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Highlights 1 
• Trade-off between sampling individual variation vs. experimental variation 2 
• Different studies have allocated resources differently 3 
• We argue that wide sampling of individuals provides few benefits 4 
• We discuss design decisions made for the Natural Scenes Dataset 5 
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Abstract 1 
 2 
In designing cognitive neuroscience experiments, resource limitations induce a fundamental 3 
trade-off between sampling variation across individual brains and sampling variation across 4 
experimental conditions. Here, we argue that extensive sampling of experimental conditions is 5 
essential for understanding how human brains process complex stimuli, that a model of how any 6 
one brain does this is likely to generalize to most other brains, and that introducing large 7 
numbers of subjects into an analysis pool is likely to introduce unnecessary and undesirable 8 
variance. Thus, contrary to conventional wisdom, we believe that sampling many individuals 9 
provides relatively few benefits and that extensive sampling of a limited number of subjects is 10 
more productive for revealing general principles. Furthermore, an emphasis on depth in 11 
individual brains is well-suited for capitalizing on the improvements in resolution and signal-to-12 
noise ratio that are being achieved in modern neuroscientific measurement techniques. 13 
  14 
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Introduction 1 
 2 
When can cognitive neuroscientists stop doing experiments? Each experiment costs society time, 3 
money, and effort, and can pose risks to individual subjects, so it is worth considering what our 4 
end-goal is and how we would know when we have achieved it. 5 
 6 
We assume that the end-goal is a complete model of the human brain [1–3]. A complete model 7 
would be both oracle and interpreter: it would predict with great accuracy the brain activity and 8 
behavior that we would observe in response to arbitrary stimuli and task instructions, and would 9 
connect the observed responses to meaningful evolutionary, developmental, computational, 10 
psychological, and philosophical narratives. 11 
 12 
The cognitive neuroscience of vision (where our interests lie) works toward this end-goal one 13 
stimulus at a time. Experimentalists present visual stimuli while measuring brain activity using 14 
one of many techniques for interrogating neural activity (e.g., fMRI, EEG, MEG, ECoG, 15 
electrophysiology). The cost of each experiment is the accumulated cost of measuring these 16 
responses across many stimuli. In this paper we consider whether it is better to accumulate cost 17 
by sampling variation across individuals, or by sampling variation across stimuli. Specifically, 18 
we ask which approach yields greater progress toward the ambitious end-goal of a complete 19 
model? 20 
 21 
 22 
Fundamental trade-off between sampling individual variation and sampling 23 

stimulus variation 24 
 25 
Resource constraints on experimental design impose a fundamental trade-off between sampling 26 
individual variation and sampling stimulus variation. We illustrate how a number of recent fMRI 27 
studies have managed this trade-off by plotting them in a two-dimensional space with number of 28 
individual subjects as the y-axis and number of hours of data per subject as the x-axis (Figure 1). 29 
We acknowledge that the number of hours of scanning per subject is only a proxy for how 30 
extensively a given experiment samples variation across stimuli (or, more generally, 31 
experimental conditions). We include resting-state fMRI data collection in this plot under the 32 
working premise that the “conditions” that vary in this case are unmeasured endogenous (e.g., 33 
cognitive, affective) states. 34 
 35 
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In an ideal world, all experiments would reside in the upper right (many subjects and many hours 1 
per subject). However, resource limitations force experimentalists to distribute their efforts along 2 
iso-hour contours that extend from the upper left (many subjects but few hours per subject) to the 3 
lower right (many hours per subject but few subjects). Traditional fMRI studies tend to collect 4 
one session of data on about 10–20 participants (see gray box). The studies illustrated in Figure 5 
1 have deliberately pushed sampling strategies towards one extreme (more subjects) or the other 6 
(more data per subject). 7 
 8 

 9 
 10 
Figure 1. Trade-off between number of subjects and amount of data per subject. In the 11 
context of basic-science fMRI studies with publicly available data, we select a few representative 12 
publications, biasing towards recent and/or influential studies. Selected publications include 13 
Biobank [4], BOLD5000 [5], CNeuroMod [6], Doctor Who [7], Dynamic Natural Vision [8], 14 
Generic Object Decoding [9], HCP [10], HCP 7T Retinotopy [11], IBC [12], Midnight Scan Club 15 
[13], MOUS [14], MyConnectome [15], Narratives [16], Naturalistic Neuroimaging Database 16 
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[17], NSD [18], StudyForrest [19,20], Task Sampling [21], Vim-1 [22], and Vim-2 [23]. For each 1 
publication, we plot the number of subjects scanned and the number of hours of task-based and 2 
resting-state fMRI conducted for each subject (estimated based on information provided in the 3 
publication). The green dot denotes a soon-to-be-released study that is discussed in further detail 4 
in this article, the gray dot denotes an upcoming study, and the thick “iso-hour” lines indicate 5 
points that share the same number of total hours of fMRI data. 6 

 7 
Efforts that involve extensive data collection across large numbers of individual brains but small 8 
numbers of experimental conditions [4,10,11,24] are in line with cognitive neuroscience’s 9 
historical penchant for studies with large (more than 20) numbers of subjects [25–27]. The 10 
intuition behind this approach seems to be that inferring a complete model of the human brain 11 
requires generalizing over response patterns in the brains of many individual humans. However, 12 
we argue that a complete model of the human brain must be able to predict and interpret activity 13 
in any one human brain, and that a complete model of the brain of any one individual will bring 14 
us within striking distance of a complete model that adequately describes most individuals. This 15 
line of thinking has motivated us, and presumably several others, to explore the other end of the 16 
spectrum, sampling many stimuli (or experimental conditions) in just a few individuals [5–17 
7,15,18].  18 
 19 
 20 
Many reasons for extensive sampling of stimulus variation 21 
 22 
The images of the natural world that the eye transmits to the brain are ambiguous and complex 23 
[28]. While we can learn much from probing the visual system with simple stimuli [29], we 24 
ultimately want to understand how the brain solves the hard computational problem of 25 
interpreting natural scenes. We take for granted the many arguments that have been put forth in 26 
favor of using natural stimuli to probe the visual system [30–33].  27 
 28 
Understanding how the human brain interprets natural images is likely to require extensive 29 
sampling of stimulus variation. Natural scenes are high-dimensional and, despite recent progress 30 
in modeling their statistical structure [34], it is not possible to adequately sample them by 31 
varying a small number of controllable parameters. Furthermore, visual (and auditory) features 32 
are often highly correlated in stimuli, both natural [35] and synthetic [36], and it is difficult to 33 
isolate individual features [37]. Correlation of stimulus features creates inferential challenges 34 
[38]: for example, an undersampled neuron that is strongly activated by the color yellow can 35 
easily be mistaken for a neuron that is strongly activated by bananas. 36 
 37 
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A complete model of the human visual system will have to specify how the high-dimensional 1 
space of natural stimuli is transformed and represented by the human brain. Such a model will 2 
necessarily be complex, with many potential stimulus features and free parameters [39]; fitting 3 
and adjudicating different models will therefore require substantial empirical data. Thus, we 4 
believe that to have any hope of achieving a complete model of the visual brain, extensive 5 
sampling of stimulus variation will be necessary. 6 
 7 
Few reasons for sampling individual variation 8 
 9 
For basic cognitive neuroscience, motivations for sampling a large number of subjects (while 10 
collecting modest data per subject) might include the following: 11 
 12 

1. We might be concerned that what we observe to be true of one brain may not be true of 13 
others. 14 

2. We might want to increase the statistical power of our analyses by adding more subjects. 15 
3. We are actually interested in explaining individual variation (or variation across groups). 16 

 17 
In this section, we consider each of these motivations in turn and suggest reasons why we 18 
nonetheless might want to prioritize the sampling of stimulus over individual variation. We 19 
acknowledge that there are other considerations that may constrain a given study: for example, 20 
extensive data collection might be impractical or too exhausting for a given subject population, 21 
or a given experiment might require novelty and cannot be repeated (e.g. one-shot experiments, 22 
drug or brain-stimulation treatments). We offer some thoughts on the issue of subject burden 23 
later in this article. 24 
 25 
 26 
Complete models of individuals are likely to generalize 27 
 28 
Suppose that by dedicating all available experimental resources, we are able to sample stimulus 29 
variation extensively enough to construct a complete model of an individual brain. Would this 30 
complete model of a single brain do more to mislead us about general principles than it would to 31 
reveal them? 32 
 33 
Inferring general principles from relatively small numbers of observations is a practice taken for 34 
granted in other domains. For example, in physics, consider Kepler’s deduction of the laws of 35 
planetary motion from a limited set of observations. As another example, in neuroanatomy, 36 
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consider the insights into structure-function relationships provided by Cajal’s exquisitely detailed 1 
drawings of individual neurons. Whether these types of generalizations succeed in cognitive 2 
neuroscience remains an open question. However, we point out that most of what we have 3 
learned about the organization of mammalian visual systems suggests that a complete model of 4 
an individual brain would yield useful insights. Many principles of visual organization in human 5 
brains—such as retinotopic organization [40] and face-selectivity [41]—not only generalize 6 
across individuals, but for the most part generalize across species [42,43]. Beyond sensory 7 
processing, there is even some evidence that cortical organization of high-level task 8 
representations [21] and semantic processing [44] exhibits consistent structure across 9 
individuals. We furthermore point out that generalization is an existential assumption of animal 10 
models in systems neuroscience: it is assumed that the brains of other species have much to teach 11 
us about our own. 12 
 13 
If we were to achieve a complete model of an individual, it would certainly be important to test 14 
generalization of the model. This could be done relatively quickly and cheaply by testing a 15 
second or third subject. We would not need to gather enough samples from the additional 16 
subjects to derive complete models of their brains from scratch—we would need just enough to 17 
test the generalization of the model from the first subject, tweaking it to account for local 18 
differences. 19 
 20 
To be clear, we are arguing here that the most useful insights for cognitive neuroscience lie in 21 
identifying general principles that govern how functional activity arises in the brain and how 22 
functional properties are anatomically organized. To achieve this, we believe that extensive 23 
sampling of individuals is essential. We acknowledge that such an approach is not suitable for 24 
assessing differences in the exact size or layout of maps or functional properties across the 25 
population at large: we feel it is more pressing to identify the axes that characterize brain 26 
function as opposed to characterizing the distribution of individuals along such axes. 27 
 28 
More subjects = more “noise” 29 
 30 
There are two radically different stances towards characterizing function in brains [45]. In the 31 
group-oriented stance, which perhaps is more typical in cognitive studies, statistical variability 32 
(error) is computed across subjects and effects are established at the group level. This approach 33 
lends itself well to brain measurements conducted at low spatial resolution and analyses that 34 
involve deliberate spatial smoothing of neuroimaging data and/or averaging of functional activity 35 
across subjects in a common anatomical space [46]. Accumulating samples of brain activity in 36 
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this fashion will certainly improve reliability of group-average measures, but is likely to preserve 1 
only the simplest and most coarse patterns of activity. This is because the structural and 2 
functional organization of the brain varies considerably across individuals at the fine scale [47]. 3 
While surface-based approaches for registering cerebral cortex across individuals are more 4 
accurate than volume-based approaches [48,49], substantial variability still remains [50]. It is 5 
possible, of course, to adopt strategies that avoid direct averaging of activity in a common space, 6 
such as manually defining well-established regions-of-interest in individual subjects [51] or 7 
characterizing activity at a more abstract level before averaging [16,52,53], but these strategies 8 
come with their own limitations. 9 
 10 
In the individual-oriented stance, which perhaps is more typical in sensory studies, statistical 11 
variability (error) is computed across stimuli or trials (or scan sessions) for a given subject. By 12 
doing so, variability is quantified at the most precise unit of measurement (e.g. voxels, neurons, 13 
electrodes). Additional brain measurements contribute directly to additional information about 14 
the nature of the computation occurring at each unit, and does so without incurring any cost of 15 
intersubject variability. The aim is to establish effects in individual subjects and reproduce the 16 
effects on additional subjects if necessary. Notably, this general approach of measurement and 17 
characterization of a small number of subjects is rooted in classic studies in human 18 
psychophysics [54,55], neuroimaging [56,57], and animal electrophysiology [58]. 19 
 20 
Our contention is that adding subjects to increase statistical power makes sense only if one 21 
adopts the group-oriented stance where group-averaging of activity is performed. If we switch 22 
stances and instead characterize effects in individual subjects, the problem of intersubject 23 
variability is largely avoided. In a sense, the choice to study and analyze group-average activity 24 
actually adds unnecessary “noise” to the analysis. We therefore suggest that increased sampling 25 
of stimulus variation (within an individual) is a preferable method for improving statistical 26 
power compared to increased sampling of individual variation. 27 
 28 
Complete models of individual brains may reveal the most interesting forms of individual 29 
variation 30 
 31 
We think that the most compelling reason for sampling individual variation is if we are actually 32 
interested in understanding person-to-person variation in some cognitive function [59], or 33 
differences between populations grouped by a shared pathology or mental illness [60]. For these 34 
purposes, studies involving large numbers of subjects are appropriate and may be highly useful 35 
for developing predictive biomarkers for various behavioral phenotypes [61]. However, we 36 
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contend that in neurotypical subject pools, many of the most interesting forms of individual 1 
variation are subjective mental events like dreams, mental images, and recalled memories 2 
[62,63]. It is likely that a deep understanding of how these events are mediated by brain activity 3 
will require sophisticated models of individual brains spanning perception, attention, memory, 4 
and cognition—and therefore require extensive sampling of stimulus and task variation. 5 
Functional brain measurements are notoriously noisy (reflecting either instrumental or true 6 
neural variation), and relating brain responses to precise measures of behavior is a challenging 7 
endeavor that requires substantial amounts of data, assuming we are careful not to overestimate 8 
the robustness of our measures [64]. 9 
 10 
A case study 11 
 12 
We have argued that extensive sampling of stimulus variation is essential for modeling brain 13 
activity and that allocating samples to one or a few individual brains is more effective than 14 
spreading them across many brains. But these are mere generalities—how many subjects should 15 
one actually use? 16 
 17 
To make our discussion more concrete, we briefly address specific choices we made for the 18 
Natural Scenes Dataset (NSD, http://naturalscenesdataset.org). NSD is a massive sampling of 19 
high-resolution whole-brain 7T fMRI responses that will soon be publicly released [18]. The 20 
unique scale of the dataset makes possible analyses that are difficult to carry out in smaller 21 
datasets, such as end-to-end training of a neural network-based encoding model of visual 22 
responses. Indeed, one of the overarching goals of NSD was to generate a dataset that can be 23 
used to develop and validate complete models of individual brains. In designing NSD, we had to 24 
move from general considerations to concrete choices about the number of stimuli to sample, the 25 
number of repetitions per stimulus, and the number of individual brains across which to 26 
distribute these samples. 27 
 28 
NSD samples brain activity in response to roughly 73,000 distinct natural scenes aggregated 29 
across subjects. There is no general principle or rule one can consult to select the total number of 30 
images sampled; it may be the case that neuroscientists are destined to be starved for data 31 
relative to the dimensionality of visual stimuli. However, we were guided by the numbers of 32 
samples needed for data-hungry deep-learning techniques [65,66]. State-of-the art techniques 33 
typically require tens of thousands of samples, and so we took this rough figure as our goal. 34 
 35 
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NSD samples each image three times within a given subject. Stimulus repeats are not a strict 1 
requirement for all analyses, since there is considerable overlap in the kinds of visual features 2 
that appear across images. However, stimulus repeats make it possible to entertain analyses of 3 
variation across trials, allowing one to study issues such as repetition and memory effects [67]. 4 
In addition, stimulus repeats enable the use of cross-validation methods for data denoising [68]. 5 
Finally, in the NSD experiment, subjects were asked to report on each trial if they remembered 6 
seeing the displayed stimulus on any previous trial. This added a cognitive dimension that 7 
enriches the analysis potential of the dataset. 8 
 9 
NSD includes eight subjects. Why this design? One motivation comes from statistical 10 
considerations. If we assume that the researcher is equipped to demonstrate effects in individual 11 
subjects, the availability of eight subjects provides statistical power to guard against incidental 12 
findings. For example, using a two-sided sign test, demonstration of a consistent sign of an effect 13 
in six out of eight subjects corresponds to a p-value of 0.03125. 14 
 15 
Our primary consideration for recruiting eight subjects, however, was the demand on the subjects 16 
and the time required to acquire the full dataset. Although allocating the full set of 73,000 images 17 
to a single subject might not be an unreasonable proposition from the perspective of scientific 18 
value, subjects already had to commit to nearly a year of regularly scheduled scan sessions. If a 19 
single subject had been used, the dataset would have taken eight years to collect as opposed to 20 
one. Moreover, we speculate that a year of scanning may already be near the upper limit of what 21 
most subjects can be asked to tolerate, at least in the context of strenuous fMRI experiments 22 
where high performance is expected from scan subjects. Indeed, in light of these considerations, 23 
we took special care when acquiring the NSD dataset to minimize the burden of participation and 24 
to make the experience as pleasant as possible for the subjects. This included communicating 25 
clear expectations, sharing the scientific motivation and excitement of the dataset, instituting a 26 
bonus incentive structure for good performance, streamlining day-to-day scanning procedures, 27 
offering refreshments, maintaining an amicable relationship, continually assessing subject well-28 
being, and soliciting subject feedback. While subjects had the option of halting participation at 29 
any time, all eight continued until the end. 30 
 31 
Future outlook 32 
 33 
Currently, there are few human fMRI datasets involving extremely deep and rich sampling of 34 
cognitive phenomena. But we imagine that the utility of and demand for such datasets will only 35 
increase as the field targets more sophisticated questions about the brain. Indeed, such datasets 36 
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seem a necessity if we are attempting to derive deep principles of intelligence from brain data 1 
and incorporate these into artificial systems [69]. Given the expense of neuroimaging data, 2 
collecting these datasets and making them publicly available are critical for scientific progress. 3 
In particular, we are excited by the prospect of different research groups comparing different 4 
models and analyses on common benchmark datasets [70,71]. Finally, we note that a shift to 5 
extensive sampling of individuals goes hand-in-hand with improvements in our ability to collect 6 
brain measurements at high spatial and temporal resolution [72], our ability to handle, store, and 7 
compute on large datasets [73,74], and our ability to apply data-driven machine-learning 8 
techniques that can exploit large amounts of data [75,76]. 9 
  10 
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