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Recent advancements in the realization of highly efficient shot noise-limited direct detectors now enable
atomically-resolved in situ TEM image time-series to be acquired with temporal resolutions in the millisecond
(ms) regime [1]. Many catalysts exhibit turnover frequencies on the order of 10" — 10? sec™', so the opportunity
to visualize atomic behavior with high time resolution holds much promise for understanding the chemical
transformation processes occurring on catalyst surfaces. Unfortunately, acquiring in situ TEM time-series with
~ms temporal resolution necessarily produces datasets severely degraded by shot noise [2]. For typical atomic-
resolution in situ TEM imaging conditions, at high frame rates the average dose in each frame can be <1 e
per pixel. Following Poisson statistics, counted images with an average dose < 1 e per pixel necessarily have
a signal-to-noise ratio less than unity, and consequently, ascertaining the structure in the image becomes a
major obstacle. There is a pressing need for sophisticated noise reduction techniques that both (1) preserve the
temporal resolution of the image time-series and (2) facilitate the retrieval of atomic-level structural features
at the aperiodic catalyst surface.

Deep learning-based convolutional neural networks (CNN5s) achieve state-of-the-art denoising performance on
natural images and are an emerging tool in various fields of scientific imaging, including in electron
microscopy [3, 4, 5]. In the context of catalysis, the potentially fluctuating atomic structure at the catalyst
surface is of principal scientific interest, and so it is critical to establish methods for evaluating the agreement
between the noisy observation and the structure that appears in the network-denoised image. As far as we are
aware, such analysis is not found in the literature on CNNs for electron micrograph denoising. Moreover, the
mechanisms by which trained networks successfully denoise are often treated as a “black box”. Revealing
these mechanisms, however, is a key step towards improving this methodology and understanding its
limitations.

We have developed multiple deep CNN denoising techniques for atomic-resolution TEM time-series of
catalyst nanoparticles [6, 7, 8]. In one approach (Figure 1), we train a supervised CNN on a dataset of simulated
images produced through multislice calculations. Then we apply the trained network to an experimentally
acquired 25 ms/frame in situ ETEM time-series of a Pt/CeO, catalyst in N, gas, denoising each frame
individually. We have developed an approach based on statistical likelihood to quantitatively measure the
agreement between the noisy observation and the atomic-level structure present in the network-denoised
image, which we call a likelihood map. In another approach, we develop an unsupervised deep video denoising
network that is trained just on the noisy time-series itself. This network thus does not rely on the availability
of noiseless ground truth images, which can be advantageous in terms of time or required when simulations
are not feasible. Additionally, in contrast to the frame-by-frame method, this network explicitly incorporates
information present in adjacent frames. Analyzing the network’s equivalent filter, which reveals the
mechanisms used by the network to denoise any part of a noisy image, shows that this allows the network to
perform spatiotemporal filtering adapted to the local structures and motion of the underlying signal (Figure
2). This presentation will discuss our recent work on these networks; the aim will be to facilitate discussion on
how to generate methodologies that are generalizable to a variety of materials systems and imaging conditions

[9].



Microsc. Microanal. 27 (Suppl 1), 2021 263

Noisy Simulated Image Convolutional Neural Network Denoised Predic%

Input to network
Clean Simulated Image
(i.e., ground truth)
Tralmng

Network objective is to minimize
L2 norm or mean squared error
between output and clean reference

Output
_—

Training done with
ground truth and noisy
images produced through

TEM image simulation
and Poisson noise model

Ncnsy Real Image

How good is the
network’s prediction?
Compare output to clean

simulated image (ground truth) /

Denoised Real Image Likelihood Map

003
0.02
= ,: pl 001
4 ¥ n ® 0.00
; B :- = * . -o0
; ol .
@ 002
@ -0 0%
For more detail, see the Here we provide a quantification of the agreement
mw frame in Figure 1a between the noisy experimental observation and the network-denoised image /

Figure 1. Supervised deep convolutional neural network training, application, and evaluation process. (Top) The
network is trained on a large dataset of multislice TEM image simulations. (Bottom) The trained network is applied
to experimental data taken under similar imaging conditions. The performance of the network on real images lacking
noise-free counterparts can be evaluated through a statistical likelihood analysis, which allows one to quantify the
agreement between the noisy experimental observation and the structure in the denoised image.

ne d; flt—2,i) ft—1,i) f(t i) ft+1,0) ft+2,0)

Figure 2. Investigating the mechanisms used by the unsupervised video denoising network to denoise (top) a Pt
atomic column near the catalyst surface and (bottom) a Ce atomic column within the CeO2 support. The left column
labeled nt shows regions of interest from the experimental 25 ms/frame in situ TEM time-series at a point in time,
t. The corresponding denoised frames, dt, are shown next to it. As shown in the next 5 columns, at each point in
time the network uses information from two preceding and two consecutive frames. The network’s equivalent filter
at the central pixel, i, is shown in the color plots, which gives insight into the spatiotemporal regions of the raw
input that have the most effect on the denoised output.
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