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H I G H L I G H T S  

• Cooling benefits by urban vegetation are greater at land unit than the suburb scale. 
• Vegetation provides greater cooling benefits to suburbs further from the coast. 
• Private green spaces are disproportionally important for urban heat mitigation. 
• Yards and trees are an overlooked asset for localised climate change adaptation. 
• People can adapt to heat when and where needed the most; during heatwaves and near home.  
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A B S T R A C T   

As the global climate warms, cities worldwide face more frequent and extreme heatwaves. These events can 
affect human health and decrease liveability. While the mitigating effects of vegetation on land surface tem
perature (LST) are well characterised at large spatial scales and during typical weather conditions, the cooling 
benefits that urban greening can provide at local scales, particularly during summer heatwaves, are poorly 
quantified. 

We quantified LST variation across an urban landscape to assess relationships with land use and vegetation 
cover from land unit (average ~ 460 m2) to suburb scale (~1.66 km2) under extreme summer heat conditions. 
High resolution (2 m), day- and night-time LST was measured at the peak of a heatwave event, after three 
consecutive days with air temperature exceeding 40 ̊C, by flying an aircraft fitted with a thermal imager over 90 
suburbs in Adelaide, Australia. Daytime, night-time, and diurnal range LST distributions were related to mea
sures of land use, vegetation cover (i.e., tree, grass) and urban morphology at both the suburb and land unit scale. 

At the suburb scale, vegetation cover did not affect LST. However, at the land unit scale, tree canopy cover, 
and to a lesser extent grass cover, decreased local LST by up to 6 ̊C during the day, but not at night. Overall night- 
time LST was poorly predicted by the land use and land cover predictors. Moving inland from the coast, small 
vegetation patches, mostly contained in yards and gardens, was associated with the greatest localised LST re
ductions in the hotter inland suburbs. LST within land units was further decreased during the day when vege
tation was present within 30 m buffers around each land unit, suggesting a moderate landscape cooling effect on 
LST. 
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Our results suggest that even small urban vegetation patches can be managed to provide substantial heat 
mitigation during increasingly frequent summer heatwaves, particularly around the residential environments 
where people live.   

1. Introduction 

The average global temperature is now more than 1 ◦C above pre- 
industrial levels and the years 2015–19 were the five warmest on re
cord (WMO, 2019b). The global warming trend is associated with sig
nificant increases in the frequency and intensity of extreme weather 
events, including heatwaves, with the latter defined as periods “of at 
least three days where the combined effect of excess heat and heat stress is 
unusual with respect to the local climate” (Nairn and Fawcett, 2013). 

Heatwaves have significant impacts on human health, biodiversity, 
infrastructure and economies (Gasparrini et al., 2015; Watts et al., 
2018). Extreme heat can exacerbate existing health issues, such as car
diovascular and respiratory disease, and is associated with increased 
hospital admissions, psychological stress and aggressive behavior 
(Harlan et al., 2013), as well as excess mortality (Robine et al., 2008; 
Shaposhnikov et al., 2014). From 2000 to 2016, the number of people 
exposed to heatwave risk globally is estimated to have increased by 
around 125 million, with the average length of individual heatwave 
events increasing by 0.37 days, compared to 1986 – 2008 (Watts et al., 
2018). Worldwide, an estimated 175 million people were exposed to 
more than 600 heatwaves in 2015 alone. The recently released United in 
Science report, compiled under the auspices of the World Meteorological 
Organisation to coincide with the United Nations Climate Action Summit in 
2019, reported that heatwaves were the “deadliest meteorological hazard” 
in the 2015–2019 period, affecting all continents, with national heat 
records set in many regions (WMO, 2019a). The impacts of heatwaves 
under a future 2 ◦C warming scenario are projected to be considerably 
greater than those for 1.5 ◦C (IPCC, 2018). One modelling study 
concluded that 13.8% of the world’s population would be exposed to 
“severe heatwaves” at least once every 5 years with warming of 1.5 ◦C, 
but 36.9% at 2 ◦C, a difference of approximately 1.7 billion people 
(Dosio et al., 2018). As the world’s cities house more than 55% of the 
current global population, with this figure potentially increasing to 
nearly 70% by 2050 (United Nations, 2018), the interactive effects of 
future climate change and urbanisation will increase risks associated 
with extreme urban heat (Rogers et al., 2018). 

Heat exposure risk during heatwaves can be further exacerbated in 
some urban areas as these can be relatively warmer than surrounding 
areas - the Urban Heat Island (UHI) effect - due to modifications of the 
urban land surface and anthropogenic heat from energy use (Oke et al., 
2017). Overall, the mean annual air temperature in a large urban area 
may be 1–2 ◦C warmer than the surrounding peri-urban area, and up to 
12 ◦C warmer on calm, clear nights (American Meteorological Society, 
2020). The Surface Urban Heat Island (SUHI) can be quantified by 
measuring land surface temperatures (LST) of composite materials at the 
urban surface and comparison with rural or non-urban surfaces (Oke 
et al., 2017). Differences in composite urban vs. non-urban LST are 
driven by spatio-temporal variations in the surface energy balance, 
namely in radiative, conductive and turbulent fluxes. Some urban fea
tures can locally accumulate large amounts of heat during the day, often 
increasing urban LST well above 60 ̊C on hot summer days, depending 
on the thermal properties of their materials (Bonan, 2000). Across 
coastal cities, where much of the global urban population resides 
(Threlfall et al., 2021), lake or marine effects can further lead to steep 
gradients in LST at the city scale (Declet-Barreto et al., 2016; Tayyebi 
and Jenerette, 2016). This is particularly true in Australian cities which 
are affected by synoptic conditions such as warm air from inland deserts 
and cool sea breezes (Khan et al., 2021). 

Recent large-scale assessments of heat across urban landscapes found 
that greener suburbs, characterised by higher forest cover and lower 

impervious surface area, often have lower LST compared to areas with 
lower tree cover (Imhoff et al., 2010; Manoli et al., 2019; Tayyebi and 
Jenerette, 2018). Solar energy is used by plants for photosynthesis and 
related processes (Bonan, 2000). Greater plant and leaf biomass can lead 
to a larger latent heat flux and higher transpiration, and reduce surface 
resistance to evapotranspiration (Hulley et al., 2019). In this way, tree 
canopies can often maintain a daytime surface temperature close to that 
of the surrounding air (Mildrexler et al., 2011). Vegetation affects heat 
fluxes and microclimate at a location depending on its overall structural 
and spectral properties, such as leaf cover and seasonality, roughness 
and albedo (Hulley et al., 2019). Urban trees and tall vegetation can also 
shade infrastructures and buildings, avoiding heat accumulation within 
these features during the day and reducing urban LST (Bonan, 2000). 
Conversely, during the night, the urban forest can trap heat, causing 
localised increments of air and surface temperature in some locations 
(Ziter et al., 2019). These mechanisms collectively mean that urban 
vegetation and green-infrastructure (e.g., green roofs and walls) are 
increasingly being suggested as an effective and relatively inexpensive 
adaptation strategy to decrease urban heat, particularly in the context of 
the risks posed by ongoing climate change (Bowler et al., 2010; Jener
ette et al., 2011), although the magnitude and timing of localised 
cooling effectiveness is uncertain, especially in relation to high intensity 
heat waves. 

Studies investigating urban heat and LST to date have been primarily 
conducted at a relatively coarse spatial resolution (60–100 m from 
Landsat and ASTER satellite platforms) that is ineffective for capturing 
the fine-scale thermal structure and granularity of urban landscapes 
(Declet-Barreto et al., 2016; Zhou et al., 2017). Similarly, urban canopy 
cover assessments often rely on coarse spatial data as well as proxies, 
such as the Normalised Difference Vegetation Index (NDVI) (Declet- 
Barreto et al., 2016; Imhoff et al., 2010), that make little distinction 
between urban forest types and structures (e.g., trees vs herbaceous 
cover). This greatly limits our understanding of the local relations be
tween urban heat and urban vegetation, as both are highly variable in 
their spatial distribution across cities and urban landscapes (Jenerette 
et al., 2016). Urban vegetation cover and structure, for instance, can 
dramatically vary at a fine-scale based on urban morphology, land use, 
socio-economic factors and people’s preferences (Ossola et al., 2019a, 
2019b). In this way, it is reasonable to expect the moderating effects of 
urban vegetation cover on LST to be also highly localised and spatially 
variable. 

Fine-scale assessments of the relationship between urban vegetation 
and extreme heat across an entire urban landscape are scant (Bartesaghi- 
Koc et al., 2018). Similarly, there is little available information about 
multi-scalar effects of urban vegetation in moderating LST during 
heatwaves i.e. comparing differences between smaller land units such as 
residential yards managed by residents, to larger units such as parks and 
streetscapes managed by public authorities. There is limited knowledge, 
therefore, as to how even small-scale and localised greening in
terventions, such as vegetated patches of a few dozens of square meters, 
might compound and extend their cooling effects at the parcel (hundreds 
of m2), suburb (few km2), landscape (dozens of km2) and city-scale 
(hundreds of km2) (Bartesaghi-Koc et al., 2018). Conversely, it is not 
fully understood how the larger urban forest might contribute to local 
cooling benefits at the land unit scale and how these benefits could 
extend from vegetation patches into adjacent areas (i.e., buffers) 
(Jenerette et al., 2016; Ziter et al., 2019). 

Precise measurements of urban heat during extreme weather events 
have been challenging because of the stochasticity of these events and 
current technological limitations (e.g., long satellite revisit times, cloud 
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cover, low sensor resolution, etc.). Where satellite-based LST data is 
available during extreme heat anomalies, they are usually limited to 
either day or night overpasses, thus limiting our capability to investigate 
fine-scale diel LST variation and the capacity of urban thermal land
scapes to cool off during the night when under extremely hot conditions. 
This is important because large temperature variations, particularly at a 
higher temperature range, can further exacerbate heat stress in humans 
(Petitti et al., 2016). 

On the other hand, where more precise field-based measurements of 
urban heat have been performed at a local scale (i.e., few km2), they 
have generally focused on one or a few suburbs or specific land uses, 
such as urban parks, that are an imperfect representation of the thermal 
complexity of a metropolis (Bonan, 2000; Bowler et al., 2010). Fewer 
studies measuring LST of grass and short vegetation cover have been 
performed compared to those investigating single trees or entire urban 
forests (reviewed in Bowler et al. (2010)), and little information exists 
on how LST varies across land units (e.g., yards, building rooftops, land 
parcels). In this way, the localised cooling benefits that urban vegetation 
as a whole can provide across entire cities are generally poorly quanti
fied, particularly i) when these benefits are needed the most, i.e., during 
heatwaves, hot spells and extremely hot days, and ii) where these ben
efits are needed the most, i.e., locally in the residential parcels where 
most people live. 

To address these knowledge gaps, we measured urban LST within 90 
suburbs across the coastal city of Adelaide, Australia during a summer 
heatwave, at the end of three consecutive days with maximum air 
temperature ≥ 40 ̊C, which exceeds by more than 10 ̊ C the average 
maximum air temperature (29.5 ̊C) historically recorded for this period 
(Bureau of Meterology, 2019). The onset and development of this 3-day 
heatwave event was constantly monitored in order to fly a dedicated 
aircraft twice during the peak of the event and measure daytime and 
nighttime LST at a very fine spatial resolution (2 m). The day flight 
allowed us to also collect spectral data of the urban vegetation to create 
a high resolution (30 cm) map of vegetated patches (e.g., single tree 
canopies, small herbaceous patches in yards). The LST data collected 
during the heatwave has a resolution between 13 and 900 times greater 
than previously collected datasets, enabling a much more precise mea
surement of LST associated with relatively small urban features, urban 
vegetated patches and land use units (e.g., residential yards, rooftops, 
etc.) subjected to extreme heat conditions. 

In addressing this overall goal, we firstly measured how urban land 
surface temperatures, recorded during the day, night and their differ
ential (LSTday, LSTnight and LSTΔ, respectively), vary during a heatwave 
at the suburb and land unit scale. We further assessed the extent to 
which non-vegetated and vegetated patches within suburbs and land 
units affect local urban LST during a heatwave. We finally quantified the 
landscape effect of the vegetation around each land unit at decreasing 
LST during a heatwave. 

We anticipated that, at the larger city scale, LSTs would increase with 
the distance from the maritime coast west of Adelaide, as observed in 
other cities under ordinary weather conditions (Declet-Barreto et al., 
2016; Tayyebi and Jenerette, 2016). We further expected that, on a 
smaller local scale, vegetation might decrease LST within local buffers 
adjacent to each land unit, as observed elsewhere for air temperature 
under ordinary weather conditions (Ziter et al., 2019). 

2. Materials and methods 

2.1. Study area 

Adelaide is located on the coast in the south-central portion of the 
Australian continent, bordering its central steppe and desert. The 
climate is hot temperate with dry summers (mean annual maximum 
temperature = 21.6 ◦C [1955–2019]; mean annual rainfall = 439.9 mm, 
(Bureau of Meteorology, 2019)). Adelaide suffers from a moderate 
boundary layer UHI with nighttime rural–urban differences in air 

temperature peaking at 5.9 ◦C (Soltani and Sharifi, 2017). Australia is 
considered one of the most vulnerable developed countries to the im
pacts of climate change (Reisinger et al., 2015). The number of record 
hot days in Australia has doubled since the 1960s and heatwaves have 
become longer, hotter and more intense (Cowan et al., 2014; Perkins and 
Alexander, 2012). Among Australia’s state capitals, Adelaide is severely 
affected by frequent heatwaves with the mean annual number of hot 
days (greater than 35 ̊ C) increasing from 17.5 [1961–1990] to 25.1 
[2000–2009] (Steffen et al., 2014), and further projected to increase up 
to 51 days by 2090 under current greenhouse gas emission trajectories 
(Ogge et al., 2019). Increasing heatwave intensity has been particularly 
pronounced in Adelaide, where the peak heatwave air temperature in 
the period 1980–2011 was 4.3 ◦C higher than that for the period 
1950–1980 (Steffen et al., 2014). The historical trend of extreme heat 
events in Adelaide culminated in 2019 when the hottest air temperature 
ever recorded in an Australian state capital reached 46.6 ̊C on January 
24th (Commonwealth of Australia, B. o. M., 2019). Projections of 
extreme temperatures in Australia do not scale linearly with mean global 
warming and modelling indicates that major Australian cities could 
experience extreme air temperatures exceeding 50 ◦C under 2 ◦C of 
global mean warming (Lewis et al., 2017). 

Heatwaves are Australia’s deadliest weather-related hazard, causing 
more deaths since 1890 than bushfires, cyclones, earthquakes, floods 
and severe storms combined (Coates et al., 2014). In eastern Australian 
cities, for example, mortality has been observed to increase when the 
maximum air temperature exceeds 28–30 ◦C (Guest et al., 1999). Over 
the past four decades there has been a steady increase in the number of 
deaths of Australians in summer, compared to those in winter, indicating 
that warming increases mortality rates (Bennett et al., 2014). Currently, 
the greater Adelaide area has the highest rate of heat-related deaths 
among the country’s capital cities (Longden, 2018). 

The study area (~149 km2) encompasses three municipalities (Port 
Adelaide-Enfield, Charles Sturt and West Torrens) and 90 suburbs nested 
between the city center and its maritime coast on the west (Fig. 1A and 
SI Appendix). Suburbs are located in a coastal plain (0–25 m a.s.l.) at a 
distance from the coast between 0 and 8 km. The study area is densely 
populated (population = 300,377 people, population density = 1,635 
people km−2, house tenant occupancy = 29.31%, (Australian Bureau of 
Statistics, 2017)), and is expected to further increase its population due 
to planned urban densification and renewal aimed at reducing urban 
sprawl around the greater Adelaide metropolitan area (Government of 
South Australia, 2017). Despite the high population, several suburbs 
selected for the study have a diverse composition of up to 12 land uses 
comprising commercial, mixed-use and industrial land that are less 
populated than residential areas (Table 1 and SI Appendix Fig. S2). 

2.2. Geospatial data 

Daytime (~11am-1pm) and nighttime (~11pm-1am) Land Surface 
Temperature (LSTday and LSTnight, respectively) was measured under 
clear skies during a heatwave on 9-10th February 2017 (Fig. 2); the 
fourth hottest day and the second hottest night recorded during the 
2016/2017 austral summer. LST was measured using an A615 thermal 
imager (FLIR Systems, Inc., Wilsonville, OR, USA) installed on a Dia
mond HK36TTC ECO-Dimonas aircraft. LST data (2 m ground resolu
tion) was collected during two dedicated flights at a cruising altitude of 
3,000 m (Fig. 1). Flights were kept on stand-by for several days until a 
suitable heatwave originated; during three consecutive days with day
time maximum air temperature equal or above 40 ̊C in the middle of the 
study area (Feb 8th = 42.4 ̊C; 9th 41.0 ̊C; 10th 40.0 ̊C recorded at Ade
laide’s Kent Town weather station n.23090 (Bureau of Meterology, 
2019). Daytime air temperatures during the heatwave were more than 
10 ̊ C higher than the historical average maximum air temperature 
recorded in February (1977–2020) at this location. 

During the daytime flight, imagery in the red and near-infrared 
spectra (0.39 m ground resolution) was collected with NIR-modified 
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Canon EOS 6D DSLR camera (Canon, Tokyo, Japan). High-resolution 
orthorectified cloud-free imagery in the visible spectrum (0.29 m 
ground resolution, Fig. 2A) and LiDAR point cloud data (average point 
spacing = 0.8 pts m−2) were obtained for the study area (details in SI 
Appendix Table S1). Roof footprints of the 156,053 buildings in the 
study area were obtained alongside a land use map, road network ge
ometry and cadastral data (details in SI Appendix Table S1). 

2.3. Geospatial analyses 

Geospatial analyses were performed in ArcGIS Desktop 10.6.0.8321 

(ESRI, Redlands, CA, USA) and followed the data processing and anal
ysis workflow presented in SI Appendix – Figure S1. Briefly, Normalised 
Difference Vegetation Index (NDVI) was calculated from the red and 
near-infrared imagery collected from the aircraft. A digital surface 
model (DSM, 1 m resolution), measuring the height from the ground of 
all urban features (e.g., buildings, trees, etc.), was calculated from the 
LiDAR data. A vegetation map detailing tree canopy and herbaceous 
cover (0.29 m ground resolution, Fig. 2B) was modelled from RGB, NDVI 
and DSM by using a segmentation and supervised classification 
approach (methodological details and accuracy assessment are provided 
in SI Appendix). The land surface temperature differential between day 

Fig. 1. (A) Map of the study area covering three municipalities and 90 suburbs in western Adelaide, Australia, which encompasses the most frequent land uses and 
climatic conditions found across the greater metropolitan area (see detailed map in SI Appendix). The size of the area exceeds 149 km2. The dashed-line indicates the 
flight path used to measure land surface temperature (LSTday, LSTnight) and collect daytime red and near-infrared imagery (R, NIR). (B) Detail of the Diamond 
HK36TTC ECO-Dimonas aircraft and the (C) instrument pod fitted with thermal and R-NIR sensors. Flights were kept on stand-by for several days until a suitable 
heatwave originated (third consecutive day with daytime air temperature ≥ 40 ̊C recorded at the Bureau of Meteorology’s weather station n.23090 Adelaide’s Kent 
Town, which is more than 10 C̊ higher than the average maximum temperature for February (29.5 C̊) recorded since 1977 (Bureau of Meterology, 2019). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Land unit class absolute and relative areal coverage within the study area, as well as absolute and relative vegetation (i.e., tree canopy and herbaceous cover) cover 
within each land unit class. Classes highlighted in light grey represent residential land use. “Other residential” comprises residential buildings other than family houses 
for which is not possile to locate backyards, corner- or front-yards (e.g., apartment block, condominiums, residential communities, etc.). The number of back and front 
yards is not the same because some residential parcels do not have paired yards (5).  

Land unit 
class 

N. land 
units 

% land 
units 

Total area 
land units 
(m2) 

Percent 
cover unit 
class (%) 

Tree canopy 
area (m2) 

Herbaceous 
area (m2) 

Tree canopy 
cover (% 
land unit 
class) 

Herbaceous 
cover (% land 
unit class) 

Tree canopy 
cover (% 
total tree 
cover) 

Herbaceous 
cover (% total 
herbaceous 
cover) 

Open space 1923  0.62 14,480,873  10.07 2,890,159 6,570,557  19.96  45.37  14.90  28.42 
Backyard 64,926  20.92 13,512,690  9.39 4,512,618 3,803,259  33.40  28.15  23.26  16.45 
Corner yard 15,065  4.86 4,477,077  3.11 1,317,747 1,251,686  29.43  27.96  6.79  5.41 
Front yard 64,654  20.84 9,127,034  6.35 2,184,998 2,411,899  23.94  26.43  11.26  10.43 
Other 

residential 
17,152  5.53 3,260,290  2.27 734,037 643,363  22.51  19.73  3.78  2.78 

Building 126,594  40.80 33,804,877  23.50 44,243 32,537  0.13  0.10  0.23  0.14 
Commercial 5996  1.93 7,011,305  4.87 649,437 465,067  9.26  6.63  3.35  2.01 
Industrial 1681  0.54 4,232,054  2.94 328,886 270,908  7.77  6.40  1.70  1.17 
Infrastructure 2468  0.80 35,555,375  24.72 4,672,253 4,120,763  13.14  11.59  24.08  17.82 
Mixed use 1145  0.37 3,347,044  2.33 634,790 999,583  18.97  29.86  3.27  4.32 
Other land 

use 
5982  1.93 6,687,532  4.65 919,195 960,454  13.74  14.36  4.74  4.15 

Vacant 2712  0.87 8,013,203  5.57 514,591 1,591,149  6.42  19.86  2.65  6.88 
Total 310,298  100.00 143,509,354  99.77 19,402,955 23,121,226  13.52  16.11  100.00  100.00  
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and night was calculated as LSTΔ = LSTday - LSTnight. 
As residential yards contain substantial amounts of urban vegetation 

(Ossola et al., 2019a), all yards were located and classified as either 
front-, corner- or backyards (Fig. 2C) by using the building footprint, 
road geometry and parcel cadastral data (Ossola et al., 2019a) (meth
odological details and accuracy assessment are provided in SI Appen
dix). LST, distance from the coast, land use fractional composition and 
vegetation cover data were averaged at two spatial scales: i) at the 
landscape scale, within each of the 90 suburbs across the study area 
(average size of 1.66 ± 0.14 (standard error) km2), and ii) at the local 
scale, within each of the 310,298 land units (average size of 462.49 ±
8.42 (standard error) m2) within the study area (Fig. 2C), classified into 
each of 12 land use classes (see Table 1 and 2). Because vegetation cover 
around land units has been shown to locally affect urban air temperature 

within suburbs (Ziter et al., 2019), we further calculated i) the percent 
cover of tree canopy and ii) the herbaceous vegetation cover within 
three concentric buffers extending outwards from the perimeter of each 
land unit (0–30 m, 0–60 m and 0–90 m) for a total of 930,894 buffers 
(see inset in Fig. 5). 

2.4. Data analysis 

Statistical analyses aimed to predict LSTday LSTnight, and LSTΔ were 
performed at both suburb and land unit level to investigate factors 
affecting LST at different spatial scales as well as its diel variation during 
a heatwave event. Statistical analyses were performed in R 3.6.1 (R Core 
Team, 2017). 

At the suburb scale, generalised linear models (GLMs) were fitted to 

Fig. 2. (A) Detail of the suburb of Ferryden Park in Adelaide, Australia; (B) vegetation map highlighting woody (trees, shrubs) and herbaceous cover; (C) land unit 
classes; LSTday (D), LSTnight (E) and temperature differential LSTΔ (F) collected during a heatwave in the austral summer 2017 (9-10th February). All land unit classes 
found in the larger study area are listed in Table 1. Black circles in (E) highlight an example of poorly insulated buildings that were likely air-conditioned at night. 
Maps of LSTday, LSTnight and land use for the entire study area are provided in the SI Appendix. 
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each of the three LST metrics (LSTday, LSTnight, LSTΔ) by using predictors 
previously reported to affect urban LST at the city or neighborhood 
scale, namely: i) average distance of suburbs from the coast, as inland 
suburbs are often hotter than coastal suburbs due to reduced sea breezes 
and increased warm air from inland areas (Khan et al., 2021; Tayyebi 
and Jenerette, 2016, 2018); ii) urban forest fractional cover (i.e., percent 
tree canopy and herbaceous cover) , as greener suburbs are often cooler 
than those with lower vegetation cover (Myint et al., 2013); and iii) land 
use fractional composition (i.e., percent cover of the main land uses 
across the study area, see Table 1), as land uses with greater built-up 
areas and impervious surfaces are generally hotter than less developed 
suburbs (Soltani and Sharifi, 2017). Prior to modelling, LSTs suburb- 
level data was modelled to a number of statistical distributions to find 
the optimal function fitting the data that was used to specify the family 
of GLMs (i.e., Gaussian) and multi-collinear variables were excluded 
based on Variable Inflation Factors (VIF). Post-modelling, GLMs were 
checked for distribution of residuals and model fit. 

At the land unit scale, distributed random forest models (DRFs) were 
fitted to predict the land unit variation of each of LSTday, LSTnight, and 
LSTΔ. DRF modelling is an increasingly popular machine learning 
technique based on the analysis of multiple regression trees (i.e., 
random forest) fitted on randomised subsets of predictors and observa
tions (Prasad et al., 2006). DRF was selected over other regression 
techniques (e.g., GLM) to model LST at the land unit scale as it is i) 
suitable for big data models performed on highly-dimensional datasets 
and large numbers of observations (i.e., 27 predictors and 310,298 land 
units in this instance), ii) capable of handling multicollinear predictors 
regardless of their statistical distribution, and iii) suitable for modelling 
datasets with a high number of categorical variables (i.e., suburb iden
tity and the 12 land unit classes coded as dummy variables in this 
instance). Further, DRF models tend to reduce bias and data overfit 
(Prasad et al., 2006), despite being computationally demanding. DFR 
modelling was performed in a cloud-based platform (H2O.ai, 2018, 

version 3.20.0.2) that can be interfaced to R 3.6.1 (R Core Team, 2017). 
First, each of the LSTday, LSTnight, and LSTΔ datasets were randomly 
divided into a training and a validation dataset (80% and 20% of land 
units, respectively). For each LST metric, a DRF model was fitted to the 
respective training dataset by allowing the algorithm to generate a 
maximum of 200 statistical trees (max depth = 30) in a 5-fold cross 
validation fashion. Each model was then tested against each validation 
dataset to ensure convergence in residual deviance. Predictor variable 
responses were calculated by using the libraries DALEX, breakDown and 
pdp in R 3.6.1 (R Core Team, 2017). Predictive performance of DRF 
model was evaluated by calculating Mean Absolute Error (MAE) and 
Root Mean Square Error (RMSE) (Ameer et al., 2019). 

Predictors used in DRF modelling at land unit scale were those used 
in suburb-level GLMs but averaged for each land unit. Urban forest 
fractional cover (i.e., percent tree canopy and herbaceous cover) was 
averaged within each of the 310,298 land units and to which land use 
class was also assigned. The composition of the urban forest around land 
units within three concentric buffers (0–30 m, 0–60 m and 0–90 m) was 
used as a predictor to account for local effects of vegetated patches upon 
LST (Ziter et al., 2019). Distance from the coast, suburb identity and 
land unit area were further included as covariates in the DRF models to 
account for i) the potential coastal effect on LST as highlighted from the 
previous suburb-level GLMs and other studies (Tayyebi and Jenerette, 
2016, 2018), ii) the possible autocorrelation of vegetation characteris
tics within the same suburb due to socio-economic characteristics 
(Ossola and Hopton, 2018), and iii) the fact that urban vegetated cover is 
generally constrained by the available planting space as dictated by 
urban morphology (Bigsby et al., 2014). 

3. Results 

Despite covering only 18.85% of urban land across the 90 suburbs in 
Adelaide, residential backyards, front yards and corner yards (n =

126,594) contained 41.31% and 32.29% of tree canopy and herbaceous 
cover, respectively (Table 1). Backyards were the most common green 
space type across the study area (n = 64,926), with notably higher 
canopy cover (23.26%) than open space and urban parks (14.90%, n =
1,923). Buildings were the single most abundant land unit (n =

126,594), covering 23.50% of the study area (Table 1). 
At the suburb scale, the General Linear Model (GLM) predicting 

LSTnight had a much lower model fit (R2 = 0.205) than those predicting 
LSTday and LSTΔ based on the same predictors (R2 = 0.802 and 0.757, 
respectively). Diurnal LST variation across the 90 suburbs (mean =

38.46 ̊C ± 4.48 SD, min = 33.70 ̊C, max = 41.07 ̊C) was greater than the 
nocturnal temperature variation (mean = 24.82 ̊C ± 2.12 SD, min =

23.66 ̊C, max = 25.72 ̊C). Suburb-level LSTΔ showed similar variation 
patterns to LSTday (Fig. 3A). Suburb-level GLM analyses showed that 
distance from the coast had the greatest effect on LSTday and LSTΔ 
compared to the other predictors, but not on LSTnight (Table 2). LSTday 
and LSTΔ steeply increased from the maritime coastline to about 4 km 
inland, stabilizing between 4 and 6 km, to then increase again further 
inland (Fig. 3A). GLMs showed that suburbs with high coverage of 
impervious land uses, such as commercial and industrial land and in
frastructures, had higher LSTday and LSTΔ compared to other suburbs. 
Tree canopy cover had no effect on LSTs at the suburb scale, and only 
herbaceous cover had a marginally significant effect on LSTday and LSTΔ 
(Table 2, SI Appendix Fig. 1). 

At the land unit scale, Distributed Random Forest (DRF) models 
predicting LSTday, LSTnight and LSTΔ explained about half of initial 
deviance for the 310,298 land units analysed (Fig. 4). The location of 
each land unit, based on its suburb and distance from the coast, was one 
of the most important factors affecting local LST overall (Fig. 4). The 
land use class of each land unit was the least important factor affecting 
local LST (Fig. 4, SI Appendix Fig. 2), with the exception of buildings in 
the DRF models predicting LSTnight and LSTΔ. Overall, the percentage of 
non-vegetated and vegetated cover (i.e., tree canopy and herbaceous) 

Table 2 
Summary statistics for Generalised Linear Models (GLMs) predicting average 
urban land surface temperatures (LSTday, LSTnight and LSTΔ) at suburb level (n =
90) based on distance from the coast, vegetation cover and land use predictor 
variables averaged for each suburb to calculate the respective proportional 
cover. Coefficient estimates and (standard error) for each predictor are reported 
in bold at significance levels of *** P < 0.001, ** P < 0.01, and * P < 0.05. “Front 
yard cover”, “Back yard cover”, “Non-vegetated cover” and “Other land use cover” 
cover have been excluded from GLMs as they are multi-collinear with the other 
land cover and land use variables. A complete list of land use classes and their 
total proportional coverage across the entire study area is provided in Table 1. A 
correlation matrix for predictors is included in Table S2.  

Response variable LSTday LSTnight LSTΔ 

Null deviance 232.618 12.610 261.663 
Residual deviance 49.264 10.160 65.607 
R2 0.788 0.194 0.749 
AIC 229.17 87.088 254.96 
Predictor variables    
Distance from coast (m) 0.0004 

(0.00005)*** 
−0.00003 
(0.00002) 

0.0004 
(0.00006)*** 

Tree canopy cover (%) −0.03 (0.038) −0.021 (0.018) −0.010 (0.044) 
Herbaceous cover (%) 0.041 (0.024) −0.013 (0.011) 0.053 (0.027)* 
Building cover (%) 0.058 (0.031) −0.003 (0.014) 0.061 (0.036) 
Commercial land cover 

(%) 
0.100 (0.029) 
*** 

−0.007 (0.013) 0.108 (0.033) 
** 

Corner yard cover (%) 0.201 (0.103)* 0.048 (0.045) 0.153 (0.119) 
Industrial land cover 

(%) 
0.130 (0.037) 
*** 

−0.029 (0.017) 0.160 (0.044) 
*** 

Infrastructure cover (%) 0.079 (0.019) 
*** 

0.002 (0.009) 0.077 (0.023) 
** 

Mixed use cover (%) 0.046 (0.028) 0.005 (0.013) 0.042 (0.032) 
Open space cover (%) −0.019 (0.021) −0.006 (0.009) −0.014 (0.024) 
Other residential land 

cover (%) 
0.154 (0.057) 
** 

¡0.056 
(0.026)* 

0.209 (0.065) 
** 

Vacant land cover (%) 0.029 (0.033) −0.013 (0.015) 0.042 (0.038)  
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within each land unit and in the immediate landscape around each unit 
had high importance in explaining LST variation across land units 
(Fig. 4). The non-vegetated and vegetated cover in the landscape buffer 
extending 30 m outwards from the border of each land unit greatly 
affected local LSTday and LSTΔ, and to a lesser extent LSTnight (Fig. 5). 
The landscape contribution of vegetated cover at decreasing local LSTday 
and LSTΔ decreased with the distance from each land unit. Similarly, the 
landscape contribution of non-vegetated cover at increasing local LSTday 
and LSTΔ decreased with the distance from each land unit (Fig. 5). 
Overall, local metrics of vegetation cover were amongst the most 
important factors affecting LST in all DRF models (Fig. 4). 

4. Discussion 

4.1. Extreme urban heat across spatial scales 

At both the suburb and land unit scale (i.e., local scale), LSTday and 
LSTΔ had a greater variation across the study area than LSTnight. LSTΔ 
largely reflected differences in LSTday rather than LSTnight (Fig. 3A, 
Fig. 5). LSTnight had lower variation across suburbs (23.66–25.72 ̊ C, 
min–max) and local land units (10.22–37.46 ̊ C) compared to LSTday 
(33.70–41.08 C̊ and 15.20–54.75 C̊ for suburbs and land units, 

respectively). Local LSTday and LSTnight maxima were 13.67 and 11.76 ̊C 
higher compared to suburb-level maxima. Thus, surface temperatures 
experienced locally can be up to 25–30% higher compared to those 
recorded at larger scales. After sunset, the urban land surface has a 
negative net radiation balance and rapidly re-emits heat toward the 
atmosphere as long-wave radiation (Bonan, 2000). Because the night 
flight was performed four to six hours after the civil sunset (19:16 ACDT, 
Australian Government, Geoscience Australia, http://www.ga.gov. 
au/geodesy/astro/sunrise.jsp, accessed on 30.11.2019), sufficient time 
might have occurred to allow most of the heat to dissipate from the 
urban surface, thus determining the relatively small variation range in 
LSTnight we measured. Recent LST measurements at large spatial scales 
similarly found large variability in LST day-night pairs (Buyantuyev and 
Wu, 2010; Myint et al., 2013). Fine-scale and repeated diel LST mea
surements, attempted only at the suburb scale to date (Tayyebi and 
Jenerette, 2018), will allow further calculation of fine-scale heating and 
cooling rates for urban features and covers while accounting for sea
sonality, weather extremes and spatial autocorrelation of thermal 
properties, not investigated in our study. 

Overall, both GLM and DRF models predicting LSTday and LSTΔ at 
suburb and land unit scale were more accurate than those predicting 
LSTnight. Land use composition and its fractional cover had little effect in 

Fig. 3. (A) Urban land surface temperature (LST) recorded during day-, night-time and their differential (LSTΔ) as measured across western Adelaide’s suburbs (n =
90) in relation to the average distance of each suburb from the maritime coastline. (B) Patch-level surface temperature in relation to distance from the maritime coast. 
LSTday (top), LSTnight (middle) and LSTΔ (bottom) is averaged across non-vegetated patches, tree canopy (n = 347,485) and herbaceous patches (n = 334,737) 
regardless of their distribution within the 12 land use classes (Table 1). Points in 3B are omitted for clarity. Lines represent loess models and grey bands the respective 
confidence intervals. 
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the GLM predicting LSTnight at suburb level (Table 2). Similarly, the use 
class of each land unit had the lowest importance in the DRF predicting 
LSTnight at the local scale (Fig. 4). This suggests that the capacity of an 
urban area to retain extreme heat at night, at both local and suburb 
scale, might be less affected by land use, as compared to the capacity of 

the same area to accumulate heat during the day. In this way, urban land 
use modifications across scales might be more effective in managing 
peak LSTday rather than minimum LSTnight as noticed elsewhere 
(Jenerette et al., 2016). Despite the relatively small difference in LSTnight 
across land uses, residential areas overall had the lowest average 

Fig. 4. Variable importance in each of the DRF models predicting LSTday (top), LSTnight (middle) and LSTΔ (bottom) based on vegetated and non-vegetated cover 
within and around each land unit (i.e., 0–30, 0–60 and 0–90 m buffers) (beige bars), land use class of each land unit (blue bars) and location and size of each land unit 
(grey bars). Line graphs represent the convergence of residual deviance based on the number of statistical trees fitted using the respective training (blue line) and 
validation datasets (red line). Summary statistics for each DRF model are provided within each line plot. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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LSTnight suggesting only a slightly reduced human exposure to extreme 
heat during this period (SI Appendix Fig. 2). Interestingly, several 
thousand building rooftops were amongst the coolest land units at night 
(Fig. 2E). This is most likely due to specific building materials or poorly 
insulated buildings that were intensively air-conditioned during the 
heatwave, particularly at night when most residents were at home. Thus, 
other predictors not considered here, such as the type and abundance of 
materials with different thermal properties, might have also played a 
role in affecting LSTnight. At the local land unit scale, the building 
footprint class was the most important variable in the DRF model pre
dicting LSTnight (Fig. 4), most likely due to the thermal properties of 
roofs and greater sky view factors (SVF) able to facilitate heat dissipa
tion after sunset, compared to other urban features. However, percent 
building cover at the suburb scale was not significant in the GLM pre
dicting LSTnight (Table 2), as also observed during a dry and hot summer 
in Phoenix, AZ, USA (Myint et al., 2013). 

The fractional cover of several non-residential land uses was a sig
nificant factor in the GLM predicting LSTday at the suburb level 
(Table 1), but these were less important in modelling heat at the land 
unit scale (Fig. 4). This suggests that, moving from the larger urban scale 
to the local scale, the thermal properties of the materials comprising 
urban features and covers (e.g., non-vegetated vs vegetated cover) 
become progressively more important in explaining LST compared to 
the land uses where these materials are located. For instance, higher 
infrastructure cover within suburbs determined a higher LSTday overall 
(SI Appendix Fig. 1), but locally this effect might have been negated in 
instances where streetscapes and other infrastructures were covered by 
trees (Fig. 5). In this study it was not possible to evaluate the effects of 
surface albedo and the reflectivity of different materials, despite their 
importance in affecting LST at various scales (Santamouris et al., 2018). 

4.2. Urban heat along the coastal gradient 

As expected, a significant coastal gradient affecting extreme urban 
heat was apparent across the study area at both suburb and land unit 
scale. As the study area is situated on a flat coastal plain, no interactive 
effects due to elevation and topography (e.g., aspect) were present. 
However, the coastal effect moderating LST was significantly lower at 
night. In fact, the distance from the coast had little effect on LSTnight at 
the suburb scale (Fig. 3A), whereas it was retained as the second most 
important variable in the DFR predicting LSTnight at local land unit scale 
(Fig. 4), despite the relatively small range of variation of LSTnight. On 

average, suburbs along the coastline were up to 5 ̊C cooler during the 
day compared to the suburbs furthest from the coast. A study in Los 
Angeles, CA, USA, a coastal city with comparable climate to Adelaide, 
similarly found that the diel maximum LST increased by more than 10 ̊C 
during mild late-spring conditions, but along a coast-inland gradient ten 
times longer (80 km), also confounded by elevation (Tayyebi and 
Jenerette, 2018). In Cleveland, OH, USA, a much smaller city along the 
shore of Lake Erie, a small coastal effect in the moderation of LST was 
also detected over summer (Declet-Barreto et al., 2016). 

The presence of a significant thermal coastal gradient in Adelaide is 
important, as even small temperature changes of a few degrees, partic
ularly under extreme heat, can have dramatic effects on public health 
and urban living (Petitti et al., 2016). An analysis of a 14-year hospital 
admission dataset in Perth, WA, Australia, found a 9.8% increase in daily 
mortality associated with a 10 ̊C air temperature anomaly during heat
waves (Williams et al., 2012). It remains to be seen to what extent the 
lower and less variable coastal LSTΔ might affect residents’ physiolog
ical and behavioral adaptation to extreme heat compared to those of 
inland populations (Hartz et al., 2013). To this point, it is important to 
note that our findings are based on the assessment of urban land surface 
temperature rather than air temperature, and as such, not a direct pre
dictor of human thermal comfort. LST, however, might represent a 
robust indicator when evaluating heat impacts on humans and cities, 
and for this reason, this parameter has been used in numerous urban 
epidemiological and climatological studies. For instance, Jenerette et al. 
(2016) found a strong correlation between LST and self-reported heat 
illnesses in Phoenix, AZ, US, and in the same city (Harlan et al., 2013) 
found a positive relationship between heat-related deaths and LST. LST, 
in fact, is generally well matched to air temperatures measured directly 
above urban features and covers (Bonan, 2000). LST is also more closely 
coupled with the thermodynamic properties of land features than air 
temperature, particularly during daytime, and is a better predictor of 
biophysical effects on heat, such as transpirational cooling by vegetation 
(Hulley et al., 2019). 

4.3. Urban forest mitigates extreme heat locally 

Across the Adelaide suburbs measured, tree canopy and herbaceous 
cover were relatively low (13.52 and 16.11%, respectively) compared to 
other urban areas in Australia and globally (Dobbs et al., 2017). Con
trary to our expectations, tree canopy cover across suburbs (14.33 ±

3.88% SD) did not significantly affect LSTday, even when accounting for 

Fig. 5. Response of variables related to vegetated cover (tree canopy in green and herbaceous cover in yellow) and non-vegetated cover (in black) within the 310,298 
land units (solid line) and around land units (i.e., 0–30, 0–60 and 0–90 m buffers in dashed lines as per example in the inset) as modelled by using Distributed 
Random Forest models (DRFs) predicting LSTday (left panels), LSTnight (middle panels) and LSTΔ (right panels), respectively. Points and confidence intervals are 
omitted for clarity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the coastal thermal gradient. Herbaceous cover also had a relatively 
small effect on decreasing LSTday, most likely driven by a few suburbs 
having herbaceous cover greater than 30% due to the presence of large 
open green spaces (SI Appendix Fig. S2). LSTnight was not affected by the 
local vegetated cover. Ziter et al. (2019) also found a limited effect of 
local tree cover on air temperature at night in Madison, WI. Other 
studies in Cleveland, OH and Phoenix, AZ, found small yet significant 
effects of vegetation cover on LSTnight at suburb and parcel scale, 
respectively (Declet-Barreto et al., 2016; Jenerette et al., 2016). 

Most previous large-scale assessments found urban vegetation to 
generally decrease LSTday in cities located in different climates and bi
omes (Declet-Barreto et al., 2016; Myint et al., 2013). The lack of 
consensus with our findings is likely due to several factors. First, Ade
laide’s suburbs have a relatively low tree canopy cover compared to 
neighborhoods in other cities and climates (Ossola and Hopton, 2018). 
As such, the magnitude of variation range of vegetation cover and LST 
among studies might have affected this relationship. Second, compared 
to other cities, Adelaide has a dry summer with low precipitation (64.4 
mm (~13% MAP), Dec 2016 - Feb 2017). This affects soil moisture and 
therefore water available to plants for daytime evapotranspiration, 
particularly during a heatwave, thus further confounding the relation
ship between vegetation cover and LSTday (Scherrer et al., 2011). As in 
other studies, we could not account for the effect of irrigation on LSTs 
(Jenerette et al., 2016, 2011), though the entire state of South Australia 
is under Permanent Water Conservation Measures that have generally 
limited water use for landscaping since 2003 (Department of Planning 
and Local Government, 2010). Third, high-resolution studies of urban 
LST are scant (Bartesaghi-Koc et al., 2019). Prior studies largely inves
tigated LST by using coarse- and medium- resolution thermal sensors (e. 
g., 7–60 m), and as such a spatial measurement mismatch might be 
present when comparing these with the fine-scale heat measurements of 
our study. Prior assessments also largely relied on NDVI datasets rather 
than more detailed fine-scale maps of canopy and herbaceous covers 
that better discriminate vegetation features within urban vegetation 
(Myint et al., 2013; Zhou et al., 2017). In this way, previous evidence 
captures LST at a resolution unlikely to fully encompass the high thermal 
variability of urban heat. 

At the land unit scale (i.e., tens of meters), however, vegetated cover 
metrics were amongst the most important factors affecting LST in all 
DRF models. Ranging from non-vegetated to fully covered land units, 
trees provided about double the amount of LSTday reductions compared 
to herbaceous vegetation, as observed elsewhere (Jenerette et al., 2016). 
This also held true when accounting for urban factors known to affect 
climate and vegetation, such as the coastal thermal gradient and vege
tation similarity within suburbs (Cook et al., 2012; Tayyebi and Jener
ette, 2016). Contrary to previous evidence (Myint et al., 2013), we did 
not find any support that herbaceous cover can locally decrease LSTnight 
at the land unit scale. This could arise from potentially confounding 
three-dimensional effects of building walls retarding nocturnal surface 
radiative cooling at this scale that are not accounted for in our modelling 
method, which could require further analysis if this is only a nocturnal 
phenomenon. Our study, however, suggests that herbaceous cover might 
provide significant benefits by decreasing urban LSTday at this scale. This 
is important because LSTday is an important component of urban heating 
with significant implications for heat vulnerability and public health 
(Harlan et al., 2006; Jenerette et al., 2016). The thermal benefits of short 
woody and grassy vegetation are receiving increasing attention along
side those generated by trees (Bartesaghi-Koc et al., 2018). Trees might 
take decades to grow to maturity and provide heat mitigation, whereas 
herbaceous cover can be developed quickly and inexpensively. Thus, 
climate change adaptation strategies to extreme heat events could be 
geared towards i) short-term localised LSTday reductions achieved by 
using grasses and turf to replace hotter paved and impervious surfaces, 
integrated with ii) long-term urban forestry strategies aimed at 
increasing tree cover across cities. In doing so, the selection of grass and 
turf species having higher water use efficiency and heat tolerance (C4 

versus C3 photosynthesis) might also reduce irrigation needs and 
improve water sustainability in times of scarcity. 

LSTday of vegetated patches, comparable to that of non-vegetated 
patches along the coastline, increased proportionally less moving 
inland. The presence of local tree and grass patches notably “flattened” 
the LST coastal gradient (Fig. 3B), as also observed at a city-wide scale 
across Los Angeles, CA (Tayyebi and Jenerette, 2018). As such, in
terventions aimed at mitigating urban heat by using urban green in
frastructures, urban forests, etc., are likely to have a greater effect in 
hotter urban landscapes and hotspots (Jenerette et al., 2016), where 
significant temperature decreases are also needed the most, particularly 
under extreme heat and climatic change. 

The amount of vegetated cover in the landscape around each land 
unit also had an effect on LST, particularly during the daytime, although 
this effect was stronger in the 0–30 m buffer closest to each land unit and 
tended to saturate when exceeding 50% tree/grass cover in the closest 
buffer. This is important as it highlights that the overall context of 
neighborhoods and greening can be designed to locally decrease LSTday 
within each land unit. While a landscape influence on urban air tem
perature (Ziter et al., 2019) and LST (Yan et al., 2019) has been observed 
elsewhere, the effect on LST we found is most likely attributable to urban 
vegetation composition and structure often being more similar within 
suburbs based on their biophysical characteristics, urban morphology 
and socio-economics (Ossola and Hopton, 2018) or to the presence of 
energy exchange across edges of adjacent patches or “oasis effects” 
(Georgescu et al., 2011; Li et al., 2018). 

Residential yard presence was not the best DRF predictor of local 
LST, but yards overall had a proportionally higher tree canopy and 
herbaceous cover compared to other land unit classes. Yards are often 
amongst the largest and most widespread land use in some modern 
western cities, often containing large areas of urban forests (Ossola 
et al., 2019a, b). However, most current urban greening and forestry 
strategies and actions are geared towards the public realm (Ossola et al., 
2018). Private residential yards represent an untapped opportunity for 
localised urban heat management and public health benefits. Particular 
attention will be needed when considering the complex social drivers 
affecting urban forest and their change. The urban forest in the private 
realm could be used to locally decrease urban LST by several degrees, 
particularly where temperature mitigation is needed the most, i.e., 
closer to homes and residents and when cooling is needed the most, i.e., 
during periods of extreme heat. 

5. Conclusions 

Urban heat management currently suffers from a critical mismatch 
between the scale of urban biophysical properties, such as LST, and the 
scale of human interventions aimed at mitigating the negative effects of 
temperature extremes. Because of this, urban governance and planning 
frameworks hoping to ameliorate and resolve the severe impacts that 
heatwaves can have on cities, sustainability and public health will need 
to better value the cooling gains at the urban microclimate level and the 
local scale (Harlan et al., 2006). Our study is the first to quantify cooling 
benefits during a heatwave, an extreme weather event that is likely to 
increase in frequency, intensity and/or duration under climate change. 
LST reductions, such as those determined by the presence of relatively 
small and localised tree or grass patches, can be compounded and 
amplified at larger landscape and city-wide scales. Our overall findings 
confirm previous evidence about the importance of urban vegetation in 
reducing LST but further highlight its critical role during extreme 
weather events such as heatwaves. 

Future research could better clarify the effects of urban irrigation on 
LST, particularly during extreme heatwave events coupled with long- 
lasting drought, and the concurrent effects due to plant species iden
tity, stomatal conductance, albedo and canopy architecture (e.g., leaf 
area index, branching). More evidence is also needed to resolve the fine- 
scale relationships between near-surface air temperatures and LST 
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across entire urban landscapes under extreme heat, the effects due to 
spatial autocorrelation of thermal properties and their localised impacts 
on public health. 

This study is amongst the first to suggest the cooling benefits during 
extreme heat conditions that can be provided by small vegetation 
patches largely depend on their location within an urban landscape, 
such as the distance from the coast. Thus, at the meso-scale, coastal cities 
could also prioritise interventions based on larger climatic drivers and 
physical gradients, such as those arising from the presence of large 
bodies of water. 

Private green spaces, such as people’s yards and their trees, are 
disproportionally important for urban heat mitigation but are currently 
an overlooked asset for localised climate change adaptation. Managing 
private green space for urban heat management could help residents to 
locally adapt to extreme heat when and where this is needed the most; 
during heatwaves and near home. 
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