
GigaScience, 2017, 1–12
doi: xx.xxxx/xxxx
Manuscript in Preparation
Paper

P A P E R

Fractional Ridge Regression: a Fast, Interpretable
Reparameterization of Ridge Regression
Ariel Rokem1,* and Kendrick Kay2,*
1Department of Psychology and the eScience Institute, University of Washington, Seattle, WA and 2Center
for Magnetic Resonance Research, University of Minnesota, Twin Cities, MN
*arokem@uw.edu; kay@umn.edu

Abstract

Background: Ridge regression is a regularization technique that penalizes the L2-norm of the coefficients in linear
regression. One of the challenges of using ridge regression is the need to set a hyperparameter (α) that controls the
amount of regularization. Cross-validation is typically used to select the best α from a set of candidates. However,
efficient and appropriate selection of α can be challenging. This becomes prohibitive when large amounts of data are
analyzed. Because the selected α depends on the scale of the data and correlations across predictors, it is also not
straightforwardly interpretable.
Results: The present work addresses these challenges through a novel approach to ridge regression. We propose to
reparameterize ridge regression in terms of the ratio γ between the L2-norms of the regularized and unregularized
coefficients. We provide an algorithm that efficiently implements this approach, called fractional ridge regression, as
well as open-source software implementations in Python and MATLAB (https://github.com/nrdg/fracridge). We show
that the proposed method is fast and scalable for large-scale data problems. In brain imaging data, we demonstrate that
this approach delivers results that are straightforward to interpret and compare across models and datasets.
Conclusion: Fractional ridge regression has several benefits: the solutions obtained for different γ are guaranteed to vary,
guarding against wasted calculations, and automatically span the relevant range of regularization, avoiding the need for
arduous manual exploration. These properties make fractional ridge regression particularly suitable for analysis of large
complex datasets.
Key words: Generalized linear model; Hyperparameters; Brain imaging; Open-source software

Introduction1

Consider the standard linear model setting Y = Xβ solved for β,2

where Y is a data matrix of dimensionality d by t (d data points3

in each of t targets), X is the design matrix with dimensionality4

d by p (d data points for each of p predictors), and β is a coef-5

ficient matrix with dimensionality p by t (with p coefficients,6

one for each predictor, for each of the targets). Ordinary least-7

squares regression (OLS) and regression based on the Moore-8

Penrose pseudoinverse (in cases where p > d) attempt to find9

the set of coefficients β that minimize squared error for each of10

the targets y. While these unregularized approaches have some11

desirable properties, in practical applications where noise is12

present, they tend to overfit the coefficient parameters to the13

noise present in the data. Moreover, they tend to cause un-14

stable parameter estimates in situations where predictors are15

highly correlated.16

Ridge regression [1] addresses these issues by trading off17

the addition of some bias for the reduction of eventual error18

(e.g., measured using cross-validation [2, 3]). It does so by pe-19

nalizing not only the sum of the squared errors in fitting the20

data for each target, but by also minimizing the squared L2-21

norm of the solution, ||β||22 = ∑ (β2). Fortunately, this form22

of regularization does not incur a substantial computational23

Compiled on: October 20, 2020.
Draft manuscript prepared by the author.

1

https://github.com/nrdg/fracridge

2 | GigaScience, 2017, Vol. 00, No. 0

Key Points

• Ridge regression is a powerful and popular technique for regularizing linear regression, but finding the optimal degree of
regularization can be challenging, particularly in large datasets.

• We propose a technique, fractional ridge regression, that reparameterizes ridge regression in terms of the ratio between
the L2-norms of the regularized and unregularized coefficients.

• Fractional ridge regression is fast and scalable for large-scale data problems and delivers results that are straightforward
to interpret and compare across models and datasets.

cost. This is because it can be implemented using the same24

numerical approach for solving unregularized regression, with25

the simple addition of a diagonal matrix αI to the standard ma-26

trix equations. Thus, the computational cost of solving ridge27

regression is essentially identical to that of the unregularized28

solution. Thanks to its simplicity, computational expedience,29

and its robustness in different data regimes, ridge regression is30

a very popular technique, with the classical references describ-31

ing the method [1, 4] cited more than 25,000 times according32

to Google Scholar.33

However, beneath the apparent simplicity of ridge regres-34

sion is the fact that for most applications, it is impossible to35

determine a priori the degree of regularization that yields the36

best solution. This means that in typical practice, researchers37

must test several different hyperparameter values α and se-38

lect the one that yields the least cross-validation error on a set39

of data specifically held out for hyperparameter selection. In40

large-scale data problems, the number of data points d, num-41

ber of predictors p, and/or number of targets t can be quite large.42

This has the consequence that the number of hyperparameter43

values that are tested, f, can pose a prohibitive computational44

barrier.45

Given the difficulty of predicting the effect of α on solution46

outcomes, it is common practice to test values that are widely47

distributed on a log scale (for example, see [5]). Although this48

approach is not grounded in a particular theory, as long as49

the values span a large enough range and are spaced densely50

enough, an approximate minimum of the cross-validation er-51

ror is likely to be found. But testing many α values can be52

quite costly, and the practitioner might feel tempted to cull53

the set of values tested. In addition, it is always a possibil-54

ity that the initial chosen range might be mismatched to the55

problem at hand. Sampling α values that are too high or too56

low will produce non-informative candidate solutions that are57

either over-regularized (α too high) or too similar to the unreg-58

ularized solution (α too low). Thus, in practice, conventional59

implementations of ridge regression may produce poor solu-60

tions and/or waste substantial computational time.61

Here, we propose a simple reparameterization of ridge re-62

gression that overcomes the aforementioned challenges. Our63

approach is to produce coefficient solutions that have an L2-64

norm that is a pre-specified fraction of the L2-norm of the un-65

regularized solution. In this approach, called fractional ridge re-66

gression (FRR), redundancies in candidate solutions are avoided67

because solutions with different fractional L2-norms are guar-68

anteed to be different. Moreover, by targeting fractional L2-69

norms that span the full range from 0 to 1, the FRR approach70

explores the full range of effects of regularization on β values71

from under- to over-regularization, thus assuring that the best72

possible solution is within the range of solutions explored. We73

provide a fast and automated algorithm to calculate FRR, and74

provide open-source software implementations in Python and75

MATLAB. We demonstrate in benchmarking simulations that76

FRR is computationally efficient for even extremely large data77

problems, and we show that FRR applies successfully to real-78

world data and delivers clear and interpretable results. Over-79

all, FRR may prove particularly useful for researchers tackling80

large-scale datasets where automation, efficiency, and inter-81

pretability are critical.82

Methods83

Background and theory84

Consider the dataset Y with dimensionality d (number of data85

points) by t (number of targets). Each column in Y represents86

a separate target for linear regression:87

y = Xβ + ε (1)

where y is the measured data for a single target (dimensionality88

d by 1), X is the “design” matrix with predictors (dimensional-89

ity d by p), β are the coefficients (dimensionality p by 1), and ε90

is a noise term. Our typical objective is to solve for β in a way91

that minimizes the squared error. If X is full rank, the ordinary92

least squares (OLS) solution to this problem is:93

β̂OLS = (XᵀX)–1Xᵀy, (2)
where Xᵀ is the transpose of X. This solution optimally finds94

the values of β that provide the minimal sum-of-squared error95

on the data: ∑ (y – Xβ)2. In cases where X is not full rank, the96

OLS solution is no longer well-defined and the Moore-Penrose97

pseudoinverse is used instead. We will refer to these unregu-98

larized approaches collectively as OLS.99

To regularize the OLS solution, ridge regression applies a100

penalty (α) to the squared L2-norm of the coefficients, leading101

to a different estimator for β:102

β̂RR = (XᵀX + αI)–1Xᵀy (3)

where α is a hyperparameter and I is the identity matrix [1, 4].103

For computational efficiency, it is well known that the original104

problem can be rewritten using singular value decomposition105

(SVD) of the matrix X [6]:106

X = USVᵀ (4)

with U having dimensionality d by p, S having dimensionality107

p by p, and V having dimensionality p by p.108

Note that S is a square matrix:109

Rokem and Kay | 3

S =



λ1 0 ...
0 λ2 0 ...
0 0 λ3 0 ...
...

... 0 0 0 λp


with λi as the singular values ordered from largest to smallest.110

Replacing the design matrix X with its SVD, we obtain:111

y = USVᵀβ + ε. (5)
Given that U and V are unitary (e.g., UᵀU is I), left-112

multiplying each side with Uᵀ produces:113

Uᵀy = SVᵀβ + Uᵀε. (6)
Let ỹ = Uty, β̃ = Vᵀβ, and ε̃ = Utε. These are transforma-114

tions (rotations) of the original quantities (y, β, and ε) through115

the unitary matrices Ut and Vt. In cases where p < d, this also116

projects the quantities into a lower-dimensional space of di-117

mensionality p. The OLS solution can be obtained in this space:118

˜̂βOLS = (SᵀS)–1Sᵀỹ, (7)
which simplifies to:119

˜̂βOLS = S–2(Sᵀỹ), (8)
where120

S–2 =



1
λ21 0 ...
0 1

λ22 0 ...
0 0 1

λ23 0 ...
...

... 0 0 0 1
λ2
p


is the inverse of the square of the singular value matrix S. Thus,121

for a single coordinate i in the lower-dimensional space, we can122

solve the OLS problem with a scalar multiplication:123

˜̂βOLSi = 1
λ2
i
λiỹi, (9)

which simplifies finally to124

˜̂βOLSi = ỹi
λi

. (10)

The SVD-based reformulation of regression described above125

is additionally useful as it provides insight into the nature of126

ridge regression [7]. Specifically, consider the ridge regression127

solution in the low-dimensional space:128

˜̂βRR = (SᵀS + αI)–1Sᵀỹ (11)

To compute this solution, we note that:129

StS + αI =



λ21 + α 0 ...
0 λ22 + α 0 ...
0 0 λ23 + α 0 ...
...

... 0 0 0 λ2
p + α


(12)

the inverse of which is:130

(StS + αI)–1 =



1
λ21 +α 0 ...

0 1
λ22+α 0 ...

0 0 1
λ23+α 0 ...

...
... 0 0 0 1

λ2
p+α


(13)

Finally, plugging into equation 11, we obtain:131

˜̂βRRi = λi
λ2
i + α

ỹi (14)

This shows that in the low-dimensional space, ridge regres-132

sion can be solved using scalar operations.133

To further illustrate the relationship between the ridge re-134

gression and OLS solutions, by plugging equation 10 into equa-135

tion 14, we observe the following:136

˜̂βRRi = λ2
i

λ2
i + α

˜̂βOLSi (15)

In other words, the ridge regression coefficients are simply137

scaled-down versions of the OLS coefficients, with a different138

amount of shrinkage for each coefficient. Coefficients associ-139

ated with larger singular values are less shrunken than those140

with smaller singular values.141

To obtain solutions in the original space, we left-multiply142

the coefficients with V:143

β̂ = V ˜̂β (16)
We now turn to fractional ridge regression (FRR). The core144

concept of FRR is to reparameterize ridge regression in terms145

of the amount of shrinkage applied to the overall L2-norm of146

the solution. Specifically, we define the fraction γ as:147

γ = || ˜̂βRR||2
|| ˜̂βOLS||2

(17)

Because V is a unitary transformation, the L2-norm of a coeffi-148

cient solution in the low-dimensional space, || ^̃β||2, is identical149

to the L2-norm of the coefficient solution in the original space,150

||β̂||2. Thus, we can operate fully within the low-dimensional151

space and be guaranteed that the fractions will be maintained152

in the original space.153

In FRR, instead of specifying desired values for α, we in-154

stead specify values of γ between 1 (no regularization) and 0155

(full regularization, corresponding to shrinking all the coeffi-156

cients to β = 0). But how can one compute the ridge regression157

solution for a specific desired value of γ? Based on equations 9158

4 | GigaScience, 2017, Vol. 00, No. 0

and 14, it is easy to calculate the value of γ corresponding to a159

specific given α value:160

γ = || ˜̂βRR||2
|| ˜̂βOLS||2

=
√√√√√√

∑ (λi ỹi
λ2
i +α)2

∑ (ỹi
λi

)2 (18)

In some special cases, this calculation can be considerably161

simplified. For example, if the singular value spectrum of X is162

flat (λi = λj for any i 6= j), we can set all the singular values to163

λ, yielding the following:164

γ =
√√√√ (λ

λ2+α)2∑ ỹ2i
(1
λ

)2 ∑ ỹi
2 = λ

λ2+α1
λ

= λ2
λ2 + α

, (19)

This recapitulates the result obtained in [1], equation 2.6. We165

can then solve for α:166

α = λ2(1
γ

– 1) (20)

Thus, in this case, there is an analytic solution for the appro-167

priate α value, and one can proceed to compute the ridge re-168

gression solution using equation 14.169

Another special case is if we assume that the absolute values170

of β̃OLSi are all the same. In this case, we can use a few simpli-171

fications to calculate the shrinkage in terms of L1-norm:172

|| ˜̂βRR||1
|| ˜̂βOLS||1

=
∑∣∣∣∣∣λ2

i
˜̂βOLSi

λ2
i +α

∣∣∣∣∣∑∣∣∣∣ ˜̂βOLSi
∣∣∣∣

=
∑∣∣∣∣∣∣∣

λ2
i
ỹi
λi

λ2
i +α

∣∣∣∣∣∣∣∑∣∣∣∣ ỹiλi
∣∣∣∣ =

∑ λ2
i

∣∣∣∣ ỹiλi
∣∣∣∣

λ2
i +α∑∣∣∣∣ ỹiλi
∣∣∣∣

=
∑ λ2

i
λ2
i +α
p

(21)

Notice that this is the average of the shrinkages for individual173

coefficients from equation 15. The sum of these shrinkages174

(this quantity multiplied by p):175

∑ λ2
i

λ2
i + α

(22)

has been defined as the effective degrees of freedom of ridge re-176

gression (See [8], pg. 68). Note that the L1-norm here refers177

to the rotated space and may not be identical to the L1-norm178

in the original space.179

These two special cases have the appealing feature that the180

regularization level can be controlled on the basis of examin-181

ing only the design matrix X. However, they rely on strong182

assumptions that are not guaranteed to hold in general. Thus,183

for accurate ridge regression outcomes, we see no choice but to184

develop an algorithm that uses both the design matrix X and185

the data values y.186

Algorithm187

Our proposed algorithm for solving FRR is straightforward: it188

evaluates γ for a range of α values and uses interpolation189

to determine the α value that achieves the desired fraction190

γ. Although this method relies on brute force and may not191

seem mathematically elegant, it achieves accurate outcomes192

and, somewhat surprisingly, can be carried out with minimal193

computational cost.194

The algorithm receives as input a design matrix X, target195

variables Y, and a set of requested fractions γ. The algorithm196

calculates the FRR solutions for all targets in Y, returning esti-197

mates of the coefficients β̂ as well as the values of hyperparam-198

eter α that correspond to each requested γ. In the text below,199

we indicate the lines of code that implement each step of the200

algorithm (see also section Software implementation below) in201

the MATLAB (designated with “M”) and Python (designated202

with “P”) implementations.203

i. Compute the SVD of the design matrix, USVᵀ = X (M251,204

P151). To avoid numerical instability, very small singular val-205

ues of X are treated as 0.206

ii. The data are transformed ỹ = Uᵀy (M258, P62).207

iii. The OLS problem is solved with one broadcast division208

operation (equation 10) (M276, P64).209

iv. The values of α that correspond to the requested γ value210

are within a range that depends on the singular values of211

X (by equation 18). A series of initial candidate values of α212

are selected to span a log-spaced range from 10–3λ2
p, much213

smaller than the smallest singular value of the design ma-214

trix, to 103λ21 , much larger than the largest singular value215

of the design matrix (M302, P165-168). Based on testing on216

a variety of regression problems, we settled on a spacing of217

0.2 log10 units within the range of candidate α values. This218

provides fine enough gridding such that interpolation results219

are nearly perfect (empirical fractions are approximately 1%220

or less from the desired fractions).221

v. Based on equation 15, a scaling factor for every value of222

α and every singular value λ is calculated as (M316, P173):223

SFi,j = λ2
i /(λ2

i + αj) (23)
vi. The main loop of the algorithm iterates over targets. For224

every target, the scaling in equation 23 is applied to the com-225

puted OLS coefficients (from Step 3), and the L2-norm of226

the solution at each αj is divided by the L2-norm of the OLS227

solution to determine the fractional length, γj (M336-349,228

P188-191). Because the relationship between α and γ may be229

different for each target, the algorithm requires looping over230

targets and cannot take advantage of broadcasting across tar-231

gets.232

vii. Interpolation is used with αj and γj to find values of233

α that correspond to the desired values of γ (M367, P194).234

These target α values are then used to calculate the ridge re-235

gression solutions via equation 15 (M373, P203).236

viii. After the iteration over targets is complete, the solutions237

are transformed to the original space by multiplying β̂ = V ˜̂β238

(M422, P207).239

In terms of performance, this algorithm requires just one240

(potentially computationally expensive) initial SVD of the de-241

sign matrix. Operations done on a per-target basis are gen-242

erally inexpensive, relying on fast vectorized array operations,243

with the exception of the interpolation step. Although a large244

range of candidate α values are evaluated internally by the algo-245

rithm, these values are eventually discarded, thereby avoiding246

costs associated with the final step (multiplication with V).247

https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L251
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L151
https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L258
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L62
https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L276
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L64
https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L302
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L165-L168
https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L316
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L173
https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L336-L349
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L188-L191
https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L367
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L194
https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L373
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L203
https://github.com/nrdg/fracridge/blob/1.2/matlab/fracridge.m#L422
https://github.com/nrdg/fracridge/blob/1.2/fracridge/fracridge.py#L207

Rokem and Kay | 5

Software implementation248

We implemented the algorithm described in section Algorithm249

in two different popular statistical computing languages: MAT-250

LAB and Python (example code in Figure 1). The code for251

both implementations is available at https://github.com/nrdg/252

fracridge and released under an OSI-approved, permissive253

open-source license to facilitate its broad use. In both MATLAB254

and Python, we used broadcasting to rapidly perform compu-255

tations over multiple dimensions of arrays.256

There are two potential performance bottlenecks in the code.257

One is the SVD step which is expensive both in terms of mem-258

ory and computation time. In the case where d < p (the number259

of data points is smaller than the number of parameters), the260

number of singular values is set by d. In the case where d > p261

(the number of data points is larger than the number of pa-262

rameters), the number of singular values is set by p, and our263

implementation exploits the fact that we can replace the sin-264

gular values of X by the square roots of the singular values of265

XᵀX, which is only p by p. This optimization requires less mem-266

ory for the SVD computation than an SVD of the full matrix X.267

The other potential performance bottleneck is the interpolation268

performed for each target. To optimize this step, we used fast269

interpolation functions that assume sorted inputs.270

MATLAB271

The MATLAB implementation of FRR relies only on core MAT-272

LAB functions and a fast implementation of linear interpolation273

[9], which is copied into the fracridge source code, together274

with its license, which is compatible with the fracridge license.275

The MATLAB implementation includes an option to automati-276

cally standardize predictors (either center or also scale the pre-277

dictors) before regularization, if desired.278

Python279

The Python implementation of FRR depends on Scipy [10] and280

Numpy [11]. The object-oriented interface provided conforms281

with the API of the popular Scikit-Learn library [12, 13], includ-282

ing automated tests that verify compliance with this API (us-283

ing Scikit Learn’s check_estimator function, which automati-284

cally confirms this compliance). In addition to an estimator285

that fits FRR, a cross-validation object is implemented, using286

Scikit Learn’s grid-search cross-validation API. Unit tests are287

implemented using pytest [14]. Documentation is automat-288

ically compiled using sphinx, with sphinx-gallery examples289

[15]. The Python implementation also optionally uses Numba290

[16] for just-in-time compilation of a few of the underlying291

numerical routines used in the implementation. This function-292

ality relies on an implementation provided in the hyperlearn293

library [17] and copied into the fracridge source-code, together294

with its license, which is compatible with the fracridge license.295

In addition to its release on GitHub, the software is available296

to install through the Python Package Index (PyPI) through297

the standard Python Package Installer (pip install fracridge).298

For Python, we did not implement standardization procedures,299

as those are implemented as a part of Scikit-Learn.300

Simulations301

Numerical simulations were used to characterize FRR and com-302

pare it to a heuristic approach for hyperparameter selection.303

Simulations were conducted using the MATLAB implementa-304

tion. We simulated two simple regression scenarios. The num-305

ber of data points (d) was 100, and the number of predictors306

(p) was either 5 or 100. In each simulation, we first created a307

design matrix X (d, p) using the following procedure: (i) gener-308

ate normally distributed values for X, (ii) induce correlation be-309

Matlab

y = randn(100,1);
X = randn(100,10);

% Calculate coefficients with naive OLS
coef = inv(X’*X)*X’*y;

% Call the fracridge function:
[coef2, alpha] = fracridge(X, 0.3, y);

% Calculate coefficients with naive RR
alphaI = alpha*eye(size(X, 2));
coef3 = inv(X’*X + alphaI)*X’*y;

norm(coef)
norm(coef2)
norm(coef2) ./ norm(coef)
norm(coef2-coef3)

Python

import numpy as np
from numpy.linalg import inv, norm
from fracridge import fracridge

y = np.random.randn(100)
X = np.random.randn(100, 10)

Calculate coefficients with naive OLS
coef = inv(X.T @ X) @ X.T @ y

Call fracridge function:
coef2, alpha = fracridge(X, y, 0.3)

Calculate coefficients with naive RR
alphaI = alpha * np.eye(X.shape[1])
coef3 = inv(X.T @ X + alphaI) @ X.T @ y

print(norm(coef))
print(norm(coef2))
print(norm(coef2) / norm(coef))
print(norm(coef2 - coef3))

sklearn-compatible object-oriented API:
from fracridge import FracRidgeRegressor
fr = FracRidgeRegressor(fracs=0.3)
fr.fit(X, y)
coef_oo = fr.coef_
alpha_oo = fr.alpha_
print(norm(coef_oo) / norm(coef))

sklearn-style grid search cross-validation:
from fracridge import FracRidgeRegressorCV
frcv = FracRidgeRegressorCV(frac_grid=np.arange(0.1, 1, 0.1))
frcv.fit(X, y)
best_frac = frcv.best_frac_
print(best_frac)
print(norm(frcv.coef_) / norm(coef))

Figure 1. Code examples. Top: MATLAB examples that demonstrate the soft-
ware API and correctness of the implementation. Bottom: Python examples
demonstrate a similar API and correctness. Python examples include the Scikit-
Learn-compatible API.

tween predictors by selecting two predictors at random, setting310

one of the predictors to the sum of the two predictors plus nor-311

mally distributed noise, and repeating this procedure 2p times,312

and (iii) z-scoring each predictor. Next, we created a set of313

“ground truth” coefficients β with dimensions (p, 1) by draw-314

ing values from the normal distribution. Finally, we simulated315

https://github.com/nrdg/fracridge
https://github.com/nrdg/fracridge
https://github.com/nrdg/fracridge

6 | GigaScience, 2017, Vol. 00, No. 0

responses from the model (y = Xβ) and added normally dis-316

tributed noise, producing a target variable y with dimensions317

(d, 1).318

Given design matrix X and target y, cross-validated regres-319

sion was carried out. This was done by splitting X and y into320

two halves (50/50 training/testing split), solving ridge regres-321

sion on one half (training) and evaluating generalization per-322

formance of the estimated regression β weights on the other323

half (testing). Performance was quantified using the coeffi-324

cient of determination (R2). For standard ridge regression, we325

evaluated a grid of α values that included 0 and ranged from326

10–4 through 105.5 in increments of 0.5 log10 units. For FRR,327

we evaluated a range of fractions γ from 0 to 1 in increments328

of 0.05. Thus, the number of hyperparameter values was f = 21329

in both cases.330

The code that implements these simulations is available in331

the “examples” folder of the software.332

Performance benchmark333

To characterize the performance of fractional ridge regression334

(FRR) and standard ridge regression (SRR) approaches, a set335

of numerical benchmarks was conducted using the MATLAB336

implementation. A range of regression scenarios were con-337

structed. In each experiment, we first constructed a design338

matrix X (d, p) consisting of values drawn from a normal dis-339

tribution. We then created “ground truth” coefficients β (p, t)340

also by drawing values from the normal distribution. Finally,341

we generated a set of data Y (d, t) by predicting the model re-342

sponse (y = Xβ) and adding zero-mean Gaussian noise with343

standard deviation equal to the standard deviation of the data344

from each target variable. Different levels of regularization (f)345

were obtained for SRR by linearly spacing α values on a log10346

scale from 10–4 to 105 and for FRR by linearly spacing fractions347

from 0.05 to 1 in increments of 0.05.348

Two versions of SRR were implemented and evaluated.349

The first version (naïve) involves a separate matrix pseudo-350

inversion for each hyperparameter setting desired. The second351

version (rotation-based) involves using the SVD decomposition352

method described above (see section Background and theory,353

specifically equation 14).354

All simulations were run on an Intel Xeon E5-2683 2.10 Ghz355

(32-core) workstation with 128 GB of RAM, a 64-bit Linux oper-356

ating system, and MATLAB 8.3 (R2014a). Execution time was357

logged for model fitting procedures only and did not include358

generation of the design matrix or the data. Likewise, memory359

requirements were recorded in terms of additional memory us-360

age during the course of model fitting (i.e. zero memory usage361

corresponds to the total memory usage just prior to the start362

of model fitting). Benchmarking results were averaged across363

15 independent simulations to reduce incidental variability.364

The code that implements these benchmarks is available in365

the “examples” folder of the software.366

Brain Magnetic Resonance Imaging data367

Brain functional magnetic resonance imagining (fMRI) data368

were collected as part of the Natural Scenes Dataset369

(http://naturalscenesdataset.org). Data were acquired in a 7370

Tesla MRI instrument, at a spatial resolution of 1.8 mm and a371

temporal resolution of 1.6 s and using a matrix size of [81 104372

83]. This yielded a total of 783,432 voxels. Over the course373

of 40 separate scan sessions, a neurologically healthy partic-374

ipant viewed 10,000 distinct images (3 presentations per im-375

age) while fixating a small dot placed at the center of the im-376

ages (see Figure 3A). The images were 8.4 deg by 8.4 deg in size.377

Each image was presented for 3 s and was followed by a 1 s gap.378

Standard pre-processing steps were applied to the fMRI data379

to remove artifacts due to head motion and other confounding380

factors. To deal with session-wise nonstationarities, response381

amplitudes of each voxel were z-scored within each scan ses-382

sion. Responses were then concatenated across sessions and383

averaged across trials of the same image, and then a final z-384

scoring of each voxel’s responses was performed. The partic-385

ipant provided informed consent and the experimental proto-386

col was approved by the University of Minnesota Institutional387

Review Board. For the purposes of the example demonstrated388

here, only the first 37 of the 40 scan sessions are provided (data389

are being held out for a prediction challenge), yielding a total390

of 9,841 distinct images.391

A regression model was used to predict the response ob-392

served from a voxel in terms of local contrast present in the393

stimulus image. In the model, the stimulus image is pre-394

processed by taking the original color image (425 pixels by 425395

pixels by 3 RGB channels), converting the image to grayscale,396

gridding the image into 25 by 25 regions, and then computing397

the standard deviation of luminance values within each grid re-398

gion (Figure 4B). This produced 625 predictors, each of which399

was then z-scored. The design matrix X has dimensionality400

9,841 images by 625 stimulus regions, while Y has dimension-401

ality 9,841 images by 783,432 voxels.402

Cross-validation was carried out using a 80/20 train-403

ing/testing split. For standard ridge regression, we evaluated404

a grid of alpha values that included 0 and ranged from 10–4
405

to 105.5 in increments of 0.5 log10 units. For fractional ridge406

regression, we evaluated a range of fractions from 0 to 1 in407

increments of 0.05. Cross-validation performance was quan-408

tified in terms of variance explained on the test set using the409

coefficient of determination (R2).410

The code that implements these analyses is available in the411

“examples” folder of the software.412

Results413

Fractional ridge regression achieves the desired out-414

comes415

In simulations, we demonstrate that the fractional ridge re-416

gression (FRR) algorithm accurately produces the desired frac-417

tions γ (Figure 2 A,B second row, right column in each). We418

compare the results of FRR to results of standard ridge regres-419

sion (SRR), in which a commonly-used heuristic is used to se-420

lect α values (log-spaced values spanning a large range). For421

the SRR approach, we find that the fractional L2-norm is very422

small and virtually indistinguishable for large values of α, and423

is very similar to the OLS solution (fractional L2-norm approx-424

imately 1) for several small values of α (Figure 2 A, B second425

row, left column). In addition, cross-validation accuracy is in-426

distinguishable for many of the values of α evaluated in SRR.427

Only very few values of α produce cross-validated R2 values428

that are similar to the value provided by the best α (Figure 2 A,429

B first row, left column).430

The SRR results can also be re-represented using effective431

degrees of freedom (DOF; Figure 2 A, B first row, middle col-432

umn): several values of α result in essentially the same num-433

ber of DOF, because these values are either much larger than434

the largest singular value or much smaller than the smallest435

singular value of X. In contrast to SRR, FRR produces a nicely436

behaved range of cross-validated R2 values and dense sampling437

around the peak R2.438

Another line of evidence highlighting the diversity of the439

solutions provided by FRR is given by inspecting coefficient440

paths: in the log-spaced case, coefficients start very close to441

0 (for high α) and rapidly increase (for lower α). Even when442

https://github.com/nrdg/fracridge/blob/1.2/examples/paper_figures/Fig1.m
https://github.com/nrdg/fracridge/blob/1.2/examples/paper_figures/Fig2.m
https://github.com/nrdg/fracridge/blob/1.2/examples/paper_figures/Fig3.m

Rokem and Kay | 7

Figure 2. Fractional ridge regression (FRR) achieves desired outcomes. (A) Example regression scenario (d = 100, p = 5). The first two columns show the
results of standard ridge regression in which log-spaced α values are used to obtain different levels of regularization. Whereas the first column shows results as a
function of log10(α), the second column shows results as a function of α values converted to effective degrees of freedom (see Methods). The third column shows
the results of fractional ridge regression in which different regularization levels are achieved by requesting specific fractional L2-norm (γ). Solid blue dots mark
peak cross-validation performance. Vertical gray lines in the third column indicate regression solutions obtained by the FRR method (requested fractions range
from 0 to 1 in increments of 0.05). The corresponding locations of these regression solutions in the first and second columns are also shown using vertical gray
lines. The bottom row shows coefficient paths, i.e., the values of β as a function of log10(α), degrees of freedom, or fraction γ. (B) Example regression scenario
(d = 100, p = 100). Same format as panel A. Notice that in both scenarios, only the FRR method achieves regression solutions whose L2-norms increase linearly,
with gradually changing coefficient paths.

re-represented using DOF, the coefficient paths exhibit some443

redundancy. In contrast, FRR provides more gradual change444

in the coefficient paths, indicating that this approach explores445

the space of possible coefficient configurations more uniformly.446

Taken together, these analyses demonstrate that FRR provides447

a more useful range of regularization levels than SRR.448

FRR is computationally efficient449

A question of relevance to potential users of FRR is whether450

using the method incurs significant computational cost. We451

compare FRR to two alternative approaches. The first approach452

is a naïve implementation of the matrix inversion specified in453

equation 3, in which the Moore-Penrose pseudo-inverse (im-454

plemented as pinv in Matlab and numpy.linalg.pinv in Python)455

is performed independently for each setting of hyperparameter456

α. The second approach takes advantage of the computational457

expedience of the SVD-based approach: instead of a matrix in-458

version for each α value, a single SVD is performed, a transfor-459

mation (rotation) is applied to the data, and different values of460

α are plugged into equation 14 to compute the regression co-461

efficients. This approach comprises a subset of the operations462

taken in FRR. Therefore, it represents a lower bound in terms463

of computational requirements.464

Through systematic exploration of different problem sizes,465

we find that FRR performs quite favorably. FRR differs from466

the rotation-based approach only slightly with respect to467

execution-time scaling in the number of data points (Figure468

3A, left column), in the number of parameters (Figure 3A, right469

column), and in f, the number of hyperparameter values con-470

sidered (Figure 3A, third column). The naïve matrix-inversion471

approach is faster than both SVD-based approaches (FRR and472

rotation-based) for f < 20, but rapidly becomes much more473

costly for values above 20. This approach also scales rather474

poorly for p > 5, 000.475

In terms of memory consumption, the mean and maximum476

memory usage are very similar for FRR and the naïve and477

rotation-based SRR solutions. These results suggest that for478

each of these approaches, the matrix inversion (for the naïve479

implementation of SRR) or the SVD (for FRR and the rotation-480

based SRR) represents the main computational bottleneck. Im-481

portantly, despite the fact that FRR uses additional gridding482

and interpolation steps, it does not perform substantially worse483

than either of the other approaches.484

Application of FRR on real-world data485

To demonstrate the practical utility of FRR, we explore its appli-486

cation in a specific scientific use-case. Data from a functional487

magnetic resonance imaging (fMRI) experiment were analyzed488

with FRR and the results of this analysis were compared to a489

standard ridge regression (SRR) approach where α values are490

selected using a log-spaced heuristic. Different parts of the491

brain process different types of information, and a large swath492

of the cerebral cortex is known to respond to visual stimu-493

lation. Experiments that combine fMRI with computational494

analysis provide detailed information about the responses of495

different parts of the brain [18]. In the experiments analyzed496

here, a series of images are shown and the blood-oxygenation-497

level-dependent (BOLD) signal is recorded in a sampling grid498

of voxels throughout the brain (Figure 4A). In the cerebral cor-499

tex, each voxel contains hundreds of thousands of neurons. If500

these neurons respond vigorously to the visual stimulus pre-501

sented, the metabolic demand for oxygen in that part of cor-502

tex will drive a transient increase in oxygenated blood in that503

region, and the BOLD response will increase. Thus, a model504

of the BOLD response tells us about the selective responses of505

neurons in each voxel in cortex.506

Because neurons in parts of the cerebral cortex that respond507

to visual stimuli are known to be particularly sensitive to local508

contrast, we model responses with respect to the standard devi-509

ation of luminance in each region of the image, rather than the510

luminance values themselves (Figure 4B). In the model, Y con-511

tains brain responses where each target (column) represents512

8 | GigaScience, 2017, Vol. 00, No. 0

Figure 3. Computational efficiency. We benchmarked different methods for performing ridge regression: (1) a naïve implementation of standard ridge regression
(involving log-spaced α values) in which matrix inversion is performed for each α value, (2) an implementation of standard ridge regression in which solutions
are computed in a rotated space based on singular value decomposition of the design matrix, and (3) the FRR method. Starting from a base case (d = 5, 000,
p = 5, 000, f = 20, b = 1, 000; parameter settings marked by vertical lines), we systematically manipulated d, p, f, and b (columns one through four, respectively).
(A) Execution time. The execution time of each method is shown in seconds. (B) Memory usage. The maximum memory usage of each method is shown as a solid
line, whereas the time-averaged memory usage is shown as a dotted line. Overall, FRR is quite fast and has relatively modest memory requirements.

the responses in a single voxel. Each row contains the response513

of all voxels to a particular image. The design matrix X con-514

tains the local contrast in every region of the image, for every515

image. This means that the coefficients β represent weights516

on the stimulus image and indicate each voxel’s spatial selec-517

tivity – i.e., the part of the image to which the voxel responds518

[19]. Therefore, one way to visualize β̂ is to organize it accord-519

ing to the two-dimensional layout of the image (Figure 4C&D,520

bottom two rows).521

Using FRR, we fit the model to voxel responses, and find ro-522

bust model performance in the posterior part of the brain where523

visual cortex resides (left part of the horizontal slice presented524

in the top row of Figure 4C). The performance of the model525

can be observed in either the cross-validated R2 values (Figure526

4C, top row, left and middle panels) or the value of γ corre-527

sponding to the best cross-validated R2 (top row, right panel).528

The γ values corresponding to best performance provide addi-529

tional information about the differences between different tar-530

gets, providing additional interpretation of the data. For exam-531

ple, we can focus on the two voxels highlighted in the middle532

panel of the top row in Figure 4C. One voxel, whose character-533

istics are further broken down in Figure 4D has lower cross-534

validated R2 = 4% and requires stronger relative regularization535

(γ = 0.15). The spatial selectivity of this voxel’s responses be-536

comes very noisy at large γ values and R2 approaches 0. On the537

other hand, the voxel in Figure 4E has a higher best γ = 0.35538

and a higher cross-validated R2 = 13%. Moreover, this voxel539

appears more robust with higher values of γ producing less540

spatially noisy results. The map of R2 and γ illustrated in Fig-541

ure 4C also show that these trends hold more generally: vox-542

els with more accurate models require less relative regulariza-543

tion. This demonstrates the additional interpretable informa-544

tion provided by the best γ values in individual targets and by545

inspecting spatial maps of these best γ values.546

Discussion547

The main theoretical contribution of this work is a novel ap-548

proach to hyperparameter specification in ridge regression. In-549

stead of the standard approach in which a heuristic range of val-550

ues for hyperparameter α are evaluated for their accuracy, the551

fractional ridge regression (FRR) approach focuses on achiev-552

ing specific fractions for the L2-norms of the solutions rela-553

tive to the L2-norm of the unregularized solution. In a sense,554

this is exactly in line with the original spirit of ridge regres-555

sion, which places a penalty on the L2-norm of the solution.556

The main practical contribution of this work is the design and557

implementation of an efficient algorithm to solve FRR and vali-558

dation of this algorithm on simulated and empirical data. Note559

that the FRR algorithm can be viewed as method for finding ap-560

propriate α values that are adapted to the data such that they561

span the range of possible regularization strengths. Thus, it562

is fundamentally still a method that solves the standard ridge563

regression problem.564

We emphasize that in theory, FRR and SRR are not expected565

to give different solutions to the linear regression problem.566

However, in practice, the solutions may very well differ and567

this will depend on the heuristic set of alpha values used in568

the SRR approach. What fractional ridge regression provides is569

a method to automatically ensure proper setting of alpha val-570

Rokem and Kay | 9

Figure 4. Demonstration on real-world data. (A) Visual fMRI experiment. Functional MRI measurements of brain activity were collected from a human participant
while s/he viewed a series of natural images. (B) Model of brain activity. Images were converted to grayscale and gridded, and then standard deviation of luminance
values within each grid element was calculated. This produced measures of local contrast. Brain responses at every voxel were modeled using a weighted sum of
local contrast. (C) Results obtained using FRR. Cross-validated performance (variance explained) achieved by the model is shown for an axial brain slice (middle).
These results are thresholded at 5% and superimposed on an image of brain anatomy for reference (left). The fraction (γ) corresponding to the best cross-validation
performance is also shown (right). (D) Detailed results for one voxel (see green squares in panel C). The main plots that depict training and testing performance and
L2-norm are in the same format as Figure 1. The inset illustrates coefficient solutions for different regularization levels. The blue box highlights the regularization
level producing highest cross-validation performance. (E) Detailed results for a second voxel. Same format as panel D.

ues. Note that in the examples of SRR that we presented (e.g.571

Figure 2 and Figure 4), well-selected heuristic ranges of alpha572

values were used. This is done deliberately, as poor ranges of573

alpha values would have resulted in examples that are not very574

informative for this manuscript. However, in everyday prac-575

tice, a user of the standard ridge regression approach might576

inadvertently use an inappropriate range of alpha values and577

obtain poor results. Overall, we suggest that FRR can serve as578

a default approach to solving ridge regression.579

10 | GigaScience, 2017, Vol. 00, No. 0

The benefits of FRR580

i. Theoretically-motivated and principled. The results581

demonstrate that the theoretical motivation described in the582

Methods holds in practice. Our implementation of FRR pro-583

duces ridge regression solutions that have predictable and584

tuneable fractional L2-norm.585

ii. Statistically efficient. Each fraction level returned by586

FRR produces β values that are distinctly different. This587

avoids the common pitfall in the log-spaced approach588

whereby computation is wasted on several values of α that589

all over-regularize or under-regularize. When used with590

a range of γ values from 0 to 1, the solution that mini-591

mizes cross-validation error is guaranteed to exist within592

this range (although it may lie in between two of the obtained593

solutions).594

iii. Computationally efficient. We show that our implemen-595

tation of FRR requires memory and computational time that596

are comparable to a naïve ridge regression approach and to an597

approach that uses SVD but relies on preset α values. SVD-598

based approaches (including FRR) scale linearly in f, with599

compute-time scaling better than naïve RR in the f > 20600

regime. In practice, we have found that f = 20 evenly dis-601

tributed values between 0 and 1 provide sufficient coverage602

for many problems. But the linear scaling implies that sam-603

pling more finely would not be limiting in cases where addi-604

tional precision is needed.605

iv. Interpretable. FRR uses γ values that represent scaling606

relative to the L2-norm of the OLS solution. This allows607

FRR results to be compared across different targets within608

a dataset. This is exemplified in the results from an fMRI ex-609

periment that are interpreted both in light of cross-validated610

R2 and the optimal γ that leads to the best cross-validated611

R2. Moreover, regularization in different datasets and for612

different models (e.g., different settings of X) can be com-613

pared to each other as being stronger or weaker. The optimal614

regularization level can be informative regarding the signal-615

to-noise of a particular target or about the level of collinear-616

ity of the design matrix (which both influence the optimal617

level of regularization). FRR increases the interpretability of618

ridge regression, because instead of an unscaled, relatively619

inscrutable value of α, we receive a scaled, relatively inter-620

pretable value. Based on a recently proposed framework for621

interpretability in machine learning methods [20], we believe622

that this kind of advance improves the descriptive accuracy623

of ridge regression.624

v. Automatic. Machine learning algorithms focus on au-625

tomated inferences, but many machine learning algorithms626

still require substantial manual tuning. For example, if the627

range of α values used is not sufficient, users of ridge re-628

gression may be forced to explore other values. This is im-629

practical in cases in which thousands of targets are analyzed630

and multiple models are evaluated. Thus, FRR contributes631

to the growing field of methods that aim to automate ma-632

chine learning methods [21, 22]. These methods all aim to re-633

move the burden of manual inspection and tuning of machine634

learning. A major benefit of FRR is therefore practical in na-635

ture: Because FRR spans the dynamic range of effects that636

ridge regression can provide, using FRR guarantees that the637

time taken to explore hyperparameter values is well spent.638

Moreover, the user does not have to spend time speculating639

what α values might be appropriate for a given problem (e.g.640

is 104 sufficiently high?).641

vi. Implemented in usable open-source software. We pro-642

vide code that is well-documented, thoroughly tested, and643

easy to use: https://github.com/nrdg/fracridge. The soft-644

ware is available in two popular statistical programming lan-645

guages: MATLAB and Python. The Python implementation646

provides an object-oriented interface that complies with the647

popular Scikit-Learn library [12, 13].648

Using FRR in practice649

To select the level of regularization to apply in practice, users of650

FRR will likely use cross-validation. An open question is how651

to aggregate the results of FRR over multiple cross-validation652

splits. This is a general issue for any analysis that uses cross-653

validation to set hyperparameters. Nevertheless, here we pro-654

vide some ideas for how users can apply FRR in practice: (i) one655

could determine the optimal fraction using cross-validation on656

a single training/testing split (e.g. 80/20), and obtain a single657

model solution and a corresponding optimal fraction, (ii) one658

could determine the optimal fraction using cross-validation on659

a single training/testing split and then adopt that fraction for660

solving the regression on the full dataset, with the understand-661

ing that this may yield a slightly over-regularized solution; (iii)662

one could determine the optimal fraction in different cross-663

validation splits of the data (e.g. n-fold cross-validation) and664

then average the determined fraction across the splits and av-665

erage the estimated regression weights across the splits.666

Fractional ridge regression is naturally integrated into a667

cross-validation framework where solutions reflecting differ-668

ent fractional lengths are obtained for a given set of data669

and evaluated for their predictive performance on held-out670

data. In the Python version of our software, this is imple-671

mented through an object that automatically performs a grid672

search to find the best value of γ among user-provided val-673

ues. An alternative to performing cross-validation is the tech-674

nique of generalized cross-validation (GCV). In GCV, for a given675

α value, matrix operations are used to efficiently estimate676

cross-validation performance without actually having to per-677

form cross-validation [23]. It might be possible to combine678

the insights of FRR (e.g. the identification of interpretable and679

appropriate α values) with GCV.680

Limitations681

One limitation of FRR is that a heuristic approach is used within682

the algorithm to generate the grid of α values used for interpo-683

lation (see section for details). Nonetheless, the interpolation684

results are quite accurate, and costly computations are carried685

out only for final desired α values. Another limitation is that686

the α value that corresponds to a specific γ may be different687

for different targets and models. If there are theoretical rea-688

sons to retain the same α across targets and models, the FRR689

approach is not appropriate. But this would rarely be the case,690

as α values are usually not directly interpretable. Alternatively,691

FRR can be used to estimate values of α on one sample of the692

data (or for one model) and these values of α can then be used693

in all of the data (or all models).694

Finally, the FRR approach is limited to ridge regression and695

does not generalize easily to other regularization approaches.696

The Lasso [24] provides regression solutions that balance least-697

squares minimization with the L1-norm of the coefficients,698

rather than the L2-norm of the coefficients. The Lasso ap-699

proach has several benefits, including results that are more700

sparse and potentially easier to interpret. Similarly, Elastic Net701

[25] uses both L1- and L2-regularization, potentially offering702

more accurate solutions. But because the computational imple-703

mentation of these approaches differs quite substantially from704

ridge regression, the approach presented in this paper does not705

translate easily to these methods. Moreover, while these meth-706

ods allow regularization with a non-negativity constraint on707

the coefficients, this constraint is not easily incorporated into708

L2-regularization. On the other hand, a major challenge that709

https://github.com/nrdg/fracridge

Rokem and Kay | 11

arises in L1-regularization is computational time: most algo-710

rithms operate for one target at a time and incur substantial711

computational costs, and scaling such algorithms to the thou-712

sands of targets in large-scale datasets may be difficult.713

Future extensions714

An important extension of the present work would be an imple-715

mentation of these ideas in additional statistical programming716

languages, such as the R programming language, which is very717

popular for use in statistical analysis of data from many differ-718

ent domains. One of the most important tools for regularized719

regression is the glmnet software package which was originally720

implemented in the R programming language [26] and has im-721

plementations in MATLAB [27] and Python [28]. The software722

also provides tools for analysis and visualization of coefficient723

paths and of the effects of regularization on cross-validated er-724

ror. The R glmnet vignette [29] demonstrates the use of these725

tools. In addition to identifying the α value that minimizes726

cross-validation error, glmnet also identifies the α which gives727

the most regularized model such that the cross-validated error728

is within one standard error of the minimum cross-validated729

error. This approach acknowledges that there is some error in730

selecting α and chooses to err on the side of a more parsimo-731

nious model [5]. Future extensions of FRR could implement732

this heuristic.733

Acknowledgements734

The authors would like to thank Noah Simon for helpful dis-735

cussions and Noah Benson for comments on the manuscript.736

Availability of source code and requirements737

• Project name: Fractional Ridge Regression738

• Project home page: http://github.com/nrdg/fracridge739

• Operating system(s): Platform independent740

• Programming language: Python and MATLAB741

• License: 3-clause BSD742

• Biotools URL: https://bio.tools/fracridge743

• SciCrunch RRID: SCR_019045744

Availability of supporting data and materials745

Code and data to reproduce the figures in this manuscript are746

available under a CC-BY license through GigaDB [30].747

Consent for publication748

Consent to publish has been obtained from the fMRI subject as749

part of the informed consent procedure (see Methods).750

Competing Interests751

The authors declare no competing interests.752

Funding753

AR was funded through a grant from the Gordon & Betty Moore754

Foundation and the Alfred P. Sloan Foundation to the Uni-755

versity of Washington eScience Institute, through NIH grants756

1RF1MH121868-01 (PI: AR) from the National Institute for Men-757

tal Health and 5R01EB027585-02 (PI: Eleftherios Garyfallidis,758

Indiana University) from the National Institute for Biomedical759

Imaging and Bioengineering and through NSF grants 1934292760

(PI: Magda Balazinska, University of Washington). KK was761

supported by NIH P41 EB015894. Collection of MRI data was762

supported by NSF IIS-1822683, NSF IIS-1822929, NIH S10763

RR026783, and the W.M. Keck Foundation.764

Author Contributions765

AR and KK conceived the algorithm. AR and KK implemented766

software. KK conducted simulations and data analysis. AR and767

KK wrote the manuscript.768

References769

1. Hoerl AE, Kennard RW. Ridge regression: Biased es-770

timation for nonorthogonal problems. Technometrics771

1970;12(1):55–67.772

2. Stone M. Cross-validation: A review. Statistics: A Journal773

of Theoretical and Applied Statistics 1978;9(1):127–139.774

3. Stone M. Cross-validatory choice and assessment of sta-775

tistical predictions. Journal of the Royal Statistical Society:776

Series B (Methodological) 1974;36(2):111–133.777

4. Tikhonov AN, Arsenin VY. Solutions of ill-posed problems.778

Wiley; 1977.779

5. Friedman J, Hastie T, Tibshirani R. Regularization paths780

for generalized linear models via coordinate descent. Jour-781

nal of statistical software 2010;33(1):1.782

6. Hastie T, Tibshirani R. Efficient quadratic regularization783

for expression arrays. Biostatistics 2004 Jul;5(3):329–340.784

7. Skouras K, Goutis C, Bramson M. Estimation in linear mod-785

els using gradient descent with early stopping. Statistics786

and Computing 1994;4(4):271–278.787

8. Hastie T, Tibshirani R, Friedman J. The Elements of Sta-788

tistical Learning. Springer Series in Statistics, New York,789

NY, USA: Springer New York Inc.; 2001.790

9. Mier JM, Quicker 1D linear interpolation: interp1qr; 2020.791

https://www.mathworks.com/matlabcentral/fileexchange/792

43325-quicker-1d-linear-interpolation-interp1qr.793

10. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy794

T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms795

for scientific computing in Python. Nat Methods 2020796

Mar;17(3):261–272.797

11. van der Walt S, Colbert SC, Varoquaux G. The NumPy Array:798

A Structure for Efficient Numerical Computation. Comput-799

ing in Science Engineering 2011 Mar;13(2):22–30.800

12. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion801

B, Grisel O, et al. Scikit-learn: Machine learning in Python.802

the Journal of machine Learning research 2011;12:2825–803

2830.804

13. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A,805

Grisel O, et al. API design for machine learning software:806

experiences from the scikit-learn project. arXiv preprint807

arXiv:13090238 2013;.808

14. Krekel H, Oliveira B, Pfannschmidt R, Bruynooghe F,809

Laugher B, Bruhin F, pytest 5.4.1; 2004–. https://github.810

com/pytest-dev/pytest.811

15. Òscar Nájera, Larson E, Estève L, Varoquaux G, Grobler J,812

Liu L, et al., sphinx-gallery/sphinx-gallery: Release v0.6.1.813

Zenodo; 2020. https://doi.org/10.5281/zenodo.3741781.814

16. Lam SK, Pitrou A, Seibert S. Numba: a LLVM-based Python815

JIT compiler. In: Proceedings of the Second Workshop on816

the LLVM Compiler Infrastructure in HPC No. Article 7 in817

LLVM ’15, New York, NY, USA: Association for Computing818

Machinery; 2015. p. 1–6.819

17. Han-Chen D, hyperlearn; 2020. https://github.com/820

http://github.com/nrdg/fracridge
https://www.mathworks.com/matlabcentral/fileexchange/43325-quicker-1d-linear-interpolation-interp1qr
https://www.mathworks.com/matlabcentral/fileexchange/43325-quicker-1d-linear-interpolation-interp1qr
https://www.mathworks.com/matlabcentral/fileexchange/43325-quicker-1d-linear-interpolation-interp1qr
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest
https://doi.org/10.5281/zenodo.3741781
https://github.com/danielhanchen/hyperlearn/
https://github.com/danielhanchen/hyperlearn/
https://github.com/danielhanchen/hyperlearn/
https://github.com/danielhanchen/hyperlearn/

12 | GigaScience, 2017, Vol. 00, No. 0

danielhanchen/hyperlearn/.821

18. Wandell B, Winawer J, Kay K. Computational Modeling of822

Responses in Human Visual Cortex. In: Brain Mapping: An823

Encyclopedic Reference Elsevier Inc.; 2015.p. 651–659.824

19. Wandell BA, Winawer J. Computational neuroimaging825

and population receptive fields. Trends Cogn Sci 2015826

Jun;19(6):349–357.827

20. Murdoch WJ, Singh C, Kumbier K, Abbasi-Asl R, Yu B.828

Definitions, methods, and applications in interpretable829

machine learning. Proc Natl Acad Sci U S A 2019830

Oct;116(44):22071–22080.831

21. Zöller MA, Huber MF. Benchmark and Survey of Auto-832

mated Machine Learning Frameworks. arXiv 2019 Apr;.833

22. Tuggener L, Amirian M, Rombach K, Lörwald S, Varlet A,834

Westermann C, et al. Automated Machine Learning in Prac-835

tice: State of the Art and Recent Results. arXiv 2019 Jul;.836

23. Golub GH, Heath M, Wahba G. Generalized Cross-837

Validation as a Method for Choosing a Good Ridge Param-838

eter. Technometrics 1979 May;21(2):215–223.839

24. Tibshirani R. Regression shrinkage and selection via the840

lasso. Journal of the Royal Statistical Society Series B841

(Methodological) 1996;p. 267–288.842

25. Zou H, Hastie T. Regularization and variable selection via843

the elastic net. Journal of the Royal Statistical Society: Se-844

ries B (Statistical Methodology) 2005;67(2):301–320.845

26. Friedman J, Hastie T, Tibshirani R. glmnet: Lasso and846

elastic-net regularized generalized linear models. R pack-847

age version 2009;1(4).848

27. Qian J, Hastie T, Friedman J, Tibshirani R, Simon N,849

Glmnet for matlab, 2013; 2013. http://www.stanford.edu/850

hastie/glmnetmatlab.851

28. Balakumar BJ, Hastie T, Friedman J, Tibshirani R, Simon852

N, Glmnet for Python, 2016; 2016. https://web.stanford.853

edu/~hastie/glmnet_python/.854

29. Hastie T, Qian J, Glmnet vignette; 2014. http://www.web.855

stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf.856

30. Kay K, Rokem A. Supporting data for "Fractional ridge re-857

gression: a fast, interpretable reparameterization of ridge858

regression". GigaScience Database 2020;http://dx.doi.859

org/10.5524/100816.860

https://github.com/danielhanchen/hyperlearn/
https://github.com/danielhanchen/hyperlearn/
https://github.com/danielhanchen/hyperlearn/
http://www. stanford. edu/hastie/glmnet matlab
http://www. stanford. edu/hastie/glmnet matlab
http://www. stanford. edu/hastie/glmnet matlab
https://web.stanford.edu/~hastie/glmnet_python/
https://web.stanford.edu/~hastie/glmnet_python/
https://web.stanford.edu/~hastie/glmnet_python/
http://www.web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf
http://www.web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf
http://www.web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf
http://dx.doi.org/10.5524/100816
http://dx.doi.org/10.5524/100816
http://dx.doi.org/10.5524/100816

	Introduction
	Methods
	Background and theory
	Algorithm
	Software implementation
	MATLAB
	Python

	Simulations
	Performance benchmark
	Brain Magnetic Resonance Imaging data

	Results
	Fractional ridge regression achieves the desired outcomes
	FRR is computationally efficient
	Application of FRR on real-world data

	Discussion
	The benefits of FRR
	Using FRR in practice
	Limitations
	Future extensions

	Acknowledgements
	Availability of source code and requirements
	Availability of supporting data and materials
	Consent for publication
	Competing Interests
	Funding
	Author Contributions

