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Diagnostic classification models (DCMs) are widely used for providing fine-grained classification of
a multidimensional collection of discrete attributes. The application of DCMs requires the specification
of the latent structure in what is known as the Q matrix. Expert-specified Q matrices might be biased
and result in incorrect diagnostic classifications, so a critical issue is developing methods to estimate Q
in order to infer the relationship between latent attributes and items. Existing exploratory methods for
estimating Q must pre-specify the number of attributes, K. We present a Bayesian framework to jointly
infer the number of attributes K and the elements of Q. We propose the crimp sampling algorithm to
transit between different dimensions of K and estimate the underlying Q and model parameters while
enforcing model identifiability constraints. We also adapt the Indian buffet process and reversible-jump
Markov chain Monte Carlo methods to estimate Q. We report evidence that the crimp sampler performs
the best among the three methods. We apply the developed methodology to two data sets and discuss the
implications of the findings for future research.

Key words: diagnostic models, dimensionality, Dirichlet processes, Indian buffet process, reversible jump
MCMC, Bayesian.

1. Introduction

Diagnostic latent class models continue to receive attention by educational and psychometric
researchers. Researchers applied diagnostic classification models (DCMs) to language testing
(von Davier 2008), fraction-subtraction (Chen et al. 2015; Chen et al. 2018; de la Torre and
Douglas 2004, 2008; Tatsuoka 1984; Tatsuoka 2002), situational judgment (Sorrel et al. 2016), and
social anxiety (Chen et al. 2015). Furthermore, recent research developed longitudinal diagnostic
models to track student learning trajectories (Chen et al. 2018; Kaya and Leite 2017; Li et al.
2016; Madison and Bradshaw 2018; Wang et al. 2017; Wang et al. 2018; Zhang et al. in press)
and detect skill changes (Ye et al. 2016).

Confirmatory applications of diagnostic models require detailed, a priori knowledge about
the underlying structure as to how latent skills relate to items. One challenge with widespread
application of confirmatory DCMs is that expert knowledge may be unavailable to pre-specify the
latent structure. Consequently, several studies proposed exploratory methods to infer the latent
structure for DCMs (Chen et al. 2015; Chen et al. 2018; Culpepper and Chen 2018; Culpepper
2019a; Liuetal. 2013; Xu 2017; Xu and Shang 2018) using parsimonious DCMs and more general
diagnostic modeling frameworks (for general models see de la Torre 2011; Henson et al. 2009;
von Davier 2008).

This paper contributes to the literature on exploratory DCMs by proposing new methods
for joint inference concerning the number of latent skills, K, and the underlying structure that

Correspondence should be made to Steven Andrew Culpepper, Department of Statistics, University of Illinois at
Urbana-Champaign, 725 South Wright Street, Champaign, IL 61820, USA. Email: sculpepp @illinois.edu

© 2021 The Psychometric Society 30


http://crossmark.crossref.org/dialog/?doi=10.1007/s11336-021-09750-9&domain=pdf
http://orcid.org/0000-0003-4226-6176
http://orcid.org/0000-0001-7148-1823

YINGHAN CHEN ET AL. 31

describes how latent skills relate to items. That is, existing exploratory DCMs assume that the
number of attributes, K, underlying item responses is known. In cases where the latent structure
is unknown, it is also unexpected for researchers to know K a priori. Correct specification of K
is fundamental for accurately recovering the latent structure. If K is too small, some attributes
are absent and the missing attributes cannot be correctly classified. Likewise, a value of K that
is too large possibly introduces spurious attributes. In short, incorrectly specifying K results
in a misspecified model. Current applications of exploratory DCMs consider the problem of
inferring K by comparing models of varying dimensions with fit indices such as the BIC (Xu
and Shang 2018) and deviance information criterion (DIC; Culpepper and Chen 2018). Whereas
existing approaches that use fit indices to infer K are easy to implement, we report Monte Carlo
simulation results to support that our new methods more accurately infer the number of attributes
with a smaller computational burden. In fact, our findings support the conclusion of Sen and
Bradshaw (2017) that traditional fit indices are inadequate for comparing the fit of diagnostic
models.

There are several benefits of our strategy for inferring K . First, we propose a “crimp sampling”
algorithm that is designed to infer the latent structure and number of attributes while also enforcing
model identifiability conditions (e.g., see Chen et al. 2020a; Culpepper 2019b; Fang et al. 2019; Gu
and Xu2019; Xu2017; Xuand Zhang 2016). The term “crimp sampling” is based upon a technique
in rock-climbing where climbers use just their fingertips to proceed up narrow edges. That is, as in
rock-climbing, our crimp sampler involves as few items as possible to transition in an irreducible
manner between identified model spaces of different dimensions. Second, we provide Monte
Carlo evidence that the “crimp sampler” outperforms existing methods such as using the DIC
and Bayesian procedures for inferring dimensionality such as the Dirichlet process/Indian buffet
process (IBP; e.g., Gershman and Blei 2012; Griffiths and Ghahramani 2005, 2011; Sethuraman
1994; Teh et al. 2007; Thibaux and Jordan 2007) and reversible jump Markov chain Monte Carlo
(RI-MCMC; Green 1995). Third, we consider methods for simultaneous inference of Q, K,
and the item and structural parameters, which accounts for all sources of modeling error and
provides an approach for automatic selection of the number of attributes. Fourth, we improve
existing algorithms for estimating the DINA @ matrix (e.g., see Chen et al. 2018). Specifically,
we use a collapsed Gibbs sampler (Liu, 1994) for updating attributes to improve mixing of the
Markov chains. Furthermore, our proposed methodology imposes weaker necessary and sufficient
identifiability conditions on the posterior distribution for Q and, as discussed below, it admits zero
rows in @, which allows for the possibility that some items do not load on the attributes shared
by the majority of items. It is important to note that imposing identifiability on the posterior
distribution does not guarantee the true @ matrix is identified. In fact, there is no consistent
estimator if the true @ is unidentified. We enforce identifiability on the posterior distribution for
at least two reasons. First, we assume the true @ is identified and it is reasonable to restrict the
search to the identified space. Second, unrestricted sampling will yield a posterior with support on
unidentified Q matrices and draws from the unidentified space cannot be coherently interpreted.
That is, if we freely sample Q, we may have some posterior samples that are identified and some
that are not identified. One option could be to deploy post-processing to filter out the unidentified
cases, but the drawback may be that we would require longer chains to sample from the identified
space.

The remainder of this paper is organized as follows. Section 2 reviews the problem of dimen-
sionality for DCMs, provides an overview of approaches in statistics literature such as IBP and
RJ-MCMC, and adapts them to estimate K in DCMs. Section 3 introduces the crimp sampling
algorithm and shows that it is irreducible and satisfies identifiability constraints. Section 4 includes
a summary of algorithms of the crimp sampler, IBP, and RJ-MCMC for inferring K in the deter-
ministic inputs, noisy “and” gate model (DINA). Section 5 reports results from Monte Carlo
simulation studies regarding the performance of the aforementioned algorithms in recovering the
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DINA model K. Section 6 presents two applications of the crimp sampling method to infer K;
the first application is to Tatsuoka’s fraction-subtraction data (Tatsuoka 1984), and the second is
to the data set on Problems in Elementary Probability Theory, which is available in the “Prob-
abilistic Knowledge Structures” pks R package (Heller and Wickelmaier 2013). Finally, Sect. 7
concludes the paper with a discussion of the implications of the study and recommendations for
future research.

2. Adapting RI-MCMC and IBP to Estimate K

In this section, we review the problem of estimating K for DCMs, provide a Bayesian frame-
work for this problem, and adapt two approaches from the statistics literature to infer K and other
DCM parameters.

2.1. Overview

Applications of diagnostic latent class models are based on the specification of a binary Q-
matrix, which defines which latent skills relate to each item. Let J denote the number of items and
K the number of attributes. The J x K structure matrix is definedas Q = (g, ..., q J)T, where
q;.r = (¢j1,...,9jk) is a binary K-vector and gjx = 1 indicates item j requires the mastery
of attribute £ and O otherwise. Let oc;'— = (w1, - .., ®jg) be the latent attribute profile of subject
i, where o;; = 1 indicates subject i possesses attribute k£ and 0 otherwise. Let ¥;; be the binary
response of subjecti (1 <i < N)toitem j (1 < j < J).In diagnostic models Y;; is modeled by
an item response function P(Y;; = y;jlo;, £, g j), where y;; is arealized value and €2; indicates
parameters specific to item j. We assume individual i’s responses to the J items are mutually
independent when conditioned upon «;. Let Y; = (Yiq, ..., Y,~J)T € {0, l}J be a random vector
of responses for individual i with realization y; = (yi1,..., Y j)T. The assumption of local
independence implies that the likelihood of Y; = y; is

J
P(Y;i = yjlei, , @) = [ [ P(¥yj = yijleei, R, q)), (1)
j=1
where = (2¢,..., 2 j)T. Let & be a 2X vector of structural probabilities where element ¢
is defined as P(oclTv =c¢)=mn.andv = 2K-1 ..., )7 is a vector used to create a bijection
between the binary attributes and integers ¢ € {0, ..., 2% — 1}. The likelihood of observing y;
given i, 2, and Q is
2K 1
P(Yi=yiln,® Q=) 7P¥;=yle,2 0), )
c=0
The likelihood of observing an independent sample of i = 1, ..., N respondents is therefore
N
PY =yln. R 0 =[] P¥i=yilr.2 0). 3)
i=1
where y = (yy, ..., yy) denotes the observed binary responses for individual i = 1, ..., N for

the random responses ¥ = (Y1, ..., Yn).
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This paper focuses on inferring Q and K. In general, the conditional posterior distribution
of Q and K given Y, m, and R is

p(Q,K|)Y =y, m, ) xP(Y =ylr,R, Q,K)pR,x|K)p(Q|K)p(K), “4)

where p(2, m|K) is the prior of £ and & given K, p(Q|K) is the conditional prior of Q given
K, and p(K) is the prior distribution for K. Equation 4 shows that a prior for Q is needed to infer
0 in the Bayesian framework. We next discuss two priors for Q.

2.2. Priors for Q|K

Existing Bayesian methods consider two types of priors for binary matrices such as Q. One
approach is to adapt RJ-MCMC and consider that X is finite on a set of integers. A second strategy
treats K as infinite and applies the IBP algorithm to infer Q. We next review both approaches
and discuss their implementation for inferring @ in diagnostic models.

2.2.1. RJ-MCMC for Finite K According to the finite feature model (Griffiths and Ghahramani
2005), we consider K finite and specify a model for elements of Q. A common approach is to
assume that the elements in column k of Q (i.e., Q) = Gk, ..., ¢ 701 are independent and
identically distributed conditional on a column-specific probability, wy. The hierarchical model
formulation is

-
gjrlox ~ Bernoulli(wy), j=1,...,J, 5)

olh X BetaGJK, 1), k=1,... K, 6)

where A is a hyper-prior parameter. We also assume the columns are independent with each other,
so the probability of Q given @ = (w1, w2, ..., wg) and K is

K

J K
pQIK, @) =[][]ed (1 =o' 9% = [Top* (0 —w)~™, )

k=1 j=1 k=1

where my = ZIJ: 1 gik 1s the number of items requiring attribute k. Integrating @ yields the prior
for Q given K,

P(QIK) = /p(QIK,w)p(le)dw

)\r +A rd +1)
K K mg K mij

11

k=1 r(7+1+2
K

We assume a discrete uniform distribution for finite K,

®)

K ~ uniform (Kmin, Kmax) - ®



34 PSYCHOMETRIKA

Note Kpin and Kpax can be specified with prior knowledge or based upon limits defined by model
identifiability conditions (e.g., see a discussion pertaining to the DINA model implementation in
Sect. 4).

The RJ-MCMC is available for approximating the posterior distribution when K is finite.
That is, RI-MCMC applies the Metropolis—Hastings (MH) algorithm to transit between models
of varying dimensions. Specifically, the RI-MCMC consists of either a “birth” or “death” move.
Let the model parameters for a given K be denoted by & K _ {Q,n, R, K}. A “birth” move adds
a column to @, adds elements to & and €2, and correspondingly transits from a lower dimension
to a higher dimension, i.e., £ — §K+1. In contrast, a “death” move transits from £X — gK—l
and therefore deletes a column of Q and removes elements of & and €.

The RJ-MCMC implementation for DCMs includes four essential steps. First, a candidate
& ={0Q*, n*, @, K*} is sampled (i.e., K* = K + 1 for a birth move and K* = K — 1 for a
death move). Second, the Jacobian of transformation, |J|, is computed for parameters that change
dimensions. Third, the acceptance ratio is computed as

A POE)  pE) pETIEY
P(YIE®) pGE") pETIED)

/1, (10)

where p(£*) and p(&) are priors and p(£X|£%) and p(&*|£X) denote the distributions for sampling
candidates. Finally, the candidate is accepted with probability min(1, A) (see Algorithm 4 and
Appendix A for details).

2.3. IBP for Infinite K

The alternative to considering K as finite is to instead suppose it is infinite. In fact, the
IBP considers K to be infinite rather than finite. Therefore, we will implement it in diagnostic
models. The IBP is a stochastic process that models the probability distribution of binary matrices
with a fixed number of rows and potentially infinite number of columns. Following Griffiths and
Ghahramani (2005), the IBP prior for Q is:

AK+ Ky
P(Q) = ———exp{—2H;} [ |
=1 Kn! k=1

(J = mp)t (my — 1!
J!

; (11)

where K is the number of nonzero columns in Q, i.e., the number of attributes Q possesses, K,
is the number of attributes of pattern 4 (i.e., of one of the 27 — 1 forms of column configuration),
Hy = Z]J'=1 1/j is the Jth harmonic number, my is the number of rows possessing feature k, and
A is the parameter of IBP that influences the expected number of columns. The binary matrix can
be updated through Gibbs sampling using the exchangeability of IBP (Griffiths and Ghahramani
2011).

We apply Gibbs sampling to generate samples from the posterior distribution p(Q|Y, 1, . ..,
ay, @) using Eq. 11 as the prior for Q. We start with an arbitrary binary matrix Q and then
sequentially update eachrow of Q. Letm ;) be the number of items possessing feature k excluding
item j. If m ;) is greater than 0, we set g jx = 1 with probability

Pgjx =10 jp. Y, a1,...,an, @) x p(Y|Q,a1,....an, D) P(gjx = 11Qjp), (12)

where @ jiy denotes the entries of @ other than g ji; otherwise, we delete column k. Upon
finishing all elements in row j, we add additional n; elements of 1s, n; ~ Poisson(A/J), that is,
we add n; new columns which have only ones at row j and zeros elsewhere.



YINGHAN CHEN ET AL. 35

An important difference between the RI-MCMC and IBP is that the birth move and death
move in RI-MCMC add or delete one column based on the acceptance probability, whereas the
IBP method changes the number of columns automatically in each iteration when updating Q.

3. Crimp Sampler

This section introduces the crimp sampler for a finite K. Note that neither the IBP nor RJ-
MCMC are explicitly designed to address the issue of identifiability constraints in DCMs. For
instance, the exchangeability of the rows in IBP is no longer valid if constraints are applied
(Doshi-Velez and Williamson 2017) and the simple updating strategy for Q of the IBP is no
longer feasible. As for the RI-MCMC, if we add the identifiable constraints to the prior of Q, the
determinant of Jacobian matrix J would become hard to calculate. Therefore, we aim to propose
a novel algorithm that can move between different K and address the issue of identifiability
constraints.

3.1. Crimp Sampling

Let Qg be the set of all Q matrices with K columns that satisfy model identifiability con-
straints. For the crimp sampler, we consider a range of values for K € {Kmin, ..., Kmax} and
develop a carefully designed Metropolis—Hastings transit proposal to sample @ matrices from

the identifiable space Ullg‘z‘;{mm Ok . The prior specification for Q and K is

p(QIK) xZ(Q € Qk) 13)
2(K) |Qk |

= (14)
Zgr}(min |QK|

where Z(-) denotes the indicator function and |Qk | is the cardinality of the identified space for
Ok . Accordingly, the joint prior for Q and K is uniform on the identified sample space, i.e.,

P(Q, K) « I(Q € Ug™y Q). (15)

We propose a Metropolis—Hastings (MH) step to update the current Q to anew Q* within the
identifiable space. As outlined in Algorithm 1, the MH update for the crimp sampler involves four
steps. First, we sample a candidate (Q*, K*) from the identified space. We propose to add a new
column with probability p if there is at least one row of all zeros in the current Q. It is important
to note that we only allow all zero rows if the remaining elements of Q satisfy the identifiability
constraints. Note that items with zero rows do not relate to the current set of underlying attributes.
In cases where there are zero rows for a set of items, our inference would be that there is no
evidence the set of items with zero rows load onto the current set of attributes. Furthermore, when
there are zero rows, there is an opportunity to add attributes to describe items with zero rows. In
fact, our algorithm proposes to add a column to match the items with zero rows, so long as the
number of columns does not exceed the upper bound for K. Furthermore, we propose to remove
an existing column with probability p;; otherwise, the number of columns in Q* remains the
same. Second, we compute the transition probabilities T(Q, K; Q*, K*)and T(Q*, K*; Q, K)
for moves from (Q, K) — (Q*, K*)and (Q*, K*) — (Q, K), respectively. Third, we compute
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the ratio of posteriors conditioned upon the item parameters €2 and the current N x K matrix of

attributes Ax = (a1, ..., ay) . Finally, we compute the acceptance probability
. p(Q*, K*|Ak,mk, R, Y) T(Q",K*; Q,K)
r=min | I, : - , (16)
p(Q.K|Ak. k., R, Y) T(Q,K; Q" K*)
where
p(Q* K*|Ag g, . Y) p(Y|Ak, R, Q°, K*)p(Ag, mg|K*)p(Q*, K¥) (17

P(Q. K|Ag, ng, Q,Y)  p(Y|Ak, R, Q, K)p(Ax, nx|K)p(Q, K)

Note that we assume the dimension of item parameters does not depend on K.

There are two types of transitions to consider for Eq. 17. First, transitions from higher to
lower dimensions are denoted by (@, K) — (Q*, K — 1), which for simplicity we write as
Ox — Q%_,. Without loss of generality suppose the Kth attribute is proposed to be deleted,
then Ax_1 = (&1, ...,6&y)" where &; represents the first K — 1 attributes, i.e.,t; = (&ZT, i)’
Equation 17 for K to K — 1 can be simplified as:

2k=1_1 .
p(Q%_|Ak. K, R,Y) pY|Ak_1, R, Q% _y) (Hc:o ”cn‘+1>
- K—1_ Ne ’
P@xlAk. i, 2Y) pyjag. 2, Q) (T2~ 7' 7")

(18)

where 7, is the number of individuals with K — 1 attributes equal to a, 7. is the corresponding
probability of having attribute profile &, n.o and n.; are the numbers of individuals with the first
K — 1 attributes equal to . and the K'th attribute equal to 0 and 1, respectively, and 7.9 and 7
are the probabilities of having attribute profiles corresponding to those n.¢ and n.; individuals,
respectively. As for (@, K) — (Q*, K + 1) transitions, we rewrite it as Qg — Q% . The
acceptance ratio is obtained by integrating out ((xL K41, -+ ON K+ 1) and the additional elements
of . Equation 17 for transitions from K to K + 1 can be simplified as:

P(Qy Ak k. R.Y)  p(Y|Ag. Q. Q%))
p(QxlAx.nk. .Y)  p(Y[Ax. @ Qg)

(19)

The full derivation of Eq. 17 for both directions is included in Appendix B.

3.2. Irreducibility and Proposed Transition Probability

Chen et al. (2018) showed that the transition between any candidate Q* € Qg with K fixed
is irreducible. It is left to show that the proposed Algorithm 1 is able to transit between any
candidates with all possible number of columns through adding or deleting one selected column.
We relax the constraints to allow rows with all zeros, so that the proposed method can reach the
state where Q™ has more than one all-zero rows, and thus, the transition to Q*;( 41 is feasible.
Similarly, the proposed method can reach the state where a column is chosen to be deleted, and
the updated Q* still satisfies identifiable constraints; thus, the transition to Q}‘(_l is feasible.

The proposed transition between candidates with the same number of columns is symmetric.
The transition probability from (Q, K) to (Q*, K + 1) is

1 1 1

T(Q,K; Q" K +1) = p; x % "
e R LT T R Y v T

(20)
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Algorithm 1

Crimp sampler proposal of identifiable candidate Q*

1: For current (Q, K), sample u ~ Uniform(0, 1). Let m be the number of rows of all zeros in Q. We
propose a candidate Q* with specified probabilities p and pr where p; + py < 1:

2:if m > 0, K < Kpax and u < p; then

3:  We add the (K + 1)th column to Q as follows:

4:  For the m rows of all zeros in @, let ¢ of them be ones and m — ¢ of them be zeros in the (K + 1)th
column, 1 < ¢ <m.

5:  Let ey be the binary vector with only the kth element equal to one. For the n., rows which are ey s from
the identity matrix in @, let ¢ of them be zeros and ne;, — ¢ of them be ones in the (K + 1)th column,
1 <ck <ne,k=1,...,K.Denote n. the number of ones currently in the (K + 1)th column.

6: Let the remaining J — m — ) ne, elements of the (K + 1)th column be uniform from all possible

configurations that satisfy the identifiability constraints. There are 2l —m=Yong g possible configu-
rations, where a is a correction to make sure that every column sum is greater than or equal to 3. Here
a=1+J—m—Y) ng forn, =1;a=1forn. =2,and a = 0 for n. > 3.

7: else if K > Kpip andu > 1 — p; then

8:  Randomly remove one of the K columns.

9: else

10:  Propose Q* with the same number of columns K through updating elements in Q by constrained
Gibbs sampler or Metropolis-Hastings sampler in Chen, Culpepper, Chen, and Douglas (2018).

11: end if

and the transition probability from (Q*, K + 1) to (Q, K) is

T(Q*,K+1;0,K)=psx 1)

K+1

where p; and p; are prespecified probabilities of adding and deleting a column, #n,, is the number
of ex rows in (@, K), and a is the correction defined in Algorithm 1.

3.3. Estimating Attribute Profiles

With the proposed Q¥, we can update item parameters and attribute profiles through
Gibbs sampling (Culpepper 2015; Chen et al. 2018). In particular, when updating «;’s and
 of varying dimensions, we apply the collapsed Gibbs step to integrate = out. We assume
w|K ~ Dirichlet (§p). When §g = 1,«, the conditional prior distribution for a; after integrating
over T is

n.+1

S — 22
N +2K 1 (22)

pla; =acloey, ..., 01,041, ...,05, K) =

where n’. is the number of attribute profile &t of all but the i -th subject. Accordingly, when the same
dimension K or alower dimension K — 1 is proposed, we can update the current e; or collapsed &;
sequentially with weight proportional to p(Y s, g, @, &c)(n.+1),c =0, ..., 2K 1 or 2811
respectively.

When a higher dimension is proposed, the conditional prior for the K + 1 attribute profile
of = (a;,af)is

Neg*i—1 + 1 n’c +1
nei—1+2 N+2K-—1

plaf = (o, ™)}, ..., 0] |, eiy1,...,0N) = , (23)
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where a* = 0 or 1, nee+ ;—1 is the number of the first i — 1 subjects who possess attribute pattern
(e, @*),and n. ;1 is the number of the firsti — 1 subjects with the first K attributes of pattern o.
Then, we can update &t to (e, ™) with weight proportional to p(¥; |} = (ete, ™), @, Qg 1) ¥
Negri—1 + 1 % I’l/c—i-l

nei—1+2  N+2K—1
23 is in Appendix C.

,c=0,...,2K — 1, a* =0, 1. The full derivation of Eqs. 22 and

4. Algorithms for the DINA Model

In this section, we outline the algorithms for the crimp sampler and the two other methods,
IBP and RJ-MCMC, for estimating Q and other parameters for the DINA model. Recall the DINA
item response function is

o (I=mij)
P(Yij=lei,q;, @) = —sp)ig, " nij=T(a/q;>4q/q), (24)

where £; = (s;, g;) denotes the slipping and guessing parameters for item j. Also, we let
s =(s1,...,s7) andg = (g1,...,gy) " denote all the DINA slipping and guessing parameters.
We sample Q and K subject to identifiability constraints. Note that Gu and Xu (2019) and Gu
and Xu (in press) showed that the following conditions are necessary and sufficient to identify
the DINA model parameters:

T)T

1. With proper row permutations, @ = (Ig, (Q") where columns in Q' are distinct;

2. Each attribute loads onto at least three items.

Recall that we consider K € [Kpin, Kmax]- The identifiability conditions imply Kmax has an
upper bound. For instance, the upper bound for the DINA model is that Kiax < J/2. Note that
this inequality is derived from the fact that if K = J /2, then there must be J /2 items with simple
structure and the remaining J/2 rows of Q must be linearly independent with at least two ones
per column.

Despite the different proposal of sampling Q and K in the three methods, the updating of
item parameters and latent attribute profiles can all be implemented through Gibbs sampling
(Culpepper 2015; Chen et al. 2018). The prior specifications for the DINA model parameters and
latent attributes are

c c
plailm) o [ [nF@=") 0<m <1, Y 7 =1, C=2K (25)
c=1 c=1
7 |K ~ Dirichlet (69), &0 = (So1,---,00C), (26)

p(sj.gi) ocss ™ (1—s5;)P gj?g" (1-—g)) ' T(0<g<1—s;<1). (@7

Algorithm 2 shows the proposed crimp sampler, Algorithm 3 shows the application of Indian
buffet process in estimating @, and Algorithm 4 shows the reversible jump MCMC of estimating

0.
5. Monte Carlo Simulation Studies

This section reports the performance of the three algorithms on simulated data sets. We use the
recovery rate of the number of columns and the estimation accuracy rate of the @ matrix to assess
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Algorithm 2
Crimp sampler for Q

1: Initialize with an identifiable Q(Ig) matrix, attribute profiles @ attribute categorical probabilities x©

and other item parameters s and g(o).
2:fortinl:T do

3:  Update Q(’) using Metropolis-Hastings steps as Algorithm 1.
4: for iinl1: N do
5 if KO =KD org® = K= _ 1 then
6: Update al@ to & with weight proportional to p(Yls, g, Q, ec)(n. + 1), ¢ =0,..., 2K _ 1.
7 elseif K@ = K= 1 | then
® ) wi ; : * Negr,i—1 + 1
8 Update «; * to (a¢, &™) with weight proportional to p(Y;|(ec, &™), 2, Qg 1) - T
Nei—1
/
+ 1 _
et 0, 2K D Lar =0, L
N +2K 1
9: end if
10:  end for ~ ~
11:  Update n(t>|a(t) ~ Dirichlet(N + §¢p), where N = (ng, ..., nC)T represents the frequencies of

each attribute pattern e, c =0, .. ., ZK(I) — 1.
12:  Update s, g(t>|Y,oc(t), Q(f) ~ Beta(as, bs)Beta(ag, bg)T(0 < g < 1 —5 < 1), i.e., sample s@®
andg(’) independently from Beta(as, bs) and Beta(ag, bg) truncated in theregion0 < g < 1—s < 1.
13: end for

Algorithm 3
IBP Gibbs sampling for Q

1: Initialize with an identifiable Q(,?) matrix, attribute profiles o attribute categorical probabilities O,

item parameters s© and g and hyperparameter 2@,
2:fortinl:T do

3: forall jinl:Jandkinl:K® do

4: Update ‘15[13 to 1 with probability proportional to p(Y|Q, s~ D, g=D, A(’_l))@ and 0
otherwise.

5 if m(jk = 0 then

6: Delete column k and add r; ~ Poisson(2/J) new attributes to item .

7 end if

8: end for

9:  Update \() ~ Gamma(K") + 1, Hy + 1) (see Appendix D for details.)

10: for iinl: N do

11: Update (xl@ to & with weight proportional to p(Y;|s, g, Q,ac)(nc; +1), ¢ =0,...,2
12:  end for

13:  Update 7@, s ¢® a5 in Algorithm 2.

14: end for

K _ 1.

performance. We examined the performance of the crimp sampler, IBP, and RI-MCMC under
different sample sizes (i.e., N = 500, 1000, and 2000), numbers of attributes (i.e., K = 3, 4 and
5), and correlations among the latent attributes (i.e., p = 0, 0.25, and 0.5). Note we also compare
the MCMC procedures to a simpler strategy that uses the DIC to infer K. That is, we estimated
models with K =2 to 6 and inferred K by selecting the model with the smallest DIC. For each
combination of the settings we replicate 100 data sets.
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Algorithm 4
RJ-MCMC for Q

1: Initialize with an identifiable Q(lg) matrix, attribute profiles o attribute categorical probabilities O,

item parameters s© and g©@ and hyperparameter 1@ Let b be the probability of birth move and
1 — bg be the probability of death move.

2. forrinl:7 do

forall jinl:Jandkinl:K® do

Update qyk) to 1 with probability proportional to p(Y[Q1, &, R) - (m )i +

b

A
K®

A
K®

e

)/ (J + ) and

0 otherwise.
5:  end for
For current 5(’) = {0k, m, K}, sample p ~ Uniform(0, 1). Let C = 2K We propose a candidate
§* = (Q*, n*, K*} as follows:
7. if p < bk then
8: foriinl: Cdo

9: draw u; ~ Beta(2,2);letn/ = mju; and 7", - = 7; (1 — u;).
10: end for
11: for jinl:J do
12: Sequentially draw g g1 ~ Bernoulli(p*), where
% o ) o
= i =1 R P = ; - =y
p"=r@Gjk+1 =Llq1, k41, qj—1,k+1) = Mg +1 + K+1)/(J+ K+1)

13: end for
14:  Accept candidate £ /1) = £* = {QK+! z* K + 1} with probability min(1, A) (see Appendix A
for specific expression of A in Eq. 10); let E("H) = ’g'(’) otherwise.

15: else

16: Randomly select a column in Q g to delete.

17: Fork =1,...,(C/2),letn} = mp + mprcp2-

18: Accept candidate £/t = g* = (@K1 x* K — 1} with probability min(1, A); let §“+1) = @

otherwise.

19:  end if

20: Updateal@ to & with weight proportional to p(e; = ate|Y;, 7, sU~1, g~y c =0, ... 2K" —1;
then update n(t), A(t), s(’), g(t) as in Algorithm 3.

21: end for

For the crimp sampler, we use a chain length of 20,000 with a 10,000 burn-in period for
K = 3 and 4, and a chain length of 35,000 with 20,000 burn-in period for K = 5. The range
of columns is 2 to 6 for K = 3 and 4, and 3 to 8 for K = 5. We set the probability of adding
a column pp as 0.25 and the probability of deleting a column p, as 0.1 based on preliminary
simulation results. The average run-time for the crimp sampler for a sample size of 500 using a
2.4 GHz processor was 1.7, 3.2, and 5.1 minutes for K =3, 4, and 5, respectively. For IBP, we use
the same simulation settings as the crimp sampler. The range of columns is 1 to 8 for all possible
values of K. The run-time for the IBP for a sample size of 500 using a 2.50 GHz processor was
4.6, 5.5, and 7.5 min for K = 3, 4, and 5. For the DIC, the average run-time for the DIC for a
sample of size 500 using a 2.590 GHz processor was 67, 83, and 196 minutes for K = 3, 4, and
5.

For RJ-MCMC, we use a chain length of 30,000 with a 20,000 burn-in period for K = 3,
a chain length of 40,000 with a 30,000 burn-in period for K = 4, and a chain length of 50,000
with a 40,000 burn-in period for K = 5. Note we use longer chains for the RI-MCMC, to ensure
convergence. The range of columns is 2 to 8 for K = 3 and 4, and 2 to 9 for K = 5. We set the
probabilities of birth move by and death move dj, to 0.5. The average run-time for the RI-MCMC
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for a sample size of 500 using a 2.50 GHz processor was 11.9, 22.5, and 37 minutes for K = 3, 4,
and 5.

The true Q matrices we use are shown in Table 1. The true slipping and guessing parameters
were set to be 0.2. When p = 0, we define the true @ = (1/2K, ..., 1/2X) and sample the latent
attributes uniformly from all attribute configurations. For the cases when p = 0.25 and 0.5, we
sample the true latent attributes from a multivariate probit model and assume the true & equals
the frequency of each attribute pattern as generated by

L K. 2
0 otherwise T (28)

Ajp = { Lo = cD_l(KL“) , k=1
The prior parameters we use for m, s, and g in simulation are 8o = 1 for Eq. 26 and oy = s =
ag = B, = 1 for Eq. 27.

We report two measures regarding estimation accuracy of Q. First, we report the elementwise
accuracy rate (EAR) for all replications of the Monte Carlo simulation study. That is, for each
replication we computed the proportion of elements of the true @ that are correctly estimated. It
is important to note that from replications the estimated K (K) may not match the true K, so we
use the true number of elements of Q (i.e., J x K) for the denominator in the computation of the
proportion correct. In cases where K < K, entire columns of the 0 are missing. For instance,
if K = 4 and K = 3, the denominator is 4/ and the numerator is calculated based upon the
agreement in the elements of Q. We compute the EAR for each replication as:

1
JK

J

K
Y Tlgjk =45 (29)
1 k=1

J
EAR") =

and the average EAR we report by simulation conditions is EAR = L 3%  EAR®), where R is
the number of replications. Second, we report the number of over-specified elements (NOSE) to
quantify accuracy for cases when K > K and there are additional columns of Q. Specifically,
for each replication we compute the number of additional elements as:

K

NOSE") = Z ik (30)
k=K+1

We report the average NOSE = % Zf;] NOSE" across replications by simulation condition.

5.1. Simulation Results

Table 2 reports the occurrence of correctly estimated K out of 100 replications and the average
elementwise accuracy rate (EAR) of the estimated Q matrix when K is correctly estimated for
the conditions with p = 0 and 0.25. The crimp sampler outperformed IBP and RI-MCMC on
estimating the number of attributes for all K's and ps in Table 2 except for one case where the RJ-
MCMC is slightly better (i.e., K = 3 and p = 0.25). Furthermore, the crimp sampler improved
upon the DIC in all but the N = 2000, K = 3, and p = 0.25 case in Table 2.

The crimp sampler also outperformed IBP and RJ-MCMC in recovering the correct ) matrix;
its EAR is above 98% for p = 0 and is above 90% for p = 0.25. Table 2 also reports informa-
tion about the number of over-specified elements for each algorithm. The results suggest the
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TABLE 1.
True Q matrices for K = 3,4 and 5.

J K=3 K =4 K =5

1 1 0 0 1 0 0 0 1 0 0 0 0
2 0 1 0 0 1 0 0 0 1 0 0 0
3 0 0 1 0 0 1 0 0 0 1 0 0
4 1 0 0 0 0 0 1 0 0 0 1 0
5 0 1 0 1 0 0 0 0 0 0 0 1
6 0 0 1 0 1 0 0 1 0 0 0 0
7 1 0 0 0 0 1 0 0 1 0 0 0
8 0 1 0 0 0 0 1 0 0 1 0 0
9 0 0 1 1 1 0 0 0 0 0 1 0
10 1 1 0 1 0 1 0 0 0 0 0 1
11 1 0 1 1 0 0 1 0 0 0 1 1
12 0 1 1 0 1 1 0 0 1 0 0 1
13 1 1 0 0 1 0 1 1 0 0 0 1
14 1 0 1 0 0 1 1 1 0 1 0 0
15 0 1 1 1 1 1 0 1 1 0 0 0
16 1 1 1 1 1 0 1 0 0 1 1 1
17 1 1 1 1 0 1 1 0 1 0 1 1
18 1 1 1 0 1 1 1 0 1 1 0 1
19 - - - - - - - 1 0 0 1 1
20 - - - - - - - 1 1 1 0 0

crimp sampler and RI-MCMC outperformed IBP. Note that RI-MCMC had fewer over-specified
elements for larger K because it tends to underestimate K .

Table 3 reports the Monte Carlo results for the conditions with p = 0.5. It is important to
note that a larger correlation implies a strong signal in the data from a higher-order model for
attributes, which may be more closely aligned with a continuous item response model. In this
setting, the attributes are highly correlated and the latent attribute structure becomes more sparse.
Consequently, we can expect all algorithms will be less accurate at inferring K when there is more
overlap among the latent attributes. The results in Table 3 confirm the difficulty in estimating K
for all methods when attributes are highly correlated. For K = 3 and 4, there are cases where the
crimp sampler, DIC, and RI-MCMC demonstrate the best performance. For K = 5, the crimp
sampler outperforms all methods for inferring K.

Tables 4 and 5 report the frequency of estimated K in the 100 replications. The tables provide
insight regarding the sampling variability of estimates for K for the crimp sampler, IBP, and RJ-
MCMC. The results in Table 4 suggest the occurrences of estimated K are centered around the
true value for the crimp sampler and RJ-MCMC, while the estimated values are more dispersed
for IBP. Table 5 shows that there are instances where the estimated K is incorrectly estimated
in the majority of replications for the RI-MCMC and IBP. In contrast, the crimp sampler most
frequently recovers the true K when K = 3 and 4 and it is relatively less accurate for the K = 5
and N = 2000 case. Note we report the frequency of estimated K using DIC selection over 100
replications as well as RMSEs of estimated item parameters in Appendix F.
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TABLE 2.
Summary of recovery rate of K and Q by sample size N, number of true attributes K and attribute dependence p = 0
and 0.25.

Crimp sampler DIC IBP RJ-MCMC
N K p K=K EAR NOSE K =K K = K EAR NOSE Ident. K = K EAR NOSE Ident.

500 3 0.00 97 99.73 0.00 96 91 98.34 0.90 97.97 95 99.73 0.17  95.60
10003 0.00 95 99.16 0.00 92 19 84.20 11.91 96.46 87 99.21 0.29  96.60
20003  0.00 95 99.20 0.00 90 55 73.45 1.60 85.90 76 98.29 0.55 98.71
500 4  0.00 100 100.00 0.00 99 52 94.35 1.79 98.10 92 99.79 0.18  96.24
10004  0.00 94 99.20 0.00 90 14 86.48 8.00100.00 78 98.80 0.80  99.62
20004  0.00 91 98.67 0.13 76 38 59.35 0.40 24.00 66 94.06 1.20 96.73
500 5 0.00 97 99.58 0.00 90 35 93.99 2.13 96.12 90 99.54 033 96.41
10005  0.00 90 98.61 0.13 65 28 87.02 5.53 80.27 79 97.12 0.53 98.92
20005 0.00 84 98.27 0.26 57 24 62.51 0.00 9.02 59 90.23 0.63  90.83
500 3 025 92 98.67 0.00 82 67 92.44 2.87 90.69 99 96.98 0.00 95.14
10003  0.25 90 98.57 0.00 85 19 83.57 10.02 99.26 92 97.91 0.21 98.29
20003  0.25 83 97.18 0.19 87 23 81.42 10.60 84.94 82 96.91 0.38 97.89
500 4 025 85 97.82 0.14 80 65 88.67 0.93 54.36 63 90.86 0.21 77.41
10004  0.25 80 97.02 0.34 68 32 83.79 5.85 84.87 54 91.81 0.60 92.84
20004 025 79 96.73 0.34 65 26 62.02 0.74 18.65 47 90.50 0.20  95.55
500 5 025 67 93.01 1.14 41 44 83.07 1.31 38.99 29 86.550.55 61.41
10005 0.25 54 91.68 1.10 32 33 81.18 4.25 0.00 23 88.28 0.15 88.53
20005 0.25 48 90.65 1.35 21 6 63.18 0.00 6.46 23 85.96 0.04 87.30

K=K reports the occurrence of correctly estimated K outof 100 replications in each case. EAR reports the
elementwise accuracy of estimated Q NOSE = the average number of over-specified elements of Q. “Ident.”
reports the averaged percentage of identifiable  matrices after burn-in period among 100 replications in
IBP and RJI-MCMC.

TABLE 3.
Summary of recovery rate of K and Q by sample size N, number of true attributes K and attribute dependence p = 0.5.

Crimp sampler DIC IBP RJ-MCMC
N K p K=K EAR NOSE K =K K =K EAR NOSE Ident. K = K EAR NOSE Ident.

500 3 0.5 83 93.03 0.40 79 82 90.65 1.62 34.23 92 93.24 0.00 58.64
1000 3 0.5 76 9324 091 74 25 82.89 9.18 54.37 74 92.17 0.01 86.67
2000 3 0.5 71 93.85 1.14 74 28 82.08 9.95 70.15 66 9145 0.19 95.22
500 4 05 77 93.74 0.58 76 47 82.15 0.63 0.68 37 84.09 0.02 5.30
1000 4 0.5 53 9242 154 65 36 82.76 4.09 0.84 27 85.26 0.14 13.74
2000 4 0.5 32 92.18 3.27 37 22 63.25 1.55 8.37 23 84.68 0.18 15.54
500 5 0.5 62 89.31 2.63 37 27 78.73 0.48 0.02 8 81.75 0.00 0.00
1000 5 0.5 31 84.20 443 20 30 79.21 3.49 0 8 83.30 0.04 0.00
2000 5 0.5 18 84.53 493 15 2 63.65 0.00 3.33 10 82.12 0.03 0.00

K=K reports the occurrence of correctly estimated K out of 100 replications in each case. EAR reports the
elementwise accuracy of estimated Q NOSE = the average number of over-specified elements of Q. “Ident.”
reports the averaged percentage of identifiable Q matrices after burn-in period among 100 replications in
IBP and RJ-MCMC.
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TABLE 4.
Summary of the frequency of estimated K by sample size N, number of true attributes K and attribute dependence p = 0
and 0.25.

Crimp sampler K IBP K RI-MCMC K
N Kp 2 3 4 5 6 781 2 3 4 5 6 7823 4 5 6 789
50030003 97 0 0 0 — -0 291 2 5 0 0 00952 3 0 00-
10003 000 5 95 0 0 0 — —0 4 19 19 45 11 2 0187 9 1 0 20-
200030005 95 0 0 0O — -7 10 55 24 3 0 1 007618 5 1 00-
500 40000 0 100 0 0 — —2 4 10 52 19 11 2 00092 7 1 00-
10004 000 0 6 94 0 0 — —0 5 14 14 33 21 11 200 78 17 4 01-
20004 000 1 5 91 3 0 — -15 15 18 38 12 2 0 000 66 33 1 00-
500 5000— 0 397 0 001 8 17 35 31 7 1 000 0 9 9 100
10005 000 — 2 6 90 1 1 00 1 6 16 28 26 20 300 4 79 14 300
20005 000 — 0 11 8 5 0 03 10 18 45 24 0 0 000 17 59 23 100
50030258 92 0 0 0 — -0 56725 3 0 00190 0 0 00-
10003 02510 90 0 0 0 — —1 7 19 41 25 5 2 04923 1 0 00-
20003 02512 8 5 0 0 — -1 4 23 34 21 12 3 278 8 2 1 00-
500 40253 9 8 3 0 — -1 220 65 10 2 0 003363 1 3 00-
10004 025 3 10 8 7 0 — —1 7 7 32 33 16 4 003454 8 3 00-
20004 025 2 12 79 7 0 — -7 12 44 26 6 2 1 204547 7 1 00-
500 5025— 5 10 67 5 13 00 5 11 23 44 14 3 00556 29 9 100
10005 025 — 11 16 54 9 10 00 2 6 16 33 25 17 108 67 23 1 100
20005 025 — 12 20 48 11 9 01 12 34 47 6 0 0 009 64 23 4 000

The specified range of K for the crimp sampleris 2 to 6 when K = 3 and 4, 3 to 8§ when K = 5; the specified
range of K for IBP is 1 to 8§ for all cases; and the specified range of K for RI-MCMC is 2 to 8§ when K =3
and 4, and 2 to 9 when K = 5.

TABLE 5.
Summary of the frequency of estimated K using crimp sampler, IBP and RIMCMC by sample size N and number of true
attributes K when attribute dependence p = 0.5.

Crimp sampler K IBP K RI-MCMC K
N Kp 2 3 4 5 6 7812 3 4 5 6 7 8 2 3 4 5 678
500 3 0548 13 0 O - -038 132 0 0 038 92 0 0 000
10003 05076 24 0 O - —-0325 4820 4 0 025 74 1 0 000
20003 05071 29 O O - -0328 3714 7 10 129 66 4 1 000
500 4 05013 77 9 1 - -0441 47 8 0 0 0 O 6237 1 000
10004 05023 53 20 4 - -0512 3637 8 2 01 6827 4 000
20004 05024 32 29 15 - -5749 22 6 8 2 1 4 6823 4 100
500 5 05- 0 3 62 5 3002216 4727 6 0 0 0 1478 8 000
10005 05- 0 4 31 35 30002 9 1830 29 11 1 0 2070 8 200
20005 05- 0 13 18 32 3701742 48 2 0 0 0 0 3058 10 200

The specified range of K for the crimp sampleris 2 to 6 when K = 3 and 4, 3 to 8 when K = 5; the specified
range of K for IBP is 1 to 8 for all cases; and the specified range of K for RI-MCMC is 2 to 8 when K = 3
and 4, and 2 to 9 when K = 5.
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6. Applications

In this section, we apply the crimp sampler to Tatsuoka’s Fraction-Subtraction data set (Tat-
suoka 1984; Tatsuoka 2002) and the Problems in Elementary Probability Theory data set (Heller
and Wickelmaier 2013). For each data set, we ran 50 chains to demonstrate the posterior distribu-
tion of the random variable K and used the posterior mode across chains as the final estimation and
to ensure convergence. Note that running multiple chains also addresses the issue of a multimodal
posterior distribution as noted by Liu et al. (2020).

6.1. Tatsuoka’s Fraction-Subtraction Data

The data set contains responses from N = 536 students to J = 20 fraction-subtraction
questions. The expert Q in Table 6 presents the pre-specified @ matrix based on the following
eight skills:

Convert a whole number to fraction,

Separate a whole number from fraction,

Simplify before subtraction,

Find a common denominator,

Borrow from the whole number part,

Column borrow to subtract the second numerator from the first,
Subtract numerators,

Reduce answers to simplest form.

PNAN R L=

We set the range for K from 2 to 8 and repeated estimation 50 times. Recall the expert Q
for this data set included eight attributes. Note the DINA identifiability conditions imply that the
largest value is K = 10 for the fraction-subtraction data given there are 20 items. In practice,
researchers can specify the entire range of identifiable values for K . Researchers can easily assess
whether the specified range for K is too narrow. Specifically, issues with using too narrow a
range for K would manifest as the algorithm sampling values near or at the upper bound. For the
application reported in this subsection, we report that the estimated K was significantly less than
the expert K, so there was no apparent issue with the pre-specified range.

We ran 50 replications of the algorithm on the fraction-subtraction data. Of the 50 replications,
39 reported an estimated K =3,5 reported K = 4, 4 reported K =5,and 2 reported K =6and
7, respectively. Among the 39 replications where K = 3, the most frequently occurring estimated
Q is as shown in Table 6.

Figure 1 shows the plot of maximum proportional scale reduction factor (max R) (Brooks
and Gelman 1998) for diagnosing convergence of Markov chains with multivariate parameters.
The max R is below 1.1 after 8000 iterations, so it is reasonable to use a chain length of 20,000
with 10,000 burn-in.

One concern researchers may have with using the DINA model is that the model is misspec-
ified and a more general model may provide better fit. Accordingly, we deploy two strategies
to evaluate relative model fit. First, we computed the DIC to compare the fit of our exploratory
DINA with crimp sampling to two confirmatory general diagnostic models (GDM) that use the
expert Q: (1) a main-effect-only model; and (2) a saturated model with all main-effects and
interaction-effects. The Q estimated using our new method had an average DIC over replications
of 9133.34, whereas the DIC for the confirmatory GDMs was 13893.19 for a main-effects only
model and 13,874.14 for the saturated model. Second, we compared the aforementioned models
by computing the tenfold cross-validated deviance (i.e., minus two times the log-likelihood). The
DIC is intended to estimate the cross-validated deviance, and we directly computed it to ensure
the DIC was providing an accurate assessment of relative model fit. The cross-validated deviance
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_ FIGURE 1.
The maximum R for Fraction-Subtraction data.

also agreed with the DIC (i.e., it equaled 9155.87 for our exploratory method, 9766.30 for a
confirmatory model with main-effects, and 9602.75 for a saturated confirmatory model), and we
next report empirical results for our crimp sampling algorithm.

The estimated Q describes a different underlying structure for the fraction-subtraction items
than the expert Q. For instance, the expert Q includes eight attributes, whereas the estimated
0 includes three. The discrepancy between the two @ matrices provides an example as to how
structure formulated by experts could differ from patterns uncovered in multivariate response
patterns by machine learning tools. For instance, the expert Q specifies eight fine-grained oper-
ations students must perform, whereas the estimated Q identifies underlying features specified
by the exploratory DINA model that best describe statistical dependency among the items. That
is, the first attribute of the estimated @ distinguishes between items that require students to find
a common denominator and the second attribute characterizes items that require borrowing from
the whole number part. Additionally, the third attribute is related to subtracting both integer and
fraction.

We also estimated the structural class probabilities. Specifically, the proportions of each
attribute pattern in increasing order of binary-to-integer bijection ajv (from all 0’s to all 1’s) are:
20.7%, 14.6%, 2.0%, 3.2%, 1.5%, 13.2%, 1.2%, 43.6%.

6.2. Problems in Elementary Probability Theory

The data set contains responses from N = 504 students to two sets of / = 12 elementary
probability questions before and after instructions. We used the first set of the questions. We set
the range of K from 2 to 6 and repeated estimation 50 times. Figure 2 shows the plot of max R
for the probability data. The max R is below 1.1 after 2000 iterations, so it is reasonable to use a
chain length of 20,000 with 10,000 burn-in.

Of the 50 replications, 42 reported an estimated K=3,7 reported K =4 and 1 reported
K=1. Among the 42 rep}ications where K = 3, the most occurrence of estimated @ is as shown
in Table 7; the estimated Q appeared most often for 31 out 42. We also compared the DIC between
models fitted by the estimated Q and the expert Q using the main-effects and a saturated GDM
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TABLE 6.
Estimated @, slipping §; and guessing ¢; parameters from the crimp sampler for Fraction-Subtraction Data.

Item Expert O Q 8§ 8j
3-3 o 0 o 1 0 I 1 0 1 0 0 0133 0043
3-3 0o 0 0 1 0 0 I 0 1 0 0 006 0054
21 o 0 o 1 0 0 1 0 I 0 0 0140 0010
3l 23 o 1t 1 0 1 0 1 0 0 1 0 0125 0.8
42-3% 0o 1 0o 1 0 O 1 1 1 0 1 0206 0309
S 0o 0 0 0 0 0 I 0 0 0 1 0043 0301
3-21 1 1 0 0 0 0O 1 0 1 0 1 0342 0032
-2 o 0 0o 0 0 0 1 0 0 0 1 005 058
32 0o 1 0 0 0 0 0 0 0 0 I 0250 0348
45-25 o 1 0 o0 1 0O 1 1 0 1 1 0227 0032
41 -2% o 1 0 o0 1 0 1 0 0 1 1 0072 0072
a_d 0o 0 0 0 0 0 I 1 0 0 1 0093 019
33 -23 o 1 o 1 1 0 1 0 1 1 1 0351 0019
3432 0o 1 0 0 0 0 I 0 0 0 1 0068 0138
-1 10 0 0 0 0 1 0 1 0 1 025 0068
45 - 15 o 1 0 0 O 0O 1 0 0 0 I 0112 0117
73 -2 o 1 0o o0 1 0 1 0 0 I 1 0139 005
4 -2% o 1 0o o 1 1 1 0 0 1 1 015 0132
4-1% i1 1 1 0o 1 0 1 0 1 1 1 0327 0028
4l -13 o 1 1 0 1 0 1 0 0 1 1 018 0016

The expert Q can be found in de la Torre and Douglas (2004).

with all main-effects and interaction-effects. The estimated Q gives an average DIC of 4763.75
(based on 31 replications), whereas the expert Q using the main-effects GDM gives a DIC of
6369.73 and the DIC was 6346.04 for the confirmatory model with all effects (saturated model).
Furthermore, the cross-validated deviance equaled 4970.36 for our exploratory method, 4994.07
for a confirmatory model with only main-effects, and 4976.84 for a saturated confirmatory model.
Consequently, our exploratory model provided the best fit to the data and we next report model
parameter estimates.

Table 7 presents the expert @, our estimate Q and item parameters. By comparing Q with
the problem set (see Appendix E), Attribute 1 (represented by Questions 1, 5, and 9) is related to
calculation of classical probability, Attribute 2 (represented by Questions 2, 3 and 8) is related to
applying probability models, and Attribute 3 (appeared in Questions 4, 10, 11 and 12) might be
related to the understanding of independence. The estimated proportions of each attribute pattern
in increasing order of binary-to-integer bijection ocz—v (from all 0’s to all 1’s) are: 10.5%, 1.7%,
1.8%, 1.9%, 3.5%, 13.2%, 1.8%, 65.6%.
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The maximum R for probability data.

TABLE 7.
Estimated @, slipping §; and guessing ¢ ; parameters from the crimp sampler for Elementary Probability Theory Data.

Expert Q 0 i gj
1 0 0 1 0 1 0 0 0.082 0.213
2 1 0 0 0 0 1 0 0.038 0.371
3 0 0 0 1 0 1 0 0.043 0.260
4 0 1 0 0 0 0 1 0.040 0.131
5 1 0 1 0 1 0 0 0.152 0.249
6 1 0 1 0 1 0 0 0.048 0.265
7 0 0 1 1 1 1 0 0.067 0.366
8 0 0 1 1 0 1 0 0.050 0.451
9 0 1 1 0 1 0 0 0.253 0.089
10 1 1 0 0 0 0 1 0.192 0.065
11 1 1 1 0 0 0 1 0.304 0.037
12 0 1 1 1 1 1 1 0.188 0.038

The expert Q can be found in Heller and Wickelmaier (2013).

7. Discussion

The research problem of validation and/or estimation of @ matrix in latent class models has
been advanced in recent years. Existing methods of validation or estimation of Q usually assume
a given number of attributes K. However, when Q remains partially or completely unknown, it
seems unrealistic to assume a known K. We proposed a Bayesian framework to incorporate the
unknown K into diagnostic models, and developed a novel ‘crimp sampler’ algorithm to estimate
K and Q simultaneously. We also adapted RI-MCMC and IBP from the statistics literature to be
implemented in @ estimation in diagnostic models. Our study is the first to examine the problem
of inferring the dimensionality of @ in exploratory settings and offers new results about inferring
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the number of attributes. In short, we found evidence that our method improved upon all other
methods, such as using the DIC fit index, reversible jump MCMC, and Indian buffet process. We
also demonstrate that selecting the true K is a difficult statistical problem and correct inference
is most challenging in cases where K is larger (e.g., K = 5) and the attributes are correlated.

We showed that the crimp sampler proposes irreducible transits between states in different
dimensions, and the simulation study indicates the crimp sampler outperforms the other two
algorithms. One advantage of the crimp sampler is that the proposed Q always satisfies the
identifiability constraints, which ensures that, if the true Q is identified, the posterior can be
used to infer the latent structure. Another advantage is that the crimp sampler uses a uniform
prior for @ and K from its candidate space and proposes a unique transit between different
candidates. It is feasible to adjust the proposed Metropolis—Hastings step for other constraints
or restricted candidate space, and the uniform prior for Q and K is still the same. For instance,
we can incorporate some expert knowledge as partially fixed Q and propose moves within the
restricted identifiable candidate space. Both the crimp sampler and RI-MCMC use Metropolis—
Hastings steps. The main difference between those two is that the crimp sampler applies the
properties of Dirichlet processes to integrate the augmented variables of higher dimensions into
explicit formulas when K increases and collapses existing variables into lower dimensions when
K decreases, whereas the RJ-MCMC calculates the Jacobian matrix of the mapping between
different dimensions. Therefore, the crimp sampler is more computationally efficient than RJ-
MCMC algorithm. Furthermore, we reported Monte Carlo simulation evidence that the crimp
sampler outperformed both the IBP and RI-MCMC in terms of recovery of the true K . In particular,
the crimp sampler demonstrated improved recovery relative to the IBP and RJ-MCMC in more
difficult cases where attributes are more correlated and K = 5. Additional research is needed to
accurately recover Q and K as the sample size and number of attributes increase.

Our method for inferring the DINA @ matrix is applicable in many settings. For instance, the
method can be used to cluster multivariate binary data with the DINA model without requiring pre-
specification of K. Furthermore, the DINA model is a popular CDM in education, and researchers
can use our algorithm to estimate the DINA model parameters. In fact, we provided two examples
where the exploratory DINA model improved the fit to real data in comparison with more general
confirmatory models.

We implemented the algorithms with the DINA model, where the dimensions of the item
parameters (slipping and guessing) remain the same when the number of attributes varies. One
direction for future research is to extend the crimp sampler to general diagnostic models where
the dimensions of item parameters might change along with the varying number of attributes. It
is important to note that the algorithms we developed for the IBP and RJI-MCMC can be directly
applied to a general diagnostic model. That is, the IBP and RI-MCMC steps for updating Q and
K can be included along with MCMC steps for updating item parameters of general exploratory
DCMs (e.g., see Chen et al. 2020b; Culpepper 2019a). The crimp sampler we propose here is also
applicable with general restricted latent class models. The main concern with extending the crimp
sampler to a general model is the need for a careful choice of priors and corresponding calculations
of posteriors in varying dimensions. An additional area of future research is to consider the
problem when the true Q is partially identifiable, i.e., the case when only a subset of the columns
of Q satisfy the model identifiability conditions. The algorithms developed in this paper can be
applied with or without identifiability restrictions, and future research is needed to understand
the implications of partial identifiability. Moreover, another topic for future research relates to
the fact that the crimp sampler can also be adapted into other frameworks of research problems
concerning membership classification with an unknown number of classes.

Additionally, the goal and scope of our paper were to explore options for inferring K in the
Bayesian framework. We focused our inquiry on the case where the true Q satisfied model iden-
tifiability conditions. In practice, the true Q matrix may be incomplete and additional research is
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needed to investigate the impact a non-identifiable @ matrix has on the performance of the pro-
posed algorithms for jointly inferring @ and K . Furthermore, we addressed the fundamental goal
of inferring the latent structure, which is necessary for applications of diagnostic models. Addi-
tional research is needed to examine the implications of model identifiability on the classification
accuracy of exploratory methods.

A final area of future research relates to evaluating the utility of using the latent structure
derived from data-driven techniques to inform instructional decisions. Results from an exploratory
method can be used to guide theory development for researchers and practitioners. That is, experts
may have a belief about Q and the methods described in this paper can be used to validate and
possibly uncover new structure. Exploratory diagnostic models have the potential to advance the
scientific method in educational research where researchers propose a theory via a Q matrix and
test its feasibility.
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Appendix A
Reversible Jump MCMC Algorithm

We use reversible jump MCMC to move between @ matrices of different numbers of columns.
With the probabilities for “birth” and “death” steps bx + dx = 1, we have two possible moves:

1. Birth move: We propose K — K + 1 with probability b .
To make our algorithm more efficient, we apply the collapsed Gibbs sampling (Liu 1994) by
integrating o¢; out:

N J
PYlg.s.Qu.K)=[] > = []PWijlsj gj ec.q).

i=la.€{0,1}X Jj=1

so that we can skip the step of sampling «;.
Following the steps described in Algorithm 4, let Qx = (g4, ..., gg), we propose the move
from {Q,m, K} — {Qg, 1, ¥, K + 1}, which is
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The RJ-MCMC acceptance ratio is

_ P(Y|g,s, Qg ", K+ 1)

P(K + 1)P(x*|85, K + DP(Qx K + 1)

PY|g,s, Q. m, K)

di 11

1
K+1

P(K)P (|80, K)P(Qk|K)

x b J . . C * x
k [Tz P@j k+1lar k1, - gj—1 k40 [Tizy P))

where

P(n*|85, K +1) T @K+

P (|80, K) reky -’
and the Jacobian matrix J is
o™
W= |5
o(m, u*)
ui
us
_ uc
- 1-— ui
1 —up
1-— uc

C
[
i=1

The acceptance probability for the proposed birth move is min(1, A).

(80 = 1px, 85 = Lyk+1),

T

-

2. Death move: We propose K — K — 1 with probability dg.
We randomly select a column in Q x to delete. The acceptance probability is min(1, A~"), where
A~ can be computed in a similar way as Eq. 32.

2

_7-[2

171,

Tc

—7TC

51

3D

(32)

(33)
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Appendix B
Acceptance Ratio of Crimp Sampler

The crimp sampler moves between identifiable spaces with deterministic transformations of the
model parameters. The posterior distribution of & K — (Qg.-mk, Ak, K) and £ is

p(Ak,mk, Ok, K, RY) < p(Ak, kg, Ok, K|Y, R)p(R), (34)
where
p(Ag. g, Q. K|Y, ) x p(Y|Ak, R, Qg)p(Aglmg)p(mk)p(Qk. K)
x p(Ak, x|Y, R, Qx)p(Qk, K). (35)
Letu = (uo, ..., uyx_;) be a vector of independent random variables. The conditional posterior
of X and u is
p(Ag, g, u, Ok, K|Y,2) « p(Ak, mk|Y, R, Qg)p(Qk, K)p(u). (36)

Note that for ¢ ~ Dirichlet(dx) where dx = (do, ..., dyx _1),

2K

p(Axlmk)plrg) = Cg [ mrete, (37)
c=0

where 7. is the number of respondents in class ¢ and the normalizing constant is

2K—1
cx = LQe=0_de) (38)

125" Tde)

Moves from K — K + 1 involve transiting from ’;‘K = (Akx,mg, Ok, K,u) — §K+1 =
(Ak+1, Tk4+1, Ok, K+1). Thatis, the move to a higher dimension involves a transformation
of mk and u into « g 4. Specifically, let

oo = me(1 —ue),

el = Tclde, (39)

where .o and .| are elements of kg1 forc =0, ..., 2K _ 1. Note the Jacobian of transfor-

. R eS| 1
mation equals |J| = [[._y (7wco + mc1) 7.
Letagy1 = (1, k415 -- -5 ozN,KH)—r be an N vector of the proposed K + 1 binary attributes.
The full conditional distribution for the proposed K + 1 state prior to transformation is

P(A[(,ll[(.H,Jl’[(,ll, QK+],K+1|Y, SZ)

x p(Y|Ak,ak+1, R, Qg Dplag+1|Ax, w)p(Axlm ) pg) pw)p(Qk 1, K + 1),
(40)
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K_ ; Y

where p(agi1lAx, u) = [1'2 Yorsg ' Z(e v = ¢) (ue" " (1 — up)' ~eik+1).

Let u. ~ Beta(l, 1) for ¢ = 0, ...,2K — 1 and consider d = 1,x. The conditional prior
distribution of ax 1, Ak, wg, and u given Qg is

2K 1 2K 1
p(Ak agpr g w) o [ [T upr (=)™ | Cx [T miet®!, (41)
c=0 c=0

where n.o + nc.1 = ne, neo is the number of individuals in class ¢ (for attributes 1 to K) with
attribute K + 1 equal to 0, and n.1 corresponds to the number of individuals in class ¢ with attribute
K + 1 equal to 1. Applying the transformation implies

2K 1

nel nco
Tel 70 )
p(Ak,agi1,mg41) x Ck l_[ < - ) ( . ) (eo + )" x| Je|
oo \Tc0 t+ Tel TTeo + Tel
2K
=Cg ]_[ 7l (oo + 7o) L (42)
c=0

The transformed conditional posterior distribution is therefore

P(Agi1, k41, Qg1 K+ 1Y, Q)
X p(Y|AK+1» Sz& QK+1)p(AK+ls 71'K+1)p(QK+17 K + 1)! (43)

where AK+1 = (A[(, aK+1).

The transformed posterior for &% + requires we propose values for ag 1 and the 25 u, which
form the additional elements of 7 1 (in fact, RI-MCMC transitions between spaces this way).
Proposals for these parameters must be carefully constructed to ensure proper mixing and accep-
tance rates. Rather than proposing values we integrate out ag 1 and u. That is, we implement
the inverse transformations

e = M0 + Tels

"y — Tl (44)
¢ TTeo + el '
sum over ag 41, and integrate out u to find,
p(AK’ K, QK+17 K + 1|Y, 9)
1 1
o</ Z Z P(Ak.ak+1, g, u, Qg K+ 1Y, @)du
ol k+1=0 an k+1=0
N 1
= / [T X rileiaiki1, @ Qg i) p(@ikiilu, ai) | pw)du
i=la;g+1=0

X p(Aglmg)p(mg)p(Qg 1. K + 1)
=p(Y|Ag, R, Qg Dp(Aklrg)p(Tg)p(Qky1, K+ 1). (45)
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Therefore, for K — K + 1, with the uniform prior for Q¢ and K, all terms but the likelihood
functions will cancel out in the MH acceptance ratio, i.e.,

p(Qk 1Ak g, R,Y)  p(Y[|Ak, R, Q%))
p(QlAk.mk, R, Y) p(Y|Ak, R, Qg)

(46)

Transitions to lower dimensions involve a move from EK — EK_I =(Ak-1,wg-1, Og_1, K —
1). Without loss of generality, suppose the Kth attribute is proposed to be deleted. Therefore,
o, = (&lT, Oli[()—r and AK_1 = (&1, ey &N)T.

An important observation is that deleting a column of @ implies an attribute is no longer related
to observed responses, which implies

pYilai,aixk = 0,2, Ox—1) = p(Yilej, ik = 1,2, Qg —1). 47)
The conditional posterior after summing over ak is
p(AK—ls K, QK—]9 K — 1|Y7 SZ)

N 1
o | [T X p¥ildi ik, @, Qx_p)p@ilx) | pax)p(Qx—_1 K = 1)

_i=] aix=0

N 1
=[] p(Yilei, @, Qx_1) Y plilrx) | prx)p(Qx_1. K = 1)

_i=1 aixg =0
=p(Y|Ak-1, R, Qg Dp(Ax1lmg)p(mx)p(Qk 1. K — 1), (48)
where
2K-1_1
pAglmg) = ] Greo+men)™ (49)

c=0

and n. is the number of individuals in the collapsed class c. The joint conditional prior for A g _1
and T g is

oK1 oK1
p(Ag-1,mg) = p(Ag-1lmg)p(wk) = l_[ (meo + )" | | Ck l_[ ﬂféo_lﬂffl_l
c=0 c=0
(50
We then transform 7 ¢ by defining
e = 0 + el
e = —— (51)

o + el
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forc=0,...,2K=1 — 1 where 7, is an element of 7 ;. The transformation implies
oK1 oK1
P(Ax_1 U, Tg_1) = 1_[ JT?‘ Cx 1_[ nél'(:1+dc0—2ugc1—l(l _ uc)dco—l |J|_1
c=0 c=0
21(7171 2K7171
= Cg H ]T;l(.+d¢-o+dc1—l l_[ utcicl—l(l _ uc)d"o_l
c=0 c=0
=pAg-1lmg-1)pEK_1)pw). (52)

Therefore, integrating over u yields

p(AK—lvnK—lv QK_la K - 1|Y, Q)

0</P(AK—1,7IK—1,"7 Ox_1, K —1]Y, )du

=p(Y|Ak_-1, 2, Qg _p(Ax_1lmg_)pEg-1)p(Qx_1, K — 1)/1’('4)(1% (53)

where

2K-1_ 2K-1_1
/ padu=T] / uft N1 —uo)™due = [T Beta(deo. de). (54)
c=0 c=0

If the prior for w ¢ ~ Dirichlet(1,« ), then the integral is one. Since we use the uniform prior of
p(Q, K), the acceptance ratio becomes

oK1
P Ak g 2.Y)  PTIAR1 2 0% (T2 ' 7 t)
- K—1_ . i
PQilAR T &) pyiag, @, 0p) (T~ 7l )

(55)

Appendix C
Gibbs Sampling Step for Updating & in Crimp Sampler

The conditional posterior distribution of ag 41, Ag, Tk, and u is
p(AK5 aK+la K, u|Y7 Sz7 QK+]) X P(Y|AK7 aK+]7 SZ’ QK+]) : p(AKv aK+]5 K, u);(56)

then, the marginal posterior of ax | and Ak is
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where
P(Ak. axs1.mg w) = p(Aglrk) - p(rg) - p) - plagsi|Ax. u)
ZK—I 2](_1
X 1_[ u’:.“(l — Mc)nd) 1_[ nc’:lc‘f‘dc_l.
¢=0 c=0
Therefore,
261 2K
p(Ak, ag+1) O</ 1_[ ult (1 — ue)'® du/ 1_[ ahetde= | g
=0 c=0
2K 1 2K (57)
T [lioo T+ D
S8 B 1, ] e - Ve
C]J) (ne1+ 1,nc0+ 1) STELS

Let n;, be the number of individuals other than i with K attributes equal to et, and letn/,j and n, be
the number of such individuals with e g +1 = Oand o x41 = 1, respectively. Son.. = ”/co + n’c1 .
That is,

ne =n.. +I(oe;rv =0),
neo =nly+ (1 — i g4I v =0c),

1 T
net = ngp + o k+12(e; v =c).

Recall the following properties for the beta and gamma functions:
X
Bx+1,y)=B(x,y) ——,
x+y

B(x,y+1) = B(x,y) ——,
xX+y

F(x+1)=x-T'X).

Then, Eq. 57 can be written as:

plag, ..., N, O K41s--s AN K41) X
2K 2K
_ - [y ' Te +1)
( Eo Bl +ai k1 Z@] v=c)+1Lnly+ (1 —o;gi1)I(v=0c)+ 1)) . W (58)
Let Ay = (o1, ..., 01,041, ...,0yN) and o) k41 = (A1L,K415 -+ X1, K41, Qit1,K+1s
-, an,k+1)- By integrating out o¢; and o; g1, we have
P(AG), @), k+1) =
2K
T T
Z [P(Oti v=c,aik+1 =0,A4), a6 k+1) +pla; v=c,o; k41 =1, Ag), a(i),K+1)] .
c=0

(59)
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Note that

no+1

B(ni‘l + 17 n;o + 2) = ’/;/OTB(nél + 19 néo + 1)9
c

ney + 1

n, +2

F(n.+2)= .+ HC @, + 1),

By +2,n0+ 1) = B(nyy +1,n+ 1),

which implies

P(OliTv =c, o k+1 =0, Awy, 2y, k+1)

2K—1 / 2K /
n/CO +1 1 ’ (nc + 1) Hc:() F(nc + 1)
=t B(n'. 1,n, - )
n.+2 CI:IO (e + 1o 1 TN + 2K)

and

P v=c ki1 =1, A6, @6 k+1)

/ 2K—1 / 2K 1 /
n. +1 , , (n,+D[[g T.+1
= B 1, -
n.+2 611 (ney + 1omeo + 1) T'(N +2K)
Then, Eq. 59 should be
2K 1 2K_1 , 2K
. . _ 4 1 HC:O F(l’lc +D 1
P(Agy, 2@y k+1) = E) B(n.+1,n,44+1)] - W ; (n.+1)
h o (60)
o o T(n.+1)
= Bn',+ 1,0+ 1| - HPO—C.
[T Bt +1nig +1) TN +2K 1)
c=0
Therefore, the full conditional distribution for oc;'—v =candoj g1 = 11is
T
pla v=oc,o; k1 + 1, Agy, oy, k+1)
plav=c ok + 1Au), 2o k1) = : l Rl
P(AGy, o), k+1) 61)
_ n,+1 n.+1
Conl+2 N42K—1°
In order to update «;, g +1 sequentially, we need to find
(AK, AL K415+ O K+1)
P, i K 1| AG), QLKA - s i K1) = P i LR (62)
P(AGY, Q1 K41, ooy Q=1 K+1)
The probability in the numerator is calculated by summing Eq. 57 over o1 k+1, ..., N, K+1:

P(AK, a1, k41, -, 0i K+1)



58 PSYCHOMETRIKA

1 1

= Z Z p(AK,a[(+])

iy1,k+1=0 an k+1=0

HZKO—I 1—-(” N+1) 1 1 2K _q
_ c= C,
T (N £2K) : Z § | | B(nen+ Lnoy+1D|.  (63)

@i+1,k+1=0 oy k+1=0 \ ¢=0

Given that

-
ne,N =neN—1+I(ayv =c),

-
nel,N =Nel,N—1 +an k+1 - L(@yv =c),

-
neo,N =nco,N—1 + (1 —an g+1) - L(ayv = 0),

we have

1 2K
> [ Breaw+1non+1

an k+1=0 \ ¢=0
2K 2K

=[] Breinv-1+Lnon-1+Z@jv=c)+ D+ [[ B n—1 +T(@jv=c)+ L ngn-1+1)
c=0 c=0

=0 nel,N—1 +ncoN—1+2  Rel,N—1F+1c0,N-1+2

2K g
neo,N—1+ 1 nei, N—1+1
= |: [T Boein—1+ 1ncon—1 + 1)} < . + £

2K

= [[ Brein-1+1Lnon—1+D.
c=0

Therefore, Eq. 63 can be written as:

K_q 2K
sy Toew + 1)
PAK, Q1 K41, - s Qi K1) = —— K [T BOreri + Loneoi + 1. (64)
LN +2%) =0
For the probability in the denominator,
P(AG), Q1L K415+ Qim1,K+1)

2K 1
= Y > pAg. oK 1. ik g1)

o v=c*=0%—1,k+1=0

i

_ 2§ :1 HZ—K lI (nen +1) K
c=0 c,
I + K ’ j— 17 n [ — + l
c*=0 (N 2 ) cl_[ (”CL’ 1 c0,i—1 )

2K_1

1"_[ P(ney+1)

c*=0 c=0

2K 1 2K 1
iz B(eri—1 + Lingoi-1 + 1) , 1
- T(N +2K) PICES)
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2K—1 1—121(71 F(n/ + 1)
= B . 1, . 1 . c=0 c,N 65
E) (neri-1+ 1 neoi—1 + 1) TN F 2K - 1) (65)
Combining Egs. 64 and 65, Eq. 62 is
plo] v e k1 Agy, @ k1. L i1 k41)
K
o' Trew +1) ok
- (N + 2K) ’ HC:O B(neri+1,nc0,; + 1)
a 2K /
2K 1 l_[:() I'(n ,N+1)
(HC:O B(neri—1+ 1, ne0,i—1 + 1)) . li(N n 2[? 5
2K
. l_[ B(ncii + 1,n00,; + DC(ney + 1) 6
N + 2K 1 B(ncl,i—l +1, neo,i—1 + l)r(n;’N +1)

c=0
If Otl-TI) = c and o; g1 = 1, then Eq. 66 can be simplified as

neti—1+1 n,. +1
nei—1+2 N+2K—-1°

and if alTv =cand o k41 =0, Eq. 66 is

neo,i—1 + 1 n, + 1
nc,i—l+2 N+2K—1

Therefore, we can update (a;, @ x+1) sequentially to (ec., @*) with probability proportional to

T ) i ”ca*,ifl—f—l n2+1 _ K _
pYile,v=rc,oxy1 =1,2, Q1<+1)'(nc!i_l+2 N2K 1 ,e=0,...,2K of =
0, 1.

Appendix D
Posterior Distribution of A in Indian Buffet Process Algorithm
Assume A ~ Gamma(a, b), and A is only related to @, so its posterior can be updated by
P10 o p(QV 1) p ()

o MK exp {(—AHy} A4 Lexp {—Ab)
o AKX+ lexp (—A(Hy + b)}, (67)

then 1) can be sampled from Gamma(K + a, Hy + b), where K is the number of features in
current @ and Hy the Nth harmonic number.
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TABLE 8.
Summary of RMSE of estimated item parameters for K = 3, p = 0 by sample size N.

Crimp sampler IBP RIMCMC

N =500 N = 1000 N = 2000 N =500 N =1000 N = 2000 N =500 N =1000 N =2000

Sj

gj

Sj 8j Sj 8j Sj 8j Sj 8j Sj 8j Sj 8j Sj 8j Sj 8j

0.027
0.030
0.034
0.054
0.028
0.039
0.027
0.039
0.031
0.029
0.044
0.035
0.039
0.054
0.037
0.029
0.049
0.044

0.018 0.024 0.011 0.019 0.009 0.035 0.066 0.028 0.042 0.134 0.140 0.032 0.031 0.021 0.024 0.013 0.014
0.042 0.020 0.026 0.011 0.012 0.029 0.055 0.030 0.048 0.135 0.134 0.027 0.034 0.023 0.021 0.017 0.016
0.020 0.028 0.019 0.017 0.016 0.031 0.052 0.030 0.046 0.128 0.139 0.029 0.030 0.022 0.021 0.014 0.014
0.025 0.029 0.024 0.018 0.011 0.034 0.067 0.032 0.047 0.134 0.137 0.028 0.028 0.020 0.023 0.014 0.015
0.025 0.024 0.019 0.020 0.012 0.032 0.055 0.027 0.047 0.138 0.134 0.031 0.030 0.023 0.024 0.014 0.014
0.024 0.025 0.017 0.022 0.016 0.030 0.048 0.032 0.044 0.130 0.138 0.032 0.029 0.023 0.021 0.013 0.014
0.030 0.015 0.019 0.012 0.016 0.032 0.066 0.031 0.040 0.132 0.138 0.029 0.032 0.020 0.021 0.015 0.013
0.024 0.028 0.019 0.017 0.013 0.034 0.051 0.029 0.049 0.135 0.131 0.035 0.030 0.024 0.020 0.015 0.015
0.058 0.026 0.032 0.012 0.014 0.030 0.050 0.028 0.042 0.129 0.136 0.032 0.033 0.023 0.023 0.015 0.014
0.047 0.015 0.015 0.011 0.009 0.047 0.025 0.030 0.030 0.221 0.020 0.045 0.023 0.028 0.016 0.020 0.010
0.018 0.028 0.023 0.018 0.016 0.041 0.031 0.032 0.028 0.220 0.022 0.037 0.020 0.029 0.015 0.021 0.012
0.019 0.012 0.009 0.011 0.010 0.042 0.031 0.030 0.021 0.218 0.022 0.042 0.022 0.032 0.017 0.022 0.011
0.032 0.030 0.036 0.029 0.023 0.051 0.030 0.030 0.022 0.224 0.021 0.040 0.023 0.031 0.015 0.021 0.011
0.043 0.036 0.020 0.032 0.017 0.036 0.032 0.030 0.028 0.216 0.025 0.043 0.023 0.028 0.015 0.021 0.010
0.029 0.015 0.025 0.011 0.018 0.048 0.030 0.041 0.020 0.219 0.021 0.040 0.021 0.027 0.016 0.022 0.012
0.025 0.018 0.016 0.017 0.015 0.051 0.020 0.037 0.017 0.250 0.033 0.047 0.020 0.041 0.014 0.028 0.011
0.020 0.026 0.019 0.018 0.013 0.054 0.021 0.042 0.015 0.249 0.031 0.052 0.019 0.036 0.014 0.027 0.010
0.027 0.020 0.019 0.014 0.019 0.056 0.021 0.039 0.014 0.249 0.032 0.056 0.021 0.034 0.012 0.027 0.011

Results are based on replications for which K is correctly estimated.

Appendix E

Problem set of Elementary Probability Theory

The twelve questions from R package pks (Heller and Wickelmaier 2013) are

1.

2.

A box contains 30 marbles in the following colors: 8 red, 10 black, 12 yellow. What is
the probability that a randomly drawn marble is yellow?

A bag contains 5-cent, 10-cent, and 20-cent coins. The probability of drawing a 5-cent
coin is 0.35, that of drawing a 10-cent coin is 0.25, and that of drawing a 20-cent coin is
0.40. What is the probability that the coin randomly drawn is not a 5-cent coin?

A bag contains 5-cent, 10-cent, and 20-cent coins. The probability of drawing a 5-cent
coin is 0.20, that of drawing a 10-cent coin is 0.45, and that of drawing a 20-cent coin is
0.35. What is the probability that the coin randomly drawn is a 5-cent coin or a 20-cent
coin?

In a school, 40% of the pupils are boys and 80% of the pupils are right-handed. Suppose
that gender and handedness are independent. What is the probability of randomly selecting
a right-handed boy?

. Given a standard deck containing 32 different cards, what is the probability of not drawing

a heart?

A box contains 20 marbles in the following colors: 4 white, 14 green, 2 red. What is the
probability that a randomly drawn marble is not white?

A box contains 10 marbles in the following colors: 2 yellow, 5 blue, 3 red. What is the
probability that a randomly drawn marble is yellow or blue?

What is the probability of obtaining an even number by throwing a dice?

Given a standard deck containing 32 different cards, what is the probability of drawing a
4 in a black suit?
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TABLE 9.
Summary of RMSE of estimated item parameters for K = 4, p

= 0 by sample size N.
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Crimp sampler IBP

RIMCMC

N =500 N =1000 N =2000 N =500 N =1000 N = 2000

N =500 N = 1000

N = 2000

Sj 8j Si 8j Sj 8j Sj 8j Sj 8j Sj 8j

Sj 8j Sj 8j

Sj

gj

0.019
0.039
0.031
0.031
0.018
0.019
0.036
0.037
0.044
0.102
0.043
0.033
0.063
0.050
0.087
0.032
0.047
0.066

0.058
0.018
0.017
0.043
0.045
0.020
0.027
0.034
0.26

0.045
0.015
0.026
0.025
0.027
0.037
0.024
0.017
0.017

0.017
0.028
0.019
0.040
0.019
0.018
0.038
0.034
0.035
0.070
0.023
0.025
0.036
0.042
0.075
0.070
0.053
0.022

0.032
0.021
0.014
0.037
0.021
0.013
0.028
0.028
0.016
0.042
0.020
0.021
0.027
0.027
0.021
0.016
0.013
0.020

0.013 0.023 0.058
0.021 0.013 0.056
0.010 0.012 0.059
0.029 0.028 0.062
0.019 0.020 0.057
0.010 0.015 0.059
0.045 0.029 0.065
0.24 0.016 0.068
0.022 0.010 0.029
0.037 0.021 0.030
0.012 0.019 0.030
0.015 0.016 0.027
0.013 0.012 0.031
0.031 0.031 0.028
0.034 0.018 0.021
0.042 0.015 0.020
0.028 0.014 0.020
0.015 0.018 0.022

0.047
0.045
0.058
0.052
0.049
0.051
0.060
0.046
0.072
0.080
0.072
0.083
0.075
0.086
0.095
0.087
0.095
0.092

0.071
0.066
0.057
0.059
0.074
0.068
0.049
0.053
0.101
0.090
0.093
0.077
0.090 0.029
0.080 0.027
0.116 0.017
0.111 0.015
0.101 0.015
0.104 0.019

0.085
0.079
0.082
0.068
0.081
0.085
0.079
0.071
0.027
0.028
0.025
0.025

0.197
0.194
0.192
0.193
0.198
0.195
0.193
0.194
0.330
0.329
0.326
0.325
0.326
0.326
0.404
0.408
0.402
0.406

0.149
0.151
0.152
0.153
0.149
0.151
0.153
0.151
0.029
0.027
0.030
0.028
0.028
0.026
0.041
0.043
0.041
0.042

0.034
0.038
0.031
0.032
0.034
0.037
0.031
0.034
0.044
0.051
0.048
0.045
0.048
0.044
0.061
0.067
0.062
0.066

0.035
0.033

0.020 0.025
0.023 0.024
0.037 0.023 0.022
0.035 0.025 0.023
0.034 0.022 0.028
0.031 0.025 0.022
0.031 0.024 0.026
0.037 0.022 0.026
0.024 0.033 0.018
0.022 0.039 0.016
0.026 0.038 0.015
0.025 0.031 0.015
0.024 0.034 0.018
0.025 0.034 0.016
0.022 0.035 0.15
0.021 0.046 0.015
0.021 0.040 0.016
0.021 0.043 0.015

0.021
0.018
0.014
0.014
0.018
0.016
0.013
0.018
0.025
0.022
0.025
0.018
0.028
0.026
0.034
0.030
0.030
0.037

0.019
0.019
0.019
0.019
0.018
0.017
0.021
0.017
0.011
0.011
0.013
0.013
0.012
0.012
0.010
0.009
0.009
0.009

Results are based on replications for which K is correctly estimated.

TABLE 10.
Summary of RMSE of estimated item parameters for K = 5, p

= 0 by sample size N.

Crimp-Sampler IBP

RIMCMC

N=500 N=1000 N =2000 N =500 N =1000 N = 2000

N =500 N = 1000

N = 2000

Sj 8j Sj 8ij Sj 8j Sj 8j Sj 8j Sj 8j

Sj 8j Sj 8j

8j

0.035
0.043
0.027
0.045
0.042
0.023
0.026
0.046
0.044
0.059
0.021
0.094
0.044
0.012
0.045
0.050
0.035
0.048
0.088
0.038

0.026
0.012
0.027
0.035
0.013
0.026
0.019
0.032
0.055
0.051
0.023
0.043
0.012
0.017
0.034
0.038
0.019
0.018
0.029
0.045

0.038 0.019 0.034 0.013 0.062 0.062 0.089
0.036 0.025 0.030 0.019 0.083 0.061 0.091
0.025 0.033 0.023 0.020 0.098 0.126 0.119
0.048 0.038 0.027 0.018 0.109 0.095 0.138
0.025 0.013 0.015 0.017 0.058 0.046 0.088
0.022 0.046 0.018 0.019 0.063 0.062 0.088
0.022 0.051 0.027 0.011 0.083 0.057 0.087
0.052 0.027 0.027 0.022 0.097 0.120 0.119
0.042 0.055 0.028 0.028 0.105 0.092 0.142
0.037 0.020 0.029 0.020 0.057 0.047 0.088
0.041 0.037 0.013 0.018 0.027 0.095 0.029
0.016 0.014 0.015 0.014 0.033 0.066 0.029
0.054 0.023 0.029 0.018 0.029 0.071 0.035
0.027 0.030 0.011 0.021 0.028 0.130 0.033
0.024 0.031 0.013 0.023 0.028 0.077 0.031
0.057 0.049 0.026 0.015 0.024 0.167 0.020
0.029 0.019 0.036 0.011 0.025 0.106 0.016
0.053 0.033 0.023 0.018 0.022 0.146 0.020
0.041 0.023 0.017 0.013 0.022 0.113 0.018
0.041 0.027 0.033 0.013 0.023 0.142 0.019

0.059
0.086
0.105
0.112
0.047
0.058
0.083
0.107
0.117
0.042
0.129
0.103
0.066
0.125
0.107
0.184
0.162
0.157
0.140
0.165

0.199
0.195
0.250
0.214
0.135
0.200
0.198
0.249
0.215
0.134
0.288
0.279
0.281
0.373
0.334
0.414
0.377
0.404
0.381
0.446

0.177
0.185
0.220
0.200
0.091
0.178
0.186
0.221
0.198
0.094
0.024
0.025
0.030
0.066
0.049
0.028
0.038
0.031
0.038
0.030

0.028 0.042 0.025
0.036 0.037 0.026
0.034 0.032 0.026
0.035 0.034 0.028
0.033 0.035 0.019
0.033 0.034 0.022
0.037 0.033 0.025
0.042 0.031 0.022
0.038 0.034 0.029
0.033 0.032 0.019
0.045 0.025 0.033
0.050 0.022 0.033
0.047 0.023 0.039
0.051 0.022 0.032
0.055 0.025 0.038
0.067 0.018 0.047
0.062 0.023 0.052
0.066 0.022 0.050
0.070 0.022 0.048
0.078 0.022 0.047

0.033
0.022
0.030
0.030
0.020
0.027
0.028
0.024
0.036
0.025
0.016
0.016
0.016
0.019
0.018
0.016
0.015
0.013
0.014
0.017

0.024
0.015
0.020
0.020
0.035
0.013
0.023
0.025
0.013
0.045
0.014
0.024
0.043
0.028
0.028
0.063
0.034
0.028
0.053
0.018

0.013
0.014
0.040
0.095
0.100
0.037
0.008
0.038
0.101
0.105
0.012
0.033
0.041
0.015
0.007
0.013
0.015
0.012
0.009
0.013

Results are based on replications for which K is correctly estimated.



62 PSYCHOMETRIKA

TABLE 11.
Summary of the frequency of estimated K by sample size N, number of true attributes K, and attribute dependence p
using DIC selection.

K selected by lowest DIC

N K P 2 3 4 5 6 7 8
500 3 0.00 0 96 4 0 0 0 0
1000 3 0.00 0 92 8 0 0 0 0
2000 3 0.00 0 90 10 0 0 0 0
500 4 0.00 0 1 99 0 0 0 0
1000 4 0.00 0 4 90 6 0 0 0
2000 4 0.00 0 1 76 19 4 0 0
500 5 0.00 0 0 2 90 8 0 0
1000 5 0.00 0 0 17 65 18 0 0
2000 5 0.00 0 0 39 57 4 0 0
500 3 0.25 0 82 18 0 0 0 0
1000 3 0.25 0 85 15 0 0 0 0
2000 3 0.25 0 87 13 0 0 0 0
500 4 0.25 0 11 80 9 0 0 0
1000 4 0.25 0 10 68 22 0 0 0
2000 4 0.25 0 13 65 22 0 0 0
500 5 0.25 0 0 59 41 0 0 0
1000 5 0.25 0 0 67 32 1 0 0
2000 5 0.25 0 1 66 21 12 0 0
500 3 0.5 0 79 19 2 0 0 0
1000 3 0.5 0 74 25 1 0 0 0
2000 3 0.5 0 74 23 3 0 0 0
500 4 0.5 0 15 76 9 0 0 0
1000 4 0.5 0 13 65 21 1 0 0
2000 4 0.5 0 28 37 32 3 0 0
500 5 0.5 0 0 52 37 11 0 0
1000 5 0.5 0 0 69 20 11 0 0
2000 5 0.5 0 1 67 15 13 4 0

The specified range of K for DIC selection is 2 to 7 for K = 3 and 4, and 2 to 8§ for K = 5.

10. A box contains marbles that are red or yellow, small or large. The probability of drawing
a red marble is 0.70, the probability of drawing a small marble is 0.40. Suppose that the
color of the marbles is independent of their size. What is the probability of randomly
drawing a small marble that is not red?

11. In a garage there are 50 cars. 20 are black and 10 are diesel powered. Suppose that the
color of the cars is independent of the kind of fuel. What is the probability that a randomly
selected car is not black and it is diesel powered?

12. A box contains 20 marbles. 10 marbles are red, 6 are yellow and 4 are black. 12 marbles
are small and 8 are large. Suppose that the color of the marbles is independent of their
size. What is the probability of randomly drawing a small marble that is yellow or red?

Appendix F
Supplementary Simulation Results
Tables 8, 9 and 10 report comparison on the root-mean-squared error (RMSE) of the estimated
item parameters for p = O for the cases where K was correctly estimated. The tables show that

both the crimp sampler and RI-MCMC give a smaller RMSEs on item parameter estimation than
IBP across different sample sizes and K, and the crimp sampler is slightly better than RJ-MCMC
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for the K = 5 case. The results for p = 0.25 are omitted here because the performance was
similar. Table 11 reports the performance of inferring K using DIC selection.
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