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Cognitive diagnostic models (CDMs) are latent variable models developed to infer latent skills, knowl-
edge, or personalities that underlie responses to educational, psychological, and social science tests and
measures. Recent research focused on theory and methods for using sparse latent class models (SLCMs)
in an exploratory fashion to infer the latent processes and structure underlying responses. We report new
theoretical results about sufficient conditions for generic identifiability of SLCM parameters. An important
contribution for practice is that our new generic identifiability conditions are more likely to be satisfied
in empirical applications than existing conditions that ensure strict identifiability. Learning the under-
lying latent structure can be formulated as a variable selection problem. We develop a new Bayesian
variable selection algorithm that explicitly enforces generic identifiability conditions and monotonicity of
item response functions to ensure valid posterior inference. We present Monte Carlo simulation results
to support accurate inferences and discuss the implications of our findings for future SLCM research and
educational testing.
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1. Introduction

Cognitive diagnostic models (CDMs) are latent class models developed for the inference of
educational, psychological, and social science tests. In CDMs, the latent variables are often defined
as skills, knowledge, or personalities needed by a subject to solve a given test item. Consider a
test that consists of J items and involves K skills. The observable response ¥ = (Y1,...,Y)
for a subject is a binary random vector, indicating the correctness of the subject’s answers to the
J items. The latent class of a subject is indexed by a K -dimensional binary vector e, which are
referred to as an attribute profile, which suggests the mastery of each skill. Given e, Y is modeled
by a product of J independent Bernoulli random variables with parameter 6; o = P(Y; = 1|e).

In many CDMs, 6 4 depends on a K -dimensional binary vector ¢ ;, where element g jx = 1
if attribute k is relevant to item j and zero otherwise. The relevant skills to all items are usually
presented by a J x K matrix, Q@ = [q, ..., q,]7, called the Q-matrix.

CDMs provide a statistical framework to identify relevant attributes of test items and to
classify the mastery/non-mastery of test subjects on those attributes, which provide useful insights
for researchers and educators. Various CDMs have been proposed in the literature and they differ
from each other in their assumptions on how 6; , depends on the Q-matrix. For example, the

Correspondence should be made to Steven Culpepper, Beckman Institute for Advanced Science and Tech-
nology, University of Illinois at Urbana—Champaign, 725 South Wright Street, Champaign, IL 61820, USA.
Email: sculpepp@illinois.edu

121
© 2020 The Psychometric Society


http://crossmark.crossref.org/dialog/?doi=10.1007/s11336-019-09693-2&domain=pdf
http://orcid.org/0000-0003-4226-6176

122 PSYCHOMETRIKA

DINA (Deterministic Input, Noisy ‘And’ gate) model (Haertel 1989; Junker and Sijtsma 2001),
the generalized DINA model (de la Torre 2011) and the reduced reparameterized unified ({RUM)
model (Hartz 2002; Rupp et al. 2010) are conjunctive models where all relevant skills are needed
to have the highest positive response probability. On the other hand, under disjunctive models,
such as the DINO (Deterministic Input, Noisy ‘Or’ gate) model (Templin and Henson 2006),
at least one relevant skill is needed, whereas compensatory models (e.g., see Davier (2005), for
a special case of the general diagnostic model) allow students to compensate for missing some
skills by having others.

However, pre-specifying an appropriate CDM can be difficult in practice, especially when
no prior knowledge of the test is available. Further, it is likely that different questions (items)
in a single test need to be modeled by different CDMs. For instance, a mathematics test may
include questions that can be solved using different skills, which implies a disjunctive model. The
same test may also include questions that involve multiple steps and require students to master
all relevant skills in order to get the final correct answer, which implies a conjunctive model. For
such tests, the specification of a single CDM would fail to capture the real latent patterns.

To address this issue, a novel, model-free approach was proposed by Chen et al. (2015),
which is based on an alternative representation of CDMs via a mixture of generalized linear
models (GLMs). In particular, the jth Bernoulli parameter for latent class « is modeled as

K K
P(Y;=1|a,B;)=WV (ﬂj,o + Y Biker+ Y Y Biawewar + -+ Bjiak Hdk)
k=1 k=1

k>k'

ey

where W(-) is an arbitrary cumulative distribution function (CDF) and B is a coefficient vector
to be estimated. It can be shown that all of the aforementioned CDMs are special cases of (1)
with particular sparsity patterns of B ;. In addition, the sparsity pattern of B; provides information
about which attributes are relevant. Consequently, the estimation of Q can be reformulated as a
variable selection problem involving GLMs.

A fundamental issue with latent mixture models is model identifiability. Throughout, identi-
fiability is defined up to a permutation of the K attributes. That is, we do not discuss the trivial
identifiability issue due to label switching, since it is a well-understood issue and we know how
to handle it in practice. The first rigorous study on the identifiability of the (-matrix was given
by Liu et al. (2013) with a focus on DINA models with known guessing parameters. Chen et
al. (2015) extended the result of Liu et al. (2013) to DINA and DINO models with unknown
model parameters. Xu (2017) established identifiability conditions for general CDMs when Q is
known; Xu and Shang (2017) later provided identifiability conditions for general CDMs when Q
is unknown. Although the results from Xu (2017) and Xu and Shang (2017) are applicable to the
general model based on latent mixture of GLMs, their identifiability conditions, which require
two identity matrices embedded in @, are too strong to be satisfied in practice. Recently, Fang et
al. (2019) proposed identifiability conditions in terms of the distribution of Y rather than Q, but
their conditions are still stronger than the ones needed for our result.

In this paper, we provide a new set of generic identifiability conditions for general CDMs.
Our conditions are weaker than the ones in the aforementioned papers since those papers studied
conditions for strict identifiability. As stated by Allman et al. (2009), “...generic identifiability
implies that the set of points for which identifiability does not hold has measure zero," which is
enough for practical data analysis. For example, Bernoulli mixtures are not strictly identifiable
(Goodman 1974; Gyllenberg et al. 1994a), but given Bernoulli mixtures are generically identifi-
able, they often lead to valid statistical inference in practice (Carreira-Perpifidn and Renals 2000;
Allman et al. 2009). Results for generic identifiability are established in Allman et al. (2009) for
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latent class models, which cannot be directly applied to CDMs, since CDMs are restricted latent
class models. However, we can extend their proof technique, which is based on the tensor product
framework in Kruskal (1976, 1977), to handle CDMs.

For a feasible implementation, we adopt a Bayesian approach to the estimation and variable
selection of (1), and develop a Gibbs sampling algorithm for computation. Different from the
vanilla Gibbs algorithm for Bayesian variable selection, our Gibbs algorithm is specially designed
to ensure that each posterior draw of the sparse model parameters f;’s is from the identifiable
space, while the algorithms from Chen et al. (2015), Xu and Shang (2017) and Fang et al. (2019)
cannot ensure that their estimation of Q or other model parameters satisfies their identifiability
conditions. In a recent work, Chen et al. (2018) also used MCMC method to stochastically search
over identifiable parameter space. However, Chen et al. (2018) focus on DINA and DINO models
with strict identifiability conditions, whereas we develop an MCMC sampling algorithm for
general CDMs with weaker, generic identifiability conditions.

The remainder of this paper is organized as follows. Section 2 introduces the setup of the
sparse latent class models. Section 3 addresses identifiability issues and discusses the generic
identifiability conditions. Section 4 introduces the Gibbs sampler for posterior inference. We
report results from a simulation study in Sect. 5 and results from two real applications in Sect. 6,
and close with adiscussionin Sect. 7. Proofs and other technical details are included in “Appendix”.

2. Model and Applications

2.1. Model Setup

Consider a test consisting of J items and involving K latent skills. Let Y = (Y1,...,Y;)
denote the J binary responses from a subject. Based on the mastery of the K skills, each subject
has an attribute profile a € {0, I}K , where o = 1 indicates that the subject masters skill k£ and
zero otherwise. In SLCM, given the attribute profile o, the J binary variables Y7, ..., Y  are
modeled as independent Bernoulli variables with Bernoulli parameter 6 4 = W (ag B j) where

T

K
ay = (1,a1,...,az<,a1az,...,ock1ou<,..., nak> (2)
k=1
is a 2K -dimensional alternative representation of the binary vector & with
K K
T
agB;=PBjo+ Y Bikew+ Y > Biwwewow + -+ Biiz.k | [ o 3)
k=1 k>k' k=1

The regression coefficients B ; form a sparse vector, in which the nonzero elements represent the
effects of skills or combinations of skills on the response of item ;.

In particular, where coefficients in (3) are nonzero imply the dependence between item j and
the K skills. To identify which main effects and/or interactions of the K skills are relevant to item
j, we introduce a 2X -dimensional binary structure vector

K
87 = (8.0:8j0s s 8j K 8j12 s 8j(K—1)Ks -+ 871 k) €10, 1}%,
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TABLE 1.
Sparse patterns of various CDMs

80 Sj1 Sj2  8j3 Sj12 bj13  8j23  dji123 Note
DINA 1 1
DINO 1 1 1 1 Bj1=Bj2=—Bj12
G-DINA 1 1 1 1 W(x)=x
NC-RUM 1 1 1 W (x) = exp(x)
C-RUM 1 1 1 W (x) = logit™ ! (x)

with 1 indicating that the corresponding coefficient is active, i.e., its B value is nonzero, and 0
indicating that the coefficient is inactive, i.e., its B value is zero. The intercept B; o is usually
assumed to be active, 5o §; ¢ is fixed at 1.

From now on, we willuse B ;, ,x , referred to as the coefficient matrix, to denote the collection
of B;’s, and A ;,»k, referred to as the sparsity matrix, to denote the collection of §;’s.

2.2. Sparsity Patterns

Many popular CDMs can be reparameterized as special cases of SLCM with particular
sparsity patterns, including the DINA model, the DINO model, the G-DINA (Generalized DINA)
model, the NC-RUM (reduced noncompensatory reparameterized unified model) (DiBello et al.
1995; Rupp et al. 2010), and the C-RUM (Compensatory-RUM) (Hagenaars 1993; Maris 1999).

In Table 1, we present the sparsity patterns of these aforementioned CDMs, if being reparam-
eterized as SLCMs. For simplicity, we assume there are K = 3 latent skills, and the first two skills
are relevant to each item. The detailed derivation for reparameterization of CDMs is provided in
“Appendix A”.

The DINA model is a conjunctive model with 6; 4 taking only two possible values: one for
students who have all the relevant skills, and the other for students who miss any of the relevant
skills. If reparameterized as an SLCM, the DINA model is a sparse model with only one active
coefficient, the highest interaction term that involves all the relevant skills, in addition to the
intercept. In contrast, the DINO model is a disjunctive model, in which one value of 6; 4 is for
students who have at least one of the relevant skills, and the other is for students who miss all of
the relevant skills. If reparameterized as an SLCM, the DINO model turns out to be a dense model
with all the main effects and interactions among the relevant skills being active. In addition, there
are some constraints on the coefficients: the active coefficients in odd orders are all equal and
positive, while the values of those in even orders are the additive inverse of the odd ones.

The G-DINA model is a generalization of the DINA model, which assumes 6; 4 can be
decomposed into the sum of the effects from relevant skills and their interactions. So similar
to the DINO model, the G-DINA model is also a dense model with all the main effects and
interactions among the relevant skills being active. The NC-RUM model assumes that missing
any of the relevant skills reduces the positive response probability by a multiplicative penalty
term. Xu (2017) has shown that the NC-RUM model is equivalent to a log-link additive model
with just the main effects. Similar to the NC-RUM model, the C-RUM model is also an additive
model involving only the main effects, but with a logit link function.

An advantage of SLCM is that it contains all CDMs that admit a K-dimensional binary
attribute profile, including the ones that do not fall into any of the aforementioned CDMs. Consider
two sparsity patterns shown in Table 2 and assume the active coefficients are all positive. In the
first case, mastering skill 1 alone increases the positive response probability, while mastering
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TABLE 2.
Other sparse patterns of ¢ = (1, 1, 0)

85,0 8,1 8j2 8j3 8j,12 8j.13 8j.23 84,123
1 1 1
I 1 1

skill 2 alone does not; mastering skill 2, however, increases the positive response probability
conditioning on the mastery of skill 1. The second case has a similar interpretation. These two
cases do not belong to any of the CDMs mentioned above, but can be modeled by SLCM.

2.3. From Q-matrix to A-matrix

Although the Q-matrix has been widely used for cognitive diagnostic modeling, it only
provides partial information regarding the item-—attributes relationship (Fang et al. 2019). Given
qj,we know the relevant attributes, but it is not clear how they interact with each other to affect the
positive response probability without specifying a particular CDM. In practice, it is challenging to
pre-specify a CDM when no prior information of the test is available. Furthermore, it is possible
that different items in a test follow different CDMs, so there is no single CDM that is appropriate
for all the items in the test.

In SLCM, the sparsity matrix A ;, &, which does not require any pre-specified CDM, pro-
vides a more general and informative description of the item—attributes relationship. For example,
all the CDMs listed in Tables 1 and 2 have the same ¢ = (1, 1, 0) but their structure vectors
d;’s could be different. In cases, the @-matrix is preferred as a summary of the relevant skills, we
extract ¢ ; based on §; as follows: for any attribute k, if there exists a subset of the K attributes,
{ki, ko, ..., ki} C{1,..., K}, suchthat, k € {k1, ko, ..., k} and 8j,k1k2...,k[ = 1, then qjk = 1,
otherwise, g = 0. That is, g jx = 1 if any element of §; that is relevant to skill k is nonzero.

3. Identifiability

Model identifiability is of great importance in the study of CDMs. In Statistics, a model is
identifiable if it is theoretically possible to learn the true values of its underlying parameters after
obtaining an infinite number of observations. Mathematically, this is equivalent to saying that
different values of the parameters must correspond to different probability distributions of the
observable variables. Identifiability conditions are technical restrictions, under which the model
is identifiable. In this section, we establish a set of identifiability conditions of SLCM in terms of
A. We first introduce the identifiability issue encountered in CDMs in Sect. 3.1 and review prior
research in Sect. 3.2. Then, we introduce the generic identifiability in the context of SLCM in
Sect. 3.3 and propose a set of generic identifiability conditions in Sect. 3.4. The proof sketch of
generic identifiability is provided in Sect. 3.5, and detailed proofs are given in “Appendix B.”

3.1. Identifiability Issue

In CDMs, the observable variables are Y = (Y7, ..., Yy),, and the parameters of interest are
the latent class proportion vector & and the coefficient matrix B. Denote the parameter space of
(7, B) by

Qr,B)={(x,B) :meQ(m),BeQWB)},



126 PSYCHOMETRIKA

where Q () = {x € R2" . x1+--+xxk=1x;>0}isa (2K — 1)-dimensional simplex and
Q(B) is the parameter space of the coefficient matrix B, which could be the whole space R’ x2®
or a subset of RY*2" if we constrain the Q-matrix or the A-matrix.

Given an attribute profile/class «, the joint distribution of ¥ = {Y1, ..., Y;} is a product of
Bernoulli distributions, which can be described by a J-dimensional 2 x --- x 2 table

J
Po(B) = X)Ojar 1 —0a)

j=1

where Q) denotes the Kronecker product. The marginal distribution of Y over different classes
is given by

P(x, B) = Znam(m.

Definition 1. (Identifiable). A parameter set (x, B) € Q (&, B) is identifiable, if
P(x, B) = P(%, B) & (x, B) ~ (7, B),

where (7, B) is another parameter set from Q (5, B) and “~" means the two sets of parameters
are identical up to label switching.

3.2. Prior Work

CDMs are mixtures of Bernoulli distributions, which are known to be non-identifiable even
if we ignore the non-identifiability due to label switching (Teicher et al. 1961; Yakowitz and
Spragins,1968; Goodman 1974; Gyllenberg et al. 1994b). It is, however, possible for CDMs to
be identifiable if certain restrictions on the @-matrix and/or {6; 4} are satisfied. For instance, as
discussed in Chiu et al. (2009) and Liu et al. (2013), the completeness of @-matrix, a condition
that requires the @-matrix to contain an identity matrix after row permutation, is believed to be
a necessary condition for the identifiability of DINA models.

Different identifiability conditions have been proposed for different CDMs in the literature.
For example, Liu et al. (2013) studied the DINA model with complete knowledge of guessing
parameters, and Chen et al. (2015) studied the DINA/DINO models. For general CDMs, Xu (2017)
and Xu and Shang (2017) proposed a set of identifiability conditions in terms of the @-matrix
and the monotonicity constraints. But their conditions are too strong in practice, especially when
K is large, which will be discussed in the next paragraph. Another set of identifiability conditions
for general CDMs was proposed by Fang et al. (2019), which are still stronger than ours and also
difficult to be incorporated in algorithms since they are expressed in terms of {6} 4}.

The monotonicity constraints imposed by Xu (2017) and Xu and Shang (2017) are as follows:

min Oj.a =050,

OCES() (4)
max0j e < min 0 ¢ = max0; q,
(xESO O(ES] (!ES] '

where Sy = {a|a % qj, o > 0} is the set of classes with at least one skill but not mastering all the
relevant skillsand S| = {«|ax > ¢ j}1s the set of classes mastering all the relevant skills, where the
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notation “a > " means oy > a; forallk =1, ..., K, and “o > &" means a; > & for all k and
there exists at least one ko, such that ox, > @y,. Constraints (4) imply that students without any
skill (i.e., &« = 0) should have the lowest probability to give a positive answer to item j, students
with all the relevant skills (¢ € S;) should have the highest probability, and additional skills
beyond the relevant skills are not expected to increase the probability. Under such constraints, the
model identifiability is guaranteed (Xu 2017; Xu and Shang 2017) when the Q-matrix (after row
swapping) takes the form of

Ik
0=\1I1k |, (5)
Q/

where I g is an identity matrix of size K and there are additional constraints on Q’. However,
condition (5) implies that the first 2K items degenerate into items in a DINA/DINO model with
only one relevant skill. When K is relatively large, e.g., close to J/2, such a Q-matrix essentially
forces the model to be a DINA/DINO model, which is contrary to the original intention of general
CDMs.

3.3. Generic Identifiability

Generic identifiability, which is less stringent than Definition 1, is introduced in Allman et
al. (2009). Generic identifiability allows some parameter values to be non-identifiable as long
as these exceptional values are of measure zero with respect to the parameter space. As pointed
out in Allman et al. (2009), generic identifiability of a model is generally sufficient in practice,
since one is unlikely to face the non-identifiability problem when almost all parameters (except
a measure zero set) are identifiable. Allman et al. (2009) has proved that a general mixture of
Bernoulli products is generically identifiable, provided that the number of items is larger than
twice the number of classes.

However, there is a gap between the result established in Allman et al. (2009) and SLCM
studied in this paper. The parameter space of the former is fixed, corresponding to 2 (B) = R’ x2k
in the context of SLCM, whereas the parameter space 2(B) of an SLCM varies with A and is
usually of dimension less than J x 2K In other words, unless A = 1,5« (i.e., each coefficient
in B is active), for any other A, the whole parameter space of B is a measure zero subspace of
R’*2% S0 the result from Allman et al. (2009) is not applicable to SLCM, as it is meaningless
to discuss measure zero subspace without a fixed parameter space.

To discuss generic identifiability for SLCM, we need to first define the parameter space by
taking into consideration of their sparsity structures. For a given sparsity structure A, we denote
its corresponding parameter space by

QA(@,B) ={(w,B) :mw € Q(x), B € Qa(B)},

where 2 (B) consists of the coefficient matrices that can only have nonzero entries at positions
where the corresponding elements in A is 1. So it suffices to think QA (B) = RIAl where |A|
denotes the total sum of the entries in A.

Let Ca denote the set of non-identifiable parameters from QA (x, B):

Ca ={(x,B): P(x,B)=P(,B), (z,B)# (&,B),
(m,B) € Qa(r,B), (Z,B)¢c Qi (w, B)}.
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Note that the non-identifiability of a parameter set (&, B) € Ca could be due to another parameter
set (7, B) with a different sparsity structure A.

If the non-identifiable set Ca is of measure zero with respect to Q24 (7, B), we say Qa (7w, B)
is a generically identifiable parameter space.

Definition 2. (Generically identifiable). The parameter space QA (1, B) is generically identifi-
able, if the Lebesgue measure of Ca with respect to Q4 (1, B) is zero.

To distinguish the two definitions of identifiability, in the following text, we refer to the
identifiability defined in Definition 1 as strict identifiability.

3.4. Identifiability Conditions

In this section, we discuss two sets of conditions for generic identifiability and strict identi-
fiability. We start with the following two conditions needed for generic identifiability.

D,
(G1) The true sparsity matrix A takes the form of A = | D, | after row swapping, where
A/
A’isa (J —2K) x 2K binary matrix and Dy, D, € D, with

N B
X I

Dy={De{0, 1} :D=|. . | s
k ok k... 1 *

where * can be either O or 1.
(G2) Forany k =1,2,..., K, there exists a jx > 2K, suchthatd; , =1.

Theorem 1 The parameter space QA (, B) is generically identifiable, if conditions (G1) and
(G2) are satisfied.

Remark 1 Theorem 1 does not require the monotonicity constraints (4), but it remains valid if, in
addition, the monotonicity constraints are imposed on B.

Remark 2 Theorem 1 applies to any CDM that has a real analytic link function, including but not
limited to the probit link, the logit link, the log link, and the identity link.

Remark 3 If the x entries in condition (G1) are all 1’s,i.e., A = 1, the corresponding model
is a general mixture of Bernoulli products. Theorem 1 implies that a mixture of Bernoulli products
is generically identifiable up to label switching, provided that J > 2K + 1, which is consistent
with Corollary 5 in Allman et al. (2009).

If the * entries in condition (G1) are all 0’s except the intercept, the corresponding Q-matrix
is similar to (5), the @-matrix from Xu (2017) and Xu and Shang (2017) for strict identifiability.
In fact, the technique we use to prove generic identifiability (Theorem 1) can be easily extended
to show strict identifiability (Theorem 2) under the monotonicity constraints (4) and the following
two conditions.
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D,
(S1) The true sparsity matrix A takes the form of A = | D, | after row swapping, where
A/
A'isa (J —2K) x 2K binary matrix and D = D> = D with

110...0...0

101...0...0
Ds= . .

100...1 0

(S2) For any two classes of subjects, there exists at least one item in A’ such that they have
different positive response probabilities.

Theorem 2 (Strict identifiability) Any parameter from QA (7, B) is strictly identifiable, if con-
ditions (S1) and (S2) and the monotonicity constraints (4) hold.

Theorem 2 is similar to the strict identifiability results in Xu (2017) and Xu and Shang (2017),
although our proof technique, which is based on tensor product, is different from theirs. The proof
of Theorem 2 is given in “Appendix B.2.”

3.5. Proof of Generic Identifiability

In this section, we describe the core of our proof for Theorem 1, which is based on the results
in Kruskal (1976, 1977) for the uniqueness of tensor decomposition and the tripartition approach
in Allman et al. (2009).

First, we introduce some notation.

Definition 3 The class-response matrix M(A, B) is defined as a matrix of size 25 x 2/, where
the entries are indexed by a row index « and a column index y. The ath row and yth column
element of M (A, B) is the probability that a subject with attribute profile a gives response y,
ie.,

J
P(Y = yla, B) = ]_[9;{1(1 —0j) 7
j=1

Definition 4 For a class-response matrix M, the Kruskal rank of M is the largest number / such
that every I rows of M are independent.

Remark 4 1If M is full row rank, the Kruskal rank of M is its row rank.
Next, we reformulate a result in Allman et al. (2009) as follows.

Theorem 3 (Allman et al. 2009) Consider a general latent class model with r classes and J
features, where J > 3. Suppose all entries of m are positive. If there exists a tripartition of the
setJ ={1,2,---,J} that divides ] into three disjoint, nonempty subsets J1, J», J3 such that the
Kruskal ranks of the three class-response matrices M, M, and M3 satisfy

Lh+5L+13>2r+2, (6)

where I denote the Kruskal rank of M for features in J;, then the parameters of the model are
uniquely determined, up to label switching.
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We can view Theorem 3 from the perspective of tensor decomposition. The distribution of
Y can be represented as a 2011 x 21721 » 2W3l_dimensional three-way tensor T according to the
tripartition Ji, J», and J3 defined in Theorem 3. The (y;, y,, ¥3)th element is the probability of
observing (y;, ¥, ¥3), namely,

T(yl,yz,yg) =PXy =y, Y, =y, Y53 = y3lw, B)
=) TPy, = y1. Y5, = y2, Y5, = y3|B, )

o

= 7P(Y3, = y||B, )P(Yy, = y,|B,)P(Y5, = y3|B, o),
o

where the last equation is due to the fact that given attribute profile o, components of Y are
independent. Therefore, identifiability is equivalent to the uniqueness of the following tensor
decomposition:

T = Z]T“Ml,a QMo @ M3 4
o

= ZMl,a ®M2,oc ®M3,Ot1
4

where M 4 is the acth row of M, and Ml,a = 7y M| . Results from Kruskal (1976, 1977) state
that if the sum of the Kruskal ranks of M 1, M2, M3 is larger than or equal to 2r + 2, then the
tensor decomposition is unique up to simultaneous permutation and rescaling of the rows. Since
M1, M,, M3 are all class-response matrices, of which every row sums to 1, the uniqueness of
tensor decomposition implies model identifiability.

Now, we are ready to give our proof. We divide A into Dy, D, A’, which correspond to
J1, J2, J3, respectively. For this tripartition, both J; and J, contain K items and their sparsity
matrices are from D, respectively; the remaining J — 2K items are included in J3 corresponding
to A’ satisfying condition (G2). Accordingly, we decompose the parameter space into three parts,
QA(B) = Qp, @ Lp, ® Q4. To check inequality (6), we show that under conditions (G1)
and (G2), we have I} = 2K, I, = 2K and Iz > 2 hold almost everywhere in Qp,, Qp,, Q4/,
respectively. Consequently, identifiability holds almost everywhere in Q4 (B).

In Theorem 4, we show that for any D € ID,, the class-response matrix M (D, B) with size
2K % 2K is of rank 2X (full rank) almost everywhere in Qp. Therefore, with condition (G1), we
have I} + 1, = 2-2X hold (almost everywhere in 2p, ®2p, ). To prove Theorem 1, it then suffices
to show that with condition (G2), we have I3 > 2 (almost everywhere in €2,/). In fact, under
condition (G2), the following statement holds almost everywhere in €2 ,/: for any two different
classes, a1, a2, there must exist one jo > 2K, such that 8, o, # 0, «,. The exceptional case is
that when B, x = 0 holds for some &, which is of Lebesgue measure zero with respect to 2.
Note that the ath row of M3 is given by M3 4 = ®Jl':21<+1(9j,a’ 1 —0j4). 50050 # 0jyan
implies M3 o, 7# M3 «,. Therefore, rows of M3 are unique, which implies that the Kruskal rank
of M3 is atleast 2, i.e., I3 > 2, (almost everywhere in £24/).

Theorem 4 Given D € Dy, the corresponding class-response matrix, M (D, B), is of full rank
except some values of B from a measure zero set with respect to Qp, i.e.,

Aap{B € Qp : det[M(D, B)] =0} =0, 7

where Ag,, {A} denotes the Lebesgue measure of set A with respect to Qp.
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The proof of Theorem 4 for general D € D, is given in “Appendix B.1.” Next, we look at
two special cases.

Example I D, =1y k.

Proof D, implies a general mixture of K -dimensional Bernoulli products with 2X classes. There
exists a one-to-one mapping between the probability matrix § = {6, 4} € [0, 11K *2% and the
coefficient matrix B € Qp,(B) = RE 2% Equation (7) holds if the solution setdet[M (D, B)] =
det[M (6)] = O in terms of @ is of measure zero with respect to [0, I]KXZK ,1.e.,

Ao 1o 18 € 10, 11552 . det[M(8)] = 0} = 0.

Note that det[M (#)] is a polynomial function of @ with finite degrees and is not constantly zero
for any 6 € [0, 11¥ XZK, the solution set forms a proper subvariety which must be of dimension
less than K x 2K (Cox et al. 1994; Allman et al. 2009), hence, of Lebesgue measure zero.

O

Example 2. Dy = (1g, Ik, 0).

Proof. D; implies a DINA model with K items, K skills and @ = Ig. For any item, f;
can be reparameterized by the guessing parameter g; = W(f; ) and the slipping parameter
sj=1—=W(Bj0+ Bj ). We can rewrite the class-response matrix as the Kronecker product of
K of 2 x 2 sub-matrices,

K K
_ g l—gj|._ j
M(D‘Y,B)_®[1_sj N ]_®Mf
j=1 j=1

By the property of Kronecker products, we have rank(M (Dy, B)) = ]_[f=1 rank(M7). There-
fore, M(Dy, B) is of full rank unless there exists at least one jo, such that g;, = 1 — s}, or
equivalently B, j, = 0. Therefore, the dimension of the exceptional set is less than the dimension
of Qp,, hence of Lebesgue measure zero. O

Remark 5. In the above two special cases, after re-parameterizing B, we simply compare the
dimension of the solution set and that of the parameter space. This technique, however, cannot be
applied to general settings where the equation det[M (D, B)] = 0 is not easy to solve.

4. MCMC for Model Estimation

4.1. Bayesian Formulation

Consider a SLCM with N subjects, J items and K skills. Let ; denote the attribute profile
of subject i, and Y;; denote the response of subject i to item j. Symbols like B ; and §; are defined

in Sect. 2. Throughout, we use subscript i = 1, ..., N to index subjects, j = 1, ..., J to index
items,and p =1, ..., 2K to index elements of the coefficients with p = 1 corresponding to the
intercept.

We formulate the Bayesian model as follows.
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o The probit model on Yj;:
Y;; | &; ~ Bernoulli (fb <ﬂ]Taai)) ,

where @ (-) is the probit link function.
e The spike-and-slab prior on B:

18 ~ N©,0%)  8j,=1
IBJP Jp o _n’
IBjp=0) 8;,=0
djp lw ~ Bernoulli () ,

w ~ Beta(wg, wy),

where 7 is an indicator function. The intercept is always set active with §;; = 1. In

addition, the prior distribution on B is restricted on 5(B), a subset of R’/*2" where the
monotonicity constraints (4) and strict/generic identifiability conditions are satisfied.
e The prior on latent attributes o;:

o; | T ~ Multinomial(x), m ~ Dirichlet(dy).

Here, (02, wo, wi, do) are user-specified hyper-parameters. A similar sparsity inducing prior
specification was used by Culpepper (2019) for general CDMs.

4.2. The Gibbs Sampling Algorithm

Following the data augmentation approach in Albert and Chib (1993), we introduce an aug-
mented variable Z;; ~ /\/(ﬂ}aai, 1) and Y;; = Z(Z;; > 0). In particular, let Z; denote the
N augmented variables for item j, and Z; can be written as the following Gaussian regression
model,

Zjlain.B; ~ Ny (XB;.1n).

where X = (aq,, .. ., aaN)T isan N x 2X design matrix shared forall j =1, ..., J.

Although vanilla MCMC algorithms are available for Bayesian variable selection with Gaus-
sian regression models, they are not applicable here. We derive a tailored MCMC scheme for our
model, which ensures that each posterior draw of B is from the valid parameter space 5(B).

A key step in our algorithm is to sample the indicator variable 6 ;,. First, we need to decide
whether §;,, is allowed to be changed, i.e., whether the identifiability conditions and the mono-
tonicity constraints still hold when 4, is replaced by 1 — §,,. For strict identifiability or generic
identifiability, the explicit conditions of A are given in Sect. 3. Checking whether a A matrix
satisfies these conditions is straightforward. If these conditions are satisfied either with §;, = 0
or 1, then 4, is allowed to be updated, otherwise leave § j, unchanged in this iteration.

Next, we derive the sampling distribution for §;, if it is allowed to be updated. Since §,
is deterministic if B, is given, we need to derive the conditional distribution of §;, given other
variables except B, namely,

8ip Zj,otl;N,,Bj(p),a),Ué ~ Bernoulli (&;,) , (8)
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where B ; ;) is the coefficient vector B ; without the pth elementand @), is the Bernoulli parameter
we need to determine.

To compute @;,, we need to evaluate the integrated likelihood of Z; with respect to 8, as
the evidence for §;, = 1. Express the density function of Z; as

1 ~ ~
p (Zj "’“W’ ﬂj) = (2”)_% exp |:_§ (Zj - Xplgjp)T (Zj - Xpﬂjp)] ©))

where 2j =Z—XpBj(p)and X(p)isan N x (2K - 1) matrix that excludes the pth column.
If there is no constraint on §; p it is straightforward to compute the integrated likelihood of (9)
with respect to B, ~ N(O, aﬁ). However, with the monotonicity constraints on B, it is not clear
what kind of values B, is allowed to take.

Recall the monotonicity constraints on B: for j = 1,...,J,

 aT
min Blaq = 1,
o
max ﬂjraa< min ﬂjT-aa.

aagt8; oy >3

Next, we show that if 8, is lower bounded, the constraints above are satisfied.

Proposition 1. Suppose the coefficient matrix in iteration t satisfies identifiability conditions and
the monotonicity constraints, B") € B(B), and only p ip (p > 1) is sampled in iteration t + 1. If

ﬂ;;H) > L, then BU*tV e B(B). The lower bound L is given by

L = max | max(—y/ ), maxy.  — '
acl Je 7cLE]L() Je J»qy) ’

where y]’.’a = ﬁ;.')Taa — ,BJQI)

— ,3;;), L = {ot|aa,p =1}, Lo = {alaa,p =0, = 0} and o, p
denotes the pth element of ay.

The proof of Proposition 1 is given in “Appendix E.” Using Proposition 1, we can show that
the Bernoulli parameter in (8) is given by

AT jijp—L I
o (5) o(3)o (") (45

Wjp = "N s P 7 ,
o() o) e (B4 Yo (45 ) 410
. ~2 / =) -1 ~
where X, denotes the pth column of matrix X, o, = (X pX » +aﬁ ) and ij, =

~ -1
X,Z; (X »Xptog 2) . See “Appendix D” for the detailed derivation.
After updating 6, we update 8, based on the full conditional distribution below:

Bin|Zis i B 03810 ~ N (i3 52) [Z (Bip > )] [T (Bip =0)]' ™. (10)

We summarize the sampling algorithm of B and A in Algorithm 1, and the full sampling
algorithm in Algorithm 2.
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Algorithm 1: Sample B and A

for j < 1to J do
for p < 1t0 2K do
for a € {0, l}zK do
‘ Yo elng-aoz —Bjo—Bjp
end
&3 (XpXp+057) L Zi=2- X8y By < X, Z; (X Xp +057) 1
L < max{maxger, —Vq Mitacty Ve Vg, )

if (L <0)and (8}17 =1 =4, satisfies the identifiability conditions) then

1
-1 (52\2 ,a. L 2
-L % (”/p ) 1jp
P == 9] ] < exp| 5 =4~
(“ﬁ) (%) op P\ 2 e
1 .
—1 =2\ 2 i —L a2
-L % (“Jp ) ip
O == | -5 [ L ex] —4= |+1l-o
(Uﬂ> ((7 ) op P “12,

Sample 4, from Bernoulli (@,,).

=)
Bl—

end
if §;, = 1 then
’ gample Bjp from truncated normal distribution,

N(ijp, 6DIBjp > L).

end
if 8jp=0 then
| Bjp=0.
end
end
end
return B, A

4.3. Bayesian Penalization

In this subsection, we show that the spike-and-slab prior, a Bayesian variable selection tech-
nique, is equivalent to a mixture of Lo and L, penalty terms on B.

1— 2
Proposition 2. If 62, w are fixed such that oé > (2—a)2), and the prior distribution of
Tw
is Dirichlet(1), then the Bayesian MAP estimate of (x, B) is equivalent to the optimum of the

objective function with a mixture of Ly and L penalty terms on B, i.e.,

arg max p(x, BIY ) = argmax| — £(z, BIY ) + 1]l Bllo + 221 Bll2
n,B n,B

where Y y is the observed responses matrix of N test subjects, £(x, B|Y y) is the log-likelihood

function, and )1, Ay > 0 are constants.

Proof. The marginal posterior distribution of (&, B) is written as

p(, BIYN) o f(Yy|m, B)p(x) p(Bloj, A)p(Alw)
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Algorithm 2: Full Gibbs sampling algorithm

Input: Y v s, initial values of &, &q.y, B, total chain length 7', burn-in period b, and hyper-parameters aé, wg, wy, dg.
fort < 1to T do
for j < 1to J do
for « € {0, l}K do
| 0ja < ®@hB)).
end
end
fori < 1to N do
Sample «; from the multinomial distribution,

Vij 1—y;;
Pla; = a|m, y;) « 7 Hle 0./;/‘(1 —0j.a) Yij
end
for « € {0, l]K do
Na < YL ey =)
Sample  from Dirichlet, x (N + do)
end
for j < 1to J do
Sample Z; from the truncated normal distribution,

Ny&Bj I TN IZ(Z;; > 0P U Tz < 0 7

end

Sample B and A using Algorithm 1,

Sample ® from Beta (Zj_p(l —38jp) +wp, Zj_p Sjp + wl).
if 7 > b then

BU=D) g AU=D) A

end

end
return B ... BT=0) A ... AT=D)

Taking natural logarithm on both sides and ignoring the constant, we have

log p(B, = |Y ) =t(Y y|7, B) +log p(x) + log p(Bloj, A) + log p(A|w)

1 w
={(x, B|Y y) — || Bllolog 2770;% - PllBllz — [|Bllo log 1
B

/ 2
w 2710/3

={(m, B|Y y) — || Bllolog 1 — ——|Bll2
—w 2‘7,3
={(m, B|Y y) — A1l Bllo — 2211 B2,
/2 2
where 11 = log % and Ay = 2%2 O
B

Remark 6. Although L penalty is the natural choice to account for the model complexity, it
is computationally inefficient. For tractable computation, Xu and Shang (2017) proposed to use
truncated lasso penalty (TLP) as an approximation, while we use the spike-and-slab prior.

5. Monte Carlo Simulation

5.1. Overview

To test the performance of the proposed algorithm, we employ Monte Carlo simulation, using
different attribute sizes (K = 3, 4), different sample sizes (N = 500, 1000, 2000), and different
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correlations among attributes (o = 0, 0.15, 0.25). The unknown true Q-matrices, with J = 20
items, satisfying the strict identifiability conditions, are as follows:

100 1000
010 0100
001 0010
100 0001
010 1000
001 0100
100 0010
010 0001
001 1100
110 0110
=101 2=10011
011 1001
110 1010
101 0101
011 1100
110 0011
101 0111
111 1011
111 1101
111 1110

For the p = 0 cases, the attribute profile & is generated uniformly from the 2X classes. In other
words, different attributes are independent. For the p > 0 cases, dependence among attributes is
introduced using the method of Chiu et al. (2009). Specifically, & = (&1, ..., &x) is generated
from the multivariate normal distribution N (0, ¥) with variance 1 and correlation p such that
Y = (1 — p)I g + plgxk. The attribute profile « = («q, ..., ak) is given by oy = Z(&, > 0),
k=1,...,K.

The positive response probability of each item is set between 0.2 and 0.8 using the method
of Xu and Shang (2017). In particular, we set the probability of attribute profiles with K ; out of
the K ; relevant attributes to be 0.2 4 (0.8 — 0.2) x K}/Kj.

Our model does not explicitly include a Q-matrix, but in order to compare with other methods,
we recover the Q-matrix by aggregating B, the posterior mean of B, in the following way:

1. sum up the values of the relevant coefficients

0 _ 40 30) 30 _
G = Bl 2Bt D B+ 1= 1 T
1 kl<k2

2. standardize

T ~(@)
_ 2=t 9
4k = ()

T
MaXke(l,...K} D=1 4k

3. identify g as 1 if gjx exceeds a fixed threshold. Here, we set the cutoff to 0.5 in all
configurations

4jk = gk > cutoff}
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TABLE 3.
Recovery of Q for K =3

P N Strictly identifiable space Generically identifiable space

Matrix Item TPR FPR Matrix Item TPR FPR

0 500 0.582 0.974 0.988 0.005 0.586 0.975 0.989 0.006
1000 0.936 0.997 0.999 0.001 0.946 0.997 0.999 0.001

2000 1.000 1.000 1.000 0.000 0.998 0.999 1.000 0.000

0.15 500 0.530 0.970 0.988 0.008 0.564 0.971 0.990 0.010
1000 0.934 0.997 0.999 0.001 0.928 0.996 0.999 0.001

2000 0.998 1.000 1.000 0.000 0.996 1.000 1.000 0.000

0.25 500 0.540 0.971 0.989 0.009 0.508 0.966 0.990 0.014
1000 0.960 0.998 0.999 0.001 0.898 0.995 0.999 0.003

2000 0.994 1.000 1.000 0.000 0.990 1.000 1.000 0.000

TABLE 4.

Recovery of B for K =3 and K =4

P N Strictly identifiable space Generically identifiable space

K=3 K =4 K=3 K =4
RMSE aBias RMSE aBias RMSE aBias RMSE aBias
0 1000 0.112 0.065 0.114 0.057 0.115 0.071 0.128 0.086
2000 0.074 0.044 0.091 0.047 0.075 0.046 0.088 0.059
0.15 1000 0.108 0.064 0.108 0.057 0.109 0.069 0.136 0.096
2000 0.075 0.045 0.091 0.049 0.077 0.049 0.112 0.074
0.25 1000 0.106 0.064 0.107 0.058 0.110 0.071 0.145 0.102
2000 0.077 0.047 0.095 0.052 0.080 0.052 0.129 0.080

5.2. Results

We generated 500 independent replications for each configuration. Table 3 summarizes the
results of the recovery of the Q-matrix for K = 3. The metrics we use here are the same as in Xu
and Shang (2017). The column “Matrix” records the matrix-level @-matrix recovery rates of the
500 replications. The column “Item” gives the item-level recovery rates. “TPR” and “FPR” are
two entry-level rates. The column “TPR” is the true positive rate, i.e., the proportion of 1’s in the
true Q-matrix correctly estimated; “FPR” is the false positive rate, i.e., the proportion of 0’s in the
true Q-matrix incorrectly estimated as 1’s. Table 4 summarizes the results of the recovery of B
for K = 3 and K = 4. RMSE is the averaged root-mean-square error, and aBias is the averaged
absolute values of the estimated biases.

For each configuration, we restricted the parameter search to the strictly identifiable space
(under strict identifiability conditions) and the generically identifiable space (under generic identi-
fiability conditions), respectively; we report the results in the columns “Strictly Identifiable Space”
and “Generically Identifiable Space.” The recovery rates of the former are generally higher. Note
that the true parameters live in both spaces, and the strictly identifiable space is much smaller than
the generic one. The posterior draws might be likely to be closer to the true parameters if we were
to restrict the parameter search to a smaller space. However, we observe that such differences of
accuracy become smaller when the sample size becomes larger.
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TABLE 5.
Computation time (minutes) per replication

N =500 N = 1000 N = 2000
K=3 2.94 491 8.48
K =4 3.82 6.23 11.38

It is worth mentioning that our MCMC algorithm is quite efficient. It can provide estimates in
several minutes. Table 5 gives average computation times for a Markov chain with 30,000 burn-in
samples and 10,000 post-burn-in samples in a MacBook Pro (Retina, Early 2015) with 2.9 GHz
Intel Core i5 processor.

6. Real Data Analysis

In this section, we apply our algorithm to two real applications. The first dataset is Tatsuoka’s
Fraction Subtraction dataset (Tatsuoka 1984, 2002). The second dataset is from an experimental
IQ test offered on the Open Psychometrics website. !

6.1. Fraction Subtraction Data

This dataset contains responses to a set of fraction subtraction items collected from N = 536
middle school students. It has been widely analyzed in the literature, e.g., Xu and Shang (2017),
Chen et al. (2018), Chen et al. (2015), de la Torre and Douglas (2004).

Table 6 presents the estimated coefficient matrix by our Gibbs sampling algorithm with K set
at 3. The estimated B is one of the posterior draws in the Markov chain such that its corresponding
A matrix is closest to the average of A among all the posterior draws in the chain. It is not hard
to see that the estimated B follows the generic identifiability conditions and the monotonicity
constraints.

The three attributes can be roughly interpreted as (i) applying subtraction to the integer and the
fraction separately, (ii) determining common denominator, (iii) converting to improper fraction.
The detected skills are consistent with the findings of Chen et al. (2015, 2018).

The estimated coefficients illustrate one benefit of focusing on A versus Q. That s, it provides
insight into how underlying attributes function together. For example, Item 4, 3% - 2%, requires
improper fraction conversion, followed by common denominator determination and subtraction.
In our results, Item 4 has three positive coefficients, 3, 13 and B23. It suggests that mastering
improper fraction conversion, skill (iii), helps to solve the item. Conditioning on the mastery of
skill (iii), knowing skill (i) and (ii) increases the success rate. But for those who do not master
skill (iii), mastery of the other two skills does not compensate. In most previous analyses (e.g.,
Xu and Shang 2017; Chen et al. 2015, 2018), the estimated Q-matrices suggest only the crucial
requirement of skill (iii); they do not indicate that skills (i) and (ii) are also relevant.

Another observation is that the signs of interaction terms imply the logic gates of the involved
skills. For example, the estimated 813’s of Items 5, 6, and 7 are positive, while those of Items 9 and
10 are negative. In fact, the former three items all have two distinct solution paths: (a) convert the
first number to an improper fraction (skill (iii)), and then apply subtraction; or (b) apply subtraction
to the integer and the fraction separately (skill (i)). The negative S13’s of those items indicate that

1 https://openpsychometrics.org/_rawdata/.
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TABLE 6.
Estimated B for fraction subtraction data

Item Content Bo B1 B2 B3 B12 B13 B23 B123

1 -3 -1 2.80 0.29
2 -3 -1 2.18 1.46 1.23

3 2-1  -265 3.72 0.03

4 3l 22 —os1 112 042 0.66

5 1$-%4 —099 156 055 224 ~0.97

6 34-32 —121 206 072 227 ~155

7 45 -1% —144 199 065  1.89 ~1.01

8 43 -37 —0.68 009 042 0.64 0.89

9 3-21  —248 070 178 083 1.81

10 2-4  —224 102 166 130 149 015

11 45 -25 214 085 194 0.71
12 4l —23 -155 2.19 0.66

13 73-% -212 306 0.80 2.11
14 4 -2 —182 065 065 197 ~0.59

15 4-1%4 311 148 124 2.09

16 4123 239 2.90 0.82
17 33-22 —234 018 040 043 115 208  —0.09

students who have mastered either skill (i) or (iii) will have high success probabilities; mastery of
both is not expected to increase success rates, implying an “or” gate. In contrast, Items 9 and 10 can
be solved only by a two-step solution path, i.e., improper fraction conversion (skill(iii)) followed
by separate subtractions (skill(i)). The positive B13’s of these items indicate that mastering the
two skills together would largely increase the success probability, which implies that these two
skills function through an “and” gate.

6.2. Experimental Matrix Reasoning Data

This dataset contains responses of N = 400 subjects to a set of IQ test questions. In each
question, a matrix with one tile missing is given, as well as eight options for that missing tile.
Participants are required to choose the most appropriate tile among the eight options. An example
question is given in Fig. 1. We study the J = 20 questions for which the corresponding correct
rates are larger than 25%. We list the question matrices in Fig. 2. For more details (the options
and the correct answers), please refer to the documentation on Open Psychometrics.

We observe that the patterns of Q1, Q2, Q6, Q8, Q10, Q11, Q14-Q20, and Q23-Q25 are
row-wise; as a result, for each question, for the participants to figure out the correct answer to
each such question, they must learn the pattern from the first two rows and apply it to the last
row. For example, in Q2, the three tiles in each complete row are the same, so the last tile in the
incomplete row must be the same as the ones to its left. In Q6, the tiles from left to right on each
row are sequentially rotated 90 degrees in the clockwise direction, so we recover the missing tile
by 90 degrees clockwise rotation of the tile to its left. On the other hand, for Q1, Q3, Q4, Q5, Q12,



140 PSYCHOMETRIKA

Question: Options:
4 +
®J L] &
* &
] ] &
&
4
L] L] ) .
FIGURE 1.

An example question (Q1): the left is the matrix missing one tile, and the right is the eight possible tiles for participants
to choose, and the red marked one is the correct answer

and Q13, the participants are required to infer the whole picture of the matrix from the provided
tiles and find the one tile that can complete the best overall pattern. For example, in Q3, if the
participants can recognize that the whole picture contains one small diamond hollow square and
one large spade hollow square, then they are able to choose the proper tile, a tile with a diamond
on top left corner and spades on the bottom and the right, to perfectly complete a symmetrical
pattern. Similarly, the matrix of Q4 is shaped like a number “2”, so we can infer that the last tile
should include a horizontal line in the middle. At the same time, for Q6, Q8, Q10, Q11, Q14,
Q15, Q19, Q20, Q23, and Q24, the missing tiles are similar to some tiles on the same matrices but
with little change, including suites changes (Q19, Q20, Q23), rotation (Q6, Q14), and stretching
(Q8). However, for Q1, Q2, Q4, Q5, Q9, Q16, and Q25, the missing tiles are exact the same as
one of their neighboring tiles.

From the above analysis, we summarize the four skills to solve these questions as (i) learning
the row-wise pattern, (ii) learning the pattern from the whole picture, (iii) changing from neighbors,
and (iv) copying from neighbors.

Table 7 presents the estimated coefficients provided by our algorithm with K set at 4; the
four estimated attributes are roughly consistent with the four skills analyzed above.

7. Discussion

This work focuses primarily on the study of model identifiability and parameter estimation of
SLCM, in which most of the challenges are caused by the restrictions introduced from the context
of CDMs. We prove the generic identifiability conditions for SLCM, which relaxes the constraints
in the strict identifiability conditions in Xu (2017) and Xu and Shang (2017). We develop a Gibbs
sampling algorithm for SLCM, which enforces identifiability conditions and the monotonicity
constraints for valid posterior inference. The simulation results demonstrate that our algorithm
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TABLE 7.
Estimated B for IQ test Data: the boldfaced coefficients are the ones consistent with the analysis

Bo Bi B2 B3 Ba Bz Bi1z Bia B2z Poa B3 P12z Biza Biza Brza Bioza

Ql 00 13 1.0 2.0 0.3

Q2 03 07 07 1.6 0.4

Q3 00 1.6 0.7

Q4 —06 1.1

Q5 0.1 1.0 0.5 0.9
Q6 —02 0.8 0.5

Q8 —06 0.9 0.6 0.5

Q 00 03 1.1

Q10 —0.7 0.5 1.3

QIl —02 04 0.6

Q2 —10 1.6 0.2

QI3 —09 0.9

Ql4 —08 0.7 12 09 02

Q15 —08 1.6 0.9

Ql6 —02 15 0.9

Q19 —08 0.4 0.8 0.7

Q20 —1.0 0.4 0.4
Q23 —1.1 12

Q24 —09 1.0 02 02 0.5 0.1

Q25 —03 1.0

efficiently estimates the model in different configurations, with accuracy comparable to that of
alternative models.

Our proof for generic identifiability is based upon the technique of generic identifiability in
Allman et al. (2009) and the sufficient conditions of Kruskal (1976, 1977) for the uniqueness of
three-way tensor decomposition. We note that the conditions we provide are sufficient but may not
be necessary. We note further that Xu (2017) has developed a different technique, working directly
on the class-response matrix. An interesting direction for future research is to draw connections
between the two sets of techniques, perhaps shedding light on the identification of sufficient and
necessary conditions for model identifiability for SLCM.

In this study, the number of attributes, K, is assumed to be known and fixed, a limitation
in practice, because it is usually difficult to specify K beforehand, especially when no prior
information is available. Itis always of interest to study the model with unknown K, and to develop
algorithms to select K in model fitting. One promising method is nonparametric Bayesian, which
is able to infer from the data an adequate model size. Nevertheless, the model identifiability may
continue to present challenges.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

A Connections of SLCM to Popular CDMs

In this section, we discuss the connections between SLCM and popular CDMs. To simplify the
expression, we assume the relevant skills of item j are ki, ..., kg,i.e., gjk;, = -+ = qjig =
1, gjx =0, otherwise.
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Example 3. (DINA model). The deterministic input noisy output “and” gate model (Haertel 1989;
Junker and Sijtsma 2001) is a conjunctive model. It assumes that a student is most capable of
answering question j positively only if he/she masters all of its relevant skills. The item response
function takes the following form,

P(Y; = la, q;) = (1 — s))1@=4) g 1074,

where s; = P(Y; = l|a > g ) is the slipping parameter, which is the probability that a student
capable for item j but response negatively and g; = P(Y; = llet % ¢ ;) 1s the guessing parameter,
which is the probability that a non-master answers positively. It is assumed that g; < 1 —s; in
most applications. The DINA model can be written as

P(Y; = la, B;) =W (Bj.0 + Bjky..kp % - - - Chp)
where only one coefficient, besides the intercept, in B ; is active,
8j0=20jk.kg =1, &jp =0 otherwise.
The guessing parameter g; and slipping parameter s, is given by,
g =Y(Bj0), s;=1=Y(Bj0+ Bji.kp)-

Example 4. (DINO model). The deterministic input noisy output “or” gate model (Templin and
Henson 2006) is a disjunctive model, which assumes that a student is capable to answer question
J positively if at least one of the relevant skills is mastered. The item response function is

T, . T, _
P(Yj = lla, q;) = (1 —s))'@ 970 g1 d;=0

where s; and g; are defined the same as in DINA, and g; < 1 —s; is assumed. The DINO model
can be reparameterized as

R R
P(Y; =1le, B) =V [ Bjo+ D Bikar + ) D Bikkakar ++ Bk ke | |
r=1 kyr >k r=1
where the coefficients containing only the relevant skills are active,
8].,0:8].,1{1 ="'=5j,kR=8j,k1k2:"':5j,kR—1kR="':5j,k1.‘.kR:1’ 3j,p=O Otherwise

The coefficients with odd orders are all equal and positive. The coefficients with even orders are
the additive inverse of those with odd orders.

Bjki = Bjko =+ = Bjkx = Bjkikosks =+ = Bjkgskg_1hkg ="
=—Bjkiky =+ = —Bjkgikg = —Bjkikaksks =+ = —Bjkg_skg_skg_1kg = """
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The guessing parameter g ; is in the same form of the one in DINA model and slipping parameter s
is given by 1 — \Il(azﬁj), with o satisfying othj > 0, which is equivalentto 1 — W (8 0+ Bj k),
r=1,...,R,

gi=Y(Bj0), sj=1-VBjo+Bjr)r=1...,R.

Example 5. (G-DINA model). The DINA model is generalized to the G-DINA model by de la
Torre (2011), which takes the form of

K K
P(Y; =1l q;) = Bjo+ D Bixajkex + Y > Biwwdikeuqjvor + -+ Biin.x | | ajecx-
k=1 k>k' k=1
By using the identity link in Eq. (1), it can be written as
R R
P(Y; =1le. B;) = Bjo+ Y Bikk + D > Bikki @i, + -+ Bikyk | | %
r=1 k- >kl r=I1
where the coefficients containing only the relevant skills are active,
8j0=0jk = =08jkp =0jkko ="""=0jkpthkx = " =0jk.kg =1, Jjp =0 otherwise.
Example 6. (NC-RUM model). Under the reduced noncompensatory reparameterized unified
model (DiBello et al. 1995; Rupp et al., 2010), attributes have a noncompensatory relationship

with observed response. It assumes missing any relevant skill would inflict a penalty on the positive
response probability.

K
P(Y] = ll(x, qj) — bj r;-]f:(l_ak)
k=1
b; is the positive response probability for students who possess all relevant skills and 7z, 0 <

rjk < 1, is the penalty for not mastering kth attribute. As pointed by Xu (2017), by using the
exponential link function, NC-RUM can be equivalently written as

R
P(Yj = lla, B;) = exp (:3/',0 + Zﬂj,k,ak,) ,

r=1
where the main effects of relevant attributes are active,
8jo0=208jk =-0jkr =1, §;, =0 otherwise.

The parameters are given by

1, otherwise

R .
exp(—=Bjx ), ifkefk,....k
bj = exp (ﬂj,o + Zﬁj,h)  Tik = { P(=F; { R}
r=I1



YINYIN CHEN ET AL. 145

Example 7. (C-RUM model). Compensatory-RUM (Hagenaars 1993; Maris 1999) is given by,

exp (ﬁj,o + X ﬁj,kqf'kak)

exp (,BjO + Zf=1 ﬂj,kqj'kak) +1

P(Y; = lla, q,) =
Equivalently,

R
P(Y; = lla, ;) = logit™' (ﬂ,-,o - Zﬁj,k,ak,>

r=1
where W (-) is the inverse of the logit function and the main effects of relevant attributes are active,

5./,0 = 5./,](1 =... (Sj,kR =1, Bj,p = (0 otherwise.

B Proof of Theorems
In this section, we provide the proof of Theorems 4 and 2.

B.1 Proof of Theorem 4

We first introduce Lemma 5 (Mityagin 2015; Dang 2015) which shows that the solution set of
a real analytic function is of Lebesgue measure zero if the function is not constantly 0. Then
in Proposition 3, we show that Gp(B) := det[M (D, B)] is a real analytic function, and in
Proposition 4, we show that G p(B) is not constantly zero for any B € Qp(B) if D € D, so
that Lemma 5 applies and Theorem 4 is proved.

Lemma 5. (Mityagin 2015; Dang 2015) If f : R" — R is a real analytic function which is not
identically zero, then the set {x : f(x) = 0} has Lebesgue measure zero.

Proposition 3. Gp(B) = det[M (D, B)] : Qp — R is a real analytic function of B.

Proof. Gp(B) is a composition function:

Gp(B) = det[M] = h(Bay. ... 0a ) =h (lI/(BDaaO), o \y(BDaaszl))

where 71(0) : [0, 17¥*2" — R is a polynomial function and W(-) is a CDF.

W (.) is areal analytic function because a CDF is an integral of a real analytic function, and /() is
also a real analytic function since it is a polynomial. Therefore, the composition function G p(B)
is a real analytic function due to the fact that the composition of real analytic functions is a real
analytic function. O

Proposition 4. If D € Dy, there exists some B € Qp(B), s.t., Gp(B) # 0.

Proof. Let B! = (1x, 1k, 0) € Qp(B),¥D € D,. As shown in Example 2, M(D, B') is of
full rank, so that Gp(B') # 0. o

Remark 7. Gp(B) # 0 is not a trivial conclusion holds for all kinds of D. D € D is a sufficient
condition for Gp(B) # 0. If D ¢ D, it is possible G p(B) = 0. See the following example.
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Example 8. Assume K = 3 and the main effect of the first skill is inactive for all items, i.e.,
8j1 =0, VIl < j < K, then D3yg takes the form

For any B € Qp(B) and any response y € {0, 1}3,
My—0,0,0,y(D, B) = My—(1,0,0),y(D, B).

Sothetworowsof M (D, B) areidentical,and M (D, B) isnotfullrowrank,i.e.,det[M (D, B)] =
0.

By Lemma 5 and Propositions 3 and 4, Theorem 4 is proved.

B.2 Proof of Theorem 2

Proof. As shown in Example 2, for any B € Qp_ (B), the corresponding class-response matrix is
of full rank, rank(M (Dy, B)) = 2K holds if and only if, for each item, the success probabilities
for students with the relevant skill and those without the relevant skill are different. In fact, if
the two probabilities are the same, the monotonicity constraints would be violated. Then, using
notation from Sect. 3.5, we conclude that under condition (S1) and the monotonicity constraints,
rank(My) = rank(M,) = 2K.
For M3, as each element is nonnegative and each row sums to 1. Under condition (S2), there must
exist one item j, such that 0 o, # 0, «,, s0 rank(M3z) > 2.

O

C Initialization from the Identifiable Space

Initialization of the sparsity matrix A(Joi NE
1. activate the intercepts.

Fix the entries in the first column of A© (i.e., A,(?)) as 1. Denote the remaining J x

. ~ (0
(2% — 1) sub-matrix as AY
2. construct Dio) and D;O).

. ~(0
Fix the first 2K rows of A( ) to be

Ix 0
Ix0)"
(©)

~ ’
3. construct A .

(a) Randomly select K indexes, ji, ..., jk, from the set {2K + 1,..., J} with

~ (0
replacement and set A;k?k =1
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’

(b) Sample the remaining entries in A © by

5;?}|w<°> ~ Bernoulli(w®), j > 2K, (j, p) ¢ {Gir. OIE,

where w® ~ Beta(wg, w;) and wy, wj are the parameters of the prior distribution
and are treated as fixed.

(c) Check the row sum. If any row of A'© sums to 0, then we randomly pick up an

entry on this row and set it at 1.

4. shuffle the rows.
Draw a J x J permutation matrix P = (e}, ..., e;,) where (ji, ..., js) is a permu-

tation of (1, ..., J), and let A

~ (0 ~ (0
()<—PA().

The above initialization is designed for strict identifiability conditions. To generate a A under the
generic identifiability conditions, we just need to enlarge the range of entries sampling from the
prior distribution in step 3b. Specifically, we change step 3b to

7 '(0)

Sample the remaining entries in A~ by

81w ~ Bernoulli(w®),  (j, p) & (U k). (k. k). (K + k. )},

Initialization of the coefficients matrix 8 (Jol K = Bi.....BNT:

Wjp =

ﬁ](g) = 0,if 35.(1’) =0,

0 0 0
B8 =10 N (0, DI (BS) > 0).

D Derivation of @;,

8jp |Zj. 0. Bj(py. @. 05 ~ Bernoulli (&;p)

o[ p(Z;le B;)p (ﬁm ‘05) dBjp

o[ p(Z;

@.8;) p (Bip |07 ) dBip + (1 = @) p (Z; |, B ip = 0)
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The numerator is

w/LOOP(ZJ j)P(ﬁjp’Ué)dﬂjp

o0 N 1 ~ ;o
zwa (27)” 2 exp [—E(Zj —ApBjp) (Z; —Apﬂjp)}

oL o 2wyt by dp;

o) el o

N —L\! w
op op

1~ A 15 ijp— L
:(Zn)_%exp ——Z/-Zj o — ﬁexp k) ,u]p~—
2/ op op 2 03 &y

E Proof of Lower Bound L

In this section, we derive the lower bound L of 8, (Proposition 1).
Suppose at time 7, we have a B®) ¢ B(B) satisfying the monotonocity constraints (4), and we
only sample B, at time ¢ + 1 and leave any other coefficient the same as the one at time ¢, i.e.,

(t+1) _ H@)
ﬂjs —,3]'5’ Vs # p.
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In what follows, we introduce some notations.

We denote 8, and 8, as B, and §,, respectively. That is, we omit the subscript of item, j, as the
lower bound of coefficient 8, does not depend on any other coefficient of other items.

Letyy, =8 Taa —Bo = WU (0y) — Bo be the sum of the linear component excluding the intercept

Ya —Bp @€ Lf .

for class «. Further, let yy, — p = ? denote the sum of the linear component
Vo oc LO,

excluding the intercept and the pth coefficients for class «, where Lf = {alay,p = 1} and

]Lg = {alay,p =0, a > ap}.
We rewrite the monotonicity constraints (4) as follows,

min 0y > O,

oo ( )
*

max 0y < min 6, = max

acSy aES| aeS)

where Sg = {a|a % q, a > oo = 0} is the set the classes that not mastering all the relevant
skills, and S; = {a|a > ¢} is the set of classes mastering all the relevant skills.

Note that W(-) is a strictly increasing function, we have the following equivalent form of the
monotonicity constraints (x):

min y, > Yoy = 0, (11)

oo
= max Yy = min > max V. 12
Yq mas Yo et Yo A Yo (12)

In SLCM, ¢ is uniquely determined by the structure vector §. Mathematically, ¢ =
arg ming.q,, ; le¢|, where |- | is the cardinality. By such definition, y; = maxgcs, Yo = minges, Y
always holds, therefore, to verify (12), we only need to check,

> Mmax V. 13
Yq aeSOVa (13)

In the following two remarks, we list some observations that are useful in the proof.

Remark 8. 1. LgULP =SoUS1 = {a]e > e}
2. a0,=1=S L So2L{.

Remark 9. 1. Ve, yog),p = )/‘yt;,) = Yo,—p

2. Ya € Lg, yogtﬂ) = yél)
1
3ova Ll oy 0 g0 4 gt
1 1
4 Vaj,ar el pd) >yl = pUth 5 puth
5.

1 1
Ve e L, ydl > y8 =it s p8

In the following lemma, we give the sufficient and necessary condition for (11).

Lemma 6. (Lower bound 1)

in (D S L G+D
min 7, 2 v
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holds if and only if

Byt = max (—ya,-p). (14)
aclly
Proof. Since B € B(B), we have minaeLp y,yﬂ) = minaeLg y(y) > 0. So we only need to
consider & € L7, such that
min y D = min (5, + B4TD) > 0,
ael? ael?
which holds if and only if (14) holds. O
We show the relationship between y((:])) and y <1> in the following lemma.
Lemma 7.
t+1) 1
Yy =Yg, —p + ﬂl(ﬁt+ ).
1 1 1
Proof. ° Ifq(t+1) — q(t) y(f[-:l)) y(f:- ) _ = 7,0._p + ,B(t+ )

o If gU+D » g® itimplies 8() = 0and S(IH) 1. Therefore, g, g+ ¢ SO) so that,

@  _ @O _
Ygurn = Yoo = Vg0, —p-

Then,
+
y(i’“)) Yaorn,—p + B = vgo _, + BTV,

— l ﬂ(l-i-l) — 5(l+1)

o If g+t < ¢® it means 6(” =0,and @ o+1) + ep = ayw. Then,

(t+1) _ — — (t+1)
Vgt =Yg —p = Vg0 —p = Vg0 p + B, 7

Next, we give the sufficient and necessary condition for (13) in the following lemma.

Lemma 8. (Lower bound 2) Suppose 8( +h =1,
(t+1) (1+1)
Vq(x+1) > Hglgil) Ya s

if and only if,

(t+1) —
P> ey Yamp T Vg, —p- (15
0
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Proof. Since SSH) = 1, by Remark 2, we have Sg+1) ) IL(I)’.
It is easy to see that if (12) holds at time 7 + 1, then (15) holds, because

+1
Vq(irﬂ)) = }/‘I('),—p +ﬂ1(7t+1) > max y(H-l) > max y(H-l) = max Y, —p-

S(’“) aell aell

Next we show that if (15) holds, then (13) holds at time ¢ + 1.
Because (12) holds at time ¢, we have,

y((,)) > max y" > max p{. (16)

7 aes? ael? sy

Next, we check (13) in two different scenarios.

o If g = gt+D, S(()’) = SgH), then by (16) and Remark 9.4, we obtain

t+1) _ (l+1) t+1
Vg = Vg0 max ( ).
aeL”mS’“

o If ¢ < gU*+D, then since ¢“*D, e S, we have Vq(fz)m > max 9. By

(
acl? ﬂSg” Vo
Remark 9.4, we have

t+1 1
y((,+,>)> max yoEH').

1 ael? sy
On the other hand, since 87V = §® t ¢,
{ot|oe € S(()H'l), o ¢ S(()’)} ={aja = 8V, a # 1TV} C LI = (L),
leading to,

t+1 t
LY s¢t) =L )sy-

O

Proof of Proposition 1. Suppose S;fﬂ)

hold at time ¢ + 1, if

= 1, by Lemmas 6 and 8, the monotonicity constraints

1
,B(H' ) > max max( Ya. _,,) mMax Yo,—p = Vg0, _p
oce]L1 ]L

:=max(Ly, Ly) =

In the following two lemmas, we discuss the flipping rule of 6.

Lemma 9. (Flipping rule 1) If 8% = 0,85""

t+1land L =0.

= 0, the monotonicity constraints hold at time
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Proof. The monotonicity constraints hold at time ¢ + 1, because BY) = B+ and B® satisfy
the constraints.

o L = —minaeu y,y) < 0 because (11) holds at ¢.

o _

o = 0 because
q

o [, = max . yogt) -

t . t
Yy = min vy < max " < maxy," =y,

OLES?) l!E]Lg

since LY NS\ is not empty.
Therefore, L = max(L, Ly) = 0. O

Lemma 10. (Flipping rule 2) Suppose 8\ = 1,84 +"

attimet + 1 if L <0.

= 0. The monotonicity constraints hold

Proof. 1f ¢ = g+ the statement can be proved easily by Lemma 6 and Lemma 8. We check
(11) and (13) in for the case that g > g1,

e Since L = —minaeLf y(,EH'l) < 0 and minaeLg y(,EIH) = minaeLg y,y) > 0, (11) holds
att + 1.
e By Remark 9.4, for any a € L} SgH),
t+1 t+1 1
Vg = Voo > Vet (17)
Together with Ly = maxg y‘yﬂ) - yq(ii})) < 0, (17) holds for any a €

Ly Uy Nsy ™.
Further, as shown in the proof of Lemma 8, we have {«|a € SgH), o ¢ Sg) } C L2, such
that S{ TV c L U O sEY).
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