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UNDERSTANDING THE SPATIAL PATCHWORK OF 
PREDICTIVE MODELING OF FIRST WAVE PANDEMIC 

DECISIONS BY US GOVERNORS
PATRICIA SOLÍS, GAUTAM DASARATHY, PAVAN TURAGA, ALEXANDRIA 

DRAKE, KEVIN JATIN VORA, AKARSHAN SAJJA, ANKITH RAAMAN, 
SARBESWAR PRAHARAJ and ROBERT LATTUS

ABSTRACT. The uneven outcomes of the COVID-19 pandemic in the United States can be 
characterized by its patchwork patterns. Given a weak national coordinated response, 
state-level decisions offer an important frame for analysis. This article explores how such 
analysis invokes fundamental geographic challenges related to the modified areal unit 
problem, and results in scientific predictive models that behave differently in different 
states. We examined morbidity with respect to state-level policy decisions, by comparing 
the fit and significance of different types of predictive modeling using data from the first 
wave of 2020. Our research reflects upon public health literature, mathematical modeling, 
and geographic approaches in the wake of the underlying complex pattern of drivers, 
decisions, and their impact on public health outcomes state by statetime line. 
Contemplating these findings, we discuss the need to improve integration of fundamental 
geographic concepts to creatively develop modeling and interpretations across disciplines 
that offer value for both informing and holding accountable decision makers of the 
jurisdictions in which we live. Keywords: Accountability, COVID-19, decision-making, mod
eling, patchwork.

W hile virtually everyone in the United States has felt the direct or indirect 
effects of the COVID-19 pandemic, the pattern of impacts has unfolded unevenly 
across the country. Scientists of all disciplines have been working to make better 
sense of what has essentially come to be seen as an ever-changing patchwork of 
factors and outcomes. Inspired in part by a metaphor from a May 2020 article in 
The Atlantic entitled “We Live in a Patchwork Pandemic Now” (Yong 2020), our 
paper reflects upon this phenomenon and a growing public recognition in the 
early months of the pandemic that while national scale statistics first started to 
plateau, the underlying patterns of the spread were highly varied and dynamic at 
the state level, as well as at smaller county and city scales, going up in some 
places while diminishing in others. It strikes us that COVID-19 represents a com
pelling case to not only illustrate how modeling efforts, whether explanatory or 
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predictive, suffer the unavoidable Modifiable Areal Unit Problem, or MAUP 
(Gehlke and Biehl 1934; Openshaw 1984), but also to uncover a unique arc of this 
story, where the real-time unfolding of decisions to respond to the pandemic 
reveal a spatial struggle (Leitner et al. 2008). Digging deeper, we can see how 
decision makers like governors, mayors, and state public health officials have 
issued a patchwork of policies, in absence of a cohesive national approach that 
forced the weight of the response to a particular intermediate scale, serendipi
tously opening up a space for our discourse about modeling and its real-time 
relationship to decisions to be examined and reflected upon. Similarly, public 
adoption and compliance of protective measures have unfolded unevenly over 
the nation, as information and trust on this issue reflect a generally fractured 
society. We furthermore add weight to this argument by assessing how patch
work characteristics can even be seen in the way that scientific predictive models 
behave in different locations, which is explored in this paper in analytical depth.

Researchers have turned attention and effort to applying their respective 
knowledge domains and collectively combining known techniques in hopes to 
innovate and respond with timely insights to inform public policy and influence 
public behavior during the pandemic. They have formulated and answered 
questions at many different spatial and temporal scales of analysis. Predictive 
models and mathematical forecasts have become the currency of academic 
monitoring and discussion, and ideally, informing the public and elected offi
cials. Most studies are direct—they track infection rates, prevalence dynamics, 
morbidity or mortality patterns, and even excess deaths to follow the corona
virus across the country. Sometimes studies incorporate decision making into 
the models, such as the timing or appearance of policies to close activities like 
schools, restaurants and bars, gyms, or masking. More rarely, however, models 
may seek to account for both the spatiotemporal nature of decisions and the 
spatial-temporal behavior of people living in these jurisdictions where the 
decisions hold sway and are intended to influence their mobility and behavior.

We are interested in powerful machine-learning models, which were widely 
used as predictive tools for decision makers. In this article, we do not intend to test 
models. We do not intend to provide an answer about which predictive approach 
is “best.” Instead, we hope to structure a broader, interdisciplinary discussion 
unraveling the spatial incongruence among these contributing elements. We seek 
to explore how the human-physical complex system of a pandemic—including 
behavioral, decision making, and epidemiological data—may be inconsistent and 
incongruent with each other, and thus point to the centrality of fundamental 
geographic challenges in the production of knowledge about the pandemic. The 
importance of this framework is to underscore the need for explicit, well-justified 
attention to choices of spatio-temporal scale, relevant to the (real-time) decision- 
making context, to potentially improve transferability of findings (but not neces
sarily models) from one place to another, as well as to offer a measure of 
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accountability for evidence-based decisions at the scales in which they are made. 
Ultimately, these insights hold true not only for outbreaks such as COVID-19, but 
also for understanding and responding to other public health concerns, such as 
disaster response or future infectious outbreaks.

To reiterate, the purpose of this exploratory discussion paper is not so much 
to identify a good model or assess a good modeling method, but the main 
purpose is to reflect upon fundamental geographic principles in the process of 
the scientific modeling in a real-time complex global pandemic in ways that 
inform decisionmakers and the public. We raise interdisciplinary awareness of 
such analytical challenges, and conclude with some recommendations on what 
we as a scientific community may learn from the first wave experience of 
COVID-19.

BACKGROUND AND LITERATURE

Actions in the early days and weeks of the COVID-19 pandemic taken to mitigate 
spread disproportionately affects long-run impacts on public health. Such 
actions and consequences always entail spatiotemporal components, but linking 
certain actions to consequences is generally not straightforward in complex 
human-physical systems, such as a pandemic. The beginning of the COVID-19 

pandemic in the United States witnessed a deafening lack of a unified federal 
response, including mismanagement in controlling the border, lack of workplace 
standards (Hanage et al. 2020), and not quickly ensuring enough primary 
protective equipment (PPE) for essential workplaces (Lagu et al. 2020). 
Additionally, the limited response that did come out of the federal government 
was slow, and at times confusing (Haffajee and Mello 2020). To make matters 
worse, the federal government failed to look at evidence-based practices learned 
from previous outbreaks and disasters to inform the guidelines that did make it 
to the public (Solinas-Saunders 2020). These sentiments led most Americans to 
think the United States’ national response did a poor job at addressing the 
pandemic (Pew Research Center 2020). It also forced an interesting natural 
experiment on the scientific modeling community—to reckon with a set of 
actors—governors—to monitor and predict a novel coronavirus and the impacts 
of decisions that were made at this scale in absence of federal powers that 
typically provide some measure of coordination across states.

To provide context for this study, we first lay out the backdrop of public 
health dynamics, both in terms of COVID-19 and pandemics more broadly from 
the public health literature. The varied nature of virus transmission and resulting 
patterns of cases followed by deaths are in part attributable to the highly 
contagious character of the novel coronavirus, as well as physiological responses 
of infected individuals.

Secondly, we lay out a few relevant principles from the perspective of 
predictive mathematical modeling domains to provide some structure to assess 
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the many attempts to understand moving parts of the pandemic. This also 
introduces the choice of methodologies explained later that illustrate the chal
lenge of the MAUP.

Finally, we consider fundamental geographic problems within decision mak
ing contexts. Clearly the behavior of people—how they move and what precau
tions they take—matters a great deal, impacting upon the resulting spatial 
distribution of the disease. These individual decisions are affected both by advice 
taken directly from public health officials and by the policies put in place by 
decision makers with jurisdiction to restrict or require mediating activities over 
the landscape of places where people work and live.

PUBLIC HEALTH CONTEXT

After COVID-19 was declared a national public health emergency by the health and 
human services secretary on 31 January 2020 (U.S. Department of Health and 
Human Services 2020), U.S. states began taking their own approaches to address 
the pandemic within their borders. The response to such widespread outbreaks is 
by law the joint responsibility of state governors and the federal government. 
Some states took aggressive immediate measures to limit the spread of COVID-19, 
for example, declaring a statewide public health emergency or developing 
a coronavirus task force. Since the turn of the century, the United States has 
responded to a number of pandemics including Ebola (Gostin et al. 2014; 
SteelFisher et al. 2015), swine flu (Butler 2009; Coker 2009), and SARS (Park 
and others 2004; Rothstein 2015). In these responses, researchers were able to 
assess policy responses to limit disease spread in near real time. Preparation 
plans are considered a major factor in influenza pandemic preparation, however, 
these plans must be constantly adjusted and updated based on lessons learned 
(Leung and Nicoll 2010). Others argue that proper plan execution is more 
important than the plan itself (Gibbs and Soares 2005). A stark example is 
found in critiques of responses to Hurricane Katrina. The hurricane itself 
exposed breakdowns in the chain of support for disaster relief, leaving commu
nities that were already vulnerable in a state of heightened vulnerability (Quinn 
2006). Many scholars noted extreme consequences of failing to improve emer
gency response efforts to disasters after Hurricane Katrina (Schneider 2005; 
Sobel and Leeson 2006; Holguín-Veras et al. 2007) saying, “unless we take to 
heart the lessons that Katrina teaches, especially improved systems for commu
nication and coordination, we are likely to repeat the Katrina problems” (Kettl 
2006). The same day of the first Ebola-related death in the United States in 2014, 
the Center for Disease Control announced increased screenings at JFK, 
Washington-Dulles, Newark, Atlanta, and O’Hare airports (Gostin et al. 2014) 
in response to the fact that 94 percent of people coming from Sierra Leone, 
Guinea, and Liberia (Ebola-affected nations) travel through these five airports 
(Center for Disease Control [CDC] 2014). This exemplifies a federal-level policy 
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that affected state-level prevention efforts taking spatiotemporal realities into 
explicit account. Similarly, the federal government began an epidemiological 
surveillance system during the SARS pandemic that stemmed from state and 
local health departments working to report cases to the CDC (Schrag and others 
2004). After declaration of the public health emergency in response to COVID-19, 
however, the robustness of a federal response seen in previous epidemics was 
absent. Except for some travel restrictions, minimal federal policies regulated 
activity to slow the number of new COVID-19 infections within national borders 
(Haffajee and Mello 2020; Gostin et al. 2020).

From the official White House “30 Days to Slow the Spread” report, sugges
tions on limiting COVID-19 cases were provided, but initial instructions tell 
residents to “listen to and follow the directions of your state and local autho
rities”; (The White House 2020). Delegating the bulk of the responsibility to the 
states to make COVID-19-related decisions precipitated a wide spectrum of state 
and local level policies, that we suspect further contributed to the patchwork 
character of the pandemic.

While the literature addresses the spatial variability of factors that lead to 
disease spread, we find limited scholarly work focused on patchwork policies in 
public health. Research on the opioid epidemic shows that while the epidemic 
has been a national emergency since 2017, the epidemic looks different depend
ing on geographic location; (Rigg and Monnat 2015), socioeconomic status 
(Altekruse et al. 2020), race/ethnicity (Pletcher and others 2008; Alexander 
et al. 2018), age (Campbell et al. 2010), and gender (Choo et al. 2014; Graziani 
and Nisticò 2016). Some studies show that prescription-opioid misuse is more 
common in rural areas compared to urban centers (Keyes et al. 2014). Some 
studies reveal how federal policies on opioids need to not only be flexible, but 
also account for variations in state or local realities (Chakravarthy et al. 2011; 
Nelson et al. 2015). While sensitive to the geography of factors and of outcomes, 
these studies fall short of analyzing how the spatial variability of policies and 
choice of spatial unit of analysis relate to accountable decision making.

Journalistic coverage of COVID-19 highlights the need for understanding the 
ways outbreaks operate as a patchwork over space. The New York Times used 
data from the University of Oxford to visualize varied outcomes, concluding, 
“the surge is worst now in places where leaders neglected to keep up forceful 
virus containment efforts or failed to implement basic measures like mask 
mandates in the first place” (Leatherby and Harris 2020).

Swift responses are essential (Mallinson 2020; Pikoulis and others 2020), but 
the ability to project future outcomes is also a key component of preparedness. 
Examples of this include the response to the September 11, 2001, terrorist attacks 
future implications on mental health and environmental effects (Rosenfield et al. 
2002; Reibman et al. 2016); the 2003 outbreak of SARS (Smith 2006; Krumkamp 
et al. 2009), the 2014–2016 Ebola outbreak (Maffioli 2020), or H1N1 in 2009 
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(Fineberg 2014), as well as efforts to minimize the impact of annual illnesses like 
the flu (Thomson et al. 2018). The scientific scramble to respond quickly and 
with predictive power to the COVID-19 pandemic is exemplified in the sheer 
number of rapid research grants awarded. The National Institutes of Health 
issued over 100 grants (National Institutes of Health 2019) and the National 
Science Foundation awarded roughly 900 grants (National Science Foundation 
2019) to address various components of the COVID-19 pandemic.

As the United States might nationally be seen as riding out the “third wave,” 
(see Figure 1), we emphasize that outcomes rely both on the public health 
decisions and mandates put in place to protect people, as well as their compli
ance. These vary by place. This national pattern continues to belie state-to-state 
variance in outcomes and the unfolding of many pandemics. This pattern 
adeptly illustrates the MAUP. In the following section, we consider how model
ing efforts are confounded by this persistent analytical challenge.

MODELING CONTEXT

There has been a tremendous amount of interest in mathematical modeling and 
forecasting of the COVID-19 pandemic outcomes. Modeling approaches can be 
grouped into one of two general categories: forecasting models and mechanistic 
models. Forecasting models are typically statistical in nature and attempt to 
predict patterns in the data; where predictions “de-noise” the data and learn 
some latent representation of the phenomenon over time. Such models have 
been used both in the context of modeling past infectious diseases and in the 
context of predicting features of the ongoing COVID-19 outbreak. For instance, 
(Kane et al. 2014) use time-series modeling techniques (Box et al. 2011) to study 
past (influenza-like) outbreaks. Ceylan (2020) are examples of works that use 

FIG. 1—COVID-19 Cases and Deaths for the entire United States, January 2020 to June 2021;  
Source: World Health Organization, Dashboard at https://covid19.who.int/region/amro/country/us
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time-series modeling techniques specifically in the case of COVID-19. Several 
complementary machine-learning-based sequence models have also been pro
posed in these scenarios (C. Wang and others 2020; Yang et al. 2020; Wang et al. 
2020c).

On the other hand, mechanistic models (such as the SEIR model) attempt to 
directly understand and exploit the mechanism of the underlying virus under 
various disease-specific assumptions. There has been a flurry of activity in 
adapting such models (Wu et al. 2020). Others are hybrids between mechanistic 
and forecasting models (Reiner et al. 2020). Probability-based COVID future risk 
estimation approaches like COSRE (Sun and others 2020) provide risk estima
tion on a county level with strong reliability, supporting day-to-day decisions 
like risks related to spatial behavior and mobility to inform individual activities.

Regardless of choice among these models, they each require definition of 
time scale, spatial scale, and a scope of data to frame their application, and are 
susceptible to the MAUP. This holds implications for understanding past and 
future accountable decision-making.

DECISION-MAKING CONTEXT

Researchers, applying various models to understand this complex unfolding of the 
pandemic, will discover patchwork characteristics across spatial units of analysis. 
By this, we mean that while one would normally expect adherence to such 
standard geographical phenomena as Tobler’s First Law of Geography (1970), 
patterns of the COVID-19 pandemic do not conform neatly, and how to frame 
which models is not an obvious exercise—especially in an interdisciplinary setting. 
In other words, near things might not in fact be more related than distant things 
when the default jurisdiction of public health decisions is relegated to each 
governor of every state. As we argue in this paper, given the way that public 
health outcomes rely on complex systems of spatiotemporal behavior—comprised 
both of individuals and of the special decision-making behavior of officials that 
influence individuals—there is underlying patchworkiness, or nonconformity, that 
can be observed beyond the diversity in state summary statistics of raw health 
outcomes like prevalence or morbidity. As we will discuss, the modeling perfor
mance itself exhibits patchwork results.

The variability and diversity of patterns of the pandemic(s) are revealed when 
researchers try to create data-driven predictive models of disease statistics in the 
presence of behavioral measurements such as mobility, mask-wearing, and 
activity-opening decisions. Our work specifically suggests that these observations 
beyond the obvious patchworkiness in measurable public health statistics are 
also reflected significantly in the patchwork patterns of decisions that in turn 
rely on the monitoring output and performance of predictive models created to 
explain the pandemic. We interpret this as evidence of the critical importance of 

598                                      G E O G R A P H I C A L  R E V I E W                                                       



the scale incongruence of decision making in responding to spatial phenomenon 
like the fast-moving coronavirus pandemic.

This observation builds upon a unique geographical problem first intro
duced in the Geographical Review, that recognizes the special nature of types 
of spatial decision-making behavior that both incorporate and influence 
individual decision-making behaviors (Solís et al. 2017). This Decision 
Accountability Spatial Incongruence Program (DASIP) is a special cause of 
the MAUP, which draws particular attention to the agency of special actors 
and sets of actors (elected officials, public administrators, stakeholders, 
CEOs) who are responsible for jurisdictions that potentially shape or, in the 
case of nonconforming behaviors such as protesting pandemic remedies, 
informs outcomes that in turn can affect others in important ways. This 
paper seeks to underscore the importance of the spatial scale of such deci
sions (for example, closures and mask mandates), and helps to shed light on 
how they may be incongruent with the desired outcomes (cases, deaths) in 
order to open interdisciplinary scholarly discussion and reflection on the 
unfolding of COVID-19. Furthermore, this framework helps us to ask whether 
and how decision makers can be held accountable in ways that are more 
congruent with the data, decisions, or impact.

As noted above, a gap in the public health and epidemic modeling literature 
so far is thus the explicit inclusion of study elements that focus on the role and 
scale of decision making as it relates both to this behavior and the outcomes of 
the pandemic. Furthermore, research that illustrates such problems by interro
gating the spatial performance of the models incorporating decisions on COVID-19 

is rare, if not nonexistent.
We seek to fill in some parts of this important gap by exploring not only the 

patchwork character of how decision making about the pandemic has unfolded, 
but also the patchwork character of model performance to make clear this 
geographical problem. This reflects upon how the research community has 
come to understand it, choosing to illustrate this at the state-level as one 
important key unit of analysis in this case. This is justified given that public 
health decisions were largely delegated from the federal level to governors 
(Djulbegovic et al. 2020; Jacobson et al. 2020).

The time period of analysis runs from January through September 2020, 
largely covering what is seen nationally as the first wave, representing 
a critical moment in the subsequent ability to manage the pandemic in 
later stages. By explicitly revealing the patchwork character of some cate
gories of predictive modeling, we open a reflection on our role as a scientific 
community seeking to support monitoring and response in a context of this 
pandemic.
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METHODOLOGICAL FRAMEWORK

We illustrate how this fundamental spatial challenge played out in the COVID-19 

first wave by devising a multifactor, machine-learning model to fit one state, 
Arizona.1 We then test the extent of this state-model fit to the other 49 states in 
terms of how well or poorly it can describe the spatiotemporal pattern found in 
other states.

To test this idea, we choose several simple representative modeling techni
ques to perform our analyses. While there has been some recent work; (Kang 
et al. 2020; Mollalo et al. 2020; Li et al. 2020) in understanding the spatial 
statistical behavior of COVID-19, these studies typically look at the spatial dis
tribution of raw data/fundamental public health outcomes/corresponding to 
various metrics of interest related to COVID-19. To the best of our knowledge, 
ours is the first study that endeavors to do the same using the behavior of models 
themselves.

The models were built from an increasingly complex scaffolding of data 
layers in order to illustrate the persistent impact of the MAUP. We began 
modeling raw outcomes of the pandemic (without decisions2), that took changes 
in daily deaths to predict changes in deaths at a future date. We then added data 
to reflect decisions about closures, using mobility data as an indicator of the 
spatial behavior of residents, together with the morbidity data. This was used to 
understand at what future date changes in public health outcomes would occur, 
and computed changes in those outcomes themselves. Finally, we added con
sideration of nonmobile decisions regarding face-mask mandates, as a second 
policy constraint. For each state, a measure of fit was noted. We operationalize 
the idea of what we call “patchworkiness” by calculating the spatial autocorrela
tion of this measure of fit by state. The degree of spatial clustering and its related 
significance represents what character of patchwork the model can reveal.

DESCRIPTION OF THE DATA USED

The first step to developing a patchwork model relied on depicting a variety and 
time line of state-level policies. To do this, a time line by state spreadsheet served 
as the foundation to record and assess the patterns of state level policy decisions. 
The columns represented dates while rows represented all 50 states, plus the 
District of Columbia and Puerto Rico. The 52 geographic areas were coded into 6 

codes: mask mandate, stay-at-home order, social distance/gathering limitations, 
antirestriction policies, other, and end of restrictions. “Other” served as 
a catchall code that included a state’s first confirmed case, a declaration of 
a state public health emergency, when testing began, and several other policy 
decisions. When a state had a COVID-19 related policy go into effect, that policy 
would then be noted in the corresponding date column to the day that policy 
went into effect.
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The “mask mandate” code was used whenever a statewide mask mandate 
went into effect. Not all states implemented mask mandates, and this code was 
only used for statewide policies and not policies enacted at the county or 
municipality level. The “stay at home order” code was used whenever governors 
enacted restrictions of curfews on people’s movements within the state. This was 
also sometimes referred to as shelter-in-place, depending on the state. The 
“social distance/gathering limitations” code included statewide restrictions on 
the number of people that could gather at once as well as requirements on 
keeping a certain amount of distance between people. This also included school 
closures, cancelation of elective surgeries, and limiting dine-in options at restau
rants. “Antirestriction policy” code referred to the instances where governors or 
state officials prohibited lower-level decision making within the state. For exam
ple, on 27 April 2020, Governor Greg Abbot of Texas issued an executive order 
making local officials unable to enforce a mask mandate or impose any mask 
related fines. The “other” served as a catchall of pertinent COVID-19 related 
information, rather than policies. This included relevant information such as 
the date of the first confirmed COVID-19 case in the state and the date of a state- 
level declaration of a public health emergency. Finally, the last category, “end of 
restrictions,” chronicled the time line of states reopening. This included the 
reopening of gyms, restaurants, and other business and the lifting of stay-at- 
home orders. This spreadsheet2 consolidated general time lines at state-level 
policies ranging from 21 January 2020 to 15 August 2020, representing first 
wave time lines.

To explore the patchwork of models, we choose to use normalized reported 
deaths as the base data on pandemic outcomes to work with. While there are 
various options for raw sources of data, we used data available from CDC for 
morbidity (“CDC COVID Data Tracker” 2020); from the Descartes Lab for 
mobility (Warren and Skillman 2020); and Blavatnik School of Government 
for government response, (Hale et al. 2021) in addition to triangulating with 
our own decisions-by-state tracker described above. The data for our analyses 
are obtained by first merging the records from CDC and Descartes Lab such that 
we obtain aligned time series for deaths as well as mobility. For a given day, 
available information consists of deaths and associated mobility indices for 
that day for each state in the United States (omitting Puerto Rico and the 
District of Columbia in the models).

We experimented with different model classes, namely, decision trees, time- 
series models, and the like, where the input is either a snapshot or contiguous 
segment of changes in cases, mobility, and deaths, and the output is predicted 
changes in death at future time. The modeling methodologies of our paper are 
based on developing statistical forecasters of state-level mortality using past 
mortality and mobility data.
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With our experiments we do not showcase ways of improving existing 
methods. Instead, we point out how modeling developed at a particular spatial 
unit performs at other spatial units, to reveal the dependency on geographic 
principles. The experiments have validated the idea that the variables (model 
parameters) governing the spread of COVID-19 are different for each state (they 
depend on the choice of scale and extent).

Our next methodological aim was to quantify and evaluate measures of 
model variability across geospatial locations. As a first step toward this, we 
developed a well-tuned forecasting model for one state: Arizona, which in 
addition to being a convenience choice, has the distinction of being among the 
top three states of earliest confirmed COVID-19 case, with the longest time lag to 
a first decision to mediate. We then recorded the performance of this model for 
other states using an R2 prediction score. That is, for each state a, we compute 
a score s að Þ that captures the performance of Arizona’s forecasting model for 
state a’s data, which is simply the R2 computed for state a using Arizona’s model. 
We then estimate the spatial variability of s að Þ across the states using the 
standard measure of spatial autocorrelation, Moran’s I (Moran 1947, 1948). 
Moran’s I for the scores s að Þ is defined as follows:

I ¼
N
W

X

a

X

a0
waa0 s að Þ � �sð Þ s a0ð Þ � �sð Þ=

X

a
ðs að Þ � �sÞ

2
;

where N is the total number of states being considered (50 here, where we omit 
Puerto Rico and the District of Columbia due to partial data and special status. 
Thus, �s is the average score across the states, waa0 is the spatial weight for the pair 
of states a and a0 (using a Euclidean distance-based measure). Comparing the 
value of I with its expected value (which is � 1=N - 1 = - 0.021 here) allows us to 
estimate the amount of spatial variability of the scores. These measures oper
ationalize and demonstrate our experimental concept of a patchwork pandemic.

ANALYSIS

To deal with possible missing data in the time series, we performed basic linear 
interpolation for removing gaps in data. We then perform a linear de-trending 
of the data by working with the first derivative of all the available time series. 
For a given day, which we will denote as t, we will let dt denote the number of 
deaths on day t. We will also let mt

1ð Þ and mt
2ð Þ denote the value of the mobility 

indices from the Descartes Labs dataset. We further process the data so that 
the model input variables correspond to changes in cases, deaths, and changes 
in the various mobility indices. For a given day, denoted by t; the correspond
ing features are Xt ¼ ½ct; dt; mt

1ð Þ; mt
2ð Þ�. Then, the model output is given by 

Yt ¼ ½dtþΔ], where Δ>0 is the prediction horizon, that is how far in the future 
our model is asked to predict. In addition to this, we also analyze the results by 
adding a feature ft that denotes facial-covering index. Facial covering index is 
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an ordinal value on the 0–4 scale, as defined by (Hale et al. 2021) to represent 
how strict the facial covering policy is. As a result input tuple Xt ¼

½ct; dt; mt
1ð Þ; mt

2ð Þ; ft� and the model output is given by Yt ¼ ½dtþΔ].
We deployed four distinct analytical pieces of evidence to characterize the 

patchwork patterns of the pandemic, relative to the baseline state:

RANDOM FOREST MODEL

In the first model, we used a random forest regressor (Liaw and others 2002) 
that estimates a function Yt ¼ f Xtð Þ. A decision-forest based forecaster was fit on 
Arizona data corresponding to predicting future mortality from data of past 
mortality and mobility. Decision-forests are considered a standard approach in 
predictive modeling, thus we started with this choice of modeling method. This 
devised Arizona model was then tested on other states. To train the model for 
a given state, we randomly sample 70 percent of the data for training, and 
reserve 30 percent for testing. We used the implementation from the package 
sklearn (Pedregosa et al. 2011) with the default number of trees = 100 and max 
depth of each tree = 2. We first fit an optimal model to the time-series data 
measured from Arizona. We then used this optimal model for Arizona to 
attempt a forecast of mortality across all the other 49 states and record the 
corresponding R2 score, which is a quantification of the predictive quality of the 
model. This geospatial spread of R2 scores is then analyzed using a standard 
spatial autocorrelation test (Global Moran’s I) to compute how spatially variable 
the scores are.

Auto-regressive model: In the second variation, we developed an analogous 
approach as above, but this time, we used time series based forecaster that 
models a window of observations in the past as the basis for predicting 
a single outcome variable in the future. The technique we used was an auto- 
regressive moving average (ARMA) model, which fits a linear function 
Yt ¼ f Xt:t�δ; Yt�1:t�ð Þ, where Xt:t�δ is the time-series data corresponding to the 
variable X between times t � δ and t; we chose the hyperparameters to be 
δ ¼ 5; ¼ 1. These choices can be made using an information criterion such as 
AIC (Bozdogan 1987) as more data becomes accessible from the pandemic. We 
again choose the best parameters for fitting an ARMA model at Arizona, forecast 
mortality in other states, record the R2 score for each state and compute the 
corresponding Global Moran’s I score.

GRANGER CAUSATION MODEL

The models as described above use one state as a base model, Arizona. Data 
from other states were used to test the model. Ideally to test the patchwork 
concept, we would like to compare models by estimating them individually per 

P A T C H W O R K  P A N D E M I C                                                     6 0 3



state. This is hard to do since it is nontrivial to compare model-to-model mis
match as compared to model-to-data fit (spatial comparison adds further com
plexity). In order to bridge the gap between our approach above and this ideal, for 
each state, we consider another notion of forecasting performance—Granger 
causality (Ding et al. 2006). In this analysis, we estimate the Granger causation 
between the mobility index time series mt

1ð Þ ormt
2ð Þ

� �
and the mortality time series 

dt. Granger causality is computed by measuring the improvement in the predict
ability of the mortality time series when one includes the mobility time series as 
part of the time-series fit. For each state, we now optimally tune its own hyper
parameter (lag for Granger causality) and choose the respective chi-squared test 
statistic of highest significance (chosen from the values computed for a series of 
lags). This value is used again to compute Moran’s I of the joint mobility-mortality 
models.

POLICY MODEL

To depict multiple decision points in one of the models, we incorporated 
a facial-covering index as a feature in the dataset, permitting us to analyze the 
impact of policies on our model. We repeated a similar experiment as in the first 
case where the Arizona model is fit to all other states to obtain an R2 score. All 
other aspects of the modeling remain the same as the first random forest model 
described above barring a change in the input data. The input data on facial 
coverings is a time series of values on an ordinal scale (0–4), with 4 being the 
highest degree of enforcement for each state.

SUMMARY OF RESULTS

States, given the imperative to implement pandemic policy in the context of 
a lack of national coordination, began slowly after the first appearances of 
confirmed COVID-19 cases, to respond, typically by declaring a public health 
emergency (Figure 2). Only a few states declared a public health emergency 
prior to their first known case. Typically, weeks later, the first stay-at-home 
orders began to emerge, generally followed by mask mandates, when they 
existed. Figure 2 provides an overview of this sequence for all 50 states (plus 
Puerto Rico and the District of Columbia), although the conflicts between 
federal and state policy, and state and county or city policy is not depicted. 
Despite that governors more or less followed a typical order of action, the timing 
of these decisions varied during the first wave of the pandemic, and showed little 
relation to political party of the governor.

In terms of modeling public health outcomes relative to behavior and 
decisions, the results from different experiments are summarized in Table 1. 
The “Model” column represents the algorithm used; the “Input” and “Output” 
columns summarize what a particular model outputs were given based on the 
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inputs. For each model we calculated a value representative of each state’s quality 
of fit (to the Arizona model) using the metric specified in the “Measure of model 
fit” column. These representative values are used as an input to the calculation of 
spatial autocorrelation whose results are summarized under p-value and Moran’s 
I. We found similar results using population normalized deaths. Based on these 
results, we find that patchworkiness using the random forest regressor with 
depth 2 was consistent across methods.

When mapped by quality of fit by state, and spatial clustering run, patchwork 
patterns remained regardless of whether the random forest model, ARMA 
model, or the Granger model was used to visualize clusters (Figure 3).

This map might be interpreted to depict places with similar differences to the 
base Arizona model, relatively speaking, and may indicate where the pattern of 
cases and deaths were similar in similar time ranges, where people behave 
similarly, or where governors may have even worked together on joint policy. 
As an experiment in visualizing patchwork patterns resulting from behavior and 
decisions, the map provides inspiration to consider different levels of conformity 
and/or fragmentation, despite different significance of spatial mismatch.

DISCUSSION

In this study we explored spatial and temporal incongruence among the way that 
the natural phenomenon of the health pandemic unfolded, the behavior of 
people via mobility, and the decision makers choices responsible for regulating 

FIG. 2—Visualized time line of decisions by state, January—August 2020. 
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and guiding resilience responses to these events, in the serendipitous context of 
lack of overall national coordinated response. Certainly, the whole story of the 
pandemic in any place, at whatever scale or spatial unit, cannot be fully told 
through modeling, and as a representation of the phenomenon, neither can 
public-facing or even published research fully convey complexities. These partial 
findings hint at how the resulting patchwork runs deeper than the respective 
patterns of public health outcomes, but also for our models and understanding 
of it. We find that designing a base model and comparing it to other states 
reveals dimensions of match and mismatch. And while the fit varies, significance 
of all models do not hold universally, modeling persistently shows a patchwork 
of clusters, beyond just state-by-state decision making. The fact that the patch
work did not conform only to state lines confirms that factors other than 
governors’ decisions still retain an importance for understanding how the pan
demic unfolded.

Assessing the model with respect to how well the decision making relates 
back to behavioral-dependent outcomes affords a framework to ask questions 
about accountability. The very least of inquiry seeks to understand the spatial 
and temporal mismatch among the decisions made, outcomes, and accountabil
ity for those outcomes, ideas which we began to explore with this work.

We tested the model with respect to how well it does or does not describe 
these relationships at the state level, not by mapping the patchiness of outputs 

FIG. 3—Cluster Map results of state-wise modeling depicting patchwork relative to the Arizona 
base model.
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(cases, deaths) or drivers (mobility), but by graphing the fit.3 Doing so helps us 
reflect on our role as scholars in making sense of the fundamental nature of this 
kind of pandemic: the patchworkiness of the performance of the models under
scores the need to not build one model to explain national patterns, but the 
critical importance of many researchers from many disciplines in many locations 
building many models that reveal aspects of society, decision making, and 
behavior in the face of risk, cognizant of fundamental geographic principles 
like the MAUP. These explanatory or predictive models can often operate in 
field focused teams or teams with some interdisciplinary approaches. For 
instance, the team collaborating on this study is vastly interdisciplinary, with 
expertise coming from the fields of geography, computer science, engineering, 
artificial intelligence, planning, and public health. This allowed for complex 
discussions about ways to formulate a model that highlights research practice 
from multiple disciplines. It precipitated robust debates about the most useful or 
appropriate spatial and temporal scale to contribute to adding new knowledge, 
even about the meanings of usefulness or appropriateness.

Limitations of using this set of machine learning modeling approaches to try 
to uncover relationships reveal potential areas for future research needs. For one, 
the stand-in data for behavior (and spatial behavior) in terms of mobility is 
incomplete. The data would not represent the full mobility of the population, 
nor would it fully be expected to estimate compliance with stay-at-home orders. 
Compliance with mask mandates is even more uncertain in these data, and such 
slippage in behavior certainly accounts for some of the spatial incongruence of 
the models, as well as for the ultimate health outcomes. In other words, some 
people in some states (or regions) will just comply better.

Furthermore, even the best metrics of social behavior cannot fully account for 
persistent social vulnerabilities (Wang et al. 2020), which may structure behavior, 
but we do not portend is conflated with it. Future studies could enable factoring in 
some of the known vulnerabilities by demographic (age, race, income) or some 
other empirically derived weighted social vulnerability index, perhaps even at 
a smaller spatial scale, as the state unit used in this analysis is likely too coarse to 
overcome this limitation. We believe our illustration of the underlying spatial 
analytical problem would still be present, no matter how many factors such model
ing contains, or how well one model fits to a particular choice of spatial unit 
(Fotheringham et al. 2017; Li and Fotheringham 2020).

Similarly, findings from more focused studies, or comparative studies like 
Praharaj et al. (2020) could improve modeling of mobility data to measure the 
effect of COVID-19 policies on the specific changes observed. While our experi
ment accommodated a range of data, the models barely accommodated the 
burgeoning body of knowledge around COVID-19, something that future elabora
tion of these ideas should do.
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The results from this research shows that the Arizona test model fits better in 
some places and worse in others. Regionally, one might expect the situation with 
COVID-19 to follow similar patterns (for example, California and Arizona would have 
more similarities compared to Arizona and Massachusetts). Even when factoring for 
spatial autocorrelation, the differences in the model still seem to be patchworky. In 
terms of applicability to public health, this further confirms what public health 
scholars have already noted: illnesses and diseases can vary based on geographic 
location, policies, and behavior. We can also see this notion in the example of opioid 
epidemic noted previously. Moving away from a one size fits all approach to 
predictive modeling could allow for the capture of these important health behavior, 
exposure, and healthcare access nuances that drive disease and illness variation.

Finally, the challenge looms about where decisions are made and whether 
decision makers can accommodate such complexity in their actions. While it was 
quickly clear that there would be scarce national scale response, and that 
governors must assume larger than usual responsibility for policy, future 
research should explore mechanisms to test for the contradictions across variable 
scaled decisions, decisions that are incongruent with their jurisdictions, and 
simultaneous decision-making conflicts, since examples of governors who 
struggled with mayors, and other policy actors abound (Leitner et al. 2008).

It bears repeating that is not our intention in this paper to create a new 
model or a new class of modeling. We instead seek to illustrate how the 
patchworkiness in the spatial performance of these different models that seek 
to explain the pandemic, and in turn serve as real-time, decision-making tools, 
itself should be a source of reflection in the overall assessment of how it all 
unfolded and scientists’ role in that process.

In the end, this work showed patchworkiness at a deeper level than that 
which may be apparent from summary statistics of cases, hospitalizations, or 
mortality. Instead, we found patchworky behavior in the way predictive models 
behave in different locations. One way to state this is that we found that when we 
develop a predictive model, based on past mortality and mobility and policy 
data, to predict changes in future pandemic related mortality, there is significant 
model-mismatch of the performance of such a model across geographic loca
tions and at different spatial units. We saw that this finding carries over across 
a few different variations of whichever underlying predictive modeling paradigm 
is used, specifically decision forests and auto-regressive models.

Based on these results, we suggest the following recommendations for 
future research: engaging in interdisciplinary teams, recognition of scale 
quickly, closer ties to actual decision makers, and reinforcing the contextual 
nature of geography even in heavy data modeling research. In the context of 
the COVID-19 pandemic, more geographers working with public health profes
sionals, data scientists, and policy scholars could help amplify and broaden 
awareness of the fundamental geographic challenges as events such as this 
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pandemic happens in real time. One of the downfalls of the response to the 
COVID-19 pandemic was the lack of widespread recognition that the perfor
mance of predictive models would manifest differently among and within 
states. Having a quicker recognition of the importance of understanding scale 
choice in monitoring and predicting behavior of future outbreaks and natural 
disasters can improve scientists’ response to make predictive models that 
overcome the MAUP. The patchworkiness captured in this study also pre
sents the need for more joint reflection on these challenges between decision 
makers and data scientists.

CONCLUSIONS

A more coordinated, national-level response may mark future interventions for 
both health-related outbreaks and natural disasters (hurricanes, tornados, and 
the like), given the prospect of a new federal administration, but the ineffective
ness of a patchwork response in the early weeks and months cannot be under
estimated. This exploration reiterates the need to innovate methodologically 
around decision making as a particular category of spatial behavior, and pan
demic patchwork policy making as a specific instance of spatiotemporal, scaled 
decision making that unfolds differently across jurisdictions, and according to 
different modeling performances. Our results imply the spatiality of collective, 
accountable decision-making behaviors as distinct from independent, individual 
choices. But it also reinforces the connections among policy and compliance/ 
noncompliance, something that this particular pandemic and the complexity of 
mediating actions brought into stark focus. Future research is needed that 
involves interdisciplinary teams of scientists engaged reflexively in practice 
together with decision makers to explore methodological solutions to the mod
ifiable areal unit problem, and to the decision-making accountability spatial 
incongruence problem. The outcome of geographic contextualization as well as 
deliberate and justified choice of spatial scale and units would ideally be better 
support to real-time, evidence-based modeling of the impact of decisions and 
public accountability for those decisions—as such emergencies as the COVID-19 

unfolds.
We conclude with the need for explicit attention toward the integration of 

researchers who use predictive modeling to proceed at various scales, and work 
with the multiple scales of decisions and decision makers. While this conclu
sion on first glance may seem trivial, or superfluous, in reality, the practices of 
both decision makers and scientists seeking to understand phenomena, espe
cially in a rapid response context, does not always follow this “first mile” best 
practice. Some of this modeling might also suggest possible clusters of regions 
where collaboration might be effective—and to help structure federal 
coordination.
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Equally important, reflecting on how these patchwork patterns occur could be 
applicable for bettering understand of the spread of other infectious diseases— 
such as HIV, Lyme disease, and chlamydia, or noninfectious diseases—such as 
diabetes, hypertension, and Alzheimer’s, which would have a significant impact to 
spatial epidemiology and public health research (Hanson et al. 2003; Beale et al. 
2008). These ideas might be extended to our understanding of public health 
impacts of climate change and natural disasters (heat-related illness and death, air- 
quality impact on comorbidities, flooding, disasters), and how cities and regions 
have stepped forward in the decision-making arena in the wake of federal/national 
divestment, denial, or impasse. This exploratory research points to an opportunity 
to collaboratively work at codeveloping models that better inform local decision 
makers, where the goal may not be to replicate or reproduce the models, but 
generalize the knowledge produced to be used locally (Kedron et al. 2019). Our 
findings may prompt ideas on holding officials accountable to public health 
outcomes with their decisions—across all of these intersecting complex, mis
matched scales, and reinforce the calls for future national-scale coordination 
with an attention to spatial congruence.

NOTES

1 The choice of Arizona is somewhat arbitrary, as any state could serve the purpose to illustrate 
the patchwork character of model performance. Arizona has the distinction of being among the 
top three states of earliest confirmed COVID-19 cases, with the longest time lag to a first decision 
to mediate.

2 While contributing to our process of developing the mathematical models as noted in the 
following sections, these decision data themselves were ultimately not directly included in the 
models as presented here. The specific proclamations of gubernatorial decisions are not rapidly 
time-varying factors, which makes using them in such models ineffective, so the more temporally 
variable factors accounted for the impact of the decisions on mobility data and mask data, for 
example.
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