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HIGHLIGHTS

e Cooling benefits by urban vegetation are greater at land unit than the suburb scale.

e Vegetation provides greater cooling benefits to suburbs further from the coast.

e Private green spaces are disproportionally important for urban heat mitigation.

e Yards and trees are an overlooked asset for localised climate change adaptation.

e People can adapt to heat when and where needed the most; during heatwaves and near home.

ARTICLE INFO ABSTRACT
Keywords: As the global climate warms, cities worldwide face more frequent and extreme heatwaves. These events can
Extreme heat affect human health and decrease liveability. While the mitigating effects of vegetation on land surface tem-
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perature (LST) are well characterised at large spatial scales and during typical weather conditions, the cooling
benefits that urban greening can provide at local scales, particularly during summer heatwaves, are poorly
quantified.

We quantified LST variation across an urban landscape to assess relationships with land use and vegetation
cover from land unit (average ~ 460 m?) to suburb scale (~1.66 km?) under extreme summer heat conditions.
High resolution (2 m), day- and night-time LST was measured at the peak of a heatwave event, after three
consecutive days with air temperature exceeding 40 C, by flying an aircraft fitted with a thermal imager over 90
suburbs in Adelaide, Australia. Daytime, night-time, and diurnal range LST distributions were related to mea-
sures of land use, vegetation cover (i.e., tree, grass) and urban morphology at both the suburb and land unit scale.

At the suburb scale, vegetation cover did not affect LST. However, at the land unit scale, tree canopy cover,
and to a lesser extent grass cover, decreased local LST by up to 6 C during the day, but not at night. Overall night-
time LST was poorly predicted by the land use and land cover predictors. Moving inland from the coast, small
vegetation patches, mostly contained in yards and gardens, was associated with the greatest localised LST re-
ductions in the hotter inland suburbs. LST within land units was further decreased during the day when vege-
tation was present within 30 m buffers around each land unit, suggesting a moderate landscape cooling effect on
LST.
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Our results suggest that even small urban vegetation patches can be managed to provide substantial heat
mitigation during increasingly frequent summer heatwaves, particularly around the residential environments

where people live.

1. Introduction

The average global temperature is now more than 1 °C above pre-
industrial levels and the years 2015-19 were the five warmest on re-
cord (WMO, 2019b). The global warming trend is associated with sig-
nificant increases in the frequency and intensity of extreme weather
events, including heatwaves, with the latter defined as periods “of at
least three days where the combined effect of excess heat and heat stress is
unusual with respect to the local climate” (Nairn and Fawcett, 2013).

Heatwaves have significant impacts on human health, biodiversity,
infrastructure and economies (Gasparrini et al., 2015; Watts et al.,
2018). Extreme heat can exacerbate existing health issues, such as car-
diovascular and respiratory disease, and is associated with increased
hospital admissions, psychological stress and aggressive behavior
(Harlan et al., 2013), as well as excess mortality (Robine et al., 2008;
Shaposhnikov et al., 2014). From 2000 to 2016, the number of people
exposed to heatwave risk globally is estimated to have increased by
around 125 million, with the average length of individual heatwave
events increasing by 0.37 days, compared to 1986 — 2008 (Watts et al.,
2018). Worldwide, an estimated 175 million people were exposed to
more than 600 heatwaves in 2015 alone. The recently released United in
Science report, compiled under the auspices of the World Meteorological
Organisation to coincide with the United Nations Climate Action Summit in
2019, reported that heatwaves were the “deadliest meteorological hazard”
in the 2015-2019 period, affecting all continents, with national heat
records set in many regions (WMO, 2019a). The impacts of heatwaves
under a future 2 °C warming scenario are projected to be considerably
greater than those for 1.5 °C (IPCC, 2018). One modelling study
concluded that 13.8% of the world’s population would be exposed to
“severe heatwaves” at least once every 5 years with warming of 1.5 °C,
but 36.9% at 2 °C, a difference of approximately 1.7 billion people
(Dosio et al., 2018). As the world’s cities house more than 55% of the
current global population, with this figure potentially increasing to
nearly 70% by 2050 (United Nations, 2018), the interactive effects of
future climate change and urbanisation will increase risks associated
with extreme urban heat (Rogers et al., 2018).

Heat exposure risk during heatwaves can be further exacerbated in
some urban areas as these can be relatively warmer than surrounding
areas - the Urban Heat Island (UHI) effect - due to modifications of the
urban land surface and anthropogenic heat from energy use (Oke et al.,
2017). Overall, the mean annual air temperature in a large urban area
may be 1-2 °C warmer than the surrounding peri-urban area, and up to
12 °C warmer on calm, clear nights (American Meteorological Society,
2020). The Surface Urban Heat Island (SUHI) can be quantified by
measuring land surface temperatures (LST) of composite materials at the
urban surface and comparison with rural or non-urban surfaces (Oke
et al., 2017). Differences in composite urban vs. non-urban LST are
driven by spatio-temporal variations in the surface energy balance,
namely in radiative, conductive and turbulent fluxes. Some urban fea-
tures can locally accumulate large amounts of heat during the day, often
increasing urban LST well above 60 C on hot summer days, depending
on the thermal properties of their materials (Bonan, 2000). Across
coastal cities, where much of the global urban population resides
(Threlfall et al., 2021), lake or marine effects can further lead to steep
gradients in LST at the city scale (Declet-Barreto et al., 2016; Tayyebi
and Jenerette, 2016). This is particularly true in Australian cities which
are affected by synoptic conditions such as warm air from inland deserts
and cool sea breezes (Khan et al., 2021).

Recent large-scale assessments of heat across urban landscapes found
that greener suburbs, characterised by higher forest cover and lower

impervious surface area, often have lower LST compared to areas with
lower tree cover (Imhoff et al., 2010; Manoli et al., 2019; Tayyebi and
Jenerette, 2018). Solar energy is used by plants for photosynthesis and
related processes (Bonan, 2000). Greater plant and leaf biomass can lead
to a larger latent heat flux and higher transpiration, and reduce surface
resistance to evapotranspiration (Hulley et al., 2019). In this way, tree
canopies can often maintain a daytime surface temperature close to that
of the surrounding air (Mildrexler et al., 2011). Vegetation affects heat
fluxes and microclimate at a location depending on its overall structural
and spectral properties, such as leaf cover and seasonality, roughness
and albedo (Hulley et al., 2019). Urban trees and tall vegetation can also
shade infrastructures and buildings, avoiding heat accumulation within
these features during the day and reducing urban LST (Bonan, 2000).
Conversely, during the night, the urban forest can trap heat, causing
localised increments of air and surface temperature in some locations
(Ziter et al., 2019). These mechanisms collectively mean that urban
vegetation and green-infrastructure (e.g., green roofs and walls) are
increasingly being suggested as an effective and relatively inexpensive
adaptation strategy to decrease urban heat, particularly in the context of
the risks posed by ongoing climate change (Bowler et al., 2010; Jener-
ette et al., 2011), although the magnitude and timing of localised
cooling effectiveness is uncertain, especially in relation to high intensity
heat waves.

Studies investigating urban heat and LST to date have been primarily
conducted at a relatively coarse spatial resolution (60-100 m from
Landsat and ASTER satellite platforms) that is ineffective for capturing
the fine-scale thermal structure and granularity of urban landscapes
(Declet-Barreto et al., 2016; Zhou et al., 2017). Similarly, urban canopy
cover assessments often rely on coarse spatial data as well as proxies,
such as the Normalised Difference Vegetation Index (NDVI) (Declet-
Barreto et al., 2016; Imhoff et al., 2010), that make little distinction
between urban forest types and structures (e.g., trees vs herbaceous
cover). This greatly limits our understanding of the local relations be-
tween urban heat and urban vegetation, as both are highly variable in
their spatial distribution across cities and urban landscapes (Jenerette
et al.,, 2016). Urban vegetation cover and structure, for instance, can
dramatically vary at a fine-scale based on urban morphology, land use,
socio-economic factors and people’s preferences (Ossola et al., 2019a,
2019b). In this way, it is reasonable to expect the moderating effects of
urban vegetation cover on LST to be also highly localised and spatially
variable.

Fine-scale assessments of the relationship between urban vegetation
and extreme heat across an entire urban landscape are scant (Bartesaghi-
Koc et al., 2018). Similarly, there is little available information about
multi-scalar effects of urban vegetation in moderating LST during
heatwaves i.e. comparing differences between smaller land units such as
residential yards managed by residents, to larger units such as parks and
streetscapes managed by public authorities. There is limited knowledge,
therefore, as to how even small-scale and localised greening in-
terventions, such as vegetated patches of a few dozens of square meters,
might compound and extend their cooling effects at the parcel (hundreds
of mz), suburb (few kmz), landscape (dozens of kmz) and city-scale
(hundreds of km?) (Bartesaghi-Koc et al., 2018). Conversely, it is not
fully understood how the larger urban forest might contribute to local
cooling benefits at the land unit scale and how these benefits could
extend from vegetation patches into adjacent areas (i.e., buffers)
(Jenerette et al., 2016; Ziter et al., 2019).

Precise measurements of urban heat during extreme weather events
have been challenging because of the stochasticity of these events and
current technological limitations (e.g., long satellite revisit times, cloud
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cover, low sensor resolution, etc.). Where satellite-based LST data is
available during extreme heat anomalies, they are usually limited to
either day or night overpasses, thus limiting our capability to investigate
fine-scale diel LST variation and the capacity of urban thermal land-
scapes to cool off during the night when under extremely hot conditions.
This is important because large temperature variations, particularly at a
higher temperature range, can further exacerbate heat stress in humans
(Petitti et al., 2016).

On the other hand, where more precise field-based measurements of
urban heat have been performed at a local scale (i.e., few kmz), they
have generally focused on one or a few suburbs or specific land uses,
such as urban parks, that are an imperfect representation of the thermal
complexity of a metropolis (Bonan, 2000; Bowler et al., 2010). Fewer
studies measuring LST of grass and short vegetation cover have been
performed compared to those investigating single trees or entire urban
forests (reviewed in Bowler et al. (2010)), and little information exists
on how LST varies across land units (e.g., yards, building rooftops, land
parcels). In this way, the localised cooling benefits that urban vegetation
as a whole can provide across entire cities are generally poorly quanti-
fied, particularly i) when these benefits are needed the most, i.e., during
heatwaves, hot spells and extremely hot days, and ii) where these ben-
efits are needed the most, i.e., locally in the residential parcels where
most people live.

To address these knowledge gaps, we measured urban LST within 90
suburbs across the coastal city of Adelaide, Australia during a summer
heatwave, at the end of three consecutive days with maximum air
temperature > 40 'C, which exceeds by more than 10 C the average
maximum air temperature (29.5 ‘C) historically recorded for this period
(Bureau of Meterology, 2019). The onset and development of this 3-day
heatwave event was constantly monitored in order to fly a dedicated
aircraft twice during the peak of the event and measure daytime and
nighttime LST at a very fine spatial resolution (2 m). The day flight
allowed us to also collect spectral data of the urban vegetation to create
a high resolution (30 cm) map of vegetated patches (e.g., single tree
canopies, small herbaceous patches in yards). The LST data collected
during the heatwave has a resolution between 13 and 900 times greater
than previously collected datasets, enabling a much more precise mea-
surement of LST associated with relatively small urban features, urban
vegetated patches and land use units (e.g., residential yards, rooftops,
etc.) subjected to extreme heat conditions.

In addressing this overall goal, we firstly measured how urban land
surface temperatures, recorded during the day, night and their differ-
ential (LSTday, LSTyight and LST,, respectively), vary during a heatwave
at the suburb and land unit scale. We further assessed the extent to
which non-vegetated and vegetated patches within suburbs and land
units affect local urban LST during a heatwave. We finally quantified the
landscape effect of the vegetation around each land unit at decreasing
LST during a heatwave.

We anticipated that, at the larger city scale, LSTs would increase with
the distance from the maritime coast west of Adelaide, as observed in
other cities under ordinary weather conditions (Declet-Barreto et al.,
2016; Tayyebi and Jenerette, 2016). We further expected that, on a
smaller local scale, vegetation might decrease LST within local buffers
adjacent to each land unit, as observed elsewhere for air temperature
under ordinary weather conditions (Ziter et al., 2019).

2. Materials and methods
2.1. Study area

Adelaide is located on the coast in the south-central portion of the
Australian continent, bordering its central steppe and desert. The
climate is hot temperate with dry summers (mean annual maximum
temperature = 21.6 °C [1955-2019]; mean annual rainfall = 439.9 mm,
(Bureau of Meteorology, 2019)). Adelaide suffers from a moderate
boundary layer UHI with nighttime rural-urban differences in air
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temperature peaking at 5.9 °C (Soltani and Sharifi, 2017). Australia is
considered one of the most vulnerable developed countries to the im-
pacts of climate change (Reisinger et al., 2015). The number of record
hot days in Australia has doubled since the 1960s and heatwaves have
become longer, hotter and more intense (Cowan et al., 2014; Perkins and
Alexander, 2012). Among Australia’s state capitals, Adelaide is severely
affected by frequent heatwaves with the mean annual number of hot
days (greater than 35 C) increasing from 17.5 [1961-1990] to 25.1
[2000-2009] (Steffen et al., 2014), and further projected to increase up
to 51 days by 2090 under current greenhouse gas emission trajectories
(Ogge et al., 2019). Increasing heatwave intensity has been particularly
pronounced in Adelaide, where the peak heatwave air temperature in
the period 1980-2011 was 4.3 °C higher than that for the period
1950-1980 (Steffen et al., 2014). The historical trend of extreme heat
events in Adelaide culminated in 2019 when the hottest air temperature
ever recorded in an Australian state capital reached 46.6 ‘C on January
24th (Commonwealth of Australia, B. o. M., 2019). Projections of
extreme temperatures in Australia do not scale linearly with mean global
warming and modelling indicates that major Australian cities could
experience extreme air temperatures exceeding 50 °C under 2 °C of
global mean warming (Lewis et al., 2017).

Heatwaves are Australia’s deadliest weather-related hazard, causing
more deaths since 1890 than bushfires, cyclones, earthquakes, floods
and severe storms combined (Coates et al., 2014). In eastern Australian
cities, for example, mortality has been observed to increase when the
maximum air temperature exceeds 28-30 °C (Guest et al., 1999). Over
the past four decades there has been a steady increase in the number of
deaths of Australians in summer, compared to those in winter, indicating
that warming increases mortality rates (Bennett et al., 2014). Currently,
the greater Adelaide area has the highest rate of heat-related deaths
among the country’s capital cities (Longden, 2018).

The study area (~149 km?) encompasses three municipalities (Port
Adelaide-Enfield, Charles Sturt and West Torrens) and 90 suburbs nested
between the city center and its maritime coast on the west (Fig. 1A and
SI Appendix). Suburbs are located in a coastal plain (0-25 m a.s.l.) at a
distance from the coast between 0 and 8 km. The study area is densely
populated (population = 300,377 people, population density = 1,635
people km ™2, house tenant occupancy = 29.31%, (Australian Bureau of
Statistics, 2017)), and is expected to further increase its population due
to planned urban densification and renewal aimed at reducing urban
sprawl around the greater Adelaide metropolitan area (Government of
South Australia, 2017). Despite the high population, several suburbs
selected for the study have a diverse composition of up to 12 land uses
comprising commercial, mixed-use and industrial land that are less
populated than residential areas (Table 1 and SI Appendix Fig. S2).

2.2. Geospatial data

Daytime (~1lam-1pm) and nighttime (~11pm-lam) Land Surface
Temperature (LSTqay and LSTpigh, respectively) was measured under
clear skies during a heatwave on 9-10% February 2017 (Fig. 2); the
fourth hottest day and the second hottest night recorded during the
2016/2017 austral summer. LST was measured using an A615 thermal
imager (FLIR Systems, Inc., Wilsonville, OR, USA) installed on a Dia-
mond HK36TTC ECO-Dimonas aircraft. LST data (2 m ground resolu-
tion) was collected during two dedicated flights at a cruising altitude of
3,000 m (Fig. 1). Flights were kept on stand-by for several days until a
suitable heatwave originated; during three consecutive days with day-
time maximum air temperature equal or above 40 C in the middle of the
study area (Feb 8™ = 42.4C; 9™ 41.0 C; 10™ 40.0 C recorded at Ade-
laide’s Kent Town weather station n.23090 (Bureau of Meterology,
2019). Daytime air temperatures during the heatwave were more than
10 C higher than the historical average maximum air temperature
recorded in February (1977-2020) at this location.

During the daytime flight, imagery in the red and near-infrared
spectra (0.39 m ground resolution) was collected with NIR-modified
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Fig. 1. (A) Map of the study area covering three municipalities and 90 suburbs in western Adelaide, Australia, which encompasses the most frequent land uses and
climatic conditions found across the greater metropolitan area (see detailed map in ST Appendix). The size of the area exceeds 149 km>. The dashed-line indicates the
flight path used to measure land surface temperature (LSTday, LSTyigny) and collect daytime red and near-infrared imagery (R, NIR). (B) Detail of the Diamond
HK36TTC ECO-Dimonas aircraft and the (C) instrument pod fitted with thermal and R-NIR sensors. Flights were kept on stand-by for several days until a suitable
heatwave originated (third consecutive day with daytime air temperature > 40 ‘C recorded at the Bureau of Meteorology’s weather station n.23090 Adelaide’s Kent
Town, which is more than 10 C higher than the average maximum temperature for February (29.5 C) recorded since 1977 (Bureau of Meterology, 2019). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1

Land unit class absolute and relative areal coverage within the study area, as well as absolute and relative vegetation (i.e., tree canopy and herbaceous cover) cover
within each land unit class. Classes highlighted in light grey represent residential land use. “Other residential” comprises residential buildings other than family houses

for which is not possile to locate backyards, corner- or front-yards (e.g., apartment block, condominiums, residential communities, etc.). The number of back and front
yards is not the same because some residential parcels do not have paired yards (5).

Land unit N. land % land Total area Percent Tree canopy Herbaceous Tree canopy  Herbaceous Tree canopy  Herbaceous
class units units land units cover unit area (m?) area (m?) cover (% cover (% land cover (% cover (% total
(m?) class (%) land unit unit class) total tree herbaceous
class) cover) cover)
Open space 1923 0.62 14,480,873 10.07 2,890,159 6,570,557 19.96 45.37 14.90 28.42
Backyard 64,926 20.92 13,512,690 9.39 4,512,618 3,803,259 33.40 28.15 23.26 16.45
Corner yard 15,065 4.86 4,477,077 3.11 1,317,747 1,251,686 29.43 27.96 6.79 5.41
Front yard 64,654 20.84 9,127,034 6.35 2,184,998 2,411,899 23.94 26.43 11.26 10.43
Other 17,152 5.53 3,260,290 2.27 734,037 643,363 22.51 19.73 3.78 2.78
residential
Building 126,594 40.80 33,804,877 23.50 44,243 32,537 0.13 0.10 0.23 0.14
Commercial 5996 1.93 7,011,305 4.87 649,437 465,067 9.26 6.63 3.35 2.01
Industrial 1681 0.54 4,232,054 2.94 328,886 270,908 7.77 6.40 1.70 1.17
Infrastructure 2468 0.80 35,555,375 24.72 4,672,253 4,120,763 13.14 11.59 24.08 17.82
Mixed use 1145 0.37 3,347,044 2.33 634,790 999,583 18.97 29.86 3.27 4.32
Other land 5982 1.93 6,687,532 4.65 919,195 960,454 13.74 14.36 4.74 4.15
use
Vacant 2712 0.87 8,013,203 5.57 514,591 1,591,149 6.42 19.86 2.65 6.88
Total 310,298 100.00 143,509,354 99.77 19,402,955 23,121,226 13.52 16.11 100.00 100.00

Canon EOS 6D DSLR camera (Canon, Tokyo, Japan). High-resolution
orthorectified cloud-free imagery in the visible spectrum (0.29 m
ground resolution, Fig. 2A) and LiDAR point cloud data (average point
spacing = 0.8 pts m~2) were obtained for the study area (details in SI
Appendix Table S1). Roof footprints of the 156,053 buildings in the
study area were obtained alongside a land use map, road network ge-
ometry and cadastral data (details in SI Appendix Table S1).

2.3. Geospatial analyses

Geospatial analyses were performed in ArcGIS Desktop 10.6.0.8321

(ESRI, Redlands, CA, USA) and followed the data processing and anal-
ysis workflow presented in SI Appendix — Figure S1. Briefly, Normalised
Difference Vegetation Index (NDVI) was calculated from the red and
near-infrared imagery collected from the aircraft. A digital surface
model (DSM, 1 m resolution), measuring the height from the ground of
all urban features (e.g., buildings, trees, etc.), was calculated from the
LiDAR data. A vegetation map detailing tree canopy and herbaceous
cover (0.29 m ground resolution, Fig. 2B) was modelled from RGB, NDVI
and DSM by using a segmentation and supervised classification
approach (methodological details and accuracy assessment are provided
in SI Appendix). The land surface temperature differential between day
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Fig. 2. (A) Detail of the suburb of Ferryden Park in Adelaide, Australia; (B) vegetation map highlighting woody (trees, shrubs) and herbaceous cover; (C) land unit
classes; LSTqay (D), LSTyign: (E) and temperature differential LST (F) collected during a heatwave in the austral summer 2017 (9-10t" February). All land unit classes
found in the larger study area are listed in Table 1. Black circles in (E) highlight an example of poorly insulated buildings that were likely air-conditioned at night.
Maps of LSTday, LSThigh: and land use for the entire study area are provided in the SI Appendix.

and night was calculated as LSTp = LSTgay - LSThighe.

As residential yards contain substantial amounts of urban vegetation
(Ossola et al., 2019a), all yards were located and classified as either
front-, corner- or backyards (Fig. 2C) by using the building footprint,
road geometry and parcel cadastral data (Ossola et al., 2019a) (meth-
odological details and accuracy assessment are provided in SI Appen-
dix). LST, distance from the coast, land use fractional composition and
vegetation cover data were averaged at two spatial scales: i) at the
landscape scale, within each of the 90 suburbs across the study area
(average size of 1.66 + 0.14 (standard error) kmz), and ii) at the local
scale, within each of the 310,298 land units (average size of 462.49 +
8.42 (standard error) rnz) within the study area (Fig. 2C), classified into
each of 12 land use classes (see Table 1 and 2). Because vegetation cover
around land units has been shown to locally affect urban air temperature

within suburbs (Ziter et al., 2019), we further calculated i) the percent
cover of tree canopy and ii) the herbaceous vegetation cover within
three concentric buffers extending outwards from the perimeter of each
land unit (0-30 m, 0-60 m and 0-90 m) for a total of 930,894 buffers
(see inset in Fig. 5).

2.4. Data analysis

Statistical analyses aimed to predict LSTgay LSTyignt, and LST, were
performed at both suburb and land unit level to investigate factors
affecting LST at different spatial scales as well as its diel variation during
a heatwave event. Statistical analyses were performed in R 3.6.1 (R Core
Team, 2017).

At the suburb scale, generalised linear models (GLMs) were fitted to
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Table 2

Summary statistics for Generalised Linear Models (GLMs) predicting average
urban land surface temperatures (LSTgay, LSTnigh: and LST,) at suburb level (n =
90) based on distance from the coast, vegetation cover and land use predictor
variables averaged for each suburb to calculate the respective proportional
cover. Coefficient estimates and (standard error) for each predictor are reported
in bold at significance levels of *** P < 0.001, ** P < 0.01, and * P < 0.05. “Front
yard cover”, “Back yard cover”, “Non-vegetated cover” and “Other land use cover”
cover have been excluded from GLMs as they are multi-collinear with the other
land cover and land use variables. A complete list of land use classes and their
total proportional coverage across the entire study area is provided in Table 1. A
correlation matrix for predictors is included in Table S2.

Response variable LSTgay LSThight LST,

Null deviance 232.618 12.610 261.663

Residual deviance 49.264 10.160 65.607

R? 0.788 0.194 0.749

AIC 229.17 87.088 254.96

Predictor variables

Distance from coast (m) 0.0004 —0.00003 0.0004
(0.00005)*** (0.00002) (0.00006)***

Tree canopy cover (%) —0.03 (0.038) —0.021 (0.018) —0.010 (0.044)

Herbaceous cover (%)

Building cover (%) 0.058 (0.031) —0.003 (0.014) 0.061 (0.036)

Commercial land cover 0.100 (0.029) —0.007 (0.013) 0.108 (0.033)
(0/0) sk *k

Corner yard cover (%) 0.201 (0.103)* 0.048 (0.045) 0.153 (0.119)

Industrial land cover 0.130 (0.037) —0.029 (0.017) 0.160 (0.044)
(%) sk wkk

Infrastructure cover (%)

0.041 (0.024) —0.013 (0.011) 0.053 (0.027)*

0.079 (0.019) 0.002 (0.009) 0.077 (0.023)
dededk ek

0.046 (0.028) 0.005 (0.013) 0.042 (0.032)
—0.019 (0.021) —0.006 (0.009) —0.014 (0.024)
0.154 (0.057) —0.056 0.209 (0.065)
w* (0.026)* w*

0.029 (0.033) —0.013 (0.015) 0.042 (0.038)

Mixed use cover (%)

Open space cover (%)

Other residential land
cover (%)

Vacant land cover (%)

each of the three LST metrics (LSTqay, LSThignt, LSTA) by using predictors
previously reported to affect urban LST at the city or neighborhood
scale, namely: i) average distance of suburbs from the coast, as inland
suburbs are often hotter than coastal suburbs due to reduced sea breezes
and increased warm air from inland areas (Khan et al., 2021; Tayyebi
and Jenerette, 2016, 2018); ii) urban forest fractional cover (i.e., percent
tree canopy and herbaceous cover) , as greener suburbs are often cooler
than those with lower vegetation cover (Myint et al., 2013); and iii) land
use fractional composition (i.e., percent cover of the main land uses
across the study area, see Table 1), as land uses with greater built-up
areas and impervious surfaces are generally hotter than less developed
suburbs (Soltani and Sharifi, 2017). Prior to modelling, LSTs suburb-
level data was modelled to a number of statistical distributions to find
the optimal function fitting the data that was used to specify the family
of GLMs (i.e., Gaussian) and multi-collinear variables were excluded
based on Variable Inflation Factors (VIF). Post-modelling, GLMs were
checked for distribution of residuals and model fit.

At the land unit scale, distributed random forest models (DRFs) were
fitted to predict the land unit variation of each of LSTgay, LSThign, and
LSTA. DRF modelling is an increasingly popular machine learning
technique based on the analysis of multiple regression trees (i.e.,
random forest) fitted on randomised subsets of predictors and observa-
tions (Prasad et al., 2006). DRF was selected over other regression
techniques (e.g., GLM) to model LST at the land unit scale as it is i)
suitable for big data models performed on highly-dimensional datasets
and large numbers of observations (i.e., 27 predictors and 310,298 land
units in this instance), ii) capable of handling multicollinear predictors
regardless of their statistical distribution, and iii) suitable for modelling
datasets with a high number of categorical variables (i.e., suburb iden-
tity and the 12 land unit classes coded as dummy variables in this
instance). Further, DRF models tend to reduce bias and data overfit
(Prasad et al., 2006), despite being computationally demanding. DFR
modelling was performed in a cloud-based platform (H20.ai, 2018,
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version 3.20.0.2) that can be interfaced to R 3.6.1 (R Core Team, 2017).
First, each of the LSTgay, LSThight, and LST, datasets were randomly
divided into a training and a validation dataset (80% and 20% of land
units, respectively). For each LST metric, a DRF model was fitted to the
respective training dataset by allowing the algorithm to generate a
maximum of 200 statistical trees (max depth = 30) in a 5-fold cross
validation fashion. Each model was then tested against each validation
dataset to ensure convergence in residual deviance. Predictor variable
responses were calculated by using the libraries DALEX, breakDown and
pdp in R 3.6.1 (R Core Team, 2017). Predictive performance of DRF
model was evaluated by calculating Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE) (Ameer et al., 2019).

Predictors used in DRF modelling at land unit scale were those used
in suburb-level GLMs but averaged for each land unit. Urban forest
fractional cover (i.e., percent tree canopy and herbaceous cover) was
averaged within each of the 310,298 land units and to which land use
class was also assigned. The composition of the urban forest around land
units within three concentric buffers (0-30 m, 0-60 m and 0-90 m) was
used as a predictor to account for local effects of vegetated patches upon
LST (Ziter et al., 2019). Distance from the coast, suburb identity and
land unit area were further included as covariates in the DRF models to
account for i) the potential coastal effect on LST as highlighted from the
previous suburb-level GLMs and other studies (Tayyebi and Jenerette,
2016, 2018), ii) the possible autocorrelation of vegetation characteris-
tics within the same suburb due to socio-economic characteristics
(Ossola and Hopton, 2018), and iii) the fact that urban vegetated cover is
generally constrained by the available planting space as dictated by
urban morphology (Bigsby et al., 2014).

3. Results

Despite covering only 18.85% of urban land across the 90 suburbs in
Adelaide, residential backyards, front yards and corner yards (n =
126,594) contained 41.31% and 32.29% of tree canopy and herbaceous
cover, respectively (Table 1). Backyards were the most common green
space type across the study area (n = 64,926), with notably higher
canopy cover (23.26%) than open space and urban parks (14.90%, n =
1,923). Buildings were the single most abundant land unit (n =
126,594), covering 23.50% of the study area (Table 1).

At the suburb scale, the General Linear Model (GLM) predicting
LSThight had a much lower model fit (R? = 0.205) than those predicting
LSTgay and LST, based on the same predictors (R? = 0.802 and 0.757,
respectively). Diurnal LST variation across the 90 suburbs (mean =
38.46 C + 4.48 SD, min = 33.70C, max = 41.07 C) was greater than the
nocturnal temperature variation (mean = 24.82 C + 2.12 SD, min =
23.66 C, max = 25.72 C). Suburb-level LST, showed similar variation
patterns to LSTgay (Fig. 3A). Suburb-level GLM analyses showed that
distance from the coast had the greatest effect on LST4ay and LSTx
compared to the other predictors, but not on LSTpigy (Table 2). LSTqay
and LST, steeply increased from the maritime coastline to about 4 km
inland, stabilizing between 4 and 6 km, to then increase again further
inland (Fig. 3A). GLMs showed that suburbs with high coverage of
impervious land uses, such as commercial and industrial land and in-
frastructures, had higher LSTq,y and LST, compared to other suburbs.
Tree canopy cover had no effect on LSTs at the suburb scale, and only
herbaceous cover had a marginally significant effect on LST4ay and LSTa
(Table 2, SI Appendix Fig. 1).

At the land unit scale, Distributed Random Forest (DRF) models
predicting LSTgay, LSThight and LST, explained about half of initial
deviance for the 310,298 land units analysed (Fig. 4). The location of
each land unit, based on its suburb and distance from the coast, was one
of the most important factors affecting local LST overall (Fig. 4). The
land use class of each land unit was the least important factor affecting
local LST (Fig. 4, SI Appendix Fig. 2), with the exception of buildings in
the DRF models predicting LSTy;gns and LST4. Overall, the percentage of
non-vegetated and vegetated cover (i.e., tree canopy and herbaceous)
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Fig. 3. (A) Urban land surface temperature (LST) recorded during day-, night-time and their differential (LST,) as measured across western Adelaide’s suburbs (n =
90) in relation to the average distance of each suburb from the maritime coastline. (B) Patch-level surface temperature in relation to distance from the maritime coast.
LST4ay (top), LSTyigh: (middle) and LSTA (bottom) is averaged across non-vegetated patches, tree canopy (n = 347,485) and herbaceous patches (n = 334,737)
regardless of their distribution within the 12 land use classes (Table 1). Points in 3B are omitted for clarity. Lines represent loess models and grey bands the respective

confidence intervals.

within each land unit and in the immediate landscape around each unit
had high importance in explaining LST variation across land units
(Fig. 4). The non-vegetated and vegetated cover in the landscape buffer
extending 30 m outwards from the border of each land unit greatly
affected local LSTgay and LST,, and to a lesser extent LSTyignt (Fig. 5).
The landscape contribution of vegetated cover at decreasing local LSTgay
and LST, decreased with the distance from each land unit. Similarly, the
landscape contribution of non-vegetated cover at increasing local LSTgay
and LST, decreased with the distance from each land unit (Fig. 5).
Overall, local metrics of vegetation cover were amongst the most
important factors affecting LST in all DRF models (Fig. 4).

4. Discussion
4.1. Extreme urban heat across spatial scales

At both the suburb and land unit scale (i.e., local scale), LSTqay and
LST, had a greater variation across the study area than LSTyjgh. LSTa
largely reflected differences in LST4ay rather than LSTpgn (Fig. 3A,
Fig. 5). LSThighe had lower variation across suburbs (23.66-25.72 C,
min-max) and local land units (10.22-37.46 C) compared to LSTgay
(33.70-41.08 C and 15.20-54.75 C for suburbs and land units,

respectively). Local LSTqay and LSTyjgn maxima were 13.67 and 11.76C
higher compared to suburb-level maxima. Thus, surface temperatures
experienced locally can be up to 25-30% higher compared to those
recorded at larger scales. After sunset, the urban land surface has a
negative net radiation balance and rapidly re-emits heat toward the
atmosphere as long-wave radiation (Bonan, 2000). Because the night
flight was performed four to six hours after the civil sunset (19:16 ACDT,
Australian Government, Geoscience Australia, http://www.ga.gov.
au/geodesy/astro/sunrise.jsp, accessed on 30.11.2019), sufficient time
might have occurred to allow most of the heat to dissipate from the
urban surface, thus determining the relatively small variation range in
LSTyight we measured. Recent LST measurements at large spatial scales
similarly found large variability in LST day-night pairs (Buyantuyev and
Wu, 2010; Myint et al., 2013). Fine-scale and repeated diel LST mea-
surements, attempted only at the suburb scale to date (Tayyebi and
Jenerette, 2018), will allow further calculation of fine-scale heating and
cooling rates for urban features and covers while accounting for sea-
sonality, weather extremes and spatial autocorrelation of thermal
properties, not investigated in our study.

Overall, both GLM and DRF models predicting LSTqay and LST, at
suburb and land unit scale were more accurate than those predicting
LSThight- Land use composition and its fractional cover had little effect in
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Fig. 4. Variable importance in each of the DRF models predicting LSTq4ay (top), LSTnigh: (middle) and LST, (bottom) based on vegetated and non-vegetated cover
within and around each land unit (i.e., 0-30, 0-60 and 0-90 m buffers) (beige bars), land use class of each land unit (blue bars) and location and size of each land unit
(grey bars). Line graphs represent the convergence of residual deviance based on the number of statistical trees fitted using the respective training (blue line) and
validation datasets (red line). Summary statistics for each DRF model are provided within each line plot. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

the GLM predicting LSTy;gn at suburb level (Table 2). Similarly, the use
class of each land unit had the lowest importance in the DRF predicting
LSThign at the local scale (Fig. 4). This suggests that the capacity of an
urban area to retain extreme heat at night, at both local and suburb
scale, might be less affected by land use, as compared to the capacity of

the same area to accumulate heat during the day. In this way, urban land
use modifications across scales might be more effective in managing
peak LSTg,y rather than minimum LSTygne as noticed elsewhere
(Jenerette et al., 2016). Despite the relatively small difference in LSTpighe
across land uses, residential areas overall had the lowest average
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Fig. 5. Response of variables related to vegetated cover (tree canopy in green and herbaceous cover in yellow) and non-vegetated cover (in black) within the 310,298
land units (solid line) and around land units (i.e., 0-30, 0-60 and 0-90 m buffers in dashed lines as per example in the inset) as modelled by using Distributed
Random Forest models (DRFs) predicting LST4,y (left panels), LSTyigh: (middle panels) and LST, (right panels), respectively. Points and confidence intervals are
omitted for clarity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

LSThignt suggesting only a slightly reduced human exposure to extreme
heat during this period (SI Appendix Fig. 2). Interestingly, several
thousand building rooftops were amongst the coolest land units at night
(Fig. 2E). This is most likely due to specific building materials or poorly
insulated buildings that were intensively air-conditioned during the
heatwave, particularly at night when most residents were at home. Thus,
other predictors not considered here, such as the type and abundance of
materials with different thermal properties, might have also played a
role in affecting LSTpign:. At the local land unit scale, the building
footprint class was the most important variable in the DRF model pre-
dicting LSTpign (Fig. 4), most likely due to the thermal properties of
roofs and greater sky view factors (SVF) able to facilitate heat dissipa-
tion after sunset, compared to other urban features. However, percent
building cover at the suburb scale was not significant in the GLM pre-
dicting LSTy;gnc (Table 2), as also observed during a dry and hot summer
in Phoenix, AZ, USA (Myint et al., 2013).

The fractional cover of several non-residential land uses was a sig-
nificant factor in the GLM predicting LSTgsy at the suburb level
(Table 1), but these were less important in modelling heat at the land
unit scale (Fig. 4). This suggests that, moving from the larger urban scale
to the local scale, the thermal properties of the materials comprising
urban features and covers (e.g., non-vegetated vs vegetated cover)
become progressively more important in explaining LST compared to
the land uses where these materials are located. For instance, higher
infrastructure cover within suburbs determined a higher LST4ay overall
(SI Appendix Fig. 1), but locally this effect might have been negated in
instances where streetscapes and other infrastructures were covered by
trees (Fig. 5). In this study it was not possible to evaluate the effects of
surface albedo and the reflectivity of different materials, despite their
importance in affecting LST at various scales (Santamouris et al., 2018).

4.2. Urban heat along the coastal gradient

As expected, a significant coastal gradient affecting extreme urban
heat was apparent across the study area at both suburb and land unit
scale. As the study area is situated on a flat coastal plain, no interactive
effects due to elevation and topography (e.g., aspect) were present.
However, the coastal effect moderating LST was significantly lower at
night. In fact, the distance from the coast had little effect on LSTpgy at
the suburb scale (Fig. 3A), whereas it was retained as the second most
important variable in the DFR predicting LSTp;gh: at local land unit scale
(Fig. 4), despite the relatively small range of variation of LSTpjghe. On

average, suburbs along the coastline were up to 5 ‘C cooler during the
day compared to the suburbs furthest from the coast. A study in Los
Angeles, CA, USA, a coastal city with comparable climate to Adelaide,
similarly found that the diel maximum LST increased by more than 10C
during mild late-spring conditions, but along a coast-inland gradient ten
times longer (80 km), also confounded by elevation (Tayyebi and
Jenerette, 2018). In Cleveland, OH, USA, a much smaller city along the
shore of Lake Erie, a small coastal effect in the moderation of LST was
also detected over summer (Declet-Barreto et al., 2016).

The presence of a significant thermal coastal gradient in Adelaide is
important, as even small temperature changes of a few degrees, partic-
ularly under extreme heat, can have dramatic effects on public health
and urban living (Petitti et al., 2016). An analysis of a 14-year hospital
admission dataset in Perth, WA, Australia, found a 9.8% increase in daily
mortality associated with a 10 C air temperature anomaly during heat-
waves (Williams et al., 2012). It remains to be seen to what extent the
lower and less variable coastal LST, might affect residents’ physiolog-
ical and behavioral adaptation to extreme heat compared to those of
inland populations (Hartz et al., 2013). To this point, it is important to
note that our findings are based on the assessment of urban land surface
temperature rather than air temperature, and as such, not a direct pre-
dictor of human thermal comfort. LST, however, might represent a
robust indicator when evaluating heat impacts on humans and cities,
and for this reason, this parameter has been used in numerous urban
epidemiological and climatological studies. For instance, Jenerette et al.
(2016) found a strong correlation between LST and self-reported heat
illnesses in Phoenix, AZ, US, and in the same city (Harlan et al., 2013)
found a positive relationship between heat-related deaths and LST. LST,
in fact, is generally well matched to air temperatures measured directly
above urban features and covers (Bonan, 2000). LST is also more closely
coupled with the thermodynamic properties of land features than air
temperature, particularly during daytime, and is a better predictor of
biophysical effects on heat, such as transpirational cooling by vegetation
(Hulley et al., 2019).

4.3. Urban forest mitigates extreme heat locally

Across the Adelaide suburbs measured, tree canopy and herbaceous
cover were relatively low (13.52 and 16.11%, respectively) compared to
other urban areas in Australia and globally (Dobbs et al., 2017). Con-
trary to our expectations, tree canopy cover across suburbs (14.33 +
3.88% SD) did not significantly affect LSTq,y, even when accounting for
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the coastal thermal gradient. Herbaceous cover also had a relatively
small effect on decreasing LSTqay, most likely driven by a few suburbs
having herbaceous cover greater than 30% due to the presence of large
open green spaces (ST Appendix Fig. S2). LSTpigh: was not affected by the
local vegetated cover. Ziter et al. (2019) also found a limited effect of
local tree cover on air temperature at night in Madison, WI. Other
studies in Cleveland, OH and Phoenix, AZ, found small yet significant
effects of vegetation cover on LSTpigh: at suburb and parcel scale,
respectively (Declet-Barreto et al., 2016; Jenerette et al., 2016).

Most previous large-scale assessments found urban vegetation to
generally decrease LSTqay in cities located in different climates and bi-
omes (Declet-Barreto et al., 2016; Myint et al., 2013). The lack of
consensus with our findings is likely due to several factors. First, Ade-
laide’s suburbs have a relatively low tree canopy cover compared to
neighborhoods in other cities and climates (Ossola and Hopton, 2018).
As such, the magnitude of variation range of vegetation cover and LST
among studies might have affected this relationship. Second, compared
to other cities, Adelaide has a dry summer with low precipitation (64.4
mm (~13% MAP), Dec 2016 - Feb 2017). This affects soil moisture and
therefore water available to plants for daytime evapotranspiration,
particularly during a heatwave, thus further confounding the relation-
ship between vegetation cover and LSTqay (Scherrer et al., 2011). As in
other studies, we could not account for the effect of irrigation on LSTs
(Jenerette et al., 2016, 2011), though the entire state of South Australia
is under Permanent Water Conservation Measures that have generally
limited water use for landscaping since 2003 (Department of Planning
and Local Government, 2010). Third, high-resolution studies of urban
LST are scant (Bartesaghi-Koc et al., 2019). Prior studies largely inves-
tigated LST by using coarse- and medium- resolution thermal sensors (e.
g., 7-60 m), and as such a spatial measurement mismatch might be
present when comparing these with the fine-scale heat measurements of
our study. Prior assessments also largely relied on NDVI datasets rather
than more detailed fine-scale maps of canopy and herbaceous covers
that better discriminate vegetation features within urban vegetation
(Myint et al., 2013; Zhou et al., 2017). In this way, previous evidence
captures LST at a resolution unlikely to fully encompass the high thermal
variability of urban heat.

At the land unit scale (i.e., tens of meters), however, vegetated cover
metrics were amongst the most important factors affecting LST in all
DRF models. Ranging from non-vegetated to fully covered land units,
trees provided about double the amount of LST4ay reductions compared
to herbaceous vegetation, as observed elsewhere (Jenerette et al., 2016).
This also held true when accounting for urban factors known to affect
climate and vegetation, such as the coastal thermal gradient and vege-
tation similarity within suburbs (Cook et al., 2012; Tayyebi and Jener-
ette, 2016). Contrary to previous evidence (Myint et al., 2013), we did
not find any support that herbaceous cover can locally decrease LSTy;ght
at the land unit scale. This could arise from potentially confounding
three-dimensional effects of building walls retarding nocturnal surface
radiative cooling at this scale that are not accounted for in our modelling
method, which could require further analysis if this is only a nocturnal
phenomenon. Our study, however, suggests that herbaceous cover might
provide significant benefits by decreasing urban LSTgay at this scale. This
is important because LSTg,y is an important component of urban heating
with significant implications for heat vulnerability and public health
(Harlan et al., 2006; Jenerette et al., 2016). The thermal benefits of short
woody and grassy vegetation are receiving increasing attention along-
side those generated by trees (Bartesaghi-Koc et al., 2018). Trees might
take decades to grow to maturity and provide heat mitigation, whereas
herbaceous cover can be developed quickly and inexpensively. Thus,
climate change adaptation strategies to extreme heat events could be
geared towards i) short-term localised LSTg4ay reductions achieved by
using grasses and turf to replace hotter paved and impervious surfaces,
integrated with ii) long-term urban forestry strategies aimed at
increasing tree cover across cities. In doing so, the selection of grass and
turf species having higher water use efficiency and heat tolerance (C4
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versus C3 photosynthesis) might also reduce irrigation needs and
improve water sustainability in times of scarcity.

LST4ay of vegetated patches, comparable to that of non-vegetated
patches along the coastline, increased proportionally less moving
inland. The presence of local tree and grass patches notably “flattened”
the LST coastal gradient (Fig. 3B), as also observed at a city-wide scale
across Los Angeles, CA (Tayyebi and Jenerette, 2018). As such, in-
terventions aimed at mitigating urban heat by using urban green in-
frastructures, urban forests, etc., are likely to have a greater effect in
hotter urban landscapes and hotspots (Jenerette et al., 2016), where
significant temperature decreases are also needed the most, particularly
under extreme heat and climatic change.

The amount of vegetated cover in the landscape around each land
unit also had an effect on LST, particularly during the daytime, although
this effect was stronger in the 0-30 m buffer closest to each land unit and
tended to saturate when exceeding 50% tree/grass cover in the closest
buffer. This is important as it highlights that the overall context of
neighborhoods and greening can be designed to locally decrease LSTgay
within each land unit. While a landscape influence on urban air tem-
perature (Ziter et al., 2019) and LST (Yan et al., 2019) has been observed
elsewhere, the effect on LST we found is most likely attributable to urban
vegetation composition and structure often being more similar within
suburbs based on their biophysical characteristics, urban morphology
and socio-economics (Ossola and Hopton, 2018) or to the presence of
energy exchange across edges of adjacent patches or “oasis effects”
(Georgescu et al., 2011; Li et al., 2018).

Residential yard presence was not the best DRF predictor of local
LST, but yards overall had a proportionally higher tree canopy and
herbaceous cover compared to other land unit classes. Yards are often
amongst the largest and most widespread land use in some modern
western cities, often containing large areas of urban forests (Ossola
et al.,, 2019a, b). However, most current urban greening and forestry
strategies and actions are geared towards the public realm (Ossola et al.,
2018). Private residential yards represent an untapped opportunity for
localised urban heat management and public health benefits. Particular
attention will be needed when considering the complex social drivers
affecting urban forest and their change. The urban forest in the private
realm could be used to locally decrease urban LST by several degrees,
particularly where temperature mitigation is needed the most, i.e.,
closer to homes and residents and when cooling is needed the most, i.e.,
during periods of extreme heat.

5. Conclusions

Urban heat management currently suffers from a critical mismatch
between the scale of urban biophysical properties, such as LST, and the
scale of human interventions aimed at mitigating the negative effects of
temperature extremes. Because of this, urban governance and planning
frameworks hoping to ameliorate and resolve the severe impacts that
heatwaves can have on cities, sustainability and public health will need
to better value the cooling gains at the urban microclimate level and the
local scale (Harlan et al., 2006). Our study is the first to quantify cooling
benefits during a heatwave, an extreme weather event that is likely to
increase in frequency, intensity and/or duration under climate change.
LST reductions, such as those determined by the presence of relatively
small and localised tree or grass patches, can be compounded and
amplified at larger landscape and city-wide scales. Our overall findings
confirm previous evidence about the importance of urban vegetation in
reducing LST but further highlight its critical role during extreme
weather events such as heatwaves.

Future research could better clarify the effects of urban irrigation on
LST, particularly during extreme heatwave events coupled with long-
lasting drought, and the concurrent effects due to plant species iden-
tity, stomatal conductance, albedo and canopy architecture (e.g., leaf
area index, branching). More evidence is also needed to resolve the fine-
scale relationships between near-surface air temperatures and LST
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across entire urban landscapes under extreme heat, the effects due to
spatial autocorrelation of thermal properties and their localised impacts
on public health.

This study is amongst the first to suggest the cooling benefits during
extreme heat conditions that can be provided by small vegetation
patches largely depend on their location within an urban landscape,
such as the distance from the coast. Thus, at the meso-scale, coastal cities
could also prioritise interventions based on larger climatic drivers and
physical gradients, such as those arising from the presence of large
bodies of water.

Private green spaces, such as people’s yards and their trees, are
disproportionally important for urban heat mitigation but are currently
an overlooked asset for localised climate change adaptation. Managing
private green space for urban heat management could help residents to
locally adapt to extreme heat when and where this is needed the most;
during heatwaves and near home.
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