Public Review for

Foresight: Planning for Spatial and
Temporal Variations in Bandwidth for
Streaming Services on Mobile Devices

Manasvini Sethuraman, Anirudh Sarma, Ashutosh Dhekne,
Umakishore Ramachandran

The paper develops Foresight to provide an up-to-date improvement of
earlier ideas for the prediction of bandwidth availability for arbitrary
applications on mobile devices, based on CRUSP’s crowdsourced report-
ing to a geographical database and application-independent querying
by mobile devices. The paper uses video streaming as an example and
comprises an actual implementation using a video player based on ExoPlayer.

Compared to earlier work, the papers relies on recently collected data, which
improves the realism of the bandwidth prediction in today’s mobile space
and implicitly takes development in mobile networks into account. The
application-independent provision of geo-located bandwidth lookup is a key
feature proposed by the paper, which improves privacy by limiting access to
the user’s location to one service provider rather than arbitrary application
providers.

The reviewers liked the inspiration that the paper provides and appreciate the
work that the authors have put into the development of a functional system.
The reviewers would have preferred if the authors had either performed a
comparison with the earlier work on crowdsourcing-based predictive stream-
ing or, alternatively, explained the value of the knapsack algorithm meant
to facilitate sharing between applications by demonstrating Foresight with
several applications.

Public review written by
Carsten Griwodz
University of Oslo, Norway

ACM MMSys 2021
227



Foresight: Planning for Spatial and Temporal Variations in
Bandwidth for Streaming Services on Mobile Devices

Manasvini Sethuraman
msethuraman3@gatech.edu
Georgia Institute of Technology

Ashutosh Dhekne
dhekne@gatech.edu
Georgia Institute of Technology

Abstract

Spatiotemporal variation in cellular bandwidth availability is well-
known and could affect a mobile user’s quality of experience (QoE),
especially while using bandwidth intensive streaming applications
such as movies, podcasts, and music videos during commute. If such
variations are made available to a streaming service in advance it
could perhaps plan better to avoid sub-optimal performance while
the user travels through regions of low bandwidth availability. The
intuition is that such future knowledge could be used to buffer
additional content in regions of higher bandwidth availability to tide
over the deficits in regions of low bandwidth availability. Foresight
is a service designed to provide this future knowledge for client
apps running on a mobile device. It comprises three components:
(a) a crowd-sourced bandwidth estimate reporting facility, (b) an on-
cloud bandwidth service that records the spatiotemporal variations
in bandwidth and serves queries for bandwidth availability from
mobile users, and (c) an on-device bandwidth manager that caters
to the bandwidth requirements from client apps by providing them
with bandwidth allocation schedules. Foresight is implemented
in the Android framework. As a proof of concept for using this
service, we have modified an open-source video player—Exoplayer—
to use the results of Foresight in its video buffer management.
Our performance evaluation shows Foresight’s scalability. We also
showcase the opportunity that Foresight offers to ExoPlayer to
enhance video quality of experience (QoE) despite spatiotemporal
bandwidth variations for metrics such as overall higher bitrate of
playback, reduction in number of bitrate switches, and reduction
in the number of stalls during video playback.

CCS Concepts

« Networks — Location based services; « Information sys-
tems — Multimedia streaming.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8434-6/21/09...$15.00
https://doi.org/10.1145/3458305.3463384

228

Anirudh Sarma
anirudhs@gatech.edu
Georgia Institute of Technology

Umakishore Ramachandran
rama@gatech.edu
Georgia Institute of Technology

Keywords
Spatiotemporal Bandwidth Information, Bandwidth Management

ACM Reference Format:

Manasvini Sethuraman, Anirudh Sarma, Ashutosh Dhekne, and Umakishore
Ramachandran. 2021. Foresight: Planning for Spatial and Temporal Vari-
ations in Bandwidth for Streaming Services on Mobile Devices. In 12th
ACM Multimedia Systems Conference (MMSys "21) (MMSys 21), September
28-October 1, 2021, Istanbul, Turkey. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3458305.3463384

1 Introduction

Interruptions to streaming services (e.g., video/audio/podcast) are
a common occurrence when using mobile devices on the move. In
most cases the culprit is intermittent connectivity as a user travels
across multiple cellular regions and sometimes through regions of
low cellular coverage. As cellular connectivity transitions to 5G, due
to inherent fading characteristics of mmWave signals, such spatial
variations are expected to increase even further [17, 28]. If the
spatiotemporal bandwidth variations are made available a priori to
a streaming service, it could plan ahead on buffering more content
in preparation for traveling through an area of low bandwidth.
Given that there are multiple streaming apps on a mobile device
that could benefit from such prior knowledge, it would be prudent
to make the knowledge of spatiotemporal bandwidth availability a
first class citizen on mobile devices.

Variations in bandwidth availability is well-known. While urban
and densely populated cities are expected to have reliable mobile
connectivity, Fig. 1 shows that the there are significant spatial vari-
ations in available bandwidth for the cities of New York, Chicago,
and Atlanta.! It is evident that many poor bandwidth locations abut
other locations with high bandwidth. When a user travels through
these low bandwidth areas, stalls or quality reductions in streaming
services are likely to occur. In addition to spatial variations, mobile
users also experience temporal variations in bandwidth for a given
location [30]. The default reactive action by a streaming service
such as a video player is to reduce the bitrate upon noticing a drop
in available bandwidth below a threshold. If a streaming service
could know that a low bandwidth area is imminent, it can take
proactive action by fetching additional data beforehand. Hence, if
sufficient video data has already been buffered, intermittent low

! The figure was built from Ookla dataset[25] and US government census data [4] for
city and county boundaries.


https://doi.org/10.1145/3458305.3463384
https://doi.org/10.1145/3458305.3463384

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

New York City

Chicago Atlanta

@ Poor (0-10Mbps)
. @ Ok (10-30Mbps)
-’ Good (30+Mbps)

Figure 1: Spatial variation in available bandwidth from
Ookla dataset

bandwidth areas can be simply ignored since the mobile device is
expected to re-enter a high bandwidth area soon.

There is prior work that uses spatiotemporal bandwidth variations
to adapt the bitrate of a video player built in the application it-
self [14]. Another work explicitly uses the response time for seg-
ment acquisition in a video player to adapt the bitrate [33]. While
a detailed comparison of our work to the related work is presented
in §6, it suffices to say that, to the best of our knowledge, no prior
art provides spatiotemporal bandwidth forecasting as a service on
a mobile device for use by any app on the device in a location-
obfuscated manner. Such location obfuscation provides bandwidth
updates without revealing users’ whereabouts to individual apps.

In this work, we elevate location-obfuscated forecasting of available
bandwidth over time to a first class citizen in a mobile device that
is available for any app on the device, to account for the spatiotem-
poral bandwidth variations.

Foresight has two parts: an on-cloud bandwidth service, and an
on-device scheduling service. The first part is a light-weight crowd-
sourced mechanism for uploading and querying spatiotemporal
bandwidth information to a cloud-resident bandwidth service. The
scheduling service on the device queries the bandwidth service in
the cloud to get a snapshot of the available bandwidth along the
spatial dimension, based on the user’s selected route. It uses this
information to generate the bandwidth schedule along the time
axis for client apps on the device that query the scheduling service.
There are two important aspects to the novelty of work. First, a
user may have multiple apps on their device (e.g., Netflix, YouTube,
Spotify, apps performing sync operations in the background etc.).
Elevating such a service to the device level obviates the need for
bandwidth forecasting at the individual apps level. Second, the apps
do not need access to sensitive information (e.g., the location of
the user nor the route being taken by the user) to know the future
bandwidth availability.

Foresight is dependent on reliable data from a good bandwidth esti-
mation service. However, the impact on the mobile device for partic-
ipating in the data collection should be minimal. Popular bandwidth
estimation services, such as speedtest.net [26] and fast.com [22]
operate by incrementally clogging the link to a nearby server from
the mobile device. Such an approach imposes a huge overhead on a
user’s mobile data. Instead, we make use of a light-weight probing
tool called CRUSP [31] to approximate the available bandwidth for
a location. This tool periodically collects bandwidth estimates over
LTE with a small overhead (less than 2MB of data transmission
per bandwidth estimation). We envision a bandwidth estimator
based on CRUSP (possibly bundled in with Foresight) to be running
continuously on client devices to populate the on-cloud bandwidth
service with crowd-sourced data.

229

Manasvini Sethuraman, Anirudh Sarma, Ashutosh Dhekne, and Umakishore Ramachandran

An app on a mobile device will contact the on-device bandwidth
scheduling service with its bandwidth requirement (e.g., “need 100
Mbps”). The forecasting service gets the route the mobile user is
traveling on, from a mapping service such as Google Maps on
the device. Foresight then contacts its cloud counterpart to get the
bandwidth information along the route. This information is updated
occasionally to allow for temporal variations as well as for route
changes. The on-device bandwidth scheduling service will use this
information to arrive at a schedule of available bandwidth (as a
function of time) for use by the app (e.g., 90 Mbps for 10 seconds,
100 Mbps for 20 seconds, 100 Mbps for 10 seconds, etc.).

An app on a mobile device may use the bandwidth schedule it
receives from Foresight in a manner consistent with its goals; e.g.,
a video player may use this bandwidth schedule to reduce the
number of stalls in playing a video, provide a consistent video
quality without bitrate switches throughout the length of the video,
or strive to provide the highest quality (i.e., bitrate) video for as
long as possible. The design decisions for a video player would
depend on the desired goals. In this work, we are not concerned as
to how the information from Foresight would be used in a streaming
service, though we indeed show that simple modifications can yield
results matching any of these goals.

Our primary contribution is Foresight with its two components:

(1) A cloud-resident bandwidth service that, given a route, re-
sponds with estimates of the available bandwidth along the
spatial dimension, and the design exploration inherent in creat-
ing an efficient implementation of such a service.

(2) A device-resident bandwidth manager that provides location-
obfuscated schedule of bandwidth availability as a function of
time to requesting streaming apps on the mobile device. The
bandwidth manager takes requests from multiple competing ap-
plications on the same device and allocates bandwidth to each
using a greedy knapsack algorithm. To account for temporal
variations in the bandwidth, Foresight uses epochs to period-
ically query the on-cloud bandwidth service and update the
client apps on the bandwidth allocation.

Additionally, we modify an open-source video player (ExoPlayer [11])
by implementing a buffer length adaptation algorithm that uses the
results from Foresight. Finally, we carry out performance evaluation
to demonstrate the scalability of the cloud-resident bandwidth ser-
vice, and the low-overhead of the epoch-based on-device scheduling
service by the bandwidth manager. Further, using the modifications
to ExoPlayer, we showcase how the bandwidth forecasting can be
used to reduce stalls and achieve better user experience in terms of
perceived video streaming quality and bitrate switches.

The rest of the paper is organized as follows: §2 describes Foresight’s
system architecture. §3 follows with implementation details of
Foresight. §4 showcases how the results returned by Foresight could
be used by an exemplar video player (ExoPlayer). §5 presents the
evaluation of Foresight and the exemplar video player. §6 explores
the prior art and tries to situate Foresightwith respect to the prior
art in the domains of spatiotemporal bandwidth estimation, and
techniques for incorporating such data into mobile devices. §7
discusses some of the limitations of our current work and provides
suggestions for future work, followed by concluding remarks in §8.



Foresight: Planning for Spatial and Temporal Variations in Bandwidth for Streaming Services on Mobile Devices

2 System Architecture of Foresight

Foresight has two components: (1) bandwidth service in the cloud,
and (2) bandwidth management in the device. The on-cloud band-
width service maintains a spatiotemporal datastore of bandwidth
availability. The on-device bandwidth management takes in re-
quests for bandwidth allocation from client apps and acquires the
mobile user’s route from an on-device app (e.g., Google Maps). It
then queries the on-cloud bandwidth service for en route bandwidth
availability, and creates a per-app location-obfuscated bandwidth
allocation schedule along the time axis. The components of the
system architecture are shown in Fig. 2. §2.1 discusses the design
space exploration for the on-cloud bandwidth service; and §2.2
covers on-device bandwidth management.

addData(location, bandwidth)

Bandwidth addData(locations, info;
Estimate Band\f{idth patio-
Aggregator Service | . P
getD: ) D.

Cloud
Service

getBandwidth(locations)
updateBandwidth(location)

User
Device

egisterApp()
i I
Bandwidth Bandwidth

Monitor ) idthChanged(|  Appli i

prepareSchedule()

Bandwidth
Scheduler

addRoute()

o
A

User

streamContent()

Figure 2: Foresight system architecture. Blue boxes are our
contributions, yellow boxes are modifications that we made
to existing applications.

2.1 On-Cloud Bandwidth Service

The cloud service (depicted in the top half of Fig. 2) maintains a
spatiotemporal datastore and controls the insertion and retrieval
of the data from this store. Users who are feeding in bandwidth
data (as part of crowd-sourcing) will send locally gathered informa-
tion about their experienced bandwidth, estimated through a low-
overhead bandwidth estimation pipeline (shown in Fig. 3), which is
then aggregated and fed into the spatiotemporal datastore. Queries
on bandwidth availability for a set of geographical locations from
client devices are fielded by the bandwidth service which returns
data from the spatiotemporal datastore.

2.1.1 Spatiotemporal Datastore

The spatiotemporal datastore’s function is to enable fast retrieval
of bandwidth information in the vicinity of a given query location.
Fast retrieval is achieved via a spatially indexed key value store that
allows proximity queries to be made efficiently. GeoHash [23] is a
technique that encodes a geographic location into a string, retaining
the ordering of the point in space. When adding a point represented
by a <latitude, longitude> pair, first the GeoHash function is applied
to the <latitude, longitude> pair, producing a string that is then
stored along with the original <latitude, longitude>. Queries for a
given <latitude, longitude> pair are similarly transformed into a
string using the same GeoHash function, thus converting a spatial
search into a string search.

In order to retrieve relevant bandwidth estimates in a geographical
area, we search the spatiotemporal datastore for data points that
fall within a certain radius of the queried location. Since freshness

230

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

addData(location,

measureDownlink
S, Bandwidth |..bandwidth),
CRUSP Server Estimate
Cloud Aggregator
oul .
Service sendEstimate()
User ‘
Device v :
CRUSP - - . updateBandwidth(location)
i uf 1(location)
Client

Monitor updateBandwidth(location)

Figure 3: Bandwidth estimation pipeline

of data is important, we limit the search results to only return the
moving average of bandwidth measurements reported at a location
within the last hour. The indexing scheme for the datastore is as
follows: we break up the geographical area into a grid and represent
each unit in the grid by its GeoHash string which acts as the key
into the spatiotemporal bandwidth index. The values corresponding
to each key represent a set of points, along with the estimated
bandwidth for each of those points.

2.1.2 Bandwidth Estimation Pipeline

To facilitate crowd-sourced acquisition of bandwidth estimates,
we need a low overhead bandwidth monitoring facility that can
be run on mobile devices. There are two primary considerations
for a cellular bandwidth estimation tool: 1) avoid excessive use
of user’s mobile data; and 2) estimate bandwidth quickly and re-
liably. On the one hand, conventional bandwidth measurements
(such as SpeedTest [26]) provide reliable estimates at the cost of
significant overhead to the mobile device; and on the other hand,
low-overhead packet dispersion techniques which use packet pairs
and packet trains are unreliable in estimating instantaneous cellular
bandwidth [37]. We found a reliable low-overhead bandwidth esti-
mation technique in CRUSP [31], which works by exchanging a few
carefully crafted probe packets that reveal the approximate band-
width. CRUSP examines the burst of packets received, which were
originally transmitted by the server at a constant rate to estimate
bandwidth with frugal use of resources. Moreover, the reliability of
CRUSP in live LTE networks has been extensively investigated [31].
Hence, we have adopted CRUSP into our bandwidth estimation
pipeline depicted in Fig. 3.

2.2 On-Device Bandwidth Manager

The on-device bandwidth manager (bottom half of Fig. 2) accepts
requests for bandwidth allocation from the client apps running
on the device. It obtains the user’s route information from an
on-device navigation app (we built a prototype application that
queries Google Maps API [12] for the route and sends the route
to the bandwidth manager). The bandwidth manager queries the
on-cloud bandwidth service (as shown in Fig. 2) to receive the
spatial bandwidth estimates for the chosen route in the form of
<location, bw-estimate> tuples. The bandwidth manager transforms
the <location, bw-estimate> tuples into <time, bw-estimate> tuples.
It does this transformation by querying an on-device service (such
as Android’s GPS facility) to estimate the expected arrival times
at each of the location points, and then mapping the bandwidth
estimates in spatial domain to corresponding values in the time do-
main. The bandwidth estimates and the allocation requests are then
fed to the bandwidth scheduler (described in §2.2.1). The scheduler
computes the per-app bandwidth allocation in the time domain,



MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

which is then returned to each client app. There could be temporal
variations in the bandwidth estimates for a given location. The
bandwidth manager queries the on-cloud bandwidth service for the
bandwidth estimates for the chosen route with some periodicity
(termed as epoch). The bandwidth scheduler is invoked after each
such query if there is change in the bandwidth estimates beyond
a chosen threshold (described in §2.2.2). The bandwidth manager
then provides updates on the allocation schedule to the registered
clients if there are schedule changes due to the temporal variations
in estimated bandwidth.

2.2.1 Bandwidth Scheduler

Multiple applications could make bandwidth allocation requests si-
multaneously to the bandwidth manager. The role of the bandwidth
scheduler is to make bandwidth allocations over time for the re-
questing apps commensurate with the spatio-temporal variations in
the available bandwidth estimates. The bandwidth requirement of
each application could be different, and the way apps are used in a
mobile device could be quite different. For e.g., a video streaming ap-
plication would require high bandwidth and run in the foreground;
whereas music streaming is not bandwidth intensive and could run
in the background. Intuitively, we want to allocate more bandwidth
for applications that are heavily used i.e., they have a high value.
We model bandwidth allocation in terms of the Knapsack problem—
the goal is to fill a knapsack of capacity W, with n items having
values v1, vy, . .. v, and weights wy, wy, . .. Wy, assuming we can
pick items not just their entirety, but also as fractions, then we get:

n

maximize E

n
VX |Zw,~xi <Wand0<x; <1 (1)
i=1 i=

i=1

We represent application bandwidth requirements as item weights,
and the application’s usage as the values. Thus, if we have applica-
tions with bandwidth requirements rq, ro, r3..rp, and we compute
the application usage (time spent by the user on the application)
as uj, Uz, U3, ...Un, and the total bandwidth available is B, solving
for the Knapsack problem would yield optimal bandwidth alloca-
tion requirements. A greedy solution to the fractional version of
the Knapsack problem is to compute the ratio of v; to w; and sort
the items in descending order of v; /w;, and then fill the knapsack
until the total knapsack capacity is reached. The getAllocations
function in Algorithm 1 outlines the bandwidth allocation using
the greedy solution to the Knapsack problem.

Once the bandwidth manager receives estimates of bandwidth along
the route from the on-cloud bandwidth service, it transforms the
bandwidth estimates in space to bandwidth estimates in time. Then,
the bandwidth manager calls the createSchedule function in Algo-
rithm 1. The input to the scheduler is a series of <time, bw-estimate>
values. The scheduler thus has to call the getAllocations function
for every one of these values in the input time series of bandwidth
estimates from the bandwidth manager. It is possible that the band-
width estimates could be fairly unchanging along the route for a
stretch of the journey. Therefore, the scheduler uses a change thresh-
old to reduce the number of times the knapsack algorithm has to be
run. Thus, if the change in bandwidth estimates from one location
along the route to another is less than the change threshold, then
we simply reuse the previous estimate (lines 21-23 in Algorithm 1),

1
2

3
4
5

13
14

15

16

17
18
19
20
21

22
23
24
25
26

27

231

Manasvini Sethuraman, Anirudh Sarma, Ashutosh Dhekne, and Umakishore Ramachandran

Algorithm 1: Bandwidth Scheduler

Function getAllocations(applnfo, totalBw):
allocatedBandwidth = 0;
appAllocation = {};
for (app: appInfo) do
app.usageToRequirement = app.usage /
app.requirement;
app.allocation = 0;

end
sort(appInfo, by=usageToRequirement);
while allocatedBandwidth < totalBw do
allocation = min(app.requirement, totalBanwidth -
allocatedBandwidth);
allocatedBandwidth += allocation;
appAllocation.put(app.name, allocation);
end
return appAllocation;
Function
createSchedule(appInfo, bwinfo, changeThreshold):
// Called by the Bandwidth manager upon receiving
bandwidth estimates
bwSchedule = [];
oldBw = 0;
allocations = [];
for (i=0; i< bwinfo.size; ++i) do
if (i ==0 or bwinfo[i].bw - oldBw > changeThreshold)
then
‘ allocations = getAllocations(appInfo, bwInfo.bw);
end
bwSchdule.put(bwlnfo[i].duration, allocations);
oldBw = bwlInfo[i].bw;
end

return bwSchedule;

skipping a call to the getAllocations function for such sequence
of locations. We explore the implications of having such thresholds
on the scheduler’s performance in §5.

2.2.2 Epoch-based Refresh of Allocation Schedule

The bandwidth manager that fetches the entire route’s bandwidth
estimates from the on-cloud bandwidth service must decide:

(1) How often should the bandwidth estimates be refreshed?

(2) How often should the bandwidth allocations be re-computed?

The first question pertains to the temporal variations in the band-
width estimates along the route as reported via crowd-sourcing to
the on-cloud bandwidth service. The second question pertains to
the extent of the temporal variations that may or may not warrant
re-calculating the allocation recommendations made to the client
apps. To answer the first question, we introduce epochs, which
control the frequency with which the bandwidth estimates are
refreshed by querying the cloud server. We do not know before-
hand how frequently the bandwidth measurements are updated
on the cloud server. Hence, we explore two strategies for refresh-
ing the bandwidth estimates: (1) periodic epochs — querying the



Foresight: Planning for Spatial and Temporal Variations in Bandwidth for Streaming Services on Mobile Devices

cloud server at fixed intervals; and (2) adaptive epochs — adaptively
changing the querying interval based on the magnitude of change
in the bandwidth estimates. While the first strategy is simple to
implement, in the long run it could potentially waste network re-
sources if the bandwidth measurements change infrequently and
the epoch is too small, or if the epoch size is too large, changes to
available bandwidth measurements might be missed. The adaptive
scheme, similar to congestion control in TCP, gradually increases
the epoch duration if significant changes are not observed in the
bandwidth estimates, but halves the epoch duration if significant
changes are observed. The second question is addressed using the
change threshold, which we introduced in §2.2.1. At the beginning
of each epoch, on receiving a fresh set of bandwidth estimates, the
bandwidth manager calls the top-level function in the scheduler
(createSchedule in Algorithm 1). Once an initial schedule has
been created, createSchedule calls getAllocations for a spe-
cific location only if the change in the bandwidth estimate for that
location exceeds the threshold. The newly computed bandwidth
allocation is communicated to the client apps as an update to the
initial schedule. The two parameters — epoch duration and change
threshold - help us in evaluating the trade-offs between network
communication, scheduling overhead, and the accuracy of the allo-
cation recommendations by the scheduler. We explore the effect of
both of these parameters in §5.

3 Implementation of Foresight

In this section, we present the technology choices and implementa-
tion details of Foresight.

3.1 On-Cloud Bandwidth Service
The bandwidth service comprises two components: (1) the band-
width estimation pipeline, and (2) the spatiotemporal datastore.

3.1.1 Crowd Sourced Bandwidth Estimation Pipeline

The bandwidth estimation pipeline consists of the CRUSP client and
CRUSP server, derived from the publicly available original imple-
mentation [15]. The CRUSP client is integrated into the bandwidth
monitor, which is the Android app used for crowd-sourcing (Fig. 3).
The app aggregates bandwidth measurements on the device and
periodically reports the bandwidth estimates to the bandwidth es-
timate aggregator (in the cloud) via HTTP post requests. Loss of
connectivity to the cloud, e.g., when a user travels through a tunnel,
is also important information. Such zero-estimates are recorded
along with the last known location, and are batch-uploaded to the
cloud server when connection is reestablished.

3.1.2 Spatiotemporal Datastore

Our requirements for the spatiotemporal datastore included quick
access to live data, ease of use, scalability, and durability. For all
these reasons we chose Redis for our implementation.

For indexing spatial information, Redis uses a data structure called
Z-set which preserves the locality of data points. We expose the
spatiotemporal bandwidth information via a Java service built on
the Jetty Framework [8], which is lightweight and scalable; Lettuce
library [18] is used to access Redis via asynchronous I/O.

Bandwidth estimation data points added to the key-value store
are represented as <key, latitude, longitude, value> tuples, where
value is the reported bandwidth estimate. Each key maps to a set of

232

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

. (”‘R R

Figure 4: GeoHash representation of points. (a) 1-character
representation: the red dot is hashed to string 2’ (b) 2-
character representation: the red dot is hashed to string ‘21’

<latitude, longitude, value> tuples. It is necessary to choose the key
representation carefully because, for any given point we want to
determine quickly which key we need to look up, and then perform
a spatial search within the points corresponding to the key. We
want to avoid accessing multiple keys for a single location.

We found GeoHash to be a suitable candidate for representing
the keyspace. For a given latitude/longitude pair, GeoHash out-
puts a string representation of the point. When a point is added
as <latitude, longitude, value>, we first compute the GeoHash of
the <latitude, longitude> pair, and then store it in Redis as <Geo-
Hash(latitude, longitude, n), latitude, longitude, value>. Here, n is
the number of characters used in producing the GeoHash string.
When we increase the number of characters in the GeoHash, we
increase the accuracy with which the point is represented.

Thus, in choosing the number of characters to represent the key,
we limit the size of the area represented by the key. For example,
we could use a single character representation for the geographical
area as shown in Fig. 4(a); or we could break up the geographical
area into a more granular grid as shown in Fig. 4(b). With a single
character GeoHash, the red dot in Fig. 4(a) would be represented by
the character “2". But so would all the other locations in the same
lower left quadrant as the red dot. On the other hand, in Fig. 4(b), the
same red dot is represented by two characters i.e., “21". By increasing
the number of characters in the hash representation, we reduce the
area covered by the hash string. The GeoHash representation is
used as the key for Redis datastore. A spatial search is performed
for all the locations (i.e., data points) within the set governed by
this key. The more characters we have in the GeoHash string, the
smaller the search space, thus reducing the area being searched.
However, too fine-grained a key could result in no data points being
returned by the spatial search, since we search only using the key
corresponding to the GeoHash of the queried data point. We explore
the implications of the size of GeoHash in the evaluations (§5.1).

3.2 On-Device Bandwidth Manager

Fig. 5 shows the interaction between the on-device components of
Foresight, which have been implemented on Android in Java. To
enable interaction between the different on-device components, we
used inter-process communication (IPC). To specify the communi-
cation interfaces, we used Android Interface Definition Language
(AIDL) [10]. The bandwidth manager provides three interfaces for
client apps to interact with it for bandwidth allocation:



MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

Manasvini Sethuraman, Anirudh Sarma, Ashutosh Dhekne, and Umakishore Ramachandran

Function Name Purpose

registerApp(appName,

bandwidthScheduleCallback) startup

Provided by the bandwidth manager for a client app to regiser a callback function at

specifyRequirement (appName,

bandwidthRequirement) ment

Provided by bandwidth manager for a client app to communicate bandwidth require-

onBandwidthSchedule(bandwidthInfo)

Asynchronous notification by the bandwidth manager to the client app using the
registered callback to communicate a newly computed bandwidth allocation schedule

addRoute(route)

Provided by the bandwidth manager for a route finding application (like maps) to
communicate a new route

Table 1: Interface functions for IPC between the bandwidth manager and other on-device components.

(1) specifyRequirement: This function allows a client app to com-
municate its bandwidth requirement to the bandwidth manager.
The app can change its requirement midway through its lifetime
if it so desires by simply calling the API again. The bandwidth
manager then re-computes the allocations in the next epoch
and notifies registered applications of the change.

—
)
~

registerApp: This function allows a client app to register a
callback handler with the bandwidth manager. The callback will
be used by the bandwidth manager to asynchronously notify
the client app when the bandwidth allocation schedule is ready.
onBandwidthSchedule: Implemented by the client app, this
callback handler allows the bandwidth manager to supply band-
width allocation information to the client app asynchronously.

—
SY)
=

Bandwidth
Service
Cloud Server getBandwidthForRoute()
User Device i . i
getAllocationForApps() registerApp(), specifyRequirement()
2arlld\glclhh o Bl\:ndWIdth BandwidihSchedul Exoilavel
cheduler | ;- cnschedule() anager  |onBandwidthSchedule(y
onLocationUpdate()
Mlapsl addRoute() registerLocationCallback() Location
Application > Manager

Figure 5: Foresight implementation. The on-device compo-
nents are implemented as Android apps. Yellow boxes are
modified apps to either aid Foresight (Maps), or showcase
the utility of Foresight (ExoPlayer). Location Manager is
part of the Android Framework.

The bandwidth manager provides an interface that can be called
for communicating route information from the user (addRoute API
as described in Table 1). We built an application that enables the
user to share the route information with the bandwidth manager
as a series of latitude/longitude pairs. The bandwidth manager also
registers a callback with the Android Location Manager to receive
asynchronous location updates. Table 1 summarizes the APIs for
communication between the components of Foresight. As detailed
in §2.2, the bandwidth manager needs several pieces of information
to compute the allocation schedule:

User’s trajectory: This is obtained from a device resident app such
as Maps, via the bandwidth manager’s addRoute interface.
Spatiotemporal bandwidth information: A background thread
periodically queries the on-cloud bandwidth service to receive this
information. The periodicity is the epoch parameter of Foresight.
App usage statistics: This is obtained from Android’s Usage Man-
ager service [13] for the client apps registered with the bandwidth

233

manager. The app usage statistics are used to compute the value
attribute of the client apps (as described in Section 2).

Estimate of user’s speed: Another background thread monitors
the user’s location for estimating the speed by registering with
Android’s Location Manager service.

The bandwidth manager maintains a list of applications that have
registered callbacks. Once the schedule is computed it is commu-
nicated to client apps through the onBandwidthSchedule callback
corresponding to each app.

4 A Prototype Video Player

To showcase how a streaming application could benefit from Fore-
sight, we have modified the open source video player, ExoPlayer [11],
such that it adapts its buffer length using the bandwidth allocation
schedule provided by Foresight. In this section, we first describe
the algorithms we have implemented for adapting the buffer length
(§4.1). We then provide the implementation details of how the algo-
rithms are integrated into ExoPlayer in §4.2.

4.1 Buffer Length Adaptation Algorithm

Currently, ExoPlayer [11] relies on historical information for esti-
mating the available bandwidth, which in turn influences the video’s
bitrate (or quality). While this adaptive bitrate mechanism attempts
to absorb small shocks in available bandwidth, it is not designed to
compensate for sustained bandwidth drops, e.g., when a user enters
a tunnel. In such situations, the video player’s buffer drains com-
pletely and the player is forced to stall. Under these circumstances
the player could benefit from knowing the expected spatiotemporal
variations of bandwidth. Prior work has shown that prediction is
key to improving video quality of experience, especially in the pres-
ence of spatiotemporal variations in bandwidth [20]. Foresight goes
a step further; it is “prescient” about upcoming variations through
crowd-sourced bandwidth knowledge.

ExoPlayer uses a minimum and maximum buffer length threshold,
within which it tries to operate. Bitrate switches happen when
either buffer length criteria are not met. ExoPlayer is extensible
and allows developers to define their own implementation of vari-
ous components within the player. We have extended ExoPlayer
such that the minimum buffer length can be dynamically varied,
based on the future bandwidth estimate that we receive from the
scheduler to ensure stall-free operation. It is to be noted that we are
not proposing to completely supplant the built-in adaptive bitrate
selection algorithms of the player, but to merely augment it with
future bandwidth information.



1

2

3

4

5
6

10
11

12

13

14

15

16

Foresight: Planning for Spatial and Temporal Variations in Bandwidth for Streaming Services on Mobile Devices

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

Algorithm 2: Compute Surplus and Deficits

Algorithm 3: Balance Deficits

Data: bwInfoByTime, desiredBitrates, confidence

Result: bufferCapacityByTime

bufferCapacityByTime.surplus = [];

bufferCapacityByTime.deficit = [];

bitrate_idx = getMinSupportableBitrate(desiredBitratess,
bwInfoByTime[0].expected_bw);

bitrate = desiredBitrates[bitrate_idx];

for (i=0; i < bwInfoByTime.size; ++i) do

buffer_difference = (bwInfoByTime[i].duration
*bwInfoByTime[i].expected_bw)/bitrate -
bwInfoByTime[i].duration;

if (buffer_difference > 0) then

bufferCapacityByTime.surplus[i] = buffer_difference *
confidence;

bufferCapacityByTime.deficit[i] = 0;

else

bufferCapacityByTime.deficit[i] =
abs(buffer_difference));

bufferCapacityByTime.surplus[i] =0 ;

end

bitrate_idx = getMinSupportableBitrate(desiredBitrates,
bwInfoByTime[i].expected_bw);

bitrate = desiredBitrates[bitrate_idx];

end

Algorithm 2 describes the logic for deciding when the buffer length
can be expected to decrease, and when there is excess bandwidth
that can be used towards increasing the buffer length. Its inputs are
the available bandwidth over time (bwinfoByTime), the allowable
bitrates in which the video has to be played, and the confidence
in the data. buffer_difference, in seconds, is computed as the ex-
cess download capacity available at each instant, representing the
amount of additional data that can be downloaded (measured in
seconds of playback time) while accounting for the buffer drain
due to playback during that time at the current bitrate. We initially
start out with the highest bitrate and switch down or up depending
on the expected bandwidth availability (line 3). If we find that even
the poorest acceptable quality is unsustainable under the network
conditions, we mark the entire duration of low bandwidth availabil-
ity period as deficit time. While computing the periods of surplus,
we apply a confidence factor to account for errors in the bandwidth
availability data. Once the surpluses are computed, it is easy to find
how much future deficit we need to balance by walking backwards
in time and increasing the buffer lengths accordingly.

In this proof of concept, we adopt a simple greedy scheme where
we first identify the stall points, and then work backwards in time,
increasing the buffer length, contingent on the available surplus,
and maximum buffer size. Algorithm 3 shows how we compute
the buffer length adjustments. Once we compute the surpluses
and deficits, we then identify consecutive periods of deficits (from
deficit_start to deficit_end) and use the preceding surplus to increase
the buffer length (lines 3—6). Thus, a portion of the surplus would
be used towards compensating for some deficit. The remaining
surplus capacity is stored in updated_surplus. We then use the

T T SR T TN

N

10

234

Data: deficit_start, deficit_end, bufferCapacity.surplus,
bufferCapacity.deficits
Result: updated_surplus
total_deficit = sum(deficit[deficit_start:deficit_end]);
updated_surplus = surplus;
for (i =deficit_start-1,i>0, - -i) do
if updated_surplus[i] > 0 then
decrement = min(updated_surplus[i], total_deficit);
updated_surplus[i] -= decrement;
total_deficit -= decrement;
end
end
return updated_surplus;

registerApp() Bandwidth

Manager

onBandwidthSchedule() l

adjustBufferLength() | Buffer Length |setBitrateEstimate()

Adaptor

ExoPlayer
Bandwidth
Estimator

Player Main
Thread

N
playVideo()

Figure 6: Modifications to the ExoPlayer. The newly added
Buffer Length Adaptor module periodically updates Exo-
Player Main Thread, and Bandwidth Estimator based on the

computations in Algorithms 2 and 3.

getBitrateEstimate()

difference between the original and updated surplus capacities to
determine the increment to the buffer length at each instant.

4.2 Implementation Details

Fig. 6 illustrates the modifications we made to the player. In the
main thread of the video player application, an instance of Exo-
Player is created. The video player subscribes to updates from the
bandwidth manager using AIDL. The Buffer Length Adaptor mod-
ule in Fig. 6 houses the onBandwidthSchedule callback function
for receiving notification from the bandwidth manager. The buffer
adaptation algorithms presented in §4.1 run within this module.
Once the buffer length modifications are computed by the Buffer
Length Adaptor, they are communicated to the video player and
the bandwidth estimator. We modified the bandwidth estimator to
directly use the information obtained from the buffer length adaptor
module, thereby adding future knowledge into the estimator. The
expected result of this modification is to enable ExoPlayer to down-
load enough content ahead of time so that when it goes through
periods of low bandwidth availability, it will not have to switch to
a lower video bitrate but can afford to simply drain its buffer. We
validate this expectation through evaluation of the modified player
in §5.3.

5 Performance Evaluations

In this section, we evaluate the performance of the components
of Foresight and the modified video player. The evaluations cover
(a) the scalability of the on-cloud bandwidth service in handling
spatiotemporal bandwidth queries (§5.1), (b) the performance of
the on-device bandwidth manager for generating the allocation



MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

Hash Characters

%2 3 —
£ P
'— T
9, R Rty
; e

S o Ve

o AN /
Q| e

0% 2000 4000

Number of location points in request

Figure 7: Redis datastore performance. (a) As we increase
the number of characters in the GeoHash, the number of
points corresponding to the same hash decreases, leading to
improved parallelism since there is less contention for the
same key. (b) Increasing the number of requests per second
does not significantly increase the server response time.

schedules for the clients apps (§5.2), and (c) the ability of the pro-
totype video player to avoid stalls and increase the quality of user
experience by utilizing the prescient allocation schedules (§5.3).

5.1 On-Cloud Bandwidth Service Performance

In this section, we evaluate the performance of the spatiotemporal
datastore as the load on the cloud server increases. We inspect
server performance over two aspects—increased number of query
locations per-request, and increased requests per-second.

5.1.1 Experimental Setup

We created a Jetty [8] service which hosts the application threadpool
for accessing the Redis [1] spatial datastore and deployed it on
an AWS Linux micro instance. The service takes as input a list
of latitude/longitude pairs, and returns the expected bandwidth
for those locations. For a specified point, we search the datastore
for bandwidth readings reported in the vicinity and return the 50
nearest measurements.

5.1.2 Scaling the Number of Locations per Request

When mobile devices query the cloud server to obtain bandwidth
estimates for a set of locations, the density of these locations has
a direct consequence on the retrieval time and impacts the design
decisions concerning location-bandwidth mapping. When storing
the computed bandwidth estimates, we varied the number of char-
acters in the GeoHash which is used as the key while querying the
spatiotemporal datastore. As mentioned in §3.1.2, the number of
characters in the GeoHash, n, determines how much geographical
area is mapped to a single key in the Redis datastore. Fig. 7(a) shows
the Redis datastore’s response time as we increase the number of
locations per request. For a smaller value of n, a larger geographical
area is mapped to the same key, which results in poor scaling as
we increase the number of locations per request. We observe better
scalability with larger values of n with close to 1-second response
time even for 5000 locations per request. Therefore, for the rest of
the evaluations we use a GeoHash size of six characters (i.e, n = 6).

5.1.3 Scaling the Number of Requests per Second

The scalability of the bandwidth service is key to the utility of
Foresight. Writes to the service occur when crowd-sourced devices
run the CRUSP bandwidth estimates and upload their results. We
expect this write traffic to be significantly less than the read traf-
fic from mobile clients requesting bandwidth availability for their
routes. Therefore, this experiment is focused on read scalability of
the datastore. A single instance of the datastore is populated with
bandwidth measurements from Ookla’s open source dataset [25]

235

Manasvini Sethuraman, Anirudh Sarma, Ashutosh Dhekne, and Umakishore Ramachandran

N

% No. of apps

IS . 10 90

=

o

£1

=

°

[

< 1 . :

30 " =
0.0 0.1 0.5 1.0

Scheduling Threshold(Mbps)

Figure 8: Bandwidth manager performance. (a) As we in-
crease the number of applications scheduling time increases
slightly. (b) Scheduling time for 196 bandwidth values. In-
creasing the change threshold for re-scheduling decreases
the time spent in scheduling,.

for NYC. Using the NYC bus dataset [34] as the workload, the data-
store is queried for bandwidth availability on routes. The dataset
generates varying number of locations queried per request. The
average number of locations per query is 1176 points. There is op-
portunity for intra-request parallelism (the distinct set of locations
queried by each request), and inter-request parallelism (the number
of concurrent requests) in handling this workload. Fig. 7(b) shows
the per-request response time for requests of variable sizes, as a
function of the number of concurrent requests. We observe that the
response time is fairly similar as the number of requests increases
showing the scalability of the bandwidth service.

5.2 On-Device Bandwidth Manager Performance

This section examines the performance of the bandwidth manager
on the device that caters to the concurrent bandwidth allocation
needs of the client apps on this device. We evaluate the follow-
ing aspects: (1) time taken by the bandwidth scheduler to run the
knapsack algorithm to allocate bandwidth as a function of time to
the concurrent requests; (2) sensitivity of the scheduler to spatial
bandwidth variations along the route; and (3) efficacy of adaptive
epochs to deal with per-location temporal variations in bandwidth.

5.2.1 Experimental Setup

We implemented the Knapsack algorithm in Java, on an Ubuntu
18.04 Linux machine with 8 GB RAM. We relied on application
usage data from an open source Android App usage dataset [24]
to derive the “value” parameter for the apps used in the Knapsack
algorithm (see §2.2.1).2 Since the actual bandwidth requirement
does not matter in the scheduling time calculations, we simply pick
per-application bandwidth requirements from a normal distribution.

5.2.2 Scheduler Scaling with Number of Applications

For each client app that registers with the bandwidth manager and
presents a bandwidth requirement for a route, estimates are fetched
from the on-cloud bandwidth service for every location in the newly
added route. Subsequently, the scheduling algorithm is run for each
location in the route for all the registered applications. We find that
on an average, the scheduler takes 3 ms to run. As shown in Fig. 8(a),
when we increase the number of applications, the time taken by
the scheduler increases only by tens of microseconds confirming
the scalability of the scheduler.

2The bandwidth allocation on a device depends on an individual user’s application
usage patterns. Therefore, in the actual implementation detailed in §3, we derive the
“value” parameter based on the individual’s usage, based on statistics collected from
Android’s Usage Manager service [13].



Foresight: Planning for Spatial and Temporal Variations in Bandwidth for Streaming Services on Mobile Devices

= N w B
o o o o
o o o o
o o o o

Download Bitrate (kbps)

o

0123456780101
Time (minutes)

Figure 9: (a) Exemplar temporal variation in bandwidth for a

single location from Cork dataset. (b) Total scheduling time

for 90 apps for various epoch sizes.

5.2.3 Scheduler Sensitivity to Spatial Bandwidth Variations
In this section, we investigate the effect of spatial variability in
bandwidth on scheduling. Often there are small changes in the
available bandwidth between adjacent locations of a route. To bound
the number of times the Knapsack algorithm is run to generate the
allocation schedule, we introduced the concept of change threshold
(see §2.2.1). Fig. 8(b) captures the differences in the running time
of the scheduler over the entire route as we increase the change
threshold from 0 (always recompute), to 1 Mbps. We observe that
setting a 1 Mbps change threshold produces a saving of roughly
1 second when scheduling for a route with 196 location points.
Increasing the number of applications subscribing to the scheduler
also sees a slight (but not significant) increase in the scheduling
time. Choosing the right threshold would depend on the bandwidth
estimates received. In the route that we used, the mean difference in
bandwidth between adjacent locations is 2.46 Mbps. So, setting even
a 500 Kbps threshold will not reduce the accuracy of the scheduling
by a large amount.

5.2.4 Evaluating Adaptive Epochs

Fig. 9(a) illustrates the variation in bandwidth for a single point
(i.e., location) in a dataset that contains real life network measure-
ments for several locations in Cork City [30]. The bandwidth re-
mains largely stable between 1 and 9 minutes, after which there
is a huge spike. It is precisely for this reason that we introduced
adaptive epochs in §2.2.2, such that we query the cloud server more
often when temporal variations in bandwidth availability are ob-
served. Under stable bandwidth conditions, querying the cloud
server would unnecessarily waste network resources, and compute
resources on the cloud and the device.

To study the utility of adaptive epochs, we first we created a base
bandwidth availability trace and perturbed it with temporal varia-
tions at specific points along the trace and obtained the bandwidth
information that would be seen by the fixed and adaptive epochs.
The adaptive epoch started with a base of 20 seconds. We incre-
mented the epoch size by 10 seconds if no changes to bandwidth
measurements were observed. If there were changes, we reduced
the epoch size to half its current value. The fixed epoch is set to
60 seconds. The result of this experiment is shown in Fig. 10. The
pink line shows the base bandwidth availability trace. The thick
light green line depicts the actual bandwidth with the temporal
variations we introduced through the perturbations. The cyan line
depicts the behavior of the fixed 60 second epoch setting, which is
able to pick up only some temporal variations (e.g., the bandwidth
changes for the portion of the route corresponding to 150-200 sec-
onds) but misses others; on the other hand, the adaptive epoch (dark

236

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

—— Adaptive,20s|+10s|-size/2 fixed 60s update once actual

S

J_r“

n
_8-3 Bandwidth / ndwidth
s [‘/f — - Updated | pdated
- 4
52 J
; T
31 [
© | 1
< 0 i -
0 50 100 150 200

Route Progress (s)

Figure 10: Efficacy of adaptive epoch. Temporal bandwidth
variations are closely tracked by the adaptive epoch policy.

blue line) is able to see all the variations in bandwidth (including
the one between 90 and 120 seconds missed by the periodic epoch).

Next, we study the effect of the epoch size on the scheduling over-
head incurred on the device. The experiment uses 90 client apps
each with a 5 minute travel duration. As can be seen in Fig. 9(b),
the larger the epoch size the smaller the scheduling overhead. The
adaptive epoch, with an initial size of 20 seconds represents a com-
promise in terms of scheduling overhead between the two periodic
epochs of 60 seconds and 30 seconds.

5.3 Prototype Video Player Performance

In this section, we evaluate the benefits of prescient bandwidth
availability provided by Foresight in a real application, i.e., Exo-
Player. Our intent is to show that a streaming application could use
this information to optimize specific parameters which would ulti-
mately improve the user’s quality of experience (QoE). Specifically,
using ExoPlayer as the example, we show that this information
helps to improve the QoE by (1) providing a higher-bitrate play-
back whenever possible, or (2) offering playback with fewer bitrate
switches, or (3) reducing the number of stalls experienced during
playback. The specific metric to optimize for, is in the app’s control.

As mentioned in §4.2, we have incorporated our buffer length adap-
tation modifications into ExoPlayer with the intent to influence the
player’s built-in adaptive bitrate (ABR) selection algorithm. Our in-
tuition is that since the video player switches from a higher bitrate
to a lower bitrate when it is unable to maintain a certain thresh-
old buffer length, by manipulating the buffer-lengths, the bitrate
switching behavior can be altered.

The controlled experiments in this section showcase the utility of
Foresight for ExoPlayer along the following dimensions: (a) adap-
tation of video QoE to spatial bandwidth variations (§5.3.2); (b)
adaptation of video QoE to temporal bandwidth variations (§5.3.3);
and (c) overall performance on different bandwidth profiles (§5.3.4).

5.3.1 Experimental Setup

For experiments on the video player, we used the following setup.
The video segments in DASH compatible format were obtained
from BBC’s open source repository [3] and hosted on Apache2
server running on Ubuntu 20.04. This server provides the video
segments to the video player which runs on a OnePlus 6A Android
phone. The video segment server and the phone are on the same
local area network.

Emulating spatiotemporal bandwidth variations. In order to
emulate the spatial and temporal variations in bandwidth, we used



MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

baseline ABR ~—— Foresight 6
601 1 —— a
L2 o
o)
=] 4=
240 =
(5} =1
- Ee)
5 3
220 23
= ©
@ o o

[ %
0 — 0
0 50 100 150 200 250 300
Playback time(s)

Figure 11: Video QoE for spatial bandwidth variations. Com-
parison of Exoplayer’s baseline ABR and Modified Exo-
Player that uses Foresight.

bandwidth measurements from the Cork City dataset. To emulate
a real-life network experience on the video player, we first use
Google Maps API [12] to get latitude/ longitude values along a
chosen route, and then get the bandwidth measurements for those
points from the Cork City dataset. Using these bandwidth values,
we then perform egress traffic shaping on the video segment server
using Linux Traffic Control (tc). We gather video player metrics
such as buffer length and video bitrates at 2-second intervals.

5.3.2 Video QoE on Spatial Bandwidth Variations

For this experiment, we traffic shape a specific available bandwidth
profile (light gray line in Fig. 11) to mimic spatial variations in the
bandwidth along a route. To study the effect of network conditions
on video quality of experience, we introduce periods of extremely
low bandwidth (tens of Kbps) along the route. We consider two
situations: (1) We let the vanilla ExoPlayer experience this band-
width profile and use its baseline built-in ABR algorithm to handle
fluctuations in the available bandwidth along the route. (2) We use
the on-device bandwidth manager to communicate the allocation
schedule to our modified ExoPlayer once, commensurate with this
bandwidth profile. As shown in Fig. 11, adding the knowledge of
expected download bandwidth can enhance the user’s quality of
experience by helping the modified ExoPlayer avoid stalls and ex-
treme bitrate switches. At the beginning, when the player gets the
bandwidth schedule from the scheduler, it adapts the buffer length
to insulate against future drops. At about 150 seconds, the baseline
player (cyan line) runs out of buffered content when the bandwidth
has already dropped to tens of Kbps, resulting in a stall in the base-
line player since there is no more buffered video content to play.
The player tries to mitigate the situation by reducing the bitrate,
but it is unable to do so because there is insufficient bandwidth.
The bitrate switches are numerous in the baseline player, as illus-
trated by the red dots. The larger the bitrate switch (i.e., the video
quality changes drastically), the larger the radius of the red dots.
In comparison, the modified ExoPlayer (dark blue line) knows that
the bandwidth is expected to fall in the next one minute, and so,
at about 80 seconds on the player timeline, it triggers an increase
in buffer length, which causes more segments to be downloaded.
Thus, when the bandwidth falls at around 100-second mark, the
player is able to ensure stall-free operation since it has already ac-
cumulated enough content. We note that while our modified player
does experience bitrate switches, they are much less perceptible
and fewer in number (2 in comparison to the baseline player’s more
than 10 switches).

237

Manasvini Sethuraman, Anirudh Sarma, Ashutosh Dhekne, and Umakishore Ramachandran

—— epoch=60s update once Bandwidth
-|Updated —~
#40 7 1 63
=] i : g
§ /) M"""‘jﬂ j 4%
— 20 ! 0N S
@ \ %
L= i :/ 2¢c
i ©
o i \ o
0 N4 0
0 50 100 150 200 250 300
Playback time(s)

Figure 12: Video QoE for temporal bandwidth variations.
Comparison of different epoch sizes on timely notification
to the video player. Cyan line is for epoch size of infinity
(i.e, notify once); Dark blue line is for epoch size of 60 secs.
Square dots denote notification from the scheduler. The gray
line is the available bandwidth profile. Between the red lines,
the available bandwidth changed from the initial estimates
to a low of 0.3 Mbps.

5.3.3 Video QoE on Temporal Bandwidth Variations

This experiment is designed to study the effect of timely updates
of temporal variations in bandwidth available to the modified Ex-
oPlayer. At the beginning of every epoch, Foresight fetches fresh
bandwidth estimates and applies them to the allocation schedules
of client apps.

To investigate the effect of changing the epoch size on ExoPlayer’s
behavior, we added small variations to the egress bandwidth in the
experimental setup introduced in §5.3.1. We introduced a new low
bandwidth period starting at 211 seconds, up to 250 seconds. Then,
we added logic in the scheduler such that if the location/bandwidth
information is queried 1 minute after the start of the experiment,
then the new low bandwidth values would be made available. We
studied the effect of epoch size on the performance of the video
player. In Fig. 12, when the bandwidth estimates are updated peri-
odically (every 60 seconds) by the scheduler (dark blue line), the
player is able to suitably update its buffer and handle the low band-
width region at 211 to 250 seconds. The player completely avoids
stalling, whereas, if the bandwidth estimates are only received at
the beginning and not updated afterwards (cyan line), the player
starts stalling since it did not plan for the low bandwidth region.

5.3.4 Robustness to Various Bandwidth Profiles

This experiment is aimed at studying the response of the modified
ExoPlayer to different bandwidth profiles. The purpose of this ex-
periment is to understand the utility of Foresight in catering to any
chosen QoF metric of importance to the player. For this experiment,
we have chosen to optimize number of bitrate switches.

To remove bias in the evaluation, we use the methodology out-
lined in §5.3.1 to create bandwidth profiles for randomly generated
source/destination pairs in the Cork Dataset. From these bandwidth
profiles, we then select 14 routes with at least one period of low
bandwidth (<500Kbps bandwidth along the route). For each of these
routes, we perform traffic shaping on the video segment server com-
mensurate with these bandwidth profiles. We assume no temporal
variations for this experiment and thus it is sufficient if these pro-
files are fed to the modified ExoPlayer once at the beginning of the
journey (i.e., epoch size is infinity). We measure the periods of time



Foresight: Planning for Spatial and Temporal Variations in Bandwidth for Streaming Services on Mobile Devices

w
o

EEE Foresight
Baseline

no. of bitrate switches
= N
o o

o

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10R11R12R13R1l4
Routes

Figure 13: Robustness to varied bandwidth profiles.
Foresight-enhanced modified ExoPlayer results in fewer
bitrate switches on all routes
100
90
80
70
60
50
40
30
20
10
ol

Bitrates
W 1604 kbps
827 kbps
B 437 kbps
=0 281 kbps
0 156 kbps
3 86 kbps

Scheme
Foresight
== Baseline

% time spent under Bitrate

Rl R2 R3 R4 R5 R6 R7 RS

Routes

R9 R10 R11l R12 R13 R14

Figure 14: Robustness to varied bandwidth profiles. Darker
shading (for both blue and red) implies higher bitrate.
Foresight-enhanced modified ExoPlayer results in larger
percentage of time in higher bitrates.

for which the video player played the video at various bitrates, for
the unmodified ExoPlayer, and Foresight-enhanced ExoPlayer.

Fig. 13 shows the number of bitrate switches on each of the 14
routes. Adding the buffer length adjustment logic can produce a
better quality of experience by virtue of fewer bitrate switches.
Since the player knows ahead of time the variations in bandwidth
for the future, it is able to buffer content at a mostly stable bitrate
than the baseline. We observed that for the most part, the adaptive
buffer length player is able to avoid playing at the lowest bitrate
on most routes, as illustrated in Fig. 14. However, it can be seen
that with the addition of buffer length adaptation, the duration of
playback at the highest bitrate is reduced in favor of a slightly lower
bitrate so that there is enough bandwidth to prefetch segments for
avoiding future bitrate switches. We found that stall times for both
players were similar. Thus, it is safe to conclude that buffer length
adaptation did not come at the expense of increased stalling.

6 Related Work

Crowd-sourced Bandwidth Estimation. Crowd-sourced spatiotem-

poral bandwidth measurement is employed by companies like
speedtest.net [26] by Ookla and OpenSignal [27]. While Ookla
has open-sourced some of its data, it is hard to get a reliable live
estimate of the experienced bandwidth. Dubin, et al. [7] propose us-
ing crowd-sourced bandwidth information from a dataset provided
by Wefi Ltd to adapt video bitrates for on-demand streaming. While
the dataset accounts for spatiotemporal variations in bandwidth,
it is difficult to track real time variations in expected bandwidth.
Such datasets are however, invaluable for bootstrapping the service
in new locations.

Bandwidth Estimation Techniques. In the realm of bandwidth
estimation, prior works can be categorized into passive or active
methods [2]. Passive methods monitor and analyze the inbound and

238

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

outbound traffic on a network interface. However, the reliability of
these methods is often influenced by user activity.

Active methods involve saturating the network with packets to reli-
ably estimate bandwidth. These methods are employed by OpenSignal
or Ookla to carry out bandwidth measurements. Ookla provides
users with an application which tries to open multiple TCP con-
nections, and measure the latency and throughput experienced
while exchanging large volumes of data with a nearby speedtest.net
server. The size of the data is increased slowly until the network
becomes congested, thereby providing an estimate of the maxi-
mum end-to-end throughput, originating at a given location, for a
given wired or wireless connection. However, active probing meth-
ods come with the overhead of consuming user data to estimate
bandwidth.

Low overhead active probing methods include packet dispersion
techniques [29] that estimate the capacity between two nodes by
studying the latency between two packets on the bottleneck link
connecting the two nodes. Such techniques are often unreliable
in cellular networks because packets tend to arrive in bursts [37].
CRUSP [31], however is a low overhead probing tool which is more
suitable for mobile landscapes because it uses a burst (2MB in size)
of data to estimate link capacity.

Bandwidth Prediction Models. In most prior works [5, 14, 33],
the bandwidth prediction model is built on HTTP packet data ex-
plicitly collected while streaming videos-on-demand. By contrast,
Xu, et al., passively monitor the network by building a library which
relies on application traffic to collect network information, using
timing and sequence numbers [36]. They then build a regression
tree to predict temporal variations in bandwidth. However, it is not
clear if user mobility is accounted for in their work. Yue et al. [38]
quantify the importance of both low level (e.g., channel quality) and
high level (e.g., historical link bandwidth) statistics to predict instan-
taneous bandwidth using a machine learning model. Sprout[35] is
an end-to-end transport layer protocol which also forecasts instan-
taneous bandwidth for use by high throughput applications. Mei
et al,, instead actively flood the network using iPerf [16] to obtain
traces of cellular bandwidth availability under various conditions,
and then create a neural network classifier to predict the temporal
variations in bandwidth [21].

Using Bandwidth Estimates for Packet Scheduling. A number
of prior works utilize knowledge about parameters such as signal
strength, predicted bandwidth and physical layer statistics in or-
der to make better packet scheduling decisions. Rathnayake, et al.,
propose Emune which comprises a bandwidth prediction compo-
nent and a scheduling engine, exposed via an API for applications
to use [32]. Within the scheduling engine, they perform packet
scheduling using stochastic optimization methods, with the goal
of minimizing power costs and monetary usage. Each application
has a priority and certain scheduling constraints like hard and soft
deadlines for packet transfer. While this approach seems promising,
it is also extremely restricting; we take a more suggestive approach
instead, leaving it up to applications to decide how to use the in-
formation about bandwidth availability. Further, we make use of
crowd-sourced spatiotemporal bandwidth information to inform
our scheduler instead of just relying on metrics like physical layer
statistics derived from the device itself.



MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

Bandwidth Estimation Baked into Video Players. There are
also several works which have proposed the idea of a location/
throughput database [5, 33] where the user’s route information is
shared with a bandwidth service which then aggregates/updates
the data and informs the player running on the user’s device about
the expected bandwidth in the future. G-Tube [14] does not require
the entire route information, but instead combines the uploading of
location data to the server with the functionality of the video player.
While this design serves the purpose of improving video streaming
QoE, we opt to decouple the two tasks in order to achieve greater
flexibility in deployment and wider utility across different apps.

Bitrate Adaptation in Video Players. There is prior art in im-
proving adaptive bitrate selection usually based on bandwidth es-
timation and a minimum buffer length criteria [6, 19, 20]. Such
proposals suggest criteria for deciding when to switch to a lower
bitrate, based on the current state of the buffer or predicted band-
width. Such techniques have been incorporated into various open
source implementations of adaptive bitrate streaming players such
as dash.js [9] and ExoPlayer [11], as well well known video players
including YouTube and Netflix.

7 Discussion

Bandwidth Estimation. The aggregation mechanism used to es-
timate available bandwidth for a location is the running mean of
bandwidth estimates received within an hour. This scheme assumes
that the estimates are independent of the number of crowd-sourced
users reporting them for the same location. The physical layer
communication technology used by the mobile devices could have
an impact on the validity of this assumption. There is room for
refining the aggregation mechanism to account for overlap in space
and time of crowd-sourced data to improve the accuracy of the
estimates recorded by the bandwidth service in the Cloud. While
this work is evaluated for a single-carrier’s bandwidth estimates,
Foresight can be personalized for multiple carriers in the future.

Scheduling Accuracy. Beyond the accuracy of the bandwidth esti-
mates used by the scheduler, the epoch granularity has a significant
impact on the accuracy of the schedules. If the temporal variations
in bandwidth have a finer granularity than the epoch duration, it is
possible for the scheduling to be sub-optimal. At the other extreme,
we could have no estimates for some regions due to unavailability of
crowd-sourced data. One way to mitigate the data sparsity problem
is to use a larger area for the spatial search. Another approach is to
augment the crowd-sourced data with publicly available data sets.
Further, to account for scheduling inaccuracies, client apps could
dynamically vary the confidence factor in using the schedules.

Usage Statistics. We have relied on the app usage data from An-
droid for deriving the “value” parameter in solving the Knapsack
problem that makes allocation decisions for the client apps. The
limitation of this approach is that the statistics are available only in
two hour buckets, so finer variations in app usage patterns will not
be captured by the scheduler. One approach to solving this problem
is for the bandwidth manager to track app usage statistics on its
own over time.

Scalability of the On-cloud Bandwidth Service. The current
implementation uses a single Redis instance. As the size of the
data grows over time, we would need to consider partitioning the

239

Manasvini Sethuraman, Anirudh Sarma, Ashutosh Dhekne, and Umakishore Ramachandran

bandwidth estimation data on a cluster of Redis nodes to increase
the parallelism for serving device requests. In densely populated
areas, we can expect location/bandwidth estimates to be more fine
grained than sparsely populated regions. Therefore, the number
of characters used in the GeoHash keys, both for the creation and
subsequent retrieval of bandwidth information, should be chosen
keeping this disparity in mind.

Utility of Foresight in a Video Player. We added logic to dy-
namically change the buffer length in a video player, when the
bandwidth is expected to fall in the near future, to avoid fetching
segments at a lower bitrate. The performance of this scheme hinges
on two key factors: (1) currently experienced bandwidth, and (2) du-
ration of the low bandwidth region. If the current bandwidth is only
marginally better than the future bandwidth estimate, there is only
a limited extent to which adjusting buffer length can help, since
the player might not have enough surplus bandwidth to fetch extra
segments. Further, if the duration of low bandwidth far exceeds the
“good” bandwidth region, then a stall can only be postponed, but
not completely avoided. In such situations, at best the player can
reduce the bitrate to avoid stalling longer.

Additional Work in Client Apps for using Foresight. A client
app wishing to use the results from Foresight would need some code
modifications. We found the modification to be straightforward
and minimal in ExoPlayer (230 additional lines of code). Further,
the measured additional overhead in ExoPlayer for calculating the
buffer adjustment schedule is less than 35 ms per run. We have
implemented this activity in a background thread without affect-
ing the main playback. It should also be noted that this overhead
decreases with time of journey of the mobile user as the playback
time for the video continues to get shorter.

8 Conclusion

Foresight is an end-to-end system to cater to the needs of users on
the move who expect a high quality of experience for streaming
apps running on their mobile devices. It addresses the problem of
spatiotemporal variations in bandwidth availability by incorporat-
ing three components in its design, i.e., a crowd-sourced bandwidth
estimation facility, an on-cloud bandwidth service for recording the
estimates and serving mobile users, and an on-device bandwidth
manager to allocate the available bandwidth to the client apps that
need them. Through location-obfuscation, Foresight also obviates
the need for client apps to request permission for location knowl-
edge from the mobile device. To showcase the utility of Foresight,
we have modified ExoPlayer, an open-source video player to incor-
porate the results of Foresight in its video buffer management to
enhance the QoE for mobile users.

9 Acknowledgments

We would like to thank the anonymous reviewers for their in-
sightful feedback, which substantially improved the content and
presentation of this paper. This work was funded in part by NSF
I/UCRC FiWIN Center (IIP-1821819), NSF CNS-1909346, and a gift
from Microsoft Corp.

References
[1] 2020. Redis. https://redis.io/


https://redis.io/

Foresight: Planning for Spatial and Temporal Variations in Bandwidth for Streaming Services on Mobile Devices

(2]

(3]

[15

[16]
[17

[18]
[19

[20]

[25]
[26]
[27

[28]

[29

[30

[31

T. Arsan. 2012. Review of bandwidth estimation tools and application to band-
width adaptive video streaming. In High Capacity Optical Networks and Emerg-
ing/Enabling Technologies. 152-156. https://doi.org/10.1109/HONET.2012.6421453
BBC. 2020. Exoplayer Testing Samples.  https://github.com/bbc/exoplayer-
testing-samples

United States Census Bureau. 2020. TIGER/Line Shapefiles. https://www.census.
gov/geographies/mapping-files/time-series/geo/tiger-line-file.html

Igor D.D. Curcio, Vinod Kumar Malamal Vadakital, and Miska M. Hannuksela.
2010. Geo-Predictive Real-Time Media Delivery in Mobile Environment. In
Proceedings of the 3rd Workshop on Mobile Video Delivery (Firenze, Italy) (MoViD
’10). Association for Computing Machinery, New York, NY, USA, 3aAS8. https:
//doi.org/10.1145/1878022.1878036

Dongeun Suh, Insun Jang, and Sangheon Pack. 2014. QoE-enhanced adaptation
algorithm over DASH for multimedia streaming. In The International Conference
on Information Networking 2014 (ICOIN2014). 497-501. https://doi.org/10.1109/
ICOIN.2014.6799731

Ran Dubin, Amit Dvir, Ofir Pele, Ofer Hadar, Itay Katz, and Ori Mashiach. 2018.
Adaptation logic for HTTP dynamic adaptive streaming using geo-predictive
crowdsourcing for mobile users. Multimedia Systems 24, 1 (2018), 19-31.
Eclipse. 2020. Eclipse Jetty. https://www.eclipse.org/jetty/

DASH Industry Forum. 2020. dash.js.  https://github.com/Dash-Industry-
Forum/dash.js/wiki/Low-Latency-streaming

Google. 2020. AIDL. https://developer.android.com/guide/components/aidl#
Expose

Google. 2020. ExoPlayer. https://exoplayer.dev/

Google. 2020. Google Maps Developer APL.  https://developers.google.com/
maps/documentation

Google. 2020. UsageStatsManager. https://developer.android.com/reference/
android/app/usage/UsageStatsManager

Jia Hao, Roger Zimmermann, and Haiyang Ma. 2014. GTube: Geo-Predictive
Video Streaming over HTTP in Mobile Environments. In Proceedings of the
5th ACM Multimedia Systems Conference (Singapore, Singapore) (MMSys ’14).
Association for Computing Machinery, New York, NY, USA, 2594A$270. https:
//doi.org/10.1145/2557642.2557647

Wolfgang Hofer. 2020. Infrastructure for Mobile. https://gitlab.com/gitlabwolf/
infrastructure-for-mobile

iPerf. 2020. iPerf. https://iperf.fr/

U. Karabulut, A. Awada, I. Viering, M. Simsek, and G. P. Fettweis. 2018. Spatial and
Temporal Channel Characteristics of 5G 3D Channel Model with Beamforming
for User Mobility Investigations. IEEE Communications Magazine 56, 12 (2018),
38-45. https://doi.org/10.1109/MCOM.2018.1800218

Lettuce. 2020. Lettuce. https://lettuce.io/

Chenghao Liu, Imed Bouazizi, and Moncef Gabbouj. 2011. Rate adaptation for
adaptive HTTP streaming. In Proceedings of the second annual ACM conference
on Multimedia systems. 169-174.

Tarun Mangla, Nawanol Theera-Ampornpunt, Mostafa Ammar, Ellen Zegura,
and Saurabh Bagchi. 2016. Video through a crystal ball: Effect of bandwidth
prediction quality on adaptive streaming in mobile environments. In Proceedings
of the 8th International Workshop on Mobile Video. 1-6.

Lifan Mei, Runchen Hu, Houwei Cao, Yong Liu, Zifa Han, Feng Li, and Jin Li. 2019.
Realtime mobile bandwidth prediction using Istm neural network. In International
Conference on Passive and Active Network Measurement. Springer, 34-47.
Netflix. 2020. Fast. https://www.fast.com

Gustavo Niemeyer. 2008. Geohash. Retrieved June 6 (2008), 2018.

Adam J. Oliner, Anand P. Iyer, Ion Stoica, Eemil Lagerspetz, and Sasu Tarkoma.
2013. Carat: Collaborative Energy Diagnosis for Mobile Devices. In Proceedings
of the 11th ACM Conference on Embedded Networked Sensor Systems (Roma, Italy)
(SenSys ’'13). Association for Computing Machinery, New York, NY, USA, Article
10, 14 pages. https://doi.org/10.1145/2517351.2517354

Ookla. 2020. Ookla Open Data. https://github.com/teamookla/ookla-open-data
Ookla. 2020. SpeedTest Servers. https://www.ookla.com/speedtest-servers
OpenSignal. 2020. Methodology Overview.  https://www.opensignal.com/
methodology-overview

Eoin O4AZConnell, Denis Moore, and Thomas Newe. 2020. Challenges Associated
with Implementing 5G in Manufacturing. In Telecom, Vol. 1. Multidisciplinary
Digital Publishing Institute, 48-67.

Vern Paxson. 1997. End-to-end Internet packet dynamics. In Proceedings of the
ACM SIGCOMM’97 conference on Applications, technologies, architectures, and
protocols for computer communication. 139-152.

Darijo Raca, Jason J. Quinlan, Ahmed H. Zahran, and Cormac J. Sreenan. 2018.
Beyond Throughput: A 4G LTE Dataset with Channel and Context Metrics. In
Proceedings of the 9th ACM Multimedia Systems Conference (Amsterdam, Nether-
lands) (MMSys ’18). Association for Computing Machinery, New York, NY, USA,
4605A§465. https://doi.org/10.1145/3204949.3208123

V. Raida, P. Svoboda, M. Kruschke, and M. Rupp. 2019. Constant Rate Ultra Short
Probing (CRUSP): Measurements in Live LTE Networks. In ICC 2019 - 2019 IEEE
International Conference on Communications (ICC). 1-6. https://doi.org/10.1109/

240

[32

[33

[34

[36

[37

[38

]

]

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

1CC.2019.8761179

Upendra Rathnayake, Henrik Petander, Maximilian Ott, and Aruna Seneviratne.
2012. Emune: Architecture for mobile data transfer scheduling with network
availability predictions. Mobile Networks and Applications 17, 2 (2012), 216-233.
Haakon Riiser, Tore Endestad, Paul Vigmostad, Carsten Griwodz, and Pal
Halvorsen. 2012. Video Streaming Using a Location-Based Bandwidth-Lookup
Service for Bitrate Planning. ACM Trans. Multimedia Comput. Commun. Appl. 8,
3, Article 24 (Aug. 2012), 19 pages. https://doi.org/10.1145/2240136.2240137
Michael Stone. 2020. New York City Bus Data.  https://www.kaggle.com/
stoney71/new-york-city-transport-statistics

Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Stochastic
Forecasts Achieve High Throughput and Low Delay over Cellular Networks.
In Proceedings of the 10th USENIX Conference on Networked Systems Design and
Implementation (Lombard, IL) (nsdi’13). USENIX Association, USA, 4594A$472.
Qiang Xu, Sanjeev Mehrotra, Zhuoqing Mao, and Jin Li. 2013. PROTEUS: Network
Performance Forecast for Real-Time, Interactive Mobile Applications. In Proceed-
ing of the 11th Annual International Conference on Mobile Systems, Applications,
and Services (Taipei, Taiwan) (MobiSys ’13). Association for Computing Machin-
ery, New York, NY, USA, 347aA$360. https://doi.org/10.1145/2462456.2464453
Yin Xu, Zixiao Wang, Wai Kay Leong, and Ben Leong. 2014. An End-to-End
Measurement Study of Modern Cellular Data Networks. In Passive and Active
Measurement, Michalis Faloutsos and Aleksandar Kuzmanovic (Eds.). Springer
International Publishing, Cham, 34-45.

Chaoqun Yue, Ruofan Jin, Kyoungwon Suh, Yanyuan Qin, Bing Wang, and Wei
Wei. 2018. LinkForecast: Cellular Link Bandwidth Prediction in LTE Networks.
IEEE Transactions on Mobile Computing 17, 7 (2018), 1582-1594. https://doi.org/
10.1109/TMC.2017.2756937


https://doi.org/10.1109/HONET.2012.6421453
https://github.com/bbc/exoplayer-testing-samples
https://github.com/bbc/exoplayer-testing-samples
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://doi.org/10.1145/1878022.1878036
https://doi.org/10.1145/1878022.1878036
https://doi.org/10.1109/ICOIN.2014.6799731
https://doi.org/10.1109/ICOIN.2014.6799731
https://www.eclipse.org/jetty/
https://github.com/Dash-Industry-Forum/dash.js/wiki/Low-Latency-streaming
https://github.com/Dash-Industry-Forum/dash.js/wiki/Low-Latency-streaming
https://developer.android.com/guide/components/aidl#Expose
https://developer.android.com/guide/components/aidl#Expose
https://exoplayer.dev/
https://developers.google.com/maps/documentation
https://developers.google.com/maps/documentation
https://developer.android.com/reference/android/app/usage/UsageStatsManager
https://developer.android.com/reference/android/app/usage/UsageStatsManager
https://doi.org/10.1145/2557642.2557647
https://doi.org/10.1145/2557642.2557647
https://gitlab.com/gitlabwolf/infrastructure-for-mobile
https://gitlab.com/gitlabwolf/infrastructure-for-mobile
https://iperf.fr/
https://doi.org/10.1109/MCOM.2018.1800218
https://lettuce.io/
https://www.fast.com
https://doi.org/10.1145/2517351.2517354
https://github.com/teamookla/ookla-open-data
https://www.ookla.com/speedtest-servers
https://www.opensignal.com/methodology-overview
https://www.opensignal.com/methodology-overview
https://doi.org/10.1145/3204949.3208123
https://doi.org/10.1109/ICC.2019.8761179
https://doi.org/10.1109/ICC.2019.8761179
https://doi.org/10.1145/2240136.2240137
https://www.kaggle.com/stoney71/new-york-city-transport-statistics
https://www.kaggle.com/stoney71/new-york-city-transport-statistics
https://doi.org/10.1145/2462456.2464453
https://doi.org/10.1109/TMC.2017.2756937
https://doi.org/10.1109/TMC.2017.2756937

	mmsys_148_public_review.pdf
	148.pdf
	Abstract
	1 Introduction
	2 System Architecture of Foresight
	2.1 On-Cloud Bandwidth Service
	2.2 On-Device Bandwidth Manager

	3 Implementation of Foresight
	3.1 On-Cloud Bandwidth Service
	3.2 On-Device Bandwidth Manager

	4 A Prototype Video Player
	4.1 Buffer Length Adaptation Algorithm
	4.2 Implementation Details

	5 Performance Evaluations
	5.1 On-Cloud Bandwidth Service Performance
	5.2 On-Device Bandwidth Manager Performance
	5.3 Prototype Video Player Performance

	6 Related Work
	7 Discussion
	8 Conclusion
	9 Acknowledgments
	References


