MULTI-TIER FEDERATED LEARNING FOR VERTICALLY PARTITIONED DATA

Anirban Das, Stacy Pattersonﬂ

Department of Computer Science
Rensselaer Polytechnic Institute, Troy, New York, USA

ABSTRACT

We consider decentralized model training in tiered communication
networks. Our network model consists of a set of silos, each hold-
ing a vertical partition of the data. Each silo contains a hub and a
set of clients, with the silo’s vertical data shard partitioned horizon-
tally across its clients. We propose Tiered Decentralized Coordinate
Descent (TDCD), a communication-efficient decentralized training
algorithm for such two-tiered networks. To reduce communication
overhead, the clients in each silo perform multiple local gradient
steps before sharing updates with their hub. Each hub adjusts its co-
ordinates by averaging its workers’ updates, and then hubs exchange
intermediate updates with one another. We present a theoretical anal-
ysis of our algorithm and show the dependence of the convergence
rate on the number of vertical partitions, the number of local updates,
and the number of clients in each hub. We further validate our ap-
proach empirically via simulation-based experiments using a variety
of datasets and both convex and non-convex objectives.

Index Terms— vertical machine learning, coordinate descent,
federated learning, stochastic gradient descent

1. INTRODUCTION

In recent times, we have seen an exponential increase of data pro-
duced at the edge of the communication networks. In many settings,
it is infeasible to transfer the entire dataset to a centralized cloud for
downstream analysis, either due to practical constraints such as high
communication cost or latency, or to maintain user privacy and secu-
rity [1]. This has led to the deployment of distributed machine learn-
ing and deep-learning techniques where computation is performed
collaboratively by set of clients, each close to its own data source.

Once scenario that arises in distributed training is when clients
have different sets of features, but there is a sizable overlap in the
sample ID space among their datasets [2]. For example, the training
dataset may be distributed across silos in a multi-organizational con-
text, for example in healthcare, banking, finance, retail, etc. [2, [3]].
Each silo holds a distinct set of features (e.g., customer/patient list);
the data within each silo may even be of a different modality, for ex-
ample, one silo may have audio features, whereas another silo has
image data. The paradigm of training a global model over such
feature-partitioned data is called vertical federated learning [4, 3].
This is different from the more prevalent alternative of horizontal
learning, where the participating clients each have the entire set of
features for a subset of the sample space [6} (7, [1].

Earlier vertical learning works [8l 4, |9 |10] considered a case
where each party needs to communicate in each iteration, which

This work is supported by the Rensselaer-IBM Al Research Col-
laboration (http://airc.rpi.edu), part of the IBM Al Horizons Network
(http://ibm.biz/AlHorizons), and by the National Science Foundation under
grants CNS 1553340 and CNS 1816307.

may be expensive communication-wise. To save communication,
multiple rounds of training can be performed on a client before
reconciling the local model updates into the global model. A more
recent work [3]] proposed an algorithm that addresses this problem
by performing multiple local training iterations before reconcil-
ing the client model updates into the global model. All of these
works assume that the entire dataset of a silo is contained in a
single client. However, this model fails to capture the case where
the dataset within a silo is horizontally partitioned across multiple
clients, for example, the dataset of a bank may be distributed among
its branches, or healthcare data among hospitals in a chain.

We propose a training algorithm, tiered decentralized coordinate
descent (TDCD)), for vertical federated learning where there are mul-
tiple clients in each silo. We consider a two tiered network architec-
ture consisting of multiple silos. Each silo holds a vertical partition-
ing of the data, and internally consists of a hub and multiple clients
connected to the hub. The data in a silo is further horizontally dis-
tributed among its clients. Our goal, is to jointly train a model on the
features of the data contained across silos, without explicitly sharing
raw data from clients, and only via passing intermediate informa-
tion vectors. TDCD works by performing a non-trivial combination
of parallel coordinate descent on the top tier between silos, and dis-
tributed stochastic gradient descent in the bottom tier of clients in-
side each silo. To reduce communication, each client performs mul-
tiple local gradient steps before sending updates to its hub. This opti-
mization is similar to the method studied in [6, |11} [12]] for horizontal
learning. We note that some existing works have proposed training
algorithms for hierarchical network architectures [13| [14} 15} [16],
but only from the perspective of horizontal learning. Our approach
is thus a novel combination of learning with both vertically and hor-
izontally partitioned data in a multi-tiered network.

Specifically, our contributions are the following: (1) we present
a system model for decentralized learning in a two-tier network,
where data is both vertically and horizontally partitioned; (2) we de-
velop a communication-efficient decentralized learning algorithm,
using principles from coordinated descent and stochastic gradient
descent; (3) we analyze the convergence of our proposed algorithm
and show how it depends on the number of silos, the number of
clients, and the number of local training rounds; (4) we validate our
analysis via experiments using convex and non-convex objectives.

2. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the system architecture, the allocation of
the training data, and the loss function we seek to minimize.
2.1. System Architecture and Training Data

We consider a decentralized system consisting of IV silos, shown
Fig.[1] Each silo consists of a hub and multiple clients connected to

it in a hub-and-spoke fashion. The hub network forms a complete
graph. For simplicity, we assume that each silo has K clients. Our
network model thus has two tiers, the top tier of hubs, shown in
orange, that communicate with each other, and the bottom tier of
clients in each silo, shown in gray.

The training data consists of M samples that are common across
all silos. Each sample has D features. The data is partitioned verti-
cally across the N silos so that each silo owns a disjoint set of D
features for all of the M samples. We can express the entire training
dataset by a matrix X € RM*P We denote set of data, i.e., the
columns of X, held in silo j by X ;). Within each silo, its data is
partitioned horizontally across its clients, so that each client holds
some rows of X ;). We denote the horizontal shard of X; that is
held by client & in silo j as X, ;. Lastly, we denote a sample ¢ of the

dataset (single row of X) as X@ and Xé;)) denotes the features of

the ¢th sample corresponding to silo j. We assume that each client
stores the sample labels y, ; for its data Xy ;.

A Silo = Hub + Client(s)

.

Vertical Learning
across silos

2 @ Hubs (data centers)
@ Clients / Worker Devices

Horizontal Learning
inside silos

.lp
RS

Fig. 1: System architecture.

2.2. Loss Function

The objective is to train a global model 6, which is a d-vector that
can be decomposed as

~ ~T ~T .1
where each é(]-) is the block of features, or coordinates, for silo j.

The goal of the training algorithm is to minimize an objective func-
tion with following structure:

o 1
£00,X;y) % Zf GO

where f has the partially separable form

£(8, X9y @)y <ZX B(d)7)

The functions w(-) constitute a regularizer, and A is a hyperparam-
eter. A concrete example of the loss function is an La regularized
square loss function for empirical risk minimization:

Héll

[V

£(8,X;y) = HX9 yl5 +

3. PROPOSED ALGORITHM

In this section, we present our Tiered Decentralized Coordinate De-
scent algorithm (TDCD). The pseudocode is given in Algorithm [T}
We first note that the hubs update their own corresponding blocks of

N
0y Xy D) + 2D w(ba)
d=

coordinates of é(4y in parallel; no hub has the entire 6. We define
6,2’ j € RP5 as the local version of the coordinates of the weight vec-

tor éfj) that each client updates. These local versions are initialized
by the clients at iteration ¢ = 0.

In iteration 0, and every Qth iteration thereafter, the hubs first
average the models from the clients, where hub j, updates the jth

block coordinates of global weight 8" as O(J) =+ Z [6% ;] This

step is similar to horlzontal federated learning. The hubs then agree
on () minibatches {¢” }T: !, each containing B samples randomly
drawn from the global dataset X. The hubs communicate the ag-
gregated model and the minibatch information to their clients. The
clients, in turn, reply with the intermediate information for the sam-
ples IDs in those Q minibatches using the newest aggregated model.
It is necessary to propagate this intermediate information to allow
clients in other hubs to calculate partial derivatives during training.
We define the intermediate information for the jth coordinate block

for a single sample p as <I>Ep ; = XE;’) O(J) For a single minibatch (,

each client computes a set of information ‘I)k, = {<I>(p)}pec. Each
client then sends @ such sets of intermediate mformatlon to its hub
corresponding to the ¢ minibatches. The hub then stacks the set
of updates { @i’ ;} from each of its clients to form ®7. Each hub j

then broadcast CD{ to other hubs to propagate this information. For
hub j, we denote the intermediate information obtained from other
hubs by &_; = Zz 1,12; $5- Once this is done, the hub then ap-
plies a projection functlon for each client k£ to send the subset of
information from ®_ relevant to client k's samples to that client.
Alternatively a hub can send the entire ¢_; to the client and the
client can do the projection itself to extract the rows corresponding
to its own samples. We define a projection function 7y ; such that
Tk, (P—j) = ®_y,;, where D_y ; is the extracted relevant informa-
tion for client k of silo j.

After receiving this intermediate information, at each iteration ¢
each client k of silo j can now calculate its own local partial deriva-
tives of £ with respect to coordinate block j. This is denoted by g, ;
and is a function of ®_j ;, the part of X ; in minibatch Ct, and
the local set of weights 6, ;. Each client executes () local stochas-
tic gradient steps, on the features for their respective silos, using a
different minibatch in each iteration:

— gk, (% ;0.5 ¢7). (1)

n is the step size (learning rate), and o represents the most recent

iteration to < t in which the client received intermediate information

from its hub. The entire process is repeated until convergence.
Informally, each silo effectively takes an approximate (stochas-

t+1 _ pt
0. =0k,

tic) gradient step towards the minimizer of L’(éi) along the direction
of the its coordinates every () iterations.

In TDCD, clients only communicate their local model and in-
termediate information every @ iterations. This is in contrast to
distributed SGD algorithms, where the clients need to sync with a
coordinating hub in each iteration. This allows TDCD to save band-
width by increasing (), especially when the the size of the model is
large. Hubs still need to exchange intermediate information for all
() minibatches, in between local training rounds. However, sending
all information at the beginning of () iterations, rather than in ev-
ery iteration, potentially saves network latency and overhead. The
significant bandwidth savings comes in the silos themselves, since
each hub and its clients only share the models every () iterations. As
a rough estimate, the intermediate information for a sample ranges
from a simple scalar value to a small vector of very few dimensions.

Algorithm 1 Tiered Decentralized Coordinate Descent (TDCD)

1: Initialize 0} ; = 0" € RPi | Vk, j
2: fort=0,...,00do

3: if t (mod Q)=0 then
4: for j =1,..., N silos in parallel do
5: Hub j computes éﬁj) = L3N 6L,
6: Randomly sample) minibatches {¢™}:19 1
7: for k =1,..., K clients in parallel do
8: Set Bli,j = ézj)
9: Send (I)i,j to hub j, for each ¢ € {¢"}1G,,
10: end for
11: Hub j stack {@i’j},C € {(T}f:tgl to form @
12: All hubs exchange @;,Vj =1,...,N
13: Hub j calculate ®* ; = > @), Vp # j
14: In parallel set <I>t_°k’j = m,;(®" ;) in K clients.
15: end for
16: end if
17: for j =1,..., N silos in parallel do
18: for k =1,..., K clients in parallel do
19: 0;:;1 = BZJ _ng,j(‘i't,ok’jvez,j;CT)
20: end for
21: end for
22: end for

Therefore while training models in deep learning, the intermediate
information of B minibatches with M samples each would be of the
order of a few megabytes or less. Compared to this, the size of the
actual model can be in the order of gigabytes. We explore how @
impacts the convergence of TDCD in the next section.

We note that at any step of training hubs can communicate their
slice of the global model with each other to form the entire global
model for use in inference purposes.

4. CONVERGENCE ANALYSIS

In this section, we provide the convergence analysis of the TDCD al-
gorithm. Our analysis is based on the evolution of the global model
0 c RD following Algorithrn It to be noted that the components
of 8, 8, are realized every @ iterations, but we will study the evo-
lution of a virtual ;) at each iteration, ézj) =L3r . 6L

To facilitate the analysis, we first define the notion of an auxil-
iary local vector, which represents the local view of the global model
at each client. Let y,tC ; denote the auxiliary weight vector used by
client & in hub j to calculate the partial derivative gk ; (yj. ;).

i = [0%;,6%.;])

where, Oioj denotes the vector of all coordinates of 0 excluding
block j at iteration t, where to is the iteration when the client k
last updated the value of Bﬁ’j from its hub. Therefore, when a client
takes multiple local steps to update 6y, ;, it uses a stale value of the
elements in the other coordinates of yy ;.

We further define the following two quantities

K
1
G' =[G, ... (G .Gl = 7 > gk (k))
k=1

We can then write the evolution of the global model as follows,

0" =0 — Gt @)

We make the following assumptions about the loss function £
and the gradients gy, ; at each client.

Assumption 1. The gradient of the loss function is Lipschitz contin-
uous with constant L, further, the partial derivative of L with respect
to each coordinate block j is Lipschitz continuous with constant L,
i.e., forall 81,05 € RP
IVL(01) — VL(O:2) [< L | 61— 62 Q)
V() £(61) = V() L(62) < Lj || 61 — 02]|. ©)

Assumption 2. The function L is lower bounded so that for all @ €
RP,L(0) > Lins.

Assumption 3. Let ¢ be a mini-batch drawn uniformly at random
from all samples. We assume that the data is distributed so that, for
all @ € RP

Ecio [9k.5(0)] = V(5)L£(0) @)
Eco [1l9%.i(8) = V(5 £(B)|°] < o] ®)
We also use the following definitions:

Lipazr = max L;, Omer = max oy
1<GEN 1<GEN

We now provide the main theoretical result of the paper. The
proof is deferred to a technical report available in [17].

Theorem 4.1. Under Assumptions[I} 2] and[3] when the step size
satisfies the following condition:

1—nL —n°L}..Q° >0 9)

then, for T' > 0, the expected squared norm of the gradient of L
averaged over all T iterations satisfies the following bound:

2(£0") ~ Lint) pLNo2,..

T-1
1 ~t\ 12
d <
7 2 Ive@)] T

+ L 0man @ N® (10)

E

We note that the bound in Theorem .| converges to a non-zero
value as 7' — oo. The convergence error results from the parallel
updates on the coordinate blocks (on V) , staleness due to multiple
local iterations (on () and due to parallel updates based on horizon-
tal partitioning (on K) as well. With an increase in the number of
vertical partitions, the error term increases quadratically. The error
also depends quadratically on @), however, in practice, if @ is off-
set by a suitable learning rate 7, then we can leverage multiple local
iterations to achieve faster convergence as we will show in Sec. [5]
However, choosing a very small n will decrease the convergence er-
ror, but it will but increase the first term on the right hand side of
(10), leading to slower convergence.

5. EXPERIMENTAL RESULTS

We verify the convergence properties of TDCD with respect to the
different algorithm parameters of the system via a simulation. In our
experiments, each client has the same number of samples = %

1200 1200
—— N4, K5, Q1
1000 N4, KS, Q2 1000
—=— N4, K5, Q5

N4, K5, Q10

800

Train Loss
Train Loss

—=— NI, K2, Q4
N8, K2, Q4
—=— N16, K2, Q4

—=— N4, K1, Q4

N4, K5, Q4
—=— N4, K25, Q4
—— N4, K50, Q4

200

600

Train Loss

400

0 100 200 300 400 500 0 100
Communication Rounds (f Mod(Q))

(a) Variation with @

Communication Rounds (f Mod(Q))

(b) Variation with NV

300 400 500 0 100 200 300 400 500
Communication Rounds (f Mod(Q))

(c) Variation with K

Fig. 2: Ridge Regression Convex Objective. Training loss vs communication rounds for variations of @), IV and K.

2.25

2.00

175

150
3

>
2.25
2.00
\ 175
§125 \ A £1.50
- 1.00] —— N:2,K:10, Q1 \'a\ 1251 —— N2,K:1,Q4

w| TRTRE L |)

N: 2: K 10:Q10 \\‘ .)

0501 —o— ——_ 0.75{ —*— N:2,K: 50, Q:4

Train Loss

——

0 100 200 300 100 500 0 100 200 300 100 500
Communication Rounds (Mod(Q)) Communication Rounds (t Mod(Q))

(a) Variation with QQ (b) Variation with K
Fig. 3: CNN Multi-class classification with Non-Convex Objective.
Training loss vs communication rounds for variations of () and K.

5.1. Datasets

We first briefly discuss the two datasets used in this study.

Superconductivity (Convex Objective: Ridge Regression):
For the first experiments, we use the Superconductivity dataset [18]],
which consists of numerical values in all coordinates. The goal is
to predict the critical temperature of superconducting materials. We
standardized the dataset before using it by normalizing each coordi-
nate to have zero mean and unit variance. We use 20, 000 samples
from the original dataset for training. We use all 81 coordinates and
include add one for bias.

MNIST (Non-Convex Objective: CNN): We train a CNN
model on the MNIST dataset [19]]. MNIST is a set of 28 x 28 pixels
hand-written digits images with 60,000 digits in the training set and
10,000 digits in the test set. We use N = 2 for all the experiments
and divide each MNIST image vertically into two parts (28 x 14).
Each client trains a local CNN model with a shared linear classi-
fier layer at the top that uses cross-entropy loss. The local CNNs
have two conv layers followed by a 256 dimension embedding layer
which is fed into the final classifier layer. The two feature represen-
tations of R?%% are inputs to the classifier layer with R®'? input and
R' output. We thus train the weights of the final layer via TDCD
while also updating the local CNNs in each iteration.

5.2. Results

In all figures IV represents the number of silos (vertical partitions
of the dataset), and K represents the number of clients in each silo.
In each of the experiments, The training loss is calculated using the
global model 6 and the full training data matrix every () iterations.
We call every Qth iteration a communication round because it is
when communication between clients and hubs occur.

We first study the performance of TDCD on the convex case of
ridge regression in Fig. 2] We start with the impact of varying the
number of local iterations) on the convergence rate. We fix the

network configuration to N=4 silos and K'=5 clients per silo, with a
minibatch size of B = 100 and learning rate 7 = 0.001. The results
are shown in Fig. 2a] We observe that with increasing values of Q,
the convergence rate improves. This is intuitive as the clients can
train more with a larger number of local rounds between communi-
cations, however, as stated in Theorem@ this can result in a larger
convergence error. This implies that by increasing the number of lo-
cal iterations at clients, we can improve the overall communication
efficiency by reducing the total number of communication rounds
required for a given loss.

In Fig. [2b] we show the impact of varying the number of verti-
cal partitions on the convergence rate. To observe results at higher
granularity, we use a subset of 2000 samples from the original train-
ing dataset. We fix K=2, Q=4, and B=20 for this experiment. We
observe that the effect of increasing IV is observable but not very
strong. The inset figure shows the last five communication rounds,
and we observe that the convergence rate improves with lower value
of N, which is as per Theorem[4.1]

We next study how the number of workers in a silo effects the
convergence rate. The results are shown in Fig.[2c] We fix N=4, and
Q=4 and B = 500. Further, we use the same 2000 data points as
in the previous experiment. The inset figure here also shows the last
five communication rounds of training. We observe that variation of
convergence rate is low with varying K. This shows that K does
not play a large role as @ in its effect on the convergence rate or
CONVergence error.

Finally, we study the performance of TDCD with the non-
convex objective. We fix the number of silos at N=2 and the
learning rate 7 = 0.001 for all experiments. We first investigate
the impact of) on the convergence rate and error. The results are
shown in Fig.[3a] Here, K=10 and B = 640. We observe that the
convergence rate improves radically for larger values of). This
result is similar to what we obtained from the convex case. Hence,
by choosing () carefully it is possible to significantly decrease the
communication cost without losing performance. Lastly, in Fig. @
we explore the effect of varying the number of clients at each silo.
We fix the product of K and B to 1250 across the experiments, so
that each silo effectively trains on the same number of samples in
each experiment. Similar to the convex case, we again observe that
the effect of K is very mild. Overall, we we observe that TDCD
performs well with both convex and non-convex objectives.

6. CONCLUSION

We have introduced TDCD, a communication efficient decentralized
algorithm for a multi tier network model with both horizontally and
vertically partitioned data. We provided theoretical analysis of the
algorithm convergence and its dependence on the number of verti-

cal partitions, the number of clients in each hub, and the number of
local iterations. Finally, we presented experimental results to show
convergence of our algorithm in practice. In future work, we plan
to explore the possibility of hubs communicating with each other
asynchronously to share information.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

7. REFERENCES

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien
Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz,
Zachary Charles, Graham Cormode, Rachel Cummings, et al.,
“Advances and open problems in federated learning,” arXiv
preprint arXiv:1912.04977, 2019.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong,
“Federated machine learning: Concept and applications,” ACM
Trans. Intell. Syst. Technol., vol. 10, no. 2, Jan. 2019.

C Sun, L Ippel, J van Soest, B Wouters, A Malic, O Adekunle,
B van den Berg, O Mussmann, A Koster, C van der Kallen,
et al., “A privacy-preserving infrastructure for analyzing per-
sonal health data in a vertically partitioned scenario.,” Studies
in health technology and informatics, vol. 264, pp. 373, 2019.

Shengwen Yang, Bing Ren, Xuhui Zhou, and Liping Liu,
“Parallel distributed logistic regression for vertical federated
learning without third-party coordinator,” arXiv preprint
arXiv:1911.09824, 2019.

Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong
Cheng, Tianjian Chen, Mingyi Hong, and Qiang Yang, “A
communication-efficient collaborative learning framework for
distributed features,” arXiv preprint arXiv:1912.11187, 2019,
Presented in Workshop on Federated Learning for Data Privacy
and Confidentiality, NeuRIPS 2019.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, et al., “Communication-efficient learning of
deep networks from decentralized data,” arXiv preprint
arXiv:1602.05629, 2016.

Jakub Kone¢ny, H Brendan McMahan, Daniel Ramage, and
Peter Richtdrik, “Federated optimization: Distributed ma-
chine learning for on-device intelligence,” arXiv preprint
arXiv:1610.02527, 2016.

Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard
Nock, Giorgio Patrini, Guillaume Smith, and Brian Thorne,
“Private federated learning on vertically partitioned data via
entity resolution and additively homomorphic encryption,”
arXiv preprint arXiv:1711.10677, 2017.

Siwei Feng and Han Yu, “Multi-participant multi-class vertical
federated learning,” arXiv preprint arXiv:2001.11154, 2020.

Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin, “Vafi:
a method of vertical asynchronous federated learning,” arXiv
preprint arXiv:2007.06081, 2020.

Sebastian U Stich, “Local sgd converges fast and communi-
cates little,” arXiv preprint arXiv:1805.09767, 2018.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi,
Ameet Talwalkar, and Virginia Smith, “Federated optimiza-
tion in heterogeneous networks,” in Proceedings of Machine
Learning and Systems 2020, MLSys 2020, Austin, TX, USA,
March 2-4, 2020, Inderjit S. Dhillon, Dimitris S. Papailiopou-
los, and Vivienne Sze, Eds. 2020, mlsys.org.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Jianyu Wang and Gauri Joshi, “Cooperative sgd: A uni-
fied framework for the design and analysis of communication-
efficient sgd algorithms,” arXiv preprint arXiv:1808.07576,
2018.

M. S. H. Abad, E. Ozfatura, D. GUndUz, and O. Ercetin, “Hi-
erarchical federated learning across heterogeneous cellular net-
works,” in ICASSP 2020 - 2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
2020, pp. 8866—8870.

Timothy Castiglia, Anirban Das, and Stacy Patterson, “Multi-
level local SGD: Distributed SGD for heterogeneous hierarchi-
cal networks,” in International Conference on Learning Rep-
resentations, 2021.

L. Liu, J. Zhang, S. H. Song, and K. B. Letaief, “Client-edge-
cloud hierarchical federated learning,” in ICC 2020 - 2020
IEEE International Conference on Communications (ICC),

2020, pp. 1-6.

Anirban Das and Stacy Patterson, “Multi-tier federated
learning for vertically partitioned data,” arXiv preprint
arXiv:2102.03620, 2021.

Kam Hamidieh, “A data-driven statistical model for predicting
the critical temperature of a superconductor,” Computational
Materials Science, vol. 154, pp. 346-354, 2018.

L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon,
L. Jackel, Y. LeCun, U. Muller, E. Sackinger, P. Simard, et al.,
“Comparison of classifier methods: a case study in handwritten
digit recognition,” in Proceedings of the 12th IAPR Interna-
tional Conference on Pattern Recognition. IEEE, 1994, vol. 2,
pp. 77-82.

	 Introduction
	 SYSTEM MODEL AND PROBLEM FORMULATION
	 System Architecture and Training Data
	 Loss Function

	 Proposed Algorithm
	 Convergence Analysis
	 Experimental Results
	 Datasets
	 Results

	 CONCLUSION
	 References

