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AN EXPLORATORY DIAGNOSTIC MODEL FOR ORDINAL RESPONSES WITH
BINARY ATTRIBUTES: IDENTIFIABILITY AND ESTIMATION

Steven Andrew Culpepper
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Diagnostic models (DMs) provide researchers and practitioners with tools to classify respondents into
substantively relevant classes. DMs are widely applied to binary response data; however, binary response
models are not applicable to the wealth of ordinal data collected by educational, psychological, and behav-
ioral researchers. Prior research developed confirmatory ordinal DMs that require expert knowledge to
specify the underlying structure. This paper introduces an exploratory DM for ordinal data. In particular,
we present an exploratory ordinal DM, which uses a cumulative probit link along with Bayesian variable
selection techniques to uncover the latent structure. Furthermore, we discuss new identifiability condi-
tions for structured multinomial mixture models with binary attributes. We provide evidence of accurate
parameter recovery in a Monte Carlo simulation study across moderate to large sample sizes. We apply
the model to twelve items from the public-use, Early Childhood Longitudinal Study, Kindergarten Class
of 1998–1999 approaches to learning and self-description questionnaire and report evidence to support a
three-attribute solution with eight classes to describe the latent structure underlying the teacher and parent
ratings. In short, the developed methodology contributes to the development of ordinal DMs and broadens
their applicability to address theoretical and substantive issues more generally across the social sciences.
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1. Introduction

Latent structure models (e.g., see von Davier, 2009), which are also referred to as restricted
latent class models or diagnostic models (DMs) in measurement and psychometric research,
are frequently used to classify respondents into substantively relevant classes. DMs assume that
observed binary (e.g., correct/incorrect on educational test items) or ordinal (e.g., rating scales or
partial credit) responses relate to a collection of discrete latent variables or attributes. DMs are
popular methods for providing a fine-grained classification in terms of substantively important
latent attributes, such as educational skills or psychological states.

Prior research developed both confirmatory (e.g., see de la Torre, 2011; Henson, Templin,
& Willse, 2009; von Davier, 2008) and exploratory (e.g., see Y. Chen, Liu, Xu, & Ying, 2015;
Y. Chen, Culpepper, Chen, & Douglas, 2018; Culpepper, 2019; Culpepper & Chen, 2018; Xu,
2017; Xu & Shang, 2018) DMs for binary data. Binary DMs are used in educational research
to classify students into skill-based attribute profiles using tests of fraction-subtraction (de la
Torre & Douglas, 2004,2008; DeCarlo, 2011), spatial rotation (Culpepper, 2015), and geometric
sequences (Shute, Hansen, &Almond, 2008). Recent applications also used binary DMs to model
learning (Y. Chen, Culpepper, Wang, & Douglas, 2018; Kaya & Leite, 2017; Li, Cohen, Bottge,
& Templin, 2016; Madison & Bradshaw, 2018; Wang, Yang, Culpepper, & Douglas, 2017) and
detect skill acquisition (Ye, Fellouris, Culpepper, & Douglas, 2016). Additional research applied
binary DMs to items measuring pathological gambling (Templin & Henson, 2006) and social
anxiety (Y. Chen et al., 2015).
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DMs are widely applied to binary response data; however, binary response models are not
applicable to the wealth of ordinal data collected by educational, psychological, and behavioral
researchers. For instance, large-scale testing programs, such as the National Assessment of Edu-
cational Progress, include ordinal response variables to evaluate students’ performance on essays
or constructed response tasks. In these cases, students may receive partial credit in the form of an
ordinal score rather than a binary correct or incorrect. Furthermore, there is a longstanding tradition
in the social sciences for researchers to measure constructs with ordinal responses. For instance,
large-scale assessment background questionnaires include items with rating scales to measure
individual differences in opportunity to learn, educational aspirations, and academic experiences.
Each of the aforementioned constructs provides a context for students’ dispositions and learning
environment, and fine-grained classifications with a general DM could provide educators and
practitioners with information to identify students in need of interventions or to describe patterns
or profiles of human development as measured by rating scales. Clearly, research on ordinal DMs
provides opportunities to advance diagnostic research in education and, more generally, in the
social sciences.

In this study, we offer a general, exploratory DM for ordinal response data to broaden the
applicability of thesemethods in the social sciences. Specifically, prior research developed ordinal
DMs (J. Chen & de la Torre, 2013,2018; Haberman, von Davier, & Lee, 2008; Karelitz, 2004; R.
Liu & Jiang, 2018; Ma& de la Torre, 2016,2019, Templin, 2004; von Davier, 2008) and this paper
offers three contributions to the literature. First, we discuss identifiability of structured mixture
models for multivariate multinomial response data. Fang, Liu, and Ying (2019) established suffi-
cient conditions for the identifiability of a structured multinomial mixture model for polytomous
attributes.We consider the case for binary attributes and show less stringent restrictions are needed
to establish sufficient conditions for identifiability than for the polytomous attribute case. Second,
we propose a fully exploratory ordinal diagnostic model for uncovering the latent structure and
inferring the underlying latent processes. The introduction of an exploratory diagnostic model for
ordinal data is an important contribution given current ordinal DMs are confirmatory models that
are dependent upon correct specification of the latent structure with expert knowledge or substan-
tive theory. As demonstrated in research on binary DMs (e.g., see Henson & Templin, 2007; Rupp
& Templin, 2008), misspecification likely leads to inaccurate classifications and biased parameter
estimates. Our model extends the confirmatory general ordinal model of J. Chen and de la Torre
(2018) to the exploratory setting. Specifically, our model uses a cumulative probit link function
and a fully saturated model with main effects and higher-order interactions involving the latent
binary attributes. In order to uncover the underlying structure, we adapt Bayesian model selection
tools as described for binary DMs (Culpepper, 2019) to infer the relationship between attributes
and observed ordinal responses. Third, we present a Bayesian formulation that provides a con-
venient approach for imposing monotonicity restrictions on the item response functions (IRFs),
so that higher attribute levels are associated with non-decreasing observed response probabilities.
It is important to note that enforcing monotonicity conditions is not a requirement for identify-
ing model parameters. Instead, monotonicity of latent class response probabilities may improve
interpretation of the exploratory solution.

The remainder of this paper includes four sections. The first section introduces the unstruc-
tured mixture model for multivariate multinomial response data and presents new results concern-
ing the identifiability of model parameters. The second section introduces a structured mixture
model for ordinal data and presents a Bayesian formulation. Moreover, we review issues related
to monotonicity conditions and the coding of attributes. The third section reports results from a
Monte Carlo simulation study regarding the recovery of model parameters. We provide evidence
of accurate parameter recovery for sample sizes as small as 500 observations. The fourth section
presents an application of the exploratory ordinal DM to twelve items of the public-use, Early
Childhood Longitudinal Study, Kindergarten (ECLS-K) Class of 1998–1999 approaches to learn-
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ing and self-description (ALS) questionnaire with n = 13,354 complete observations.We discuss
the implications of the study, offer future research directions, and provide concluding remarks
in the final section. We direct readers to the “Appendix” for a description of the Gibbs sampling
algorithm and full conditional distributions.

2. Mixture Models for Multinomial Response Data

The purpose of this section is to discuss a mixture model for multinomial response data. We
first outline a model and then discuss the identifiability of model parameters.

2.1. Mixture of Multinomial Response Data

Let Y j for j = 1, . . . , J be a random ordinal response with a realization y j ∈{
0, . . . , Mj − 1

}
where Mj ≥ 2 denotes the number of response options. The random J -vector

is denoted by Y = (Y1, . . . ,YJ )
�, and the observed vector of responses is y = (y1, . . . , yJ )�.

The support for Y is defined as y ∈ ×J
j=1

{
0, . . . , Mj − 1

}
, which implies there are

∏J
j=1 Mj

observed response patterns.
The purpose of exploratory ordinal DMs is to uncover a latent structure involving fewer

attribute profile patterns to describe the
∏J

j=1 Mj observed response patterns. We introduce a

collection of K binary attributes to provide a more parsimonious representation of the
∏J

j=1 Mj

observed patterns using 2K latent profile patterns. We refer to the K -vector of latent binary
attributes as α = (α1, . . . , αK ) ∈ {0, 1}K .

Unstructured latent class models are important models in psychometric research (e.g., see
Fang et al. 2019; Green, 1951; Hojtink &Molenaar, 1997; McDonald, 1962; Proctor, 1970; Rost,
1988). For multinomial data, the unstructured model includes a Mj -vector of category response
probabilities for each class and item. To simplify notation, we use the integer representation of
the ordinal attributes to refer to the latent classes. That is, let v = (2K−1, 2K−2, . . . , 1)� and note
that α�v is a bijection that maps the attribute profiles to integers c ∈ {

0, . . . , 2K − 1
}
. Let the

probability of observing a response ofm on item j for members with the latent attribute profile of
class c is θ jcm = P(Y j = m|α�v = c) and define the vector of response probabilities for class c
as θ jc = (θ jc0, . . . , θ jc,Mj−1)

�. The model for Y j given membership in class c is a multinomial
probability mass function defined as,

p(y j |α�v = c, θ jc) =
Mj−1∑

m=0

θ jcm I(y j = m) (1)

where I(·) is the indicator function. Let π be a 2K vector of structural latent class probabilities
where element c is defined as P(α�v = c) = πc. Furthermore, let � ∈ IRM1×···×MJ×2K denote
the response probabilities for all items and latent classes.We assume the responses in the J -vector
Y are independent given α, which implies the distribution of Y given the item and structural
parameters is,

p( y|�,π) =
2K−1∑

c=0

πc

J∏

j=1

p(y j |α�v = c, θ jc). (2)

LetY i = (Yi1, . . . ,Yi J )� be a random J -vector of ordinal responses for individual i and define the
realized values as yi = (yi1, . . . , yi J )�. Let the random n× J matrix of mixed ordinal responses
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be Y = (Y1, . . . ,Yn)
�. The likelihood of observing a sample of i = 1, . . . , n independent

observations is,

p( y1, . . . , yn|�,π) =
n∏

i=1

p( yi |�,π). (3)

An equivalent approach for describing the model in Eq. (3) is to instead consider the implied
marginal probabilities for all response patterns (e.g., see Allman, Matias, & Rhodes, 2009; J. Liu,
Xu, & Ying, 2013). The distribution of Y for class c and all response patterns is defined by the(∏J

j=1 Mj

)
-vector,

Pc =
J⊗

j=1

θ jc. (4)

which is a Kronecker product of all item response probabilities for class c. Let T =
(P0, . . . ,P2K−1) be a

(∏J
j=1 Mj

)
× 2K matrix denoting the model probabilities for all item

response patterns and latent classes. The implied marginal probability for the model is a finite
mixture of the 2K classes,

P = Tπ =
2K−1∑

c=0

πcPc. (5)

2.2. Identifiability Conditions for Binary Attributes and Multinomial Responses

This subsection discusses conditions for identifying mixtures of multinomial response data.
We first introduce a few definitions, examples and prior results and then present an identifiability
Theorem for structured multinomial mixture models with binary attributes.

Definition 1. (Identifiability) The model parameters (�,π) ∈ � are identifiable if p( y1, . . . ,
yn|�,π) = p( y1, . . . , yn|�′,π ′) implies � = �′ and π = π ′.

Remark 1. Definition 1 is the classic notion of likelihood identifiability where each unique com-
bination of parameter values corresponds to a different value of the likelihood function.

Definition 2. (Kruskal Rank) For a matrix T, the Kruskal rank of T, i.e., rankK (T), is the largest
number I such that every set of I columns of T are independent.

Remark 2. Note that rankK (T) ≤ rank(T). If T is of full column rank then rankK (T) = rank(T)

(Allman et al., 2009).

Definition 3. (Three-way array) Let T = [T1,T2,T3] be a three-way array where each of the
matrices has R columns and the (i, j, k) element is defined as ti jk = ∑R

r=1 t1ir t2 jr t3kr with T
defined as

T = [T1,T2,T3] =
R∑

r=1

t1r ⊗ t2r ⊗ t3r (6)

where t ir is column r of Ti for i = 1, 2, 3.

Example 1. (Latent class models as a three-way array) We can write the model in Eq. (5) as a
three-way array by letting Ti for i = 1, 2, 3 be matrices for three sets of non-overlapping items.
Specifically, let Ji for i = 1, 2, 3 denote three mutually exclusive and exhaustive sets of items.
The distribution of responses for j ∈ Ji for class c is

Pic =
⊗

j∈Ji
θ jc (7)
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where Pic is a vector of length
∏

j∈Ji M j . Consequently, Ti = (Pi0, . . . ,Pi,2K−1) and R = 2K

given each Ti is a (
∏

j∈Ji M j ) × 2K matrix of latent class response pattern probabilities for the
items in Ji . The three-way array representation of Eq. (5) is,

T = [T1,T2,T3] =
2K−1∑

c=0

πcP1c ⊗ P2c ⊗ P3c. (8)

Theorem 1. (Allman et al., 2009). Consider the three-way array representation of a multinomial
mixture model with i = 1, . . . , r classes. Suppose all entries of π are positive. Then, if

rankK (T1) + rankK (T2) + rankK (T3) ≥ 2r + 2

the parameters of the model are uniquely identifiable, up to label swapping.

Remark 3. Note Allman et al.’s (2009) result is based upon Kruskal’s (1976,1977) theorem con-
cerning the uniqueness of three-way arrays. Similar to Y. Chen, Culpepper, and Liang (2018) and
Fang et al. (2019), we use Kruskal’s (1976,1977) result to establish an identifiability condition for
multinomial response data with binary attributes.

Definition 4. (TheQ matrix) LetQ = (q1, . . . , q J )
� be a J × K binary matrix where q jk is the

( j, k) element of Q and q jk = 1 if attribute k is required for item j and q jk = 0 otherwise.

Remark 4. The Q matrix imposes structure on the response probabilities �. For instance, items
with q j = ek are referred to as simple structure items that load only on attribute k. Simple structure
items include only twodistinct vectors of responses probabilities; θ j1 = (θ j10, . . . , θ j1,Mj−1)

� for
αk = 1 and θ j0 = (θ j00, . . . , θ j0,Mj−1)

� for αk = 0. In contrast, items with complex structure
that load onto two or more attributes include more than two vectors of response probabilities.
Readers are directed to J. Chen and de la Torre (2018) for a discussion of the relation between Q
and various reduced ordinal DMs.

Theorem 2. � andπ are identifiable, up to label swapping, ifπ is positive, each item has distinct
item response functions for at least two latent classes, and conditions (C1) and (C2) are satisfied:

(C1) The rows of Q can be permuted to the form, Q� = [IK , IK , (Q ′)�]� where IK is a
K -dimensional identity matrix and Q ′ is a (J − 2K ) × K matrix.

(C2) For any two latent classes c and c′, there exists at least one item inQ ′, inwhich θ jc �= θ jc′ .

Proof. We show the bound in Theorem 1 is achieved. Let Q be defined as in (C1) and let J1 =
{1, . . . , K }, J2 = {K + 1, . . . , 2K }, and J3 = {2K + 1, . . . , J }. Fang et al. (2019) showed for
the polytomous attribute case that the simple structure assumption and distinct latent class IRFs
impliesT1 andT2 are full column rank, which for the binary attribute case indicates rankK (T1) =
rankK (T2) = 2K . That is, simple structure for items in T1 and T2 implies that

T1 =
K⊗

j=1

p j , T2 =
2K⊗

j=K+1

p j (9)
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where p j = (θ j0, θ j1) is a Mj × 2 matrix of response probabilities. The assumption of distinct
probabilities (i.e., θ j0 �= θ j1) implies rank(p j ) = 2 for all j ∈ {1, . . . , 2K } and properties of
Kronecker products imply rank(T1) = ∏K

j=1 rank(p j ) = 2K and, similarly, rank(T2) = 2K .
We next establish that the rankK (T3) ≥ 2 for the binary attribute case. In other words, it

must be shown that every pair of the 2K columns of T3 are independent. A proof by contradiction
proceeds by assuming columns c and c′ are dependent. That is, columns c and c′ of T3 are P3c
and P3c′ , respectively, and are dependent if there exists nonzero uc and uc′ such that ucP3c +
uc′P3c′ = 0 for all response patterns for items in J3. However, if (C2) is satisfied there exists
an item j ∈ {2K + 1, . . . , J } such that θ jc �= θ jc′ . There is at least one response pattern
y3( j) ∈ × j ′∈J3\ j {0, . . . , Mj ′ − 1} with a nonzero probability for items in J3 that excludes item
j . Let the value of the distribution function for y3( j) be p3c( j) for class c and p3c′( j) for class
c′. The Mj elements of P3c and P3c′ corresponding to the distribution of y3( j) and values of
y j = 0, . . . , Mj − 1 equals p3c( j)θ jc and p3c′( j)θ jc′ , respectively. If P3c and P3c′ are dependent
then uc p3c( j)θ jc + uc′ p3c′( j)θ jc′ = 0 for nonzero uc and uc′ . However, θ jc and θ jc′ are distinct
(i.e., independent) and the equality is only achieved if uc = uc′ = 0. c and c′ were chosen
arbitrarily, so rankK (T3) ≥ 2. 	

Remark 5. Fang et al. (2019) showed thatmultinomialmixturemodels with polytomous attributes
are identified ifQ include three IK matrices for three non-overlapping sets of items. The require-
ment of three IK matrices inQ is restrictive and Fang et al. (2019) note their sufficient conditions
could be relaxed if “additional constraints on parameters are assumed” (p. 25). Theorem2 shows
that the sufficient condition can be reduced to two IK matrices if attributes are binary and additional
items exist in Q′ that distinguish all of the classes.

3. A General Diagnostic Model (GDM) for Ordinal Data

We next discuss two issues related to the GDM for ordinal data. First, we present a structured
mixture modeling framework, which uses a cumulative link function for ordinal responses, and
discusses monotonicity conditions. Second, we present a fully Bayesian formulation and discuss
posterior inference.

3.1. Structured Mixture Model with a Cumulative Link Function

The model in Eq. (3) may include many parameters for each item for even modest values
of K . Consequently, some degree of regularization of the model parameters may improve esti-
mation. There is not a clear approach for regularizing the latent class response probabilities as
parameterized in Eq. (3). In this subsection, we describe a reparameterization of � that enables
the application of Bayesian variable selection techniques.

One strategy for modeling ordinal responses is to use a cumulative link function (e.g., see
Albert &Chib, 1993) for an unstructuredmixture model (e.g., see Bao&Hanson, 2015; DeYoreo,
Reiter, & Hillygus, 2017; Kottas, Müller, & Quintana, 2005). Specifically, we can rewrite the
latent class probabilities for items j (θ jc0, . . . , θ jc,Mj−1) using a cumulative link function �(·)
and Mj − 1 thresholds, (τ jc1, . . . , τ jc,Mj−1) where τ jc0 < τ jc1 < · · · < τ jc,Mj−1 < τ jcM j

with the endpoints defined as τ jc0 = −∞ and τ jcM j = ∞. Furthermore, a commonly used
parameterization fixes τ jc1 = 0 and incorporates a latent class mean parameter for item j , μ jc.
Therefore, the cumulative probability of a response at level m or less using a cumulative link
function is,

P(Y j ≤ m
∣∣α′v = c, τ jc,m+1, μ jc ) =

m∑

m′=0

θ jcm′ = �
(
τ jc,m+1 − μ jc

)
(10)
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where �(·) is a generic cumulative link function. Accordingly, the probability of response
m by members of class c to item j is θ jcm = �

(
τ jc,m+1 − μ jc

) − �
(
τ jcm − μ jc

)
where

�
(
τ jc0 − μ jc

) = 0 and �
(
τ jcM j − μ jc

) = 1.
Prior studies estimated the 2K μ jc’s in an unstructured fashion (e.g., see DeYoreo et al.,

2017; DeYoreo & Kottas, 2018; Kottas et al., 2005). In contrast, we reparameterize and impose
structure on the latent class mean parameters in Eq. (10) by defining μ jc = a�

c β j where β j is a
P-vector of parameters for item j and ac is a design vector for class c that uniquely maps α�v

to a set of P dummy coded variables (the coding for ac is discussed in the next subsection). Our
reparameterized model for the cumulative conditional probability of a response at level m or less
is,

P(Y j ≤ m
∣∣∣α�v = c,β j , τ jc0, . . . , τ jcm ) =

m∑

m′=0

θ jcm′ = �
(
τ jc,m+1 − a�

c β j

)
. (11)

Note the model in Eq. (11) implies that the conditional probability an observed response equalsm
is θ jcm = �

(
τ jc,m+1 − a�

c β j
)−�

(
τ jcm − a�

c β j
)
and the conditional probabilitymass function

for item j under the reparameterized model is,

p(y j
∣∣∣α�v = c,β j , τ0, . . . , τM ) =

Mj−1∑

m=0

[
�

(
τm+1 − a�

c β j

)
− �

(
τm − a�

c β j

)]
I(y j = m).

(12)
Let B = (

β1, . . . ,β J
)� be a J ×2K matrix of regression parameters. Furthermore, let τ j denote

the Mj − 1 thresholds for item j and let T = (τ 1, . . . , τ J )
� denote the thresholds for all J

items. Note that we refer to the reparameterized likelihood function for a sample of n independent
observations as p(Y|B,T,π).

3.1.1. Coding Attribute Profiles We next discuss how to code attribute profile c as the vector
of latent predictors, ac, in the cumulative link function. The most general exploratory model is
referred to as a saturated model, which includes all main- and higher-order interaction effects
terms of the attribute levels. Accordingly, the saturated model includes all effects and the number
of design predictors and coefficients is P = 2K . Researchers can in principle estimate exploratory
modelswith fewer parameters (i.e., P < 2K ) to estimatemore restrictedmodels, but the discussion
that follows considers the saturated model.

Table 1 presents an example design matrix for the saturated model with K = 3. In this
case, the design vector for an arbitrary α is a = (1, α3, α2, α2α3, α1, α1α3, α1α2, α1α2α3). In
the saturated model with K = 3 the main effects are α1, α2, and α3, the two-way interactions
are α1α2, α1α3, and α2α3, the three-way interaction is α1α2α3. The second column of Table 1
presents the 2K = 8 latent classes, and columns three to ten show the elements of the design
vectors ac for each c. For instance, latent class α3 = (0, 1, 1)� corresponds with the design
vector a3 = (1, 1, 1, 1, 0, 0, 0, 0)�. Finally, Table 1 shows that the first element of ac is a one for
the intercept, which indicates the reference group is the class with α = (0, 0, 0)�.

It is worth mentioning another reason for studying the design matrix. Specifically, as shown
in the first column of Table 1 we order the elements of a according to the integer representation of
the binary profile, α. Table 1 demonstrates a simple coefficient labeling strategy in the second row
of Table 1, which includes attribute profile labels in the order of the integer representation. Table 1
shows that the labels in the second row provide an alternative way to refer to effects denoted by
the products of the a’s. We see that the alternative main effect labels in Table 1 all have two
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Table 1.
Example design matrix for K = 3 by attribute profile, α.

Class 1 α3 α2 α2α3 α1 α1α3 α1α2 α1α2α3
c α 000 001 010 011 100 101 110 111

0 000 1 0 0 0 0 0 0 0
1 001 1 1 0 0 0 0 0 0
2 010 1 0 1 0 0 0 0 0
3 011 1 1 1 1 0 0 0 0
4 100 1 0 0 0 1 0 0 0
5 101 1 1 0 0 1 1 0 0
6 110 1 0 1 0 1 0 1 0
7 111 1 1 1 1 1 1 1 1

c is the integer representation of α.

zeros included. For instance, the main effect for α1 corresponds to the label “100.” In contrast,
the labels for the two-way interaction effects include one zero. For instance, an alternative label
for the interaction involving attributes one and three (i.e., α1α3) is “101.” Furthermore, we see
that the intercept label is “000” and the label for the interaction among the highest attribute levels
(i.e., the coefficient for α1α2α3) is “111.” For a general value of K , this labeling scheme implies
that the intercept label has K zeros, the labels for main effects include K − 1 zeros, two-way
interaction labels have K − 2 zeros, and K -way interaction labels are without any zeros.

3.1.2. Monotonicity Conditions We next discuss monotonicity conditions for the latent class
IRFs. Specifically, the monotonicity condition we consider is

P(Y j ≥ m|α,β j ) ≥ P(Y j ≥ m|α′,β j ), if α ≥ α′. (13)

The condition in Eq. (13) states that the probability of responding m or greater on item j for
members with attribute profile α is greater for all classes that are element-wise smaller than α. It
is important to note that the condition in Eq. (13) is satisfied for the ordinal GDM if μ jc ≥ μ jc′
for αc ≥ αc′ . Consequently, the monotonicity conditions in Eq. (13) can be translated into a
lower-bound condition for each coefficient (e.g., see Y. Chen, Culpepper, & Liang, 2018). We let
L jp denote the lower bound for β j p.

3.2. Bayesian Model

This subsection outlines a Bayesian formulation for the ordinal latent class model using a
cumulative probit link function. We first discuss the model formulation and then discuss posterior
inference.

3.2.1. Model Formulation andPriors Weuse a data augmentation strategy as found inBayesian
item response theory models (e.g., see Albert 1992; Béguin & Glas, 2001; Culpepper, 2016) for
the probit cumulative link function. That is, we introduce a deterministic relationship between
the random ordinal response Yi j and a continuous augmented latent variable Y ∗

i j so that Yi j = m
whenever τ jm < Y ∗

i j < τ j,m+1. Next, we assume the augmented variable Y ∗
i j is conditionally

normally distributed as Y ∗
i j

∣∣αi ,β j ∼ N (a�
i β j , 1).
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We consider a categorical prior for αi (e.g., see Culpepper, 2015) conditioned upon the latent
class structural probabilities π , which is the 2K vector of class probabilities. The conditional
probability that αi has the attribute configuration of class c given π is,

P
(
α�
i v = c|π

)
=

2K−1∑

c′=0

πc′I(α�
i v = c). (14)

Note that we specify conjugate π ∼ Dirichlet(n0) prior for the structural parameters and imple-
ment a uniform prior with n0 = 1�

2K .
We employ the stochastic search variable selection prior specification for B as described in

Culpepper (2019). The prior for B is conditioned on Q. The prior for β j given q j is,

p
(
β j |q j

) ∝
2K−1∏

p=0

v
−1/2
p exp

(
−1

2
β2
j p/vp

)
I (

β j p > L jp
)

(15)

vp = q̃ j p/c1 + (1 − q̃ j p)/c0. (16)

Note as discussed in Culpepper (2019) q̃ j is a 2
K vector that includes all possible products of the

elements of q j . For instance, for K = 2, q j = (q j1, q j2)
� and q̃ j = (1, q j2, q j1, q j1q j2)

�. The
precision for β j p is c1 when q̃ j p = 1 and c0 for q̃ j p = 0. The SSVS approach uses fixed values
for the constants c0 and c1. Specifically, c0 is set to a large value (e.g., we set c0 = 500 in this
paper) to reflect a smaller variance for β j p and a distribution that is more concentrated near zero.
In contrast, c1 is fixed as a smaller value (e.g., we set c1 = 1) to depict a prior distribution for β j p

that is consistent with an active coefficient.
Under the SSVS formulation, the elements ofQ denote the “activeness” of the coefficients.We

assume the elements of Q are independently distributed given a hyper parameter ω. Specifically,
the prior is q jk |ω ∼ Bernoulli(ω). Furthermore, ω ∼ Beta(a, b) is a Beta prior for ω and we set
a = b = 1 to employ a uniform prior for ω in the simulation study and application.

Prior research notes the difficulty associated with estimating the thresholds inmixturemodels
for ordinal data (e.g., see Bao & Hanson, 2015; DeYoreo et al., 2017; DeYoreo & Kottas, 2018;
Kottas et al., 2005) and instead recommend treating the thresholds as fixed rather than random.We
investigated this issue and conducted several Monte Carlo simulation studies to assess parameter
recovery when thresholds are treated as random. In particular, we sampled thresholds using the
Metropolis–Hastings approach of Cowles (1996). The results from these numerical experiments
supported prior research regarding the difficulty with estimating model parameters when thresh-
olds are random. Accordingly, we follow the recommendation of prior researchers and fix the
thresholds. In particular, we fix the thresholds as (τ jc1, . . . , τ jc,Mj−1) = (

0, 2, . . . , 2(Mj − 2)
)
.

Fixing the thresholds has the added benefit of computational speed by avoiding Metropolis–
Hastings updates for thresholds (e.g., see Cowles, 1996).

3.2.2. Posterior Inference The posterior distribution of interest is,

p
(
Y∗,A,B,π ,Q, ω|Y) ∝ p

(
Y|Y∗) p

(
Y∗|A,B

)
p(A|π)p(B|Q)p(Q|ω)p(π)p(ω) (17)

whereY∗ is an n× J random matrix of augmented data andA = (α1, . . . ,αn) refers to the latent
attributes. We use a Gibbs sampling algorithm to approximate the posterior distribution (see the
“Appendix” for additional details).
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4. Monte Carlo Simulation Study

4.1. Overview

This section presents results from aMonte Carlo simulation study to evaluate the accuracy of
parameter recovery for different sample sizes. The population model parameters were defined by
the values estimated in the application (e.g., see the values for B and π in Table 5) to ensure the
simulated parameters are consistent with applied data. Accordingly, the simulation used J = 12,
Mj = 4, and K = 3. We considered four sample sizes of n = 500, 1000, 1500, and 2000 and
generated 100 replications per condition for a total of 400 simulated datasets. For each replication
of the simulation study, we executed a single chain of length 100,000 with a burnin of 20,000
iterations. Additionally, the SSVS parameters were defined as c1 = 1 and c0 = 500.

We measure parameter recovery by computing the expected absolute deviation (EAD) of
the estimates from the population values. In particular, we assess the accuracy of item parameter
estimates by comparing the estimated and population cumulative IRFs (i.e., see Eq. 11). That is,
the estimated cumulative IRF for class c is,

F̂jcm =
m∑

m′=0

θ̂ jcm′ (18)

where θ̂ jcm′ is defined using a probit link and the posterior mean for β j . We estimate the expected
absolute deviation between the item j across T scans of the posterior using

E AD(Fjcm) = 1

T

T∑

t=1

∣∣∣F̂jcm − Fjcm

∣∣∣ . (19)

For K = 3 there are eight parameters for each item, so to simplify the presentation of results we
compute an overall average expected absolute deviation for item j and response level m as,

E AD(Fjm) = 1

2K

2K−1∑

c=0

E AD(Fjcm). (20)

We report EAD for all items and sample sizes for m = 0, 1, 2 (note the m = 3 case is excluded
because Fjc3 = 1).

We also assess accuracy in the estimation of the latent class structural probabilities, π . That
is we estimate π by computing the posterior mean and then compute the EAD for each element.

4.2. Results

TheMonte Carlo simulation results provide evidence that the developed algorithm accurately
recovers the item and structural parameters across all sample sizes. Table 2 reports the average
EAD for all items by response levelsm = 0, 1, 2 and sample sizes of n = 500, 1000, 1500, 2000.
The results in Table2 show that average EAD for the cumulative IRFs is less than 0.038, 0.027,
0.023, and 0.021 for sample sizes of n = 500, 1000, 1500, 2000, respectively. Furthermore,
Table3 reports the expected absolute deviation of the estimate π and shows that the latent class
probabilities are accurately recovered.

We also recorded the run-time for the developed algorithm. We found evidence that Markov
chainswith 100,000 iterations required, on average, 146.6 s, 276.0 s, 417.3 s, and 639.4 s for sample
sizes of 500, 1000, 1500, and 2000 on a cluster with 2.50GHz processors.
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Table 2.
Summary ofMonte Carlo simulation study average expected absolute deviation for the cumulative item response functions
by response level m = 0, 1, 2 and n = 500, 1000, 1500, 2000.

m = 0 m = 1 m = 2

Item 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

1 0.004 0.003 0.003 0.002 0.031 0.022 0.019 0.015 0.031 0.023 0.018 0.016
2 0.000 0.000 0.000 0.000 0.015 0.010 0.009 0.008 0.029 0.021 0.018 0.015
3 0.012 0.008 0.007 0.006 0.038 0.027 0.021 0.019 0.017 0.013 0.010 0.010
4 0.002 0.001 0.001 0.001 0.026 0.018 0.015 0.013 0.023 0.015 0.012 0.011
5 0.001 0.001 0.001 0.001 0.022 0.019 0.016 0.015 0.033 0.026 0.023 0.021
6 0.002 0.002 0.001 0.001 0.025 0.023 0.021 0.020 0.028 0.022 0.021 0.018
7 0.016 0.010 0.008 0.008 0.025 0.016 0.014 0.012 0.014 0.010 0.009 0.008
8 0.006 0.004 0.004 0.003 0.025 0.016 0.014 0.013 0.020 0.013 0.011 0.011
9 0.011 0.006 0.006 0.005 0.023 0.015 0.013 0.012 0.016 0.012 0.010 0.010
10 0.007 0.005 0.004 0.003 0.026 0.018 0.015 0.013 0.017 0.013 0.012 0.010
11 0.014 0.009 0.008 0.007 0.022 0.016 0.013 0.011 0.016 0.011 0.010 0.009
12 0.013 0.009 0.009 0.007 0.022 0.015 0.013 0.011 0.014 0.011 0.009 0.008

Table 3.
Summary of Monte Carlo simulation study expected absolute deviation for the latent class structural probabilities π by
n = 500, 1000, 1500, 2000.

c Class 500 1000 1500 2000

0 000 0.015 0.008 0.009 0.006
1 001 0.015 0.012 0.009 0.008
2 010 0.026 0.016 0.013 0.011
3 011 0.016 0.012 0.009 0.007
4 100 0.013 0.008 0.007 0.007
5 101 0.019 0.013 0.012 0.010
6 110 0.012 0.009 0.008 0.007
7 111 0.014 0.008 0.008 0.008

5. Application: Approaches to Learning and Self-Description (ALS) Questionnaire

We next report results from an application of the ordinal DM to the public-use ALS data
file, which was collected through the Early Childhood Longitudinal Study, Kindergarten Class
of 1998-1999 (ECLS-K; Tourangeau et al., 2015). The public-use ALS dataset included student
ratings by parents and teachers on the approaches to learning scale. The dataset includes responses
from teachers and parents for a total of 21,409 students of which 13,354 were complete records
for the variables studied.

The ALS questionnaire includes twelve items with Mj = 4 response categories and scale
anchor labels of “0 = never” and “3 = very often.” Table 4 reports the item stems and category
proportions for parent (i.e., items 1–6) and teacher (i.e., items 7–12) responses. Table4 shows that
proportionally fewer students received a rating of “never” by parents or teachers. The items also
demonstrated variability in response proportions. For instance, over 80% of parents responded in
the highest two categories for items two (“Show interest in a variety of things?”), five (“Eager
to learn new things?”), and six (“Creative in work or in play?”). In contrast, Table 4 shows that
teachers tended to report ratings of “1,” “2,” and “3” more uniformly than parents.
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Table 4.
Approaches to learning and self-description item stems and category proportions for a random sample of n = 13,354
kindergarten students.

0 1 2 3

1. Keep working at something until he/she is finished? 0.017 0.255 0.388 0.341
2. Show interest in a variety of things? 0.003 0.099 0.421 0.478
3. Concentrate on a task and ignore distractions? 0.044 0.452 0.348 0.157
4. Help with chores? 0.018 0.313 0.377 0.292
5. Eager to learn new things? 0.003 0.079 0.360 0.559
6. Creative in work or in play? 0.005 0.156 0.405 0.433
7. Keeps belongings organized 0.044 0.309 0.407 0.240
8. Shows eagerness to learn new things 0.020 0.214 0.378 0.388
9. Works independently. 0.029 0.275 0.370 0.326
10. Easily adapts to changes in routine 0.028 0.259 0.469 0.245
11. Persists in completing tasks 0.044 0.249 0.380 0.327
12. Pays attention well 0.032 0.313 0.345 0.309

The anchor labels were 0 = “never” and 3 = “very often.” Students’ parents responded to items 1–6 and their
teachers responded to items 7–12.

Table 5.
Approaches to learning and self-description element-wise means for Q, B, and π for a random sample of n = 13,359
kindergarten students from the early childhood longitudinal study (ECLS-K) class of 1998–1999.

Q 1 α3 α2 α2α3 α1 α1α3 α1α2 α1α2α3
Item 1 2 3 000 001 010 011 100 101 110 111

1 1.00 1.00 1.00 1.37 0.76 1.10 −0.22 1.51 0.12 0.65 −0.47
2 1.00 1.00 0.00 2.50 0.04 0.75 −0.02 1.77 −0.00 0.00 0.00
3 1.00 1.00 1.00 0.82 0.64 0.76 −0.15 0.86 0.26 1.19 −0.41
4 1.00 1.00 0.00 1.94 0.01 0.47 0.00 1.32 −0.00 0.03 0.00
5 1.00 1.00 1.00 2.17 0.47 1.12 −0.25 2.10 −0.19 −0.02 0.04
6 1.00 1.00 1.00 2.08 0.45 0.92 −0.35 1.90 −0.37 0.00 0.28
7 0.00 1.00 1.00 0.48 2.33 1.33 0.24 0.01 0.00 0.00 0.01
8 0.01 1.00 1.00 1.32 2.37 1.15 0.27 0.04 0.08 −0.01 −0.02
9 0.00 1.00 1.00 0.84 2.78 1.29 0.50 0.05 0.02 −0.02 −0.02
10 0.00 1.00 1.00 1.21 2.01 1.09 0.12 0.01 0.00 −0.00 0.00
11 0.00 1.00 1.00 0.62 2.87 1.34 0.61 0.02 0.00 0.00 −0.00
12 0.00 1.00 1.00 0.58 2.64 1.10 0.80 0.03 −0.01 0.01 −0.01
π 0.07 0.12 0.15 0.18 0.07 0.19 0.08 0.14

A chain of length of 100,000 was run with a burnin of 20,000. Thresholds were fixed to τ0 = −∞, τ1 = 0,
τ2 = 2, τ3 = 4, and τ4 = ∞. Q is the posterior mean of the sampled binary Q matrices.

5.1. Results

We estimated an exploratory ordinal DM solution using K = 3 to demonstrate the model
and interpret parameter estimates. Note that we ran a single chain of length 100,000 with a burnin
of 20,000 iterations. The algorithm required 3087s to complete 100,000 iterations on a laptop
with a 2.20GHz processor. We implemented the model with the SSVS scale parameters equal to
c1 = 1 and c0 = 500.

Table5 reports ALS model parameter estimates forQ, B, and π . Specifically, we constructed
Q with the posterior element-wise means (i.e., q̄ jk = 1

T

∑T
t=1 q

(t)
jk where t indexes values in the
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Markov chain). The results in Table5 provide evidence of a dense structure forQ given the absence
of simple structure items. The estimated Q matrix suggests that the latent structure for items is
associatedwithwhether ratingswere recorded by parents or teachers. In fact, the teacher responses
about students approaches to learning (i.e., items seven through twelve) relate to attributes two
and three, whereas there are some items where the parent ratings load onto all three attributes.

The values of the coefficients provide insight about how changes in attribute levels relate to
observed responses. For instance, consider the coefficients for item twelve (“Pays attentionwell”).
Item 12 relates to the main effects and interaction between attributes two and three. Additionally,
the main effects for attributes two and three relate to responses on all but items two and four. There
is evidence of several higher-order interaction effects. For instance, α2α3 relates to item nine and
α1α2 relates to item three. There is also some evidence of disjunctive relationships as indicated
by negative interaction effects. In fact, there is evidence of a negative three-way interactions for
items one and three.

The IRFs provide another perspective for interpreting the relationship between the attributes
and items. For instance, consider the impact of the first attribute on item one by comparing the
IRFs for members of classes “000” and “100.” Students classified as possessing attribute profile
“000” received ratings of (0, 1, 2, 3) from theirs parents with probabilities of (0.09, 0.65, 0.26,
0.00). In contrast, the probabilities for the students in the “100” class had response probabilities
of (0.00, 0.19, 0.68, 0.13). A change of α1 from zero to one increases the chance students receive
parent ratings of a “2.”

Figure 1 presents counter-clock-plots to illustrate the category response probabilities by latent
class and item. That is, the “clock” for a given α and item presents the probabilities of observed
responses of 0, 1, 2, and 3 in four quadrants in a counter-clockwise order. For instance, Fig. 1
shows that the probability members of classes “011” and “111” of reporting a “3” is nearly one
for items eight, nine, eleven, and twelve. Figure 1 also illustrates how increases in latent levels
relate to changes in response probabilities. For instance, the probability of reporting a “2” or “3”
on items seven through twelve increases as α3 changes from 0 to 1.

The last row of Table 5 reports the posterior mean of the latent class structural parameter,
π . The values of the estimated π suggest that the largest three classes were “101,” “011,” and
“010” with class probabilities of π̂5 = 0.19, π̂3 = 0.18, and π̂2 = 0.15, respectively. In contrast,
the three smallest classes were “000,” “100,” and “110” with probabilities equal to π̂0 = 0.07,
π̂4 = 0.07, and π̂6 = 0.08.

5.2. Model Fit

The previous subsection reported results for a model with two attributes to demonstrate the
model in an application. This subsection discusses model fit to understand how well the estimated
model describes the observed data.

We report posterior predictive probabilities (e.g., see Sinharay, Johnson, & Stern, 2006) to
evaluate the fit of the model with K = 3. In particular, we assess model fit by assessing how
well the model reproduced students’ total scores. That is, we used the samples from the posterior
to simulate ordinal responses from the model and computed a distribution for each student’s
total score to calculate the proportion of times total scores generated in the posterior distribution
exceeded the observed values. Figure 2 plots the observed total scores against each student’s
posterior predictive probability (PPP). Figure 2 shows that 50% of students’ PPPs equal values
between 0.249 and 0.610, which provides some support that the model describes students’ total
scores. Furthermore, additional evidence of model fit is illustrated by the fact that the PPPs for
most students fell between cutoffs of 0.025 and 0.975. The horizontal lines in Fig. 2 separate
observations that were less accurately predicted by the model (i.e., PPPs below 0.025 or above
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Figure 1.
Counter-clock-plots depicting the estimated item response functions by latent class α (x-axis) and item (y-axis) for the
ALS data with Mj = 4 for j = 1, . . . , 12 and K = 3.
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Figure 2.
Plot of observed total scores and posterior predictive probabilities (PPPs). Note Boxplots are marginal distributions. The
dashed, horizontal lines indicate posterior probabilities of 0.025 and 0.975. In the plot, 2.31% of students had total score
PPPs less than 0.025 or greater than 0.975.

0.975). In fact, 2.31% of students had extreme PPPs outside of the 0.025 and 0.975 range and
could be considered less accurately predicted by the model.

6. Discussion

Ordinal DMs are necessary for providing a fine-grained classification on substantively rel-
evant attributes. Ordinal DMs are applicable to address research questions in numerous settings
with examples including partial credit responses in education and ratings in survey research. We
next discuss the implications of the study, review limitations, offer future research directions, and
provide concluding remarks.

We presented a new exploratory diagnostic model for ordinal data that improves upon exist-
ing research. Our model used a cumulative probit link along with Bayesian variable selection
techniques to infer the relationship between a collection of binary attributes and observed ordinal
responses. A potential advantage of the proposed method is that a priori knowledge about the
latent structure is not needed and our model provides researchers with a framework for infer-
ring the latent structure to inform substantive theory development. It is worth mentioning that
although we considered an exploratory approach in this paper the developed framework could
be implemented in a confirmatory fashion. That is, the methods could be used in a confirmatory
setting by fixing the elements of Q to indicate which item parameters are active versus inactive.
Furthermore, researchers with partial knowledge about the underlying structure could also fix
some q jk and estimate others.

The utility of the proposed framework will likely be judged by the insights the methodology
offers applied researchers. Accordingly, our application to the ALS items serves as an example
of the type of novel inferences that are available with ordinal DMs. In particular, we uncovered
evidence that a three-attribute solution with eight classes describes teacher and parent responses
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to the twelve public-use ALS items. The results offered evidence that the latent structure was
associatedwithwhether the ratingswere from teachers or parents.Additionally,we found evidence
that the relationship between observed responses and latent attributes was characterized by main
effects and higher-order interactions. We also found that some of the parent item responses loaded
on all three attributes. The uncovered structure may suggest that there is a common attribute
underlying the approaches to learning and self-description items that both teachers and parents
consider in responses about their students. Teacher ratings related to the common attribute and as
well as attribute three. One inference could be that the first attribute (which related only to parent
ratings) captured learning behaviors that are observed in informal settings outside of schools,
whereas the third attribute characterized student feature found in formal academic settings. Future
research should apply the developed ordinal DM to additional ALS items to assess the extent to
which the uncovered attributes more generally capture the latent structure.

Another contribution relates to the establishment of weaker sufficient conditions for model
identifiability.We followedFang et al.’s (2019) recommendation to relax their sufficient conditions
for polytomous response DMs with polytomous attributes. Specifically, Theorem 2 shows that
a sufficient condition for identifying ordinal DM parameters with binary attributes is that the Q
matrix must include simple structure for two items and the latent classes must be distinguished
by a least one of the remaining items. It is important to note that we did not explicitly enforce
the identifiability conditions when analyzing the ALS items. The algorithm could be restricted to
stochastically searching the space of identified Q matrices (e.g., see Y. Chen, Culpepper, Chen,
& Douglas, 2018). We used the ALS model parameters as to generate data in the Monte Carlo
simulation study. The Monte Carlo results provided evidence that, although the estimated Q
was not strictly identified, the algorithm was successful in recovering model parameters. One
implication is that future research may be able to establish even weaker identifiability conditions
for ordinal DMs with binary attributes than required by Theorem 2.

There are several additional issues for researchers to consider when applying ordinal DMs.
First, researchers may need to reverse-code variables when applying themonotonicity constraints.
That is, the monotonicity constraints assume that higher latent attribute levels relate to higher
observed responses. A negatively-worded item would need to be reverse-coded to ensure a clear
interpretation of the attributes. Alternatively, the identifiability conditions require restrictions on
Q and the distinctness of some probabilities, so estimationwith reverse-coded items could proceed
without monotonicity restrictions.

Second, we considered an unstructured model for the latent class probabilities π . There may
be instances where the latent class structure can be approximated with a higher-order factor model
(Culpepper & Chen, 2018; de la Torre & Douglas, 2004; Henson et al., 2009) or an underlying
multivariate normal distribution with a vector of thresholds and a polychoric correlation matrix
(Y. Chen & Culpepper, 2018; Henson et al., 2009; Templin, Henson, Templin, & Roussos, 2008).
Future research could establish guidelines for selecting competing structures for π .

Third, in our application of the ordinalDM to theALSdatawe analyzed the subset of complete
cases, which implies that we implicitly assumed incomplete data were ignorable and missing at
random. Future research should investigate the plausibility of the ignorability assumption with
the restricted-use data and consider modeling the missing data mechanism if the assumption is
untenable.

Lastly, the Monte Carlo simulation study was limited to one set of population parameters
derived from applied data. Additional applications of the ordinal DM are needed to identify
a distribution of parameter values that can be expected in practice. Subsequent Monte Carlo
simulation studies are needed to evaluate parameter recovery for an expanded set of population
parameter values.

In conclusion, advancing ordinal DMs is critical for establishing tools that yield fine-grained
classification of respondents into substantivelymeaningful latent clusters. The developedmethod-
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ology contributes to research on ordinal DMs. We provided an exploratory methodology that
broadens the applicability of ordinal DMs to social science research and allows researchers to
refine substantive theory about the latent structure underlying ordinal response data.
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Appendix: Gibbs Sampling Algorithm and Full Conditional Distributions

This section discusses the full conditional distributions used to approximate the posterior
distribution of the ordinal diagnostic model parameters with Gibbs sampling. For iteration t =
1, . . . , T we sample:

1. For i = 1, . . . , n,

(a) α
(t)
i from the multinomial full conditional distribution α

(t)
i |Y i ,B(t−1),α

(t)
1 , . . . ,

α
(t)
i−1,α

(t−1)
i+1 , . . . ,α

(t−1)
n where the conditional probability α

(t)
i is classified as

profile c is,

P(α
(t)�
i v = c|Y i ,B(t−1),α

(t)
1 , . . . ,α

(t)
i−1,α

(t−1)
i+1 , . . . ,α(t−1)

n )

=
(nci + nc0)

∏J
j=1 θ

(t−1)
jc,yi j

∑2K−1
c=0 (nci + nc0)

∏J
j=1 θ

(t−1)
jc,yi j

(A1)

where θ
(t−1)
jc,yi j

= 

(
τ jc,yi j+1 − a�

c β
(t−1)
j

)
−


(
τ jc,yi j − a�

c β
(t−1)
j

)
. Notice that

we integrate π from the prior distribution p(A,π) = p(α1, . . . ,αn|π)p(π) and
instead use the conditional prior distribution p(αi |α(t)

1 , . . . ,α
(t)
i−1,α

(t−1)
i+1 , . . . ,

α
(t−1)
n ) which implies the usual πc (e.g., see Equation 7 of Culpepper, 2019)

is replaced with nci +nc0 where nci is the number of respondents other than i that
are classified in class c (e.g., see Jain & Neal, 2004) and nc0 is the prior Dirichlet
parameter (note nc0 = 1 for a uniform prior).

(b) For j = 1, . . . , J update the latent augmented data from the full conditional
distribution

Y ∗(t)
i j |Yi j ,α(t)

i ,β
(t−1)
j ∼ N (a(t)�

i β
(t−1)
j , 1)I(τ jc,yi j < Y ∗(t)

i j < τ jc,yi j+1) (A2)
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where τ jc,yi j and τ jc,yi j+1 are lower and upper thresholds for the observed value
of Yi j for class c and item j . Recall we follow previously discussed strategies and
fix the thresholds as τ j = (0, 2, . . . , 2(Mj − 2))�.

2. Update the latent class probabilities (i.e., the mixing weights) as π (t)|A(t) from the
Dirichlet full conditional distribution (e.g., see Culpepper, 2015).

3. For j = 1, . . . , J ,

(a) For k = 1, . . . , K sample q(t)
jk from the Bernoulli full conditional distribu-

tion q(t)
jk |β(t−1)

j , q(t)
j1 , . . . , q(t)

j,k−1, q
(t−1)
j,k+1, . . . , q

(t−1)
j K , ω(t−1) (e.g., see Culpepper,

2019).
(b) For p = 1, . . . , P sample β

(t)
j p from the truncated normal full conditional distribu-

tion β
(t)
j p |Y ∗(t)

1 j , . . . ,Y ∗(t)
nj ,A(t), β

(t)
j1 , . . . , β

(t)
j,p−1, β

(t−1)
j,p+1, . . . , , β

(t−1)
j,P+1, q

(t)
j (e.g.,

see Culpepper, 2019).

4. Sample ω(t) from the Beta full conditional distribution ω(t)|Q(t) (e.g., see Culpepper,
2019).
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