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A B S T R A C T   

Piezoelectricity provides an ideal electromechanical mechanism with emerging applications in wearable devices 
due to its simplicity and self-powered nature. However, the 3D printing of piezoelectric devices still faces many 
challenges, including material printability, high energy poling process, and low dimensional accuracy. This study 
demonstrates, for the first time, a tellurium nanowire-based piezoelectric device fabricated by a hybrid printing 
method integrating highly complementary aerosol jet printing and extrusion printing in a single printing plat
form. The aerosol-jet-printed tellurium nanowire demonstrates piezoelectric properties without the need for any 
poling processing due to the unique properties of the tellurium nanowires. The silver nanowire electrodes printed 
by aerosol jet printing demonstrate excellent conductivity and stretchability without the need for sintering. An 
extrusion method is employed to print the silicone films, which serve as the stretchable substrate and the 
electrical insulation layers between the printed tellurium and silver. The printed wearable piezoelectric devices 
were attached to a human wrist to detect different hand gestures and to a human neck to detect heartbeat 
without using an external power source. The fully printed, sintering-free and poling-free, and stretchable 
piezoelectric device opens enormous opportunities for facile integration with a broad range of printed electronics 
and wearable devices.   

1. Introduction 

The conversion from mechanical signals to electrical signals can be 
achieved based on various principles, including piezoresistivity, capac
itance, piezoelectricity, and triboelectricity [1–3]. Among them, piezo
electricity is one of the promising mechanisms used in wearable 
electronics, mainly due to its capability of realizing self-powered, highly 
sensitive, and fast response devices [4–9]. In recent years, 3D printing 
technology, which is known for its flexibility and rapid prototyping 
capability, has been utilized to fabricate wearable piezoelectric nano
generators (PENG) [10–13]. 

Although various 3D printing methods are highly accessible nowa
days, the limited choice of printable material has historically been a 
concern for many printing processes. The most widely used piezoelectric 
materials for 3D printing are characterized as ceramics, polymers, and 

composites [11]. Direct printing of ceramics is challenging due to the 
high stiffness and high melting point [14]. One printing strategy is to 
formulate solution-based ceramic nanoparticles [14,15]. However, this 
method is limited by the requirement for high sintering temperature and 
high electric fields for poling. With low processing temperature and high 
printability, piezoelectric polymers are more frequently used in 3D 
printing [11,16]. The most common piezoelectric polymers include 
semi-crystalline polyvinylidene fluoride (PVDF) and its copolymer pol
yvinylidene fluoride-trifluoroethylene (PVDF-TrFE) [17–19], which can 
be printed using fused filament fabrication. The poling process can be 
performed during printing[20,21] by applying a high electric field be
tween the nozzle tip and printing bed to transform the PVDF molecular 
chain to β-phase, or after printing [22–24]. In some cases, electro
hydrodynamic printing is applied to print PVDF nanofibers [25,26]. 
Although the piezoelectric polymer has improved printability compared 
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to ceramics-based ink, the drawbacks include low dimensional accuracy 
and low piezoelectric response. Even with the poling process, there are 
still concerns about transforming back to the thermodynamically stable 
nonpolar phase upon solidification. To address these issues and improve 
the piezoelectric response, piezoelectric ceramic fillers were incorpo
rated in the polymer matrix [27–34]. For example, piezoelectric ceramic 
nanoparticles (e.g., BaTiO3) were mixed with photocurable polymer so 
that the stereolithography-based printing technology can be used to 
improve printability and dimensional accuracy [10,35–38]. To maxi
mize the piezoelectric response, the stress transfer between the polymer 
and the filler is maximized by functionalizing the ceramic nanoparticles 
[12,13]. 

Although the printed piezoelectric devices have demonstrated 
decent performances, they are all based on piezoelectric compounds, 
where the piezoelectric charges are induced by ionic polarization [39]. 
This leads to the need to align the printed structures. The often-required 
high energy poling process significantly complicates the printing process 
and can be detrimental to the surrounding materials during the sensor 
integration process [40]. In addition, the fabrication of piezoelectric 
devices requires multiple materials, which often require multiple pro
cessing steps and equipment. 

This work demonstrates a highly versatile and unique hybrid print
ing process to fabricate stretchable piezoelectric devices using tellurium 
nanowires (Te NW) and silver nanowires (Ag NW). The unique radial 
distribution of piezoelectric polarization in the Te NW simplifies the 
fabrication process by eliminating the need for high-energy post-pro
cessing (Fig. 1e) [41,42], while the Ag NW films demonstrate adequate 
conductivity and stretchability without the need for sintering. A 

custom-built hybrid printing system integrating aerosol jet printing and 
extrusion printing was used to directly print all the required materials 
into a complete piezoelectric device. The aerosol-jet-printed Te NW and 
Ag NW thin films serve as the active piezoelectric material and 
stretchable electrodes, respectively. The extrusion printed silicone films 
provide electrical insulation and stretchable substrates. Characteriza
tions of the printed device are performed to prove the feasibility of the 
proposed method. Moreover, a wearable piezoelectric sensor is 
demonstrated by detecting the gesture and the pulse. Our hybrid 
printing method provides exciting opportunities to harmoniously inte
grate and transform functional materials and structural materials into a 
highly integrated wearable electronic system. 

2. Ink formulation and drying kinetics 

To ensure the smooth printing of nanomaterials, ink formulation is 
often of great importance. The Te NW and Ag NW were synthesized 
using a bottom-up wet-chemistry method [41,43,44]. The SEM images 
confirm the shape and morphology of Te NW and Ag NW as shown in 
Fig. 1c-d. Then, Te NW and Ag NW are redispersed in solvents to 
formulate printable nanowire inks. It is interesting to find that the Ag 
NW ink shows strong liquid-crystalline birefringence (Fig. 2c). Such 
lyotropic self-alignment feature is an indicator of high aspect ratio 
(length-to-diameter) and relatively low polydispersity [45], which is 
reminiscent of molecular liquid crystal rod systems, such as 4-cya
no-4′-pentylbiphenyl (5CB) [46]. To understand the collective behavior 
of silver nanowire inks, we first investigated the effect of ink solvent, 
including water, isopropyl alcohol (IPA), and dimethylformamide 

Fig. 1. (a) The hybrid printing process of the piezoelectric device using the aerosol jet printer module (left) and the extrusion printing module (right). The inactive 
component in each step is in white color. The subgraph shows the deposition mechanism of the aerosol jet printing head, where the arrows in gold color represent the 
direction of the sheath flow and the spheres in yellow color represent the ink droplets. (b) The structure of the printed piezoelectric device. (c) The SEM image of 
silver nanowires before printing. The scale bar is 1 µm. (d) The SEM image of tellurium nanowires before printing. The scale bar is 1 µm. (e) The atomic structure of 
Te nanowires and the piezoelectric potential distribution (indicated by the color gradient) in the radial direction of Te nanowires encapsulated in silicone layers. 
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(DMF), on film deposition (Fig. 2b). For Ag nanowire ink, the 
water-based ink shows large aggregates in the dried film and thus is not 
suitable for printing. The IPA-based ink shows a relatively uniform film 
after drying. However, it cannot generate a stable aerosol stream using 
our printer, which is likely due to the high volatility of IPA that causes 
the early breakup of aerosol droplets. Although the DMF-based ink 
shows a noticeable coffee-ring effect where the middle region of the 
dried film is depleted of NW particles, we found that a higher nanowire 
concentration (>5 mg/mL) can mitigate such undesired phenomena 
[47]. In fact, ink concentration plays an essential role in the nanoparticle 
percolation, as a low solid content means slower drying kinetics and 
pronounced drying effects (such as the coffee-ring effect) [48]. It is 
worth mentioning that an extremely high ink concentration may not be 
suitable for printing due to increased ink viscosity and possible particle 
agglomeration. As shown in Fig. 2b, an increase in Ag NW concentration 
in DMF leads to significant improvements in particle percolation and 
film uniformity.[43]. 

3. Hybrid printing process of piezoelectric devices 

A hybrid additive manufacturing process integrating extrusion 
printing and multi-material aerosol jet printing (MMAJP) was developed 
for printing both functional and structural materials in order to form a 
complete piezoelectric device. The fabrication process is shown in 
Fig. 1a. The extrusion printing module has a pneumatic system 
providing pressure controlled by solenoid valves to extrude viscous sil
icone ink out of a syringe to form a stretchable electrical insulation 
layer. A UV curable silicone ink (SEMICOSIL 949 UV A/B) with rela
tively low viscosity was used to fabricate the thin insulation layer. The 
MMAJP was designed to print multiple inks at the same time without the 
need to change inks. The tellurium and silver nanowire inks were 

printed by MMAJP to form thin films of the piezoelectric layer and 
stretchable electrodes, respectively. During the printing process, the ink 
was atomized into aerosols by ultrasonic force and carried into the 
printing head by a nitrogen gas flow. A sheath flow was used to aero
dynamically focus the ink flow into a fine beam to achieve high spatial 
resolution and enable 3D conformal printing on non-planar substrates 
[49,50]. The all-printed piezoelectric device has a layered structure 
(Fig. 1b). The aerosol jet printed Te NW piezoelectric layer is sand
wiched between two extruded silicone layers for electrical insulation. 
The aerosol-jet-printed Ag NW electrodes are on the top and the bottom 
to conduct the generated electric signal. 

4. Properties of the printed silver nanowire electrodes 

Silver nanowires are chosen for printing electrodes due to the high 
conductivity and stretchability as a result of the silver nanowire 
percolation network [51,52]. The conductivity of the printed Ag NW 
electrodes can reach 3.4 × 105 S/m for a single layer and 7.4 × 105 S/m 
for three layers without the need for sintering, which is sufficient to be 
used for a piezoelectric device. The resistance versus tensile strain of a 
printed Ag NW film on silicone is shown in Fig. 2d. The electrode re
mains conductive under up to 50% strain and can recover to the initial 
state. The stability curve of the printed Ag NW film under 20% strain is 
shown in Fig. 2e. The printed silver nanowires electrode shows good 
stability with relative resistance change lower than 10% after 1000 
stretching-releasing cycles. The change of resistance remains negligible 
compared to the total resistance of the piezoelectric device. During the 
atomizing process, long silver nanowires with the original length of 
20–40 µm are converted into shorter pieces of 1–5 µm (Fig. 2d) to enable 
the generation of aerosols carrying the nanowires. 

Fig. 2. (a) The inks used in the hybrid printing of the piezoelectric device. (b) The coffee ring effect of the silver nanowire ink dropped on glass slides. The scale bar is 
1 cm. (c) The flow-induced birefringence property of the silver nanowire ink. (d) The resistance change of the printed silver nanowire film (1 by 20 mm) under 
different tensile strains. The subgraph is the SEM image of the printed silver nanowire film. (e) The stability curve of the printed silver nanowire film (1 by 20 mm) 
under 20% strain for 1000 cycles. 
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5. Piezoelectric device performances 

The piezoelectric outputs of the all-printed and stretchable devices 
were investigated to illustrate the sensing and energy harvesting per
formances. Based on the crystal structure of Te NW, the projection of the 
helical chains with equilateral triangles of Te atoms onto the (0 0 0 1) 
plane is shown in Fig. 1e [42]. The non-centrosymmetric structure of Te 
leads to its piezoelectric property, where an individual helical chain is 
constructed of strong covalent bonds while adjacent chains are stacked 
by interchain interactions that are weaker than the covalent bond 
forming a hexagonal lattice [53]. The piezoelectric constant e11 could be 
divided orthogonally into ex and ey, perpendicular and parallel to the 
substrate, respectively [39]. When an external strain is applied along the 
radial direction (ex) of a Te NW, the shape of the equilateral triangle 
distorts, resulting in a relative displacement of the electron distribution 
against the Te atoms cores, leading to piezoelectric polarization as 
shown in Fig. 1e [41,42]. Thus, the piezoelectric potential would be 
generated from printed Te NWs on substrates under strain along the 
[1010] direction. When the substrate was stretched mechanically, a 
corresponding contraction must occur along the perpendicular axis with 
Poisson’s ratio, giving rise to the compressive strain along the nano
wires’ radial directions. The generated piezo-charges induced opposite 
charges in the printed Ag NW electrodes, resulting in a potential dif
ference between the two electrodes and driving electrons to flow in the 
external circuit. When the applied strain was released, the piezoelectric 
potential vanished immediately and the electrons flowed back to reach 
the electrostatic equilibrium [54]. Electrical pulses were generated by 
periodically repeating the stretching-releasing process. The typical re
sults of open-circuit voltage and short-circuit current generated from an 
all-printed Te NW piezoelectric device are shown in Fig. 3a and b, 
respectively. Statistical results for the piezoelectric outputs from an 
all-printed Te NW piezoelectric device with different strain loading are 
shown in Fig. 3c. It can be seen that both the generated voltages and 
currents are strain-dependent, which increased with larger strain 

loading, agreeing well with the previously reported results [41,55]. 
When the applied strain was larger than 50%, the resistance of printed 
Ag NW electrodes increased dramatically (Fig. 2d), preventing the 
efficient collection of piezoelectric signals. The stretchability of 50% has 
also surpassed that of biological skin (~30%), indicating the capability 
of all-printed Te NW piezoelectric devices for wearable applications 
[56]. Besides, the output power with different external load resistances 
was measured at 20% strain (Fig. 3d). The optimized output power of 
32.1 nW/m2 was achieved with 1 GΩ external load. The stability test of 
the all-printed Te NW piezoelectric device is shown in Fig. 3e. The 
open-circuit voltages have a typical square wave shape without notice
able degradation over 1000 s through continuous stretching-releasing 
processes (0.8 Hz), indicating the excellent mechanical durability of 
the device. 

To demonstrate the wearability and sensitivity of the printed 
piezoelectric device, we attached the device to a human wrist to detect 
different hand gestures and to a human neck to detect heartbeat without 
using an external power source. In Fig. 4a-d, the piezoelectric signals are 
shown based on four different hand gestures, which were measured by 
the same all-printed device. The wearable device attached to the wrist 
was deformed due to the movement of the underlying tendons and 
muscles and generated corresponding signals [57]. For the same gesture, 
the waveforms have good repeatability. Moreover, the waveforms are 
significantly distinguishable among different gestures, indicating a high 
resolution of tiny movements from the underlying tendons and muscles. 
Therefore, the all-printed wearable piezoelectric devices have great 
potential in detecting subtle muscle movement for diagnostics, reha
bilitation, and human-machine-interface applications [58–63]. In 
addition, the wearable device was attached to the human neck to 
explore its feasibility to detect imperceptible movement of blood vessel 
expansion due to the blood ejection from the heart. In Fig. 4e, the 
real-time piezoelectric signals from the wearable device show the reli
able detection and measurement of human heartbeats. The peaks 
labeled by red bars are corresponding to the heartbeats. The heart rate 

Fig. 3. The characterization of the all-printed piezoelectric device. (a) The typical result of open-circuit voltage generated from the all-printed piezoelectric device. 
(b) The typical result of short-circuit current generated from the all-printed piezoelectric device. (c) The statistical result of the open-circuit voltage (left) and the 
short-circuit current (right) from the all-printed piezoelectric device under different strain. (d) The output power with different external load resistance under 20% 
strain. (e) The stability curve of the all-printed piezoelectric device. The magnified view is displayed on the right. 
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can be measured by counting the peak numbers within one minute. The 
highly customizable platform enabled by hybrid 3D printing along with 
the demonstrated capability of sensing physiological biomechanical 
signals can be applied to broader wearable and biomedical applications 
[64–66]. 

6. Conclusion 

In summary, a fully printed stretchable and wearable piezoelectric 
sensor is demonstrated using a hybrid 3D printing strategy. Owing to the 
nanowire network formed during printing, we found that the printed 
nanowire-based electrodes and piezoelectric devices reveal excellent 
intrinsic stretchability without sophisticated design requirements (e.g., 
serpentine patterns). In addition, no high-temperature sintering or high 
voltage poling processes are necessitated in our proposed approach, 
which facilities direct device printing on temperature/voltage sensitive 
components, providing opportunities for facile integration of piezo
electric devices into the future highly integrated printed electronics and 
wearable devices. The printed wearable piezoelectric devices could 
efficiently convert the imperceptible mechanical movements from the 
human body into distinguishable electrical signals through straining the 
piezoelectric Te nanowires. This study of hybrid 3D printed wearable 
piezoelectric sensors can be potentially expanded to various materials 
and structures due to the highly customizable platform, providing a new 

strategy for the fabrication of wearable and biomedical sensors. 

7. Experimental section 

7.1. Synthesis of Te nanowire and Ag nanowire 

Tellurium (Te) nanowires were synthesized by the hydrothermal 
method as described in the previous report [41,43]. Typically, 0.4 mmol 
Na2TeO3 and 1 g PVP (M. W. = 58,000) were added into deionized (DI) 
water with magnetic stirring until fully dissolved. The solution was 
transferred into a Teflon vessel which was then filled with aqueous 
ammonia solution and hydrazine hydrate. The autoclave was sealed and 
maintained at 180 ◦C for 3 h and cooled down to room temperature 
rapidly by cold tap water. The obtained black products were washed 
with DI water and acetone three times. 

Silver (Ag) nanowires were synthesized by a seed-assisted solution- 
based method following the procedures reported in the previous work 
[44]. Ethylene glycol (EG) was applied in all solutions as solvent. The Ag 
seed solution was prepared by mixing 5 mL EG, 1 mL 100 mM poly
vinylpyrrolidone (PVP, M.W. = 40,000), 136 μL 25 mg/mL silver nitrate 
(AgNO3) and 50 μL 220 mM sodium bromide (NaBr) in a glass vial. The 
seed solution was maintained at 130 ◦C for 15 min and cooled down to 
room temperature naturally. The growth solution of Ag nanowires was 
prepared by mixing 5 mL EG, 5 mL 25 mg/mL AgNO3, 5 mL 20 mg/mL 

Fig. 4. The demonstration of the wearability and sensitivity of the all-printed piezoelectric device. (a)-(d) The piezoelectric signal generated from the all-printed 
piezoelectric device attached on the wrist when different gestures are made. (e) The piezoelectric signal generated from the all-printed device attached on the 
neck indicating the human heartbeat. 
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PVP (M.W. = 360,000), 0.5 mL 100 mM sodium chloride (NaCl) and 
0.5 mL Ag seed solution in a Teflon vessel. The autoclave was sealed and 
maintained at 150 ◦C for 6 h and cooled down to room temperature 
rapidly by cold tap water. The obtained products were washed with 
acetone for several times. 

7.2. Ink formulation 

Tellurium nanowires are dispersed in water to formulate Te NW inks. 
Silver nanowires are subject to a solvent exchange process that allows 
the Ag nanowires to be dispersed in DMF. All nanowires are subjected to 
mild bath sonication prior to the printing process. The silicone ink 
(SEMICOSIL 949 UV A/B) used to fabricate the insulation layers was 
purchased from WACKER. The component A and component B were 
thoroughly mixed with a 2–1 ratio before printing. The viscosity of 
component A is 150.0 mPa⋅s and is 1000.0 mPa⋅s for component B. The 
silicone ink (SYLGARD 184, Dow) was used to fabricate the substrates. 

7.3. Device printing 

7.3.1. Printing of silver nanowire ink 
During aerosol jet printing, a 20-gauge nozzle was used in the AJP 

module to print silver nanowire. The printing speed was 2 mm/s, and 
during the printing process, the platform temperature was kept at 83 ℃ 
while the sonicating base was kept at 27 ℃. The sheath flow rate and the 
ink flow rate were set to be 70 and 20 SCCM, respectively. The atomizer 
voltage was set at 35 volts. 3 layers of silver nanowire were printed to 
form the bottom electrodes and 5 layers were printed to form the top 
electrodes to avoid the step effect. After the bottom electrodes were 
printed and dried on an 83 ℃ hotplate for 20 min, the insulation silicone 
ink was directly printed on the top. 

7.3.2. Printing of silicone ink 
The silicone ink used in the insulation layer was printed by a 

customized extrusion printing module with a 26 gauge nozzle. During 
printing, the extrusion pressure, the printing speed and the distance 
between the nozzle tip were maintained at 1.5 bar, 5 mm/s and 0.3 mm, 
respectively. The printed layer was then cured under a 365 nm UV LED 
(SkyBeam UV4053–365F, Uvitron International) for 15 min. Further, 
the cured layer was plasma treated for 2 min to obtain a hydrophilic 
surface which enables the smooth deposition of aerosol ink. 

7.3.3. Printing of piezoelectric tellurium nanowire ink 
The Te NW ink was also printed by the aerosol jet printing module 

with a 20 gauge nozzle. The ink was diluted to 4 mg/mL before printing. 
The hotplate was kept at 80 ℃ while the atomizer voltage was set to 31 
volts. The sheath flow and ink flow were set as 60 SCCM and 18 SCCM. 6 
layers were printed to ensure sufficient coverage over the substrate. 

7.4. Device characterization 

A linear motor (LinMot PS01–23 × 80) was applied to stretch the 
samples with controlled strains (maximum speed, 1 m s− 1; acceleration, 
1 m s− 2; deceleration, 1 m s− 2). The resistances of printed Ag NW 
electrodes were characterized by using a function generator (Stanford 
Research System, DS345). Piezoelectric outputs from the all-printed Te 
NW devices were measured by an electrometer (Keithley 6514) and a 
low current preamplifier (Stanford Research System, SR570). Real-time 
data acquisition was performed on a LabVIEW-based software platform. 
The gesture and heartbeat measurements were performed following the 
protocol approved by the Purdue Institutional Review Board (IRB No. 
1809021076). 
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