the theoretical motivation described in the
Methods holds in practice. Our implementation of FRR pro-
duces ridge regression solutions that have predictable and
tuneable fractional L2-norm.

ii. Statistically efficient. Each fraction level returned by
FRR produces B values that are distinctly different. ThlS
avoids the common pitfall in the log-spaced approach
whereby computation is wasted on several values of « that”
all over-regularize or under-regularize. When used w1th6 .
a range of v values from 0 to 1, the solution that m1n1—6)
mizes cross-validation error is guaranteed to exist W1th1n
this range (although it may lie in between two of the obtamed
solutions).

iii. Computationally efficient. We show that our lmplemen— .
tation of FRR requires memory and computational time thatm
are comparable to a naive ridge regression approach and to an_
approach that uses SVD but relies on preset « values. SVD—
based approaches (including FRR) scale linearly in f, with "™
compute-time scaling better than naive RR in the f > 20 6:
regime. In practice, we have found that f = 20 evenly dls—667
tributed values between 0 and 1 provide sufficient coverage
for many problems. But the linear scaling implies that sam-
pling more finely would not be limiting in cases where addl-
tional precision is needed.

iv. Interpretable. FRR uses y values that represent scahng
relative to the L2-norm of the OLS solution. This allows"”
FRR results to be compared across different targets w1th1n67j
a dataset. This is exemplified in the results from an fMRI ex-
periment that are interpreted both in light of cross- vahdated
R? and the optimal v that leads to the best cross- vahdated
R?. Moreover, regularization in different datasets and for o
different models (e.g., different settings of X) can be com—
pared to each other as being stronger or weaker. The optlmal .o
regularization level can be informative regarding the signal-
to-noise of a particular target or about the level of collinear-
ity of the design matrix (which both influence the optimal
level of regularization). FRR increases the interpretability of
ridge regression, because instead of an unscaled, relativelyss.
inscrutable value of «, we receive a scaled, relatively inter-s
pretable value. Based on a recently proposed framework forss,
interpretability in machine learning methods [20], we believess
that this kind of advance improves the descriptive accuracysss
of ridge regression. 687
v. Automatic. Machine learning algorithms focus on au-ss
tomated inferences, but many machine learning algorithmsess
still require substantial manual tuning. For example, if theesso
range of « values used is not sufficient, users of ridge re-s»
gression may be forced to explore other values. This is im-s:
practical in cases in which thousands of targets are analyzed s
and multiple models are evaluated. Thus, FRR contributeses
to the growing field of methods that aim to automate ma-s
chine learning methods [21, 22]. These methods all aim to re-ss
move the burden of manual inspection and tuning of machiness,
learning. A major benefit of FRR is therefore practical in na-ss
ture: Because FRR spans the dynamic range of effects thatess
ridge regression can provide, using FRR guarantees that thesoo
time taken to explore hyperparameter values is well spent.so
Moreover, the user does not have to spend time speculating ..
what « values might be appropriate for a given problem (e.g.zo
is 104 sufficiently high?). 704
vi. Implemented in usable open-source software. We pro—os
vide code that is well-documented, thoroughly tested, ando
easy to use: https://github.com/nrdg/fracridge. The soft—o
ware is available in two popular statistical programming lan—.s
guages: MATLAB and Python. The Python implementationes

provides an object-oriented interface that complies with the
popular Scikit-Learn library [12, 13].

To select the level of regularization to apply in practice, users of
FRR will likely use cross-validation. An open question is how
to aggregate the results of FRR over multiple cross-validation
splits. This is a general issue for any analysis that uses cross-
validation to set hyperparameters. Nevertheless, here we pro-
vide some ideas for how users can apply FRR in practice: (i) one
could determine the optimal fraction using cross-validation on
a single training/testing split (e.g. 80/20), and obtain a single
model solution and a corresponding optimal fraction, (ii) one
could determine the optimal fraction using cross-validation on
a single training/testing split and then adopt that fraction for
solving the regression on the full dataset, with the understand-
ing that this may yield a slightly over-regularized solution; (iii)
one could determine the optimal fraction in different cross-
validation splits of the data (e.g. n-fold cross-validation) and
then average the determined fraction across the splits and av-
erage the estimated regression weights across the splits.

Fractional ridge regression is naturally integrated into a
cross-validation framework where solutions reflecting differ-
ent fractional lengths are obtained for a given set of data
and evaluated for their predictive performance on held-out
data. In the Python version of our software, this is imple-
mented through an object that automatically performs a grid
search to find the best value of v among user-provided val-
ues. An alternative to performing cross-validation is the tech-
nique of generalized cross-validation (GCV). In GCV, for a given
o« value, matrix operations are used to efficiently estimate
cross-validation performance without actually having to per-
form cross-validation [23]. It might be possible to combine
the insights of FRR (e.g. the identification of interpretable and
appropriate « values) with GCV.

One limitation of FRR is that a heuristic approach is used within
the algorithm to generate the grid of « values used for interpo-
lation (see section for details). Nonetheless, the interpolation
results are quite accurate, and costly computations are carried
out only for final desired « values. Another limitation is that
the « value that corresponds to a specific v may be different
for different targets and models. If there are theoretical rea-
sons to retain the same « across targets and models, the FRR
approach is not appropriate. But this would rarely be the case,
as « values are usually not directly interpretable. Alternatively,
FRR can be used to estimate values of « on one sample of the
data (or for one model) and these values of « can then be used
in all of the data (or all models).

Finally, the FRR approach is limited to ridge regression and
does not generalize easily to other regularization approaches.
The Lasso [24] provides regression solutions that balance least-
squares minimization with the Li-norm of the coefficients,
rather than the L2-norm of the coefficients. The Lasso ap-
proach has several benefits, including results that are more
sparse and potentially easier to interpret. Similarly, Elastic Net
[25] uses both L1- and L2-regularization, potentially offering
more accurate solutions. But because the computational imple-
mentation of these approaches differs quite substantially from
ridge regression, the approach presented in this paper does not
translate easily to these methods. Moreover, while these meth-
ods allow regularization with a non-negativity constraint on
the coefficients, this constraint is not easily incorporated into
L2-regularization. On the other hand, a major challenge that

https://github.com/nrdg/fracridge

735

736

746

749

750

arises in Li-regularization is computational time: most algo—ss
rithms operate for one target at a time and incur substantialseo
computational costs, and scaling such algorithms to the thou—e
sands of targets in large-scale datasets may be difficult. 762

763

764

An important extension of the present work would be an imple-
mentation of these ideas in additional statistical programming
languages, such as the R programming language, which is very
popular for use in statistical analysis of data from many differ-
ent domains. One of the most important tools for regularized
regression is the glmnet software package which was originally
implemented in the R programming language [26] and has im-
plementations in MATLAB [27] and Python [28]. The software
also provides tools for analysis and visualization of coefficient
paths and of the effects of regularization on cross-validated er-
ror. The R glmnet vignette [29] demonstrates the use of these”
tools. In addition to identifying the « value that minimizes ™
cross-validation error, glmnet also identifies the « which gives’”
the most regularized model such that the cross-validated error”
is within one standard error of the minimum cross-validated ™
error. This approach acknowledges that there is some error in"”
selecting « and chooses to err on the side of a more parsimo-""
nious model [5]. Future extensions of FRR could implement’”’
this heuristic.

o

3

The authors would like to thank Noah Simon for helpful dis-"*
cussions and Noah Benson for comments on the manuscript. "

+ Project name: Fractional Ridge Regression 789
- Project home page: http://github.com/nrdg/fracridge 790
+ Operating system(s): Platform independent I
- Programming language: Python and MATLAB 792
- License: 3-clause BSD 3
- Biotools URL: https://bio.tools/fracridge 794
+ SciCrunch RRID: SCR_ 019045 795

799
Code and data to reproduce the figures in this manuscript aresoo
available under a CC-BY license through GigaDB [30]. 801
802
803
804

05

8
Consent to publish has been obtained from the fMRI subject as,
part of the informed consent procedure (see Methods).

06

807

The authors declare no competing interests.

AR was funded through a grant from the Gordon & Betty Moore sis
Foundation and the Alfred P. Sloan Foundation to the Uni-sy
versity of Washington eScience Institute, through NIH grants ss
1RF1MH121868-01 (PI: AR) from the National Institute for Men-s
tal Health and 5R01EB027585-02 (PI: Eleftherios Garyfallidis,so

Indiana University) from the National Institute for Biomedical
Imaging and Bioengineering and through NSF grants 1934292
(PI: Magda Balazinska, University of Washington). KK was
supported by NIH P41 EB015894. Collection of MRI data was
supported by NSF I1IS-1822683, NSF I1IS-1822929, NIH Si0
RR026783, and the W.M. Keck Foundation.

AR and KK conceived the algorithm. AR and KK implemented
software. KK conducted simulations and data analysis. AR and
KK wrote the manuscript.

1. Hoerl AE, Kennard RW. Ridge regression: Biased es-
timation for nonorthogonal problems. Technometrics
1970;12(1):55-67.

2. Stone M. Cross-validation: A review. Statistics: A Journal
of Theoretical and Applied Statistics 1978;9(1):127-139.

3. Stone M. Cross-validatory choice and assessment of sta-
tistical predictions. Journal of the Royal Statistical Society:
Series B (Methodological) 1974;36(2):111-133.

4. Tikhonov AN, Arsenin VY. Solutions of ill-posed problems.
Wiley; 1977.

5. Friedman J, Hastie T, Tibshirani R. Regularization paths
for generalized linear models via coordinate descent. Jour-
nal of statistical software 2010;33(1):1.

6. Hastie T, Tibshirani R. Efficient quadratic regularization
for expression arrays. Biostatistics 2004 Jul;5(3):329-340.

7. Skouras K, Goutis C, Bramson M. Estimation in linear mod-
els using gradient descent with early stopping. Statistics
and Computing 1994;4(4):271-278.

8. Hastie T, Tibshirani R, Friedman J. The Elements of Sta-
tistical Learning. Springer Series in Statistics, New York,
NY, USA: Springer New York Inc.; 2001.

9. Mier JM, Quicker 1D linear interpolation: interpiqr; 2020.
https://www.mathworks.com/matlabcentral/fileexchange/
43325-quicker-1d-linear-interpolation-interpiqr.

10. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy
T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms
for scientific computing in Python. Nat Methods 2020
Mar;17(3):261-272.

11. van der Walt S, Colbert SC, Varoquaux G. The NumPy Array:
A Structure for Efficient Numerical Computation. Comput-
ing in Science Engineering 2011 Mar;13(2):22-30.

12. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion
B, Grisel O, et al. Scikit-learn: Machine learning in Python.
the Journal of machine Learning research 2011;12:2825-
2830.

13. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A,
Grisel O, et al. API design for machine learning software:
experiences from the scikit-learn project. arXiv preprint
arXiv:13090238 2013;.

14. Krekel H, Oliveira B, Pfannschmidt R, Bruynooghe F,
Laugher B, Bruhin F, pytest 5.4.1; 2004—. https://github.
com/pytest-dev/pytest.

15. Oscar Ndjera, Larson E, Estéve L, Varoquaux G, Grobler J,
LiuL, etal., sphinx-gallery/sphinx-gallery: Release v0.6.1.
Zenodo; 2020. https://doi.org/10.5281/zenodo.3741781.

16. Lam SK, Pitrou A, Seibert S. Numba: a LLVM-based Python
JIT compiler. In: Proceedings of the Second Workshop on
the LLVM Compiler Infrastructure in HPC No. Article 7 in
LLVM ’15, New York, NY, USA: Association for Computing
Machinery; 2015. p. 1-6.

17. Han-Chen D, hyperlearn; 2020. https://github.com/

http://github.com/nrdg/fracridge
https://www.mathworks.com/matlabcentral/fileexchange/43325-quicker-1d-linear-interpolation-interp1qr
https://www.mathworks.com/matlabcentral/fileexchange/43325-quicker-1d-linear-interpolation-interp1qr
https://www.mathworks.com/matlabcentral/fileexchange/43325-quicker-1d-linear-interpolation-interp1qr
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest
https://doi.org/10.5281/zenodo.3741781
https://github.com/danielhanchen/hyperlearn/
https://github.com/danielhanchen/hyperlearn/
https://github.com/danielhanchen/hyperlearn/
https://github.com/danielhanchen/hyperlearn/

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

danielhanchen/hyperlearn/.

Wandell B, Winawer J, Kay K. Computational Modeling of
Responses in Human Visual Cortex. In: Brain Mapping: An
Encyclopedic Reference Elsevier Inc.; 2015.p. 651-659.
Wandell BA, Winawer J. Computational neuroimaging
and population receptive fields. Trends Cogn Sci 2015
Jun;19(6):349-357.

Murdoch WJ, Singh C, Kumbier K, Abbasi-Asl R, Yu B.
Definitions, methods, and applications in interpretable
machine learning. Proc Natl Acad Sci U S A 2019
Oct;116(44):22071-22080.

Zoller MA, Huber MF. Benchmark and Survey of Auto-
mated Machine Learning Frameworks. arXiv 2019 Apr;.
Tuggener L, Amirian M, Rombach K, Lérwald S, Varlet A,
Westermann C, et al. Automated Machine Learning in Prac-
tice: State of the Art and Recent Results. arXiv 2019 Jul;.
Golub GH, Heath M, Wahba G. Generalized Cross-
Validation as a Method for Choosing a Good Ridge Param-
eter. Technometrics 1979 May;21(2):215-223.

Tibshirani R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society Series B
(Methodological) 1996;p. 267-288.

Zou H, Hastie T. Regularization and variable selection via
the elastic net. Journal of the Royal Statistical Society: Se-
ries B (Statistical Methodology) 2005;67(2):301-320.
Friedman J, Hastie T, Tibshirani R. glmnet: Lasso and
elastic-net regularized generalized linear models. R pack-
age version 2009;1(4).

Qian J, Hastie T, Friedman J, Tibshirani R, Simon N,
Glmnet for matlab, 2013; 2013. http://www.stanford.edu/
hastie/glmnetmatlab.

Balakumar BJ, Hastie T, Friedman J, Tibshirani R, Simon
N, Glmnet for Python, 2016; 2016. https://web.stanford.
edu/~hastie/glmnet_python/

Hastie T, Qian J, Glmnet vignette; 2014. http://www.web.
stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf.

Kay K, Rokem A. Supporting data for "Fractional ridge re-
gression: a fast, interpretable reparameterization of ridge
regression'. GigaScience Database 2020;http://dx.doi.
org/10.5524/100816.

https://github.com/danielhanchen/hyperlearn/
https://github.com/danielhanchen/hyperlearn/
https://github.com/danielhanchen/hyperlearn/
http://www. stanford. edu/hastie/glmnet matlab
http://www. stanford. edu/hastie/glmnet matlab
http://www. stanford. edu/hastie/glmnet matlab
https://web.stanford.edu/~hastie/glmnet_python/
https://web.stanford.edu/~hastie/glmnet_python/
https://web.stanford.edu/~hastie/glmnet_python/
http://www.web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf
http://www.web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf
http://www.web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf
http://dx.doi.org/10.5524/100816
http://dx.doi.org/10.5524/100816
http://dx.doi.org/10.5524/100816

	Introduction
	Methods
	Background and theory
	Algorithm
	Software implementation
	MATLAB
	Python

	Simulations
	Performance benchmark
	Brain Magnetic Resonance Imaging data

	Results
	Fractional ridge regression achieves the desired outcomes
	FRR is computationally efficient
	Application of FRR on real-world data

	Discussion
	The benefits of FRR
	Using FRR in practice
	Limitations
	Future extensions

	Acknowledgements
	Availability of source code and requirements
	Availability of supporting data and materials
	Consent for publication
	Competing Interests
	Funding
	Author Contributions

