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ABSTRACT

Motivated by the Internet of Things (IoT) and Cyber-Physical Sys-
tems (CPS), we consider dynamic wireless fading networks, where
each incoming flow has a random service demand and leaves the
system once its service request is completed. In such networks, one
of the primary goals of network algorithm design is to achieve short-
term fairness that characterizes how often each flow is served, in
addition to the more traditional goals such as throughput-optimality
and delay-insensitivity to the flow size distribution. In wireline net-
works, all of these desired properties can be achieved by the round-
robin scheduling algorithm. In the context of wireless networks, a
natural extension of round-robin scheduling has been developed
in the last few years through the use of a counter called the Time-
Since-Last-Service (TSLS) that keeps track of the time that passed
since the last service time of each flow. However, the performance
of this round-robin-like algorithm has been primarily studied in
the context of persistent flows that continuously inject packets
into the network and do not ever leave the network. The analysis
of dynamic flow arrivals and departures is challenging since each
individual flow experiences independent wireless fading and thus,
flows cannot be served in a strict round-robin manner. In this paper,
we overcome this difficulty by exploring the intricate dynamics
of TSLS-based algorithm and show that flows are provided round-
robin-like service with a very high probability. Consequently, we
then show that our algorithm can achieve throughput-optimality.
Moreover, through simulations, we demonstrate that the proposed
TSLS-based algorithm also exhibits desired properties such as delay-
insensitivity and excellent short-term fairness performance in the
presence of dynamic flows over wireless fading channels.
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1 INTRODUCTION

In the last decade, there has been an increasing research interest in
dynamic wireless fading networks, where each incoming flow has
a random service demand and leaves the system once its service
request is completed (commonly referred to as flow-level dynamic
model). This is primarily motivated by IoT and CPS applications
where many small devices are expected to generate varying chunks
of intermittent data to be communicated over wireless fading chan-
nels to a common server. For example, in a smart-home IoT appli-
cation, some wireless sensors are monitoring air conditions (e.g.,
temperature and humidity) while others are monitoring the safety
of the house. Hence, each wireless sensor intermittently generates
bursty data and requires the network algorithm to quickly serve
the generated data. While the latter property can be achieved by
periodically scheduling transmissions for each sensor, it is hard to
adapt to unpredictable traffic patterns in the presence of wireless
interference and channel fading. As such, in these applications, the
goals of the network algorithm design are to (i) support as many
flows as possible (i.e., maximize system throughput.); (ii) guarantee
that the delay is insensitive to the flow size distribution and thus
is robust to the burstiness of the network traffic; (iii) serve flows
as regularly as possible (i.e., maximizing short-term fairness, mea-
sured by the mean and the standard deviation of the inter-service
time of each flow, characterizing how often the flow is served.)

In wireline networks, the aforementioned goals can be achieved
by round-robin and its variants, such as Weighted Fair Queueing
(WFQ) [5]. A well known extension of WFQ to wireless networks
was developed in [15], where service is provided for each flow based
on how far ahead or behind it compared to ideal WFQ. However,
the algorithm was primarily designed for ON-OFF channels and
relies on hyperparameters that limit the amount by which a flow
can get ahead or fall behind ideal WFQ. The closest prior work [9]
on emulating round-robin is through the use of a counter called
the Time-Since-Last-Service (TSLS), which keeps track of the time
since the last service of each flow. However, [9] focused on wireless
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networks consisting of flows that persist in the network forever.
Although the proposed algorithm in [9] can be slightly modified
to adapt to the case of dynamic flows, its throughput has been
notoriously difficult to study, let alone its delay and short-term
fairness performance. With fading, each individual flow experiences
independent channel fading and leaves the network once it receives
the desired amount of service. Therefore, despite incorporating the
TSLS counter into the decision, flows are not served in an exact
round-robin manner due to the wireless channel fading. This greatly
complicates our analysis.

In this paper, we are able to show that the TSLS-based schedul-
ing algorithm continues to be throughput-optimal in the presence
of dynamic flows and wireless channel fading. Traditional fluid-
limit-based techniques (e.g., [4, 18]) for throughput analysis cannot
capture the discontinuities in the dynamics of TSLS counters and
thus, cannot be applied in our considered network setups. Instead,
our proof explicitly explores the intricate dynamics of the proposed
TSLS-based scheduling algorithm. In particular, we establish the
following two facts: (i) If the maximum TSLS value or the TSLS
value of a flow that receives the service is large enough, then flows
arriving after that flow do not receive any service with a very high
probability and thus, flows are served in a round-robin fashion
with a very high probability; (ii) If the maximum age value is large
enough, then our proposed TSLS-based algorithm performs simi-
larly to the age-based policy, which has already been shown to be
throughput-optimal in the presence of dynamic flows and wireless
fading (see [19]). Here, the age of a flow is defined as the amount
of the time the flow staying in the system since it joined. To the
best of our knowledge, this is the first work to characterize the
round-robin behavior in a probabilistic way and thus the proof may
be of independent interest. Moreover, through simulation results,
we demonstrate that the proposed TSLS-based algorithm also ex-
hibits desired properties such as delay-insensitivity and excellent
short-term fairness performance in the presence of dynamic flows
over fading channels.

The remainder of this paper is organized as follows: Section 2 re-
views related work. Section 3 introduces the system model. Section
4 describes the TSLS-based algorithm and shows its throughput-
optimality. Section 5 presents simulation results to demonstrate that
the proposed TSLS-based algorithm also exhibits delay-insensitivity
and short-term fairness performance. Section 6 presents detailed
proofs of the throughput-optimality of the proposed TSLS-based
algorithm. Section 7 concludes this paper.

2 PRIOR WORK AND CONTEXT

To put our work in comparative perspective, we now provide an
overview of prior on wireless scheduling broadly, and round-robin-
like emulations for dynamic flows specifically, and further, provide
a brief discussion of our algorithm design philosophy in the context
of prior work.

a) Scheduling Design for Dynamic Flows: In the presence of
dynamic flows, the well-known queue-length-based MaxWeight
algorithm (e.g., [20, 21]) is not throughput-optimal (see [22]). The
main reason is that the queue-length-based MaxWeight algorithm
myopically serves a flow with the maximum product of the residual
size of the dynamic flow and its corresponding channel rate, and
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thus the flows with small backlogs may stay in the network for-
ever. In [22], the authors developed a Maximum-Channel-Rate-First
(MCRE) policy that always serves a flow with the maximum channel
rate and showed that the proposed MCRF policy is throughput-
optimal. This is because the probability of at least one flow having
the maximum channel rate is close to 1 when there are sufficiently
many flows in the system, which implies that it does not waste
any service and thus does not incur any throughput loss under
the MCREF policy. However, the MCRF policy may yield poor short-
term fairness performance. Indeed, consider an extreme case of two
classes of dynamic flows, where each class of flows has the same
deterministic channel rate. In such a case, the MCREF policy always
first serves the high-channel-rate flows and then serves the low-
channel-rate flows if there is no any high-channel-rate flows in the
system, and thus it does not behave like round-robin, yielding poor
short-term fairness. In another interesting work [19], the authors
proposed an age-based policy that serves a flow with the maximum
product of age of a flow and its corresponding channel rate, where
the age of a flow is defined as the amount of time the flow staying
in the system since it joined. While it achieves maximum system
throughput, it suffers from both poor delay and short-term fairness
performance. For example, in a non-fading scenario with uniform
channel rate, the age-based policy serves flows in the First-Come-
First-Serve (FCFS) manner (also see [8]), resulting in the sensitive
delay performance and poor short-term fairness.

b) Wireless Round-Robin Emulations: In the earliest on round-
robin-like algorithm design for wireless network [15], the authors
proposed a variant of WFQ that heuristically limits the amount
by which a flow would lead or lag behind a true WFQ scheduler.
Another interesting line of work (see [1, 2]) generalized the ideas
of processor-sharing in bandwidth sharing networks (e.g., [16, 17])
and developed balance fairness schedulers in wireless networks
that exhibit delay-insensitivity property. More recently, in [9], a
round-robin-like algorithm was proposed in wireless networks
through the use of TSLS counter in the scheduling decision. How-
ever, all these works considered the case of persistent flows that
continuously inject packets into the network and will never leave
the system. Thus, they did not address round-robin-like algorithm
design for dynamic flows over wireless fading channels, which is
of practical interest to the growing IoT and CPS applications.

c) Our Design Philosophy: As mentioned above, the simplest
way to maximize throughput in dynamic wireless networks with
fading is to transmit a flow with maximum channel rate. However,
this policy can be grossly unfair to flows which rarely see good
channel states. The other extreme is to always provide service to
the flow with the maximum TSLS (recall, TSLS is time since last
service), but this can result in poor throughput since the flow with
the maximum TSLS can be in a poor channel state. So it is clear that
one should tradeoff the benefits of the two approaches. A natural
idea is to break ties among flows with the maximum rates in favor
of those with maximum TSLS. But again this could be unfair for
those flows which never see good channel states. So we adopt the
policy in [9] which schedules users with the largest product of
current rate and an appropriate function of TSLS. We note that the
model in [9] is very different (cf. Section 1), and it is not obvious
that the algorithm will perform well in the truly dynamic setup
considered in this paper. The main contribution of this paper is to
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establish through a combination of analysis and simulation that
the algorithm indeed performs well in the dynamic setting with
wireless fading.

3 SYSTEM MODEL

We consider the operation of a base station that serves dynamically
arriving flows with random workloads over independently wireless
fading channels. In particular, we consider I different classes of
flows, where each class of flows have different arrival and channel
statistics. We assume that the system operates in slotted time with
normalized slots ¢t € {0, 1,2,...}. Let A;[¢] denote the number of
class-i flows arriving in time slot ¢; where A;[¢] is independently and
identically distributed (i.i.d.) over time with mean A;, and A;[t] <
AIinaX for some positive finite number A‘i“ax, Vt > 0. We also use
Ai[t] to denote the set of newly arriving class-i flows in time slot
t. Also, we assume that newly arriving flows cannot be scheduled
until the next time slot. We use F; j[t] to denote the number of
packets of newly arriving flow j of class-i in time slot t; where
F; j[t] is iid. over flows with mean n; > 0 and F; j[t] < F/"®
for some positive finite number Flmax, Vt > 0. We assume that all
flows have K different channel rates c1, ¢z, ...,cxg with 0 = ¢; <
€2 <...<cg = ¢ where ¢y is a positive integer denoting that
at most ¢ packets can be delivered in one time slot. Let C; j[t]
denote the channel rate of flow j of class-i in time slot ¢, and C;_;[]
is i.i.d. over time and independently distributed over flows with
Pr{C; ;[t] = cx} = Pik- Vi =1,2,....1 Vk = 1,2,...,K. We
assume that each class of flows have a strictly positive probability
of having a maximum channel rate, i.e.,, p; g > 0,Vi=1,2,...,1.

Let N;[t] be the set of class-i flows in the system in time slot ¢.
Due to the wireless interference, at most one flow can be served in
each time slot. Let S; ;[t] = 1if flow j of class-i is scheduled in time
slot t and S; j[t] = 0 otherwise. Let S[t] = (S;,;[t], Vi € Nj[t],i =
1,2,...,I) denote a feasible schedule, where at most one element
is equal to one. We use S to denote the collection of all feasible
schedules. Let R; j[¢] denote the number of residual packets of flow
Jj of class-i in time slot ¢, which are awaiting service. The flow leaves
the system once all its packets have been served, i.e., its residual
flow size reduces to 0. Therefore, the dynamics of R; ;[t] for flow j
of class-i can be written as:

Ri,j[t + 1] = max {Ri,j[t] — S,’J[t] Ci’j[t], 0} . (1)

We use p; £ L;I|E [[Fi,j[t]/cmax]] to denote the traffic intensity
of class-i flows, where [x] denotes the minimum integer no smaller
than x. p; measures the average minimum number of slots required
to complete service requests of an incoming class-i flow. In this
paper, we consider the policies under which the system evolves
as a Markov Chain. We call the system stable if the underlying
Markov Chain is positive recurrent. It has been shown in [22] that
p & Zle pi < 1in order to keep the above system stable. We
say that a scheduler is throughput-optimal if it achieves the system
stability for any traffic intensity p < 1.

4 WIRELESS ROUND-ROBIN DESIGN

In this work, we are interested in developing provably efficient
scheduling policies that can allocate the time-varying resources
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fairly amongst the dynamic flows so that: (i) good channel con-
ditions can be opportunistically utilized without significantly de-
laying flows with bad channel statistics, leading to throughput-
optimality; and (ii) flows with large sizes do not unfairly block
flows with small sizes from completing, thereby yielding both delay-
insensitivity to the flow size distribution and short-term fairness.
All of these properties are critical for the service of dynamically
generated service requests in a shared wireless system.

4.1 TSLS-Based Algorithm Design

We define a dynamic parameter that facilitates the description of
our policy. Let W;_ ;[t] be a counter of flow j of class-i, called Time-
Since-Last-Service (TSLS), to keep track of the time that passed
since flow j of class-i was last served. In particular, W; j[t] increases
by 1 in each time slot when flow j of class-i does not get service,
either because it is not scheduled or because it has zero channel
rate, and drops to 0 otherwise. More precisely, the evolution of
W, j[t] is described as follows:

Wi jlt +1] = (Wi,;[t] +1) (1 - ]l{si,,-[t]cl-,j[t]>o}), ()

where 1 () isan indicator function.
To facilitate the flexibility in the algorithm design, we define a
set of functions:

G2 {f € ¥ :forany k > 1, b > 0, there exists a constant ¢ > 0
such that f(x) —c¢ < f(kx +b) < f(x) + ¢,¥x > 0},

where ¥ is the set of non-negative, non-decreasing, differentiable
and concave functions f(-) : Ry — Ry with limy—e f(y) = oo
and f(0) = 0. Some examples of functions that are in class G
are f(x) = log(1 + x) and f(x) = log(1 + x)/g(x), where g(x) is
an arbitrary positive, non-decreasing, and differentiable function
which makes f(x) an non-decreasing and concave function. Then,
the scheduler that we will study can be described as in Algorithm 1.

ALGORITHM 1 (TSLS-BASED SCHEDULING ALGORITHM). In each
time slot t, select a feasible schedule S*[t] € S such that

I

S*[t] € argmaxz Z £ (Wi j[2]) Ci,j[£1Si,512),

SIIES =1 jeNi[1]

©)

where f € G.

The TSLS-based scheduling algorithm is exactly the round-robin
algorithm in the non-fading case with homogeneous channel rates.
In the presence of heterogeneous wireless channel fading, our pro-
posed TSLS-based Scheduler tends to serve a flow that possesses
high TSLS value and high achievable channel rate. Since high TSLS
value for a flow implies that it has not received service for a long
time, prioritizing high TSLS yields round-robin-like behavior. Yet,
the presence of the rate C; ;[t] in (3) also incorporates the channel
conditions into the decision. Here, we note that TSLS counter was
first introduced in [11-14].

We note that a similar TSLS-based has also appeared in our
earlier work [9] in the context of persistent flows that continuously
inject packets into the network and never leave the system. In
the presence of dynamic flows, each individual flow expriences
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Figure 1: Throughput performance

an independent wireless fading and thus flows are not served in
an exact round-robin manner under the TSLS-based scheduling
algorithm. Therefore, the proof techniques in [9] cannot be applied
in the case of dynamic flows and hence new proof strategies are
required to establish the throughput-optimality of the TSLS-based
scheduling algorithm. In addition, the standard quadratic Lyapunov-
based analyses as in [3] have unresolved technical flaws. Also, fluid-
limit-based techniques (e.g., [4, 6, 19]) are difficult to capture the
sharp dynamics of TSLS counters.

4.2 Main Result: Throughput-Optimality

In this section we present the main result that establishes the
throughput-optimality of the TSLS-based scheduler presented in
Algorithm 1. The most relevant work [9] to our work provides
throughput-optimality of a TSLS-based design in the context of
persistent flows. With the following result, we are now able to ex-
tend the setting of dynamic flows, where each flow independently
experiences channel fading.

THEOREM 1. The TSLS-based Scheduling Algorithm is throughput-
optimal, i.e., it stabilizes the dynamic wireless fading network for any
stabilizable traffic intensity p < 1.

We note that this seemingly simple extension from persistent
flows to dynamic flows presents significant new challenges to the
analysis that demand substantially new arguments to establish.
Accordingly, we dedicate Section 6 to present its proof. The proof
explicitly explores the intricate dynamics of the TSLS-based sched-
uling algorithm and characterizes its round-robin behavior in a
probabilistic way. Thus, the proof may be of independent inter-
est in the analysis of other policies whereby fading and age-based
schedulers are employed.

Subsequently, in Section 5, we will numerically demonstrate
the delay-insensitivity and short-term fairness advantages of the
TSLS-based algorithm due to its round-robin-like nature.

5 SIMULATIONS

In this section, we conduct simulations to compare our proposed
TSLS-based scheduling policy with the logarithmic function (i.e.,
f(x) = log(1+x)) to both age-based scheduling policy and Maximum-
Channel-Rate-First (MCRF) policy with two different tie-breaking
rules. Here, the age-based scheduling policy always serves a flow
with the maximum product of age of the flow and its associated

Figure 2: Average delay performance
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channel rate. The MCRF policy always serves a flow with the
maximum channel rate with two tie-breaking rules: 1) random
tie-breaking: if there are multiple flows achieving the maximum
channel rate, then it randomly serves one of them; 2) TSLS-based tie-
breaking: it serves the flow with the maximum TSLS value among
all flows having the maximum channel rate.

We consider two classes of flows, where each class of flows
arrive at the system independently with Bernoulli distribution with
the same rate A. The flow size of the first class is equal to 3 with
probability 1/2 and 1 otherwise. The flow size of the second class
has the following distribution: it is equal to M with probability
1/(M — 1) and 1 otherwise, where M > 2 is some parameter that
measures the burstiness of the flow size. Indeed, the mean flow size
of the second class is always equal to 2 and its variance is equal to
(M — 2), which linearly increases with the parameter M. Each flow
of the first class has channel rates of 5 and 10 with corresponding
probability of 0.01 and 0.99, respectively, while each flow of the
second class has channel rates of 1 and 10 with corresponding
probability of 0.99 and 0.01, respectively.

We evaluate the system performance in terms of throughput,
mean delay, and short-term fairness. Fig. 1 shows the throughput
performance when M = 20. In such a case, the throughput region
is {1 : A < 0.4872} and thus we let A = 0.48720, where 0 € [0, 1)
is called normalized arrival load. From Fig. 1, we can observe that
all four policies stabilize the system for any 0 € [0, 1) in the above
network setup, which validate the throughput-optimality of these
four policies including our proposed TSLS-based policy.

In order to evaluate the delay-insensitivity performance, we vary
M from 10 to 100 (i.e., the variance of the flow size of the second class
linearly increases) when the normalized arrival load 0 is 0.9. From
Fig. 2, we can observe that the mean delay always keeps the same
under both TSLS-based and MCRF policies with both tie-breaking
rules, while it linearly increases under the age-based policy. This
indicates that the delay performance under the age-based policy is
sensitive to the variance of the flow size, which it is independent of
variance of the flow size under both TSLS-based and MCREF policies.
The reason lies in that the age-based policy roughly serves flows
in a First-Come-First-Serve manner with a very high probability.
In contrast, our proposed TSLS-based policy mimics the round-
robin and thus yields delay-insensitive performance. Moreover,
we can observe from Fig. 2 that both MCRF with TSLS-based tie-
breaking and our TSLS-based policy outperforms the MCRF with
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random tie-breaking in terms of delay performance. This indicates
the advantage of incorporating TSLS into the algorithm design.

Fig. 3 further compares the short-term fairness performance
among TSLS-based policy and MCRF with two tie-breaking rules,
where we plot the mean and 1.96 standard deviation (95% confidence
interval) of the inter-service time of each flow. We can observe from
Fig. 3 that our proposed TSLS-based policy outperforms the MCRF
with random tie-breaking and performs slightly better than the
MCRF with TSLS-based tie-breaking, especially in heavily loaded
regimes.

In terms of heterogeneous maximum channel rates, our TSLS-
based policy significantly outperforms MCRF with both tie-breaking
rules. Indeed, consider two classes of flows with Bernoulli arrival
processes. Each flow of the first class has the size of 5, 10, and 15
with corresponding probability 0.3, 0.5, and 0.2, while each flow
of the second class has the same size with different probability
distribution (0.6, 0.3, 0.1). Each flow of the first class has channel
rates of 0, 1, 2, 5 and 10 with corresponding probability of 0.1, 0.2,
0.2, 0.2, and 0.3, respectively, while each flow of the second class
has channel rates of 0 and 1 with corresponding probability of 0.2
and 0.8, respectively. The performance of different policies in this
scenario is captured in the next figure.
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Figure 4: Performance comparison in the case of heteroge-
neous maximum channel rates

From Fig. 4a and Fig. 4b, we can observe that our TSLS-based pol-
icy significantly outperforms MCRF with both tie-breaking rules in
terms of both delay and short-term fairness performance, especially
in heavily loaded regimes. This is because that in terms of hetero-
geneous maximum channel rates, MCRF with both tie-breaking
rules gave priority to flows with higher rates, while our TSLS-based
still preserves round-robin nature and thus yields better delay and
short-term fairness performance.

6 PROOF OF THROUGHPUT-OPTIMALITY

While throughput-optimality of the TSLS-based scheduler has been
established in our earlier work [9] in the context of persistent flows,
its analysis in presence of dynamic flows with wireless fading is
highly non-trivial. Indeed, in the context of persistent flows, the
throughout-optimality is built on the following two facts: (i) flows
are served in an exact round-robin manner within each link under
the TSLS-based scheduler; (ii) the policy performs similarly to the
age-based policy across links. However, in the presence of dynamic
flows, each individual flow experiences an independent channel
fading and thus flows are not served in a round-robin manner
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anymore. In such a case, the arguments in [9] do not apply and new
proof strategies are required to establish the throughout-optimality
of the TSLS-based scheduler in the presence of dynamic flows.

In this section, we will prove Theorem 1. The proof is built on
the following two facts: i) If the maximum TSLS value or the TSLS
value of a flow that receives the service is large enough, then flows
arriving after that flow do not receive any service with a very high
probability and thus flows are served in a round-robin fashion with
a very high probability (see Lemma 1); ii) If the maximum age
value is large enough, then our TSLS-based algorithm performs
similarly to the age-based policy (see Lemma 2), which has already
been shown to be throughput-optimal in the case of homogeneous
maximum channel rates (see [19]).

We first establish the first fact. Let j[¢] be the index of the flow
that is served in time slot ¢ or the flow with the maximum TSLS
in time slot ¢. We use W[t] to denote the TSLS value of flow j[t],

which implies that flow j|[t] was served in time slot ¢t — W[t]. Then,
we have the following lemma.

LEMMA 1. Foranyy € (0, 1), there exists a sufficiently large J(y) >
0 such that given W[t] = b > J(y), with probability at least 1 — y,
that all flows arriving after timet — (1 — y)W[t] — 1 are not served
in the interval [t — (1 — y)W[t], t—1], ie,

M

re[t—(1-y)W[t],t-1]

Pr FelWitl=bt >1-y, ()

where F; 2 {all flows arriving after time t — (1 — y)l/T/[t] —1 are not
served at time slot t}, 7 € [t — (1 —y)W[¢t],t —1].

ProoF. The proof consists of the following three steps: i) If W[t]
is large enough, with a very high probability, the amount of work-
load existing in time slot t — W(t]is large enough; ii) Step i) ensures
that flows arriving just slightly after t — W[t] are still present in
the system in time slot ¢; iii) Step ii) guarantees that flows arriving
slightly after time t — W{t] are not served before time slot ¢. Next,
we provide the outline of our proof and the details can be found in
our technical report [10].

We will first show step i). In particular, we will show that for
any y € (0, 1), there exists a sufficiently large Jo(y) > 0 such that
for any b > Jo(y), we have

>1- L

pr{Q [t - Witl| = Wit - k)| Wie] = bf > 1~ -

®)

2b?

_ 2
where (b) £ 1+log, 72—, (@) £ (1-(a-1)/p; P P

a is some constant between 1 and 1 + 5k and 7 is the index of

class that flow j belongs to.

Next, we will show step ii), i.e., if W[t] is large enough, then
with a very high probability, flows arriving just slightly after flow
Jlt] are still present in the system in time slot ¢. In particular, for
any y € (0, 1), there exists a sufficiently large J(y) > 0 such that for

any b > J(y),

Pr{Q(t = (1= )Wt} 0) = Qu(WIEDIW(t] = b} >
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where Qq(x) 'é v In(y /x2)/In(1 = pin) or equivalently (1 —
pmin)Qﬂ(x)/dex = y/x? for any x > 1, y™& £ maxi{F?‘aX/cmax],
and pin £ min;=1, .. 1pi,K-

Building on both steps i) and ii), we are ready to prove step iii)
(cf., (4)). For some 7 € [t — (1 —y)W[t], t — 1], we have

Pr {E

W[t] = b}

(g) Pr {all flows in N(¢t — (1 — y)VT/[t], 7) do not have the rate
M| Wt] = b}

b W max
2B [(1 = pyin) Q00D 711y =
Wt = b]

d (1 W] max —~
D[ (1 pria) QAW g i) =

(

(C) —_ —_ W max
<E [(1 = i) QWL Y

+E [(1 - pmin)Q(t—(l—Y)W[t]’t)/Vmaxﬂg)W[t] - b]

(e) % —~ — |~
E| =L —1gW[t] = b +Pr [EWIe1 = b
SE| = teWi = b + r{&[wie = b}
*)
<L )

where step (a) follows from the fact that if at least one flow in
Nt -(1- y)W[t], 7) has the maximum channel rate cpax, then
the flow coming after time ¢t — (1 — y)VT/'[t] cannot be served in
time slot 7 under the TSLS-based policy (i.e., event ¥ happens); (b)
uses the fact that the number of flows in N(¢t — (1 — y)W[t], ) is at
least Q(¢t — (1 — y)W[t], T)/ymax ymax — maxi[%-‘, and ppin =
min;—1, . pi K; (c) uses the fact that Q(z, t) is non-increasing in
t by its definition and the fact that (1 — ppin)* is non-increasing in
x; (d) is true for the event & £ {Q(t — (1 - y)W[t], £) < Qo(W[t])};
(e) follows from the fact that (1 — pyin)* is non-increasing and the
definition of Q(x); (f) uses inequality (6). Therefore, we have

U

re[t—(1-y)W[t],t-1]

Pr F W[t =b

(g) Pr {E
re[t—(1-y)b,t-1]

Wlt] = b}

b
(S)zl (2)

, SV ®)

where step (a) uses the union bound; (b) uses (7); (c) holds since
J(y) is sufficiently large and b > J(y). Hence, we have the desired
result. =

In order to establish the second fact that the TSLS-based policy
performs similarly to the age-based policy when the maximum age
of he flow is large enough. We introduce T; j[t] to denote the age
of flow j of class-i in time slot ¢, whereby T; ;[¢] starts from 0 at its
arrival and is incremented (by 1) in each time slot until flow j of
class-i leaves the system. More precisely, the evolution of T; ;[t]
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can be written as
Ty jlt + 1] = (T; j[t] + 1) (1 - IL{R,-,,-[t+1j=o})’
where 1.y is an indicator function.

LEmMMA 2. Foranyy € (0, 1), we have
Pr {f(T™[¢]) < fFW™[t]) + G()|T™™[e]} = (1 -y,

where G(y) is some positive value depending ony, f € G, { =
(@4 1/ =)™ = 1), P = max; PR, and A 2 X1 2.

ProoF. Note that flows at time ¢ consist of flows arriving be-
tween t — W™ [¢] and t — 1 and flows that have already existed
in time slot t — Wipax[t]. Since there are at most A™?* (recall that
AT = max; A7) flows arriving at the system in each time slot,
the number of flows arriving between t — W™#*[¢] and ¢ is at most
AMAXWMAX (] Tn addition, there are at most W™2*[¢] + 1 flows that
have already existed in time slot t — W™#[¢], because i) at most
one existing flow has TSLS value of zero since it received service in
time slot t — W™X([¢] — 1; (ii) other existing flows must get service
at least once between t — W™ [¢] and t — 1. Otherwise, at least one
of these flows has TSLS value greater than W™#[¢]. This implies
that

IN[H]] < (A + WP [t] + 1,V > 0, (10)
holds for any sample path, where |A| denotes the cardinality of set
A.

Next, we will show that if T™#*[¢] > ]A(y) /{, then we have

pr{INIEl > 261 - peT™

Tma"[t]} >(1-p?2 a1

We use j™[t] to denote the index of one of flows with the
maximum age of T™#*[¢] in time slot ¢. Since each flow has at most
FMaX (recall that F™® = max; F"®) packets, flow j™[t] cannot
be served more than F™@ — 1 times between t — T™®[¢] and ¢ in
order for it to stay in the system in time slot ¢. Without loss of
generality, we assume that flow j™#%[¢] was served K times in the
interval [t —T™#[¢], t], where K = 0, 1,2, ..., F™®*—1. In particular,
we assume that flow j™@*[¢] was served in time slots 1, to, . . ., tK,
where t; > tp > ... > tg.Lettp =t — 1 and tg4q = t — T™¥[¢].
Therefore, the interval [t — T™#[t], t — 1] is partitioned into K + 1
subintervals (see Fig. 5); the k* h subinterval [k, tk—1] has length

of ap. T"™[t] (Vk = 1,2,...,K + 1), where aj, ap, .. ., ag,ag+1 > 0
K
and Zk:+11 ar =1
| ! | | } »
1 | T T ] >
tg+1 tg v L2 iy to
Il Il
t — TmaX[t] t
;max

Figure 5: Time interval partition: flow j™#*[¢] was served in

time slots t1, 3, ..., tg
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Hence, if { = l/((l + 1/ﬁ)FmaX - 1) for some f > 0, then, at

least one of the following inequalities should hold:

far = ¢,
Baz —a1 2 ¢,
K
Paxs1— ) e > ¢, (12)
k=1
Indeed, if all inequalities do not hold, then we have
m—1
Pam = Y ap <{¥m=12..  K+1. (13)
k=1
By using mathematical induction, it is easy to show
1 m-1
'Bam<§(l+ﬁ) ,Vm=12,...,K+1. (14)
By summing the above inequalities over m = 1,2,...,K + 1 and
utilizing the fact that ZIk(:ll ar =1, we have
K
K+1 1\t 1—(1+%)
,B<§Z(1+—) =g— (15)
m=1 B 1- (1 + l)
B
Hence, we have
1
——— <&, (1)
(1) -1
1+ B

Fmax
which contradicts with the fact that { = 1/ ((1 + %) - 1), be-

cause 1/((1 +1/pK - 1) strictly decreases with respect to K and
K=0,1,...,Fpax — 1.
Let k* be the smallest index such that
k*—1
Paj- — Z ag 2 ¢,
k=1
where we set f = A(1 — y)/2 and thus we have

=1+ 1/aa-p™ -1).

Consider the interval [tys, tg+_q]. Its length is ap-T™**[¢]. In
such a case, given any y € (0, 1), according to Lemma 1, if the
length ap-T™#*[t] is large enough, with a very high probability,
flows arriving between t« + (1 — y)ag-T™**[t] and t+_; cannot be
served. This implies that with a very high probability, the number of

Ly T
et +(1—y)age Tox[ ] Ail7]

2112:11 ar T™[¢] due to the fact that at most one flow can leave the
system in each time slot, i.e.,

2

1

i=1 r=tgx+(1—-y)ag T[]
k*-1

— Z akTmax[t])ak*Tmax[t] > J(}/)} 2 1_)/ (18)
k=1

flows in time slot ¢ is at least 21{21 >

ter s

Pr {|N[t]| > Aqlr]
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Given ap-T™¥*[t] = d, according to the Hoeffding’s inequality,
we have

I trx_q

25y

i=1 r=tp +(1-y)d
1 (1=y)d

Aflel £ 501 - y)d

=Pr Z Z Ajlr] < %(1 -y)d
i=1 =1
I (1-y)d 1
=Pr Z Ailr] =M1 -y)d < =5 (1~ y)d
i=1 7=1
22(1—y)d
<exp (—%) <7, (19)

where the last inequality holds for ap-T™®*[t] = d > J5(y) and
J3(y) > 0 depends on y.

In the rest of the proof, we omit the time index associated with
T™3X[t] and W™ [¢] due to space restrictions. Hence, we have

pr{INTA > %/1(1 g T

k*=1
- 2 e e T > Jif = - @0)
k=1

where J(y) £ max{J(y), Js(y)}.
Hence, according to the definition of k* (see (17)), we have

Pr{INTE = (T > Tp)/cf = -y )
where we use the fact that ag« > { (since f < 1).
By using inequality (10), we have
Pr {(Amax F WA 4 1 > ppmax|pmax f(y)/g}
2 (1-p), (22)

which implies

max - max max max
Pr T o gy € AT+ W 4[]
> (1-y)% (23)
Ingmax]l{Tmaij(y)/é’} < (AMEX 4 WM 4 1, we have
AmaX 4 q 1
max N max | -
T L mass iy < 7 oo @
which implies that
max _-rmax N max N
=T macs ey ¥ T L rmae Ty
AMEX 1 J(y)
<——— W — (25)
¢ ¢ ¢
Since f € G, there exists a G(y) such that
FT™™) < fWPH) + G(y). (26)

Therefore, we have
Pr {f(TmaX) < f(WmaX) + G(y)|Tmax}

> Pr {ngax (Amax + I)Wmax + 1|Tmax}

L 7)) <

>(1-y). (27)
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Hence, we have the desired result. O

CoroLLARY 1. Foranyy € (0,1), we have

1
— B f(W™[tD] + G(y).
Ty [f | +6(y

where G(y) is some positive value depending ony.

E [f(T™[t])] < (28)

Proor. In the rest of the proof, we omit the time index associ-
ated with T™@*[¢] and W™#[¢] due to space restrictions. Lemma 2
immediately implies

E [f(WmaX)|Tmax]
2 [ f(W™)|f(W™™) = f(T™) - G(y), T™*] (1 - y)?

> (F(T™) - G(y)) (1 =)™ (29)
Hence, we have
1
FI™) < GG B o). 60
-Y
By taking the expectation on both sides of the above inequality, we
have the desired result. O

Having established these lemmas and corollary, we are ready to
prove Proposition 1.

Proor. Consider the Lyapunov function

1

VRT) 2 Y 3 Rijf (Tij).

i=1jeN;

In the rest of the proof, due to the space restrictions, we omit the
time index t associated with various variables and vectors, and use
X* to denote the variable X[t + 1] without causing any confusion.
Then, similar to the steps in the proof of [9, Proposition 3.2], we
have

AV EVRT, T - V(R,T)

=2 (2 R (T) = D Reif (1))

=1 jent JEN;

I I
Sf(l)z Z +Z( Z Rijf' (Tij)
i=1jeA;

i=1 jeN;
_ Z f(‘/l/l,]) Si,jﬂ{ci.j:cma"})v
JEN;

{ Fij

Cmax

(1)

The detailed derivations can be found in our technical report [10].
Thus, we have

1 1
E[AVI<f() ) pi+ Y B[ 3 Rijf (Ti)
i=1 i=1  jeN;
— Z f (M/i,j) Si,j]l{C,-yj:cmax}] . (32)

JEN;
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Next, we consider the term IE [ % jen; Rijf'(Ti, 7] In particular,
we have

E Z Ri,jf’ (Ti,j) ymax_max

JEN;
t_(l_y)Wmax
(a) max Flmax /
< E Ai m Z f (t - T)
T=¢-—Tmax
-1

max max
W T

+ D> f=n ) Ryl

r=t—(1-y)Wmax41 JjeA;[T]
[Fmax Tmax
=E| AP {cm—} >, f'm
m=(1-y)Wmax
t-1

max max
W T

+ D f-n ) Ryl

t=t=(1-y)Wm¥+1 jeA;[r]
(®) ,max lm - max max ’
SAT | max (f(T™) = f(1 = )W™™) + (1))
i
-1

+IE

max max
W T

2,

| r=t—(1—y)Wmax41
t-1

2,

fle=0) Y Rijlelig,

JjeA;[r]

+IE

max -~max
wWHHET

fle=0) Y Rilelig,

| =112 pywmaxs jeAlr]
(E)Amax F;rlax Tmax Wmax ’
AT S [ (FTT) = f(A = )W) + £7(1))
-1
+IE > fle=1) D0 Rijlelig, [wme, T

L z=t—(1-y)Wmax4] jeA;[7]

max

A Lm—} (FA =PI =1 = f) + f/(1)). (33)

where step (a) follows from the fact that the amount of incoming
workload in each time slot is not greater than AT [Fmax /cmax],
(b) is true for & £ {W™3X > J(y)}, and both (b) and (c) use [9,
Lemma 3.4] that for any f € G,

My
D fm) < f(My) - FML) + £/(1),
m=ML
where My > My > 1.
Next, we consider the second term in (33). For any w > J(y), we
have

(34)

t—1
E fle=n) Y Rijlelw™ =w
|7=t—(1-y)Wmax+1 jeA;[r]
@ [ t-1
I f(t-1) Z R; j[7]|E1, W = w
| 7=t—(1-y)W™ma[¢]+1 jeA;[r]
Pr{& W™ =w} + Pr {§1|Wmax = w} .
t-1 -
Bl Y fe-0 3 RlelfE Wt = w
| T=t—(1—y)Wmax+1 JeA;[7]
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(Z) Amax _F;Ilax_ = ’ t ]E f((l _ )WmaX) 1 _ )/ ]l
S Gl e cmax Z fit=1) Y (Wmax)2 {wmax>J(y)}
r=t—(1-y)Wmax41
[ Fmax 1 (1_Y)Wmax_1 pris Wmax
: 2
o+ ram | 3 s (e}
m= 2
(c) [ Fmax © _ max _ Y
= (" AT | ) (1= W™ = 1) = £(1)+ £/(1). 2B =W Gz | Lz
(35) v 2
2 ( - 2) E [f((1 = W)L frymacs )3
where step (a) is true for &; £ Neefe—(1—y)wmax ¢—1] Fr and Fr U))
being the event that all flows arriving after time t — (1 — y)W™aX >(1-2y)E [f((l —ywma1 {wmax 2]()/)}]
are not served at time slot 7; (b) uses Lemma 1; (c) uses (34). =(1-2)E [f((l _ Y)WmaX)]
By substituting (35) into (33), we have max
— (=2 E [f(1 = )WL ymex < sy ]
>(1-2nE[f(Q-yw™™)| -(1-2 1-
S kst (1 Tmaxl > (1 20) B [£(1 ~ pW™)] (1~ 29) £~ (1)
N o)
T > (1-2y) B [f(W™)] - Bs(y), (37)
(@) i
AT C;naX (f(T™™) = f((1 - yyw™™)) where step (a) is true for ymax £ maxi|-Flm?iX /™3] and prin =
pmax min;—q 2, .1 i K, and follows from the definition of Q(r, t) and
" (Pi + y AT inax )f((l — W™ 1) + By (y) the fact that if at least one flow in the seIt<N(t - (1 —y)Wma 1)
¢ has the maximum channel rate, then ;2 Y jcpn, f(Wi,)Si,j is
(Z)Amax [F"] pmax ymax at least f((1 — y)W™®) according to our proposed TSLS-based
= cmax (f( )= f( ) scheduling algorithm; (b) is true for the event &, £ {Q(t — (1 —

r pmax - Y)Wax, t) = Qo(Wmax)}; (c) simply uses the fact that 1 — (1 — pr)*
. max | i max X . A . . e
1 N ’ - )
+ (p +YA; g ) FWTE) + By i(y) (36) is non-decreasing function of x; (d) follows from the definition of
Qo; (e) uses inequality (6); (f) is true for B3(y) = (1 — 2y)f((1 -
where step (a) is true for By ;(y) = ffWp+@2+ y)ApE Y)J(y)) + G1 and Gy > 0 satisfies f((1 - y)W™®) < f(W™) + Gy,
[F;naX/cmax-l) + Arinax|'FlmaX/cmax‘|f ((1 _ )/)J()/) _ 1); (b) uses the Hence, we have
definition of f € G andis true for By ;(y) = Bl,i(y)+Amax[Fmax/cmaX]G0 (a) I Fmax
and Gy is some positive constant. ' ' E[AV] < E [f (T - f (Wmax)] Z Amax { C;nax w
Next, we focus on the term i=1
max
I (Z pi+y ZAmax { —_— } (1- 2}’)) E[f (Wmax)]
Z E Z f(m’j)si,jl{ci'jzcmax} .
i=1 JeN;
. Z Ba,i(y) + Bs(y), (38)
I i=1
ZE Z FWi ST (¢, jmcmn) Therefore, we have
i=1 JEN; (@) 1 [Fmax 1
VB [f((l i) (1 = (1= pain) QU UTIWHED]Y )] ; bolem (- y)? | ]
b r max
e f((1 = PIWT) (1= (1 = prog) QU ITPIWIO/) 82} 1-2e+y ZAm‘"‘"{ o } - (1=2y) | ELf(W™)] + Ba(y)
1=
(c) (b) I [Fmax
S| = W) (1= (1= pi) @O 1, = |y (1 : ) I P P T
=1
“ ) +Ba(y) (9)
Dl (1w 1 - Je. .
| (Wmax)2 where step (a) uses Corollary 1 and is true for B4(y) = Z 1 B2i(y)+
B3(y)+z | AT ::x G(y). By selecting y sufficiently small such
Y
=E|IE f((l _ Y)Wmax) (1 _ (Wmax)z) 182 max” that [C -‘
N 1 max
Y +2y < 40
-k f((l _ y)wmaX) (1 _ (Wmax)z ) Pr {Szlwmax} ] Y ( (1 — )/)2) Zl ’r Y S € ( )
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we have
E[AV < - eE[f(W™)] + Ba(y)
< —e(1 -y’ ELf(T™)] + B(y). (41)

where the last step uses Corollary 1 again and is true for B(y) £

By(y) + (1 - y)?G(y).

By summing the inequality (41) over t = 0,1,2,...,M — 1, we
have
M-1
B
lim sup — Z E[£(T™)] < (’/) (42)

M—co

where § 2 (1 —y)%.
Since all flows at time slot ¢ arrived at the system after time

t — TMaX we have
pmax
max max 1
PIPILTRLES S [ S
i=1jeN;

which implies that for any f € G, we have

1 1 max
(a) F;
2, 2 R <f TmaxZA?laxL;W}

i=1 jeN; i=1

(b) ,
< f(Tmax) + G, (44)

where step (a) uses the fact that f € G is non-decreasing; (b)
follows from the definition of f € G and is true for some G’.
By substituting (44) into (42), we have

lim su iMi]E f ZI: Z R i[t] BV L6
M—»oopM =0 " )

i=1jeN;[t]
This implies stability-in-the-mean property and thus the underlying
Markov Chain is positive recurrent [7]. O

7 CONCLUSION

In this work, we proposed a round-robin-like algorithm that has
desired throughput, delay-insensitivity and short-term fairness
performance in wireless dynamic fading networks, where flows
dynamically arrive at the system and leave the system once their
service requests are completed. We maintained a time-since-last-
service (TSLS) counter for each flow, which keeps track of the time
since the last service of the flow, and incorporated both TSLS and
channel rate into the scheduling design, namely TSLS-based sched-
uling algorithm. We established the throughput-optimality property
of our proposed algorithm, and demonstrate its delay-insensitivity
and excellent short-term fairness performance in comparison to
various existing policies through simulations.
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