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Applications in cloud platforms motivate the study of efficient load balancing under job-server constraints

and server heterogeneity. In this paper, we study load balancing on a bipartite graph where left nodes

correspond to job types and right nodes correspond to servers, with each edge indicating that a job type

can be served by a server. Thus edges represent locality constraints, i.e., an arbitrary job can only be served

at servers which contain certain data and/or machine learning (ML) models. Servers in this system can

have heterogeneous service rates. In this setting, we investigate the performance of two policies named

Join-the-Fastest-of-the-Shortest-Queue (JFSQ) and Join-the-Fastest-of-the-Idle-Queue (JFIQ), which are simple

variants of Join-the-Shortest-Queue and Join-the-Idle-Queue, where ties are broken in favor of the fastest

servers. Under a “well-connected” graph condition, we show that JFSQ and JFIQ are asymptotically optimal in

the mean response time when the number of servers goes to infinity. In addition to asymptotic optimality,

we also obtain upper bounds on the mean response time for finite-size systems. We further show that the

well-connectedness condition can be satisfied by a random bipartite graph construction with relatively sparse

connectivity.
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1 INTRODUCTION
Many applications that use data centers, cloud computing systems and other data analytic platforms,

including Web search engines [23], cloud computing service [1], large-scale data processing [13],

and cloud storage have extremely stringent latency requirements. Ultra low latency guarantees in

these applications not only provide smooth user experience, but help improve company profits

[12].

A key component for achieving a fast response in the aforementioned systems are load balancing

algorithms, which are responsible for dispatching jobs to parallel servers. Motivated by the demand-

ing requirement of a low latency, there has been a line of recent research that aims to design smart

load balancing algorithms with delay performance guarantees. They often focus on the classical

load balancing model, where there are 𝑁 identical servers with exponential service times and a
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dispatcher that assigns Poisson arrivals to one of the servers. It has been shown in this setting that

a class of load balancing policies including Join-the-Shortest-Queue (JSQ), Join-the-Idle-Queue

(JIQ) [34] and variants of the Power-of-d-Choices (Pod) [37, 49] which sample a sufficiently large

number of queues or exploit the parallelism of tasks within a job are able to achieve asymptotically

zero waiting time for a sufficiently large 𝑁 .

However, the above classical load balancing model may not be appropriate for certain modern

cloud computing and data analytic applications due to the presence of job-server constraints. Under

such constraints, a job can only be dispatched to a subset of the 𝑁 servers. These constraints,

often called locality constraints, are quite common in large-scale Machine Learning as a Service

(MLaaS) and serverless computing services supported by cloud computing platforms (e.g., Microsoft

Azure [36], Amazon Web Services [1], Google Cloud [22]). To give a concrete example, let us

consider MLaaS. In this setting, various well-trained machine learning models are deployed on

cloud platforms, say deep convolutional neural network (CNN) models for image classification and

natural language processing (NLP) models. A user’s image classification request can only be sent to

the servers on which the CNN models have been loaded. As a result, it is not appropriate to assume

that every request can be served by any server in the system. Other examples in which there are

inherent job-server constraints include online video services, such as TikTok, Netflix and Youtube.

In these applications, user requests can only be sent to servers with the required data (e.g., movies,

music). The ultimate goal in all these modern applications is to achieve a fast response time and

efficient resource (e.g., number of servers) usage while satisfying job-server constraints.

Inspired by these applications, in this paper, we take into account job-server constraints by

considering a bipartite load balancing model. In this model, job-server constraints are abstracted by

the edges in a bipartite graph, where the left nodes are called ports and the right nodes are called

servers. In the model, each port represents a job of a particular type which requires a specific chunk

of data or a specific machine learning model to execute, and thus can only be routed to specific

servers. Each port ℓ corresponds to Poisson job arrivals with rate 𝜆ℓ . A job from a port ℓ can only

be sent to server 𝑟 such that (ℓ, 𝑟 ) is an edge of the graph. Jobs routed to a server 𝑟 are queued in a

buffer, and get service in a first-come first-serve (FCFS) manner. The service time of an arbitrary

job at server 𝑟 is exponentially distributed with rate 𝜇𝑟 (possibly different).

Our model is similar with that studied in [11] where JSQ is shown to be throughput optimal

while no delay performance guarantee is provided. The bipartite graph model generalizes the load

balancing model on graphs introduced in [8, 39]. In their model, jobs arrive at each node with a

homogeneous rate, and an arbitrary job can be served by the node it arrives and its neighbors. It

has been shown that in this setting JSQ achieves zero delays under certain assumptions on graph

connectivity [39].

Inspired by the discussions above, we are particularly interested in the following question:

Are there simple policies that can achieve optimal response time in modern load balancing systems
with both job-server constraints and service-rate heterogeneity?

1.1 Main Contribution
This paper affirmatively answers the above question by presenting optimal policies as well as

performance bounds on the mean response time. The detailed contributions can be summarized as

follows.

First, we consider two policies: Join-the-Fastest-of-the-Shortest-Queues (JFSQ), and Join-the-

Fastest-of-the-Idle-Queues (JFIQ). We show that, under a ‘well-connected’ graph condition, they

can asymptotically achieve the minimum response time in both the many-server regime (the system

load 𝜆 < 1 is a constant while the number of servers 𝑁 → ∞) and sub Halfin-Whitt (HW) regime

(𝜆 = 1−𝑁 −𝛼
with 𝛼 < 0.5). The minimum response time metric is more stringent than the common
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"zero queueing delays" discussed before, and is especially important in systems with heterogeneous

servers. JFSQ and JFIQ are simple variants of JSQ and JIQ adapted to job-server constraints, but

they break ties in JSQ and JIQ by choosing the fastest servers. Consequently, our results imply that

JSQ and JIQ have asymptotic zero waiting time for homogeneous servers. They are practical since

they only need comparisons between service speed rather than the exact service rates of servers. In

addition to the asymptotic result, we also obtained finite-system bounds on the mean response time.

Roughly speaking, we show that the difference between the mean response time in an 𝑁 -server

system and that in the limit is bounded by 𝑂
(
𝜖 + ((1 − 𝜆)𝜖𝑁 )−1/2

)
, where 𝜖 is a parameter related

to the well-connectedness of the underlying bipartite graph, and 𝜆 reflects the load of the system. It

is well known that Pod (power-of-d choices) routing does not achieve asymptotically zero waiting

time while JSQ and JIQ do so in large parallel server systems. Our results show that JFIQ and JFSQ

continue to achieve zero waiting time but in addition also provide mean response time optimality

even in non-parallel server systems such as bipartite graphs. Additionally, the communication

overhead between the router and the servers is very low under JFIQ.

Second, our theoretical results provide practical guidance in designing modern load balancing

systems. Besides the two simple but efficient algorithms, the underlying ‘well-connected’ condition

sheds light on the efficient deployment of various ML models or the required data among the

servers. In particular, the key message is that each movie on Netflix or each ML model deployed

on Microsoft Azure on average only needs to be loaded in 𝜔 (1) servers for nearly optimal mean

response time. To give a concrete example, for a wide range of traffic patterns, we provide practical

design guidelines showing that if movies or machine learning models are randomly loaded on

servers according to some given probabilities, then JFSQ and JFIQ can guarantee nearly optimal

mean response time with high probability. More precisely, Let 𝐿 be the number of job types (e.g.,

the number of movies or machine learning models), and 𝑁 be the number of servers. Our result

indicates that on average, we only need 𝜔

(
𝐿+𝑁
(1−𝜆)2

)
copies of data for good delay performance. And

if the arrival rates of jobs are uniform, then this number can be reduced to 𝜔
(
𝐿+𝑁
1−𝜆 ln

1

1−𝜆
)
.

A key theoretical contribution of the paper is showing that a recently-developed Lyapunov drift

method for studying parallel-server queueing systems can be generalized to bipartite graphs using

two key ideas: (i) we demonstrate something akin to state-space collapse and resource pooling by

exploiting the connectivity structure of the graph, and (ii) apply this idea iteratively twice, once to

bound the number of jobs in fast servers that are busy in the large-system limit and a second time

to bound the number of jobs in slow servers that the number is zero in the limit using a conditional

geometric tail bound.

1.2 Related Work
There is a vast literature on efficient load balancing policies, mostly in the classical load balancing

setting where there are 𝑁 identical servers and the service rate is exponentially distributed. Upon

arrival, an arbitrary job can be sent to any of the 𝑁 servers. It is now well-known that in this

setting JSQ is optimal [52] in a stochastic ordering sense. However, obtaining the exact steady state

performance of JSQ is difficult. The problem is partly solved in [15] which establishes that the

scaled queue length process of JSQ converges to a two-dimensional Ornstein-Uhlenbeck process,

and the fraction of waiting jobs vanishes in the Halfin-Whitt heavy traffic regime. Although this

result is on the process level, it is later confirmed for the steady state distribution by [6]. The tail of

the distribution is further studied in [4].

Since JSQ has significant communication overhead in large-scale systems, alternative policies

have been proposed and analyzed. One prominent policy is Power-of-𝑑-Choices (Pod). In Pod, each

arrival of jobs probes 𝑑 random servers, and joins the one with the shortest queue. [40] first shows
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that if 𝑑 → ∞, then both the fluid limit and the state occupancy distribution of Pod coincides

with that of JSQ in many-server limit. It implies that Pod has zero waiting time in many-server

limit. [40] also prove that the diffusion limit of Pod is the same as JSQ if 𝑑 = 𝜔 (
√
𝑁 log𝑁 ) in the

Halfin-Whitt heavy traffic regime, but it does not imply a steady-state performance guarantee. For

the many-server regime, a line of works [17, 18] study the minimum required resources (such as

memory, and communication overhead) to achieve zero waiting time.

When the system load 𝜆 can also approach 1 as 𝑁 increases (i.e. many-server heavy-traffic

regime), [31] shows that Pod can achieve asymptotic zero waiting time if 𝑑 = 𝜔
(

1

1−𝜆
)
when

1 − 𝜆 = 𝜔 (𝑁 −1/6). For a heavier-traffic regime, a recent breakthrough is the work [33]. In the sub

Halfin-Whitt regime (1− 𝜆 = 𝜔 (𝑁 −0.5)), this work establishes asymptotic zero waiting property for

a large class of policies including JSQ, JIQ and Pod with 𝑑 = 𝑂 ( log𝑁
1−𝜆 ). The result is later extended to

the Beyond-Halfin-Whitt regime ( 1 − 𝜆 = 𝜔 (𝑁 −1)) [32], and to Coxian-2 service time distribution

[30]. When 1−𝜆 = 𝑂 (𝑁 −1), it is known that the waiting time must be positive for all load balancing

policies [3, 25]. When jobs are divisible, [40, 53] shows similar result for Batch Sampling [41] and

Batch-Filling [57], which are batch variants of Pod.

Proving optimality of load balancing algorithms is more complicated when servers are heteroge-

neous. Simple heuristics, nevertheless, have been proposed for decades. We note that a policy called

Never Queue policy which is very similar to JFIQ was proposed in [43]. The Never Queue policy is

analyzed in the case of a centralized queue, but not for load balancing systems. Many studies have

focused on the heavy traffic regime where the system load converges to 1 while the number of

servers is fixed. In this regime, JSQ was shown to be delay optimal by the drift method [14]. Later,

[60] proves that a threshold policy is heavy-traffic optimal. The stability and optimality in heavy

traffic of Pod for heterogeneous servers were studied recently by [29]. Moreover, [59] provides

a simple criterion for load balancing algorithms to be heavy-traffic optimal. The assumption of

heavy traffic can be relaxed to many-server heavy traffic regime when 1 − 𝜆 = 𝑜 (𝑁 −4) [28, 58].
Nevertheless, the results mentioned above do not imply fast mean response time in the many-server

regime, which is more practical for cloud platforms. For the many-server regime, work in [44]

shows that JIQ has asymptotic zero waiting time as 𝑁 → ∞. However, this does not imply optimal

mean response time since the service time of jobs varies in different servers. A recent work [19]

takes heterogeneity into account by studying a system with fast and slow servers. Although [19]

obtains mean-field limit for a variant policy of Pod, the result does not imply optimal mean response

time.

Load balancing with job-server constraints is a long-standing problem in the literature. To the

best of our knowledge, [16] was the first to study a model where different types of jobs can only

served at certain sets of servers. Their model allows service rates to depend on both the job type and

the server serving the job. The stability condition of a class of routing policies is examined when the

service speed is independent of servers or independent of job types, and when there are two servers.

When the system is not stochastic, [38] proposes an online load balancing algorithm with the

optimal competitive ratio. A recent paper Cruise et al. [11] considers the stability of JSQ on the same

model as ours while no delay guarantee is provided. In Cardinaels et al. [9], redundancy policies

are explored in bipartite load balancing. They exploit a product-form steady state distribution in

heavy traffic which implies heavy-traffic optimality. Besides these papers, there are also studies

for load balancing on graphs. In [8, 21, 47], the impact of the graph structure on the performance

of Pod is studied. Mukherjee et al. [39] utilizes a stochastic coupling method to prove that JSQ on

graph can have the same performance as JSQ in the classical load balancing model in both the

many-server regime and the Halfin-Whitt regime under certain graph constraints. Therefore, it

implies that JSQ can also achieve zero waiting time in the many-server regime for a graph-based
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model. However, the model in [39] only considers identical servers and homogeneous arrival rates

of jobs, which is a special case of this paper.

We note that if servers share a central queue, then the bipartite graph model turns into the

skill-based model studied in the call center literature [9, 20, 48]. It is shown in [20, 48] that the

stationary distributions under a random assignment policy and several redundancy policies have

product forms. One related result to us is that our model becomes the same as a skill-based model,

and thus enjoys a product-form stationary distribution, if we send a job to a connected server with

least amount of work in its buffer [9, 20]. Such policy is, however, impractical since workloads

of jobs in cloud platforms suffer from volatility. Also, as [20] has pointed out, it is non-trivial to

obtain bounds on mean response time just from the product-form results. A similar model with the

skill-based model is investigated in [46], where there are multiple queues and servers, and a job to

a queue can only be served by a server connected with the queue. Tsitsiklis and Xu [46] showed

that in the many-server limit, even a sparse bipartite graph can have a large capacity region and a

diminishing mean delay.

Our bipartite graph model also resembles other problems in the literature. One particular model

is the job-server affinity model for data locality problems studied in [10, 51, 54, 55]. In the job-server

affinity model, if an arbitrary job is served by a server with its data, it has a fast constant service

rate. Otherwise, it has a slow service rate, meaning that this sever has to fetch data from somewhere.

However, the setting is not suitable in the context of MLaaS we discussed above. Here ML models

are usually reconfigured on machines periodically, and a new request will only be routed to those

servers with needed model [24]. Also, previous studies on job-server affinity models can only

guarantee heavy-traffic delay optimality [51, 54, 55], which does not induce extremely fast mean

response time required in cloud platforms.

From a methodological perspective, our paper builds on the drift method to obtain performance

bounds. In this method, one exploits the fact that the steady-state expectation of suitable functions

of the state of a Markov process does not change with time. This idea was developed in [14, 35, 50]

for the heavy-traffic regime where the idea of using the tail bounds of [5, 27] to prove state-state

collapse or resource pooling was introduced. The recent work in [33] developed a parallel approach

for the many-server regime where they introduced the notion of generator coupling inspired by

Stein’s method in [7, 26, 45, 56] and designed a clever Lyapunov coupling to show that, for JSQ-type

policies, the number of homogeneous servers utilized is large when the backlog is large. We will

call this latter idea state-space collapse since it is similar to the notion of state-space collapse in

the heavy-traffic regime. In this paper, we introduce new ideas to expand the applicability of the

techniques [33] to networks of heterogeneous servers.

Contemporaneous to our work, in [42], the authors study the waiting time of JSQ(d) policies in

bipartite graphs in the limit as the size of the graph goes to infinity. While the papers are motivated

by related problems, the models and routing policies studied, and the results in the two papers

are different. The authors in [42] consider the case of homogeneous servers with infinite buffers,

and show that the performance of JSQ(d) in a bipartite graph with limited connectivity converges

to the performance of the fully flexible system in terms of queue length (or waiting time) under

appropriate connectivity conditions. In addition, they prove that the occupancy in steady state

of the limited-connectivity system converges to the steady state of the fully flexible system. Our

paper considers the case of heterogenous arrival and service rates with finite buffers, and shows

that the waiting time in the queue and blocking probability both go to zero in the large-system

limit under the JFIQ and JFSQ routing policies. Additionally, the techniques used in the two papers

are different. We use the drift method to obtain performance bounds for finite-sized systems while

[42] uses process-level convergence techniques.
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…

…

𝜆1

Server 1 Server 2

…
𝜆2 𝜆3 𝜆𝐿

Server 3 Server 𝑁

Fig. 1. An example of the bipartite graph model. In this instance, jobs from port 1 can only be routed to server
1 and server 2.

2 MODEL
We consider load balancing in a bipartite graph 𝐺 = (L,R, 𝐸) where L and R are the set of left

nodes and right nodes, respectively, and 𝐸 is the set of edges between these two sets of nodes.

Nodes in L are indexed as {1, 2, · · · , 𝐿} with 𝐿 = |L|, and nodes in R are indexed as {1, 2, · · · , 𝑁 }
with 𝑁 = |R |. For a node ℓ ∈ L (or 𝑟 ∈ R), define N𝐿 (ℓ) (or N𝑅 (𝑟 )) to be the set of right (or left)

nodes it connects with. W.L.O.G., every N𝐿 (ℓ),N𝑅 (𝑟 ) is assumed to be non-empty. To distinguish

between left and right nodes, we may refer to a node ℓ ∈ L as port ℓ , and a node 𝑟 ∈ R as server 𝑟 .

See Fig. 1 for an illustration.

Jobs arrive at port ℓ according to a Poisson process with rate 𝜆ℓ , and the goal is to route them

to one of the servers connected to ℓ so as to minimize a certain performance metric of interest.

It is assumed that every server has a finite buffer of size 𝑏. When a job is routed to a server that

is currently processing another job, this new arrival will be placed in the buffer. But if there are

already 𝑏 jobs (including the one being served), the new arrival is blocked and lost forever. We

assume that jobs in the buffer are served in a FCFS manner. The queue length 𝑄𝑟 of a server 𝑟 is

the number of jobs in the buffer plus one if there is a job running on the server.

To reflect the nature of server heterogeneity in a practical load balancing system, we assume that

there are𝑀 types of servers. For a type𝑚 server, the service time of a job running on it is assumed

to be exponentially distributed with mean
1

𝜇𝑚
. The arrival processes to the ports and the service

times of jobs are assumed to be independent. Denote the number of type𝑚 servers by 𝑁𝑚 , and the

type of a server 𝑟 by 𝑡𝑟 . Equivalently, we can write 𝑁𝑚 = 𝑁𝛼𝑚 with 𝛼𝑚 ∈ (0, 1),∑𝑀
𝑚=1 𝛼𝑚 = 1. We

assume that there is sufficient service capacity, i.e., 𝜆Σ =
∑𝐿
ℓ=1 𝜆ℓ < 𝑁

∑𝑀
𝑚=1 𝜇𝑚𝛼𝑚 .W.L.O.G., server

types are indexed in decreasing order of their service rates so that type one servers are the fastest,

i.e., assume 𝜇1 > 𝜇2 > · · · > 𝜇𝑀 > 0.

We study two routing policies, Join-the-Fastest-of-the-Shortest-Queues (JFSQ) and Join-the-

Fastest-of-the-Idle-Queues (JFIQ) in bipartite load balancing systems. For JFSQ, upon the arrival

of a job at port ℓ , we select a server 𝑟 connected to port ℓ with the shortest queue length, that is,

𝑟 ∈ argmin𝑟 ∈N𝐿 (ℓ) 𝑄𝑟 . If there are multiple such servers, we select the one with the fastest service

rate, i.e. largest 𝜇𝑡𝑟 , and break ties (if any) by randomly choosing one server. Alternatively, if we

use JFIQ, we find an idle server 𝑟 ∈ N𝐿 (ℓ) with the fastest service rate. If there is no idle server, we

select one server from N𝐿 (ℓ) randomly. The question of interest in this paper is whether these two

policies can achieve optimal job delays (at least for a large system) under appropriate conditions

on the underlying bipartite graph. We note that our routing policies JFIQ and JFSQ reduce to JIQ
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and JSQ, respectively, when all servers have the same service rates. In addition, the communication

overhead of JFIQ in our system can be the same as that of JIQ in the classical load balancing system.

That is, JFIQ incurs at most one amortized communication message per arrival. We will discuss the

detailed implementation and associated complexity of JFSQ and JFIQ in the appendix.

2.1 State Representation
Before we proceed to state our results, we first state the notation that we will use in the paper. We

use capital letters to denote random variables, such as 𝑄𝑟 (𝑡) for the queue length of server 𝑟 at

time 𝑡 , and small letters to denote realizations.

Clearly, for the system considered in this paper, the sequence {Q(𝑡) = (𝑄1 (𝑡), · · · , 𝑄𝑁 (𝑡))} forms

a Continuous Time Markov chain (CTMC). To ensure that there is a unique stationary distribution

of Q(𝑡), we assume that the system starts at Q(0) = 0 = (0, · · · , 0), and the state space is restricted

to the set of states reachable from state 0. Then since each queue is served in a FCFS manner, the

Markov chain is irreducible, and hence has a unique stationary distribution because of a finite state

space. For each state q = (𝑞1, · · · , 𝑞𝑁 ), let

𝑠𝑚,𝑖 (q) =
1

𝑁
|{𝑟 ∈ R : 𝑞𝑟 ≥ 𝑖, 𝑡𝑟 =𝑚}|

be the fraction of type𝑚 servers with queue length at least 𝑖 . Besides, define

𝐶𝑚 (q) =
𝑏∑
𝑖=1

𝑠𝑚,𝑖 (q),

which is the normalized (divided by 𝑁 ) number of jobs in type𝑚 servers.

Notation: As mentioned earlier, capital letters are reserved for random variables (such as Q(𝑡)
for queue lengths at time 𝑡 ), and small letters are for realizations (such as q for a queue-length

state). We add a line on top of a variable meaning that it is in steady state (such as Q̄). This paper
makes use of asymptotic notations. For two positive functions 𝑓 (𝑥), 𝑔(𝑥), we write 𝑓 (𝑥) = 𝑜 (𝑔(𝑥))
if sup lim𝑥→∞

𝑓 (𝑥)
𝑔 (𝑥) = 0; write 𝑓 (𝑥) = 𝑂 (𝑔(𝑥)) if sup lim𝑥→∞

𝑓 (𝑥)
𝑔 (𝑥) < ∞; write 𝑓 (𝑥) = Ω(𝑔(𝑥)) if

inf lim𝑥→∞
𝑓 (𝑥)
𝑔 (𝑥) > 0; write 𝑓 (𝑥) = 𝜔 (𝑔(𝑥)) if inf lim𝑥→∞

𝑓 (𝑥)
𝑔 (𝑥) = ∞. We summarize key notations

of the paper in the Appendix.

3 MAIN RESULTS
We summarize our main results in this section. To be specific, our results provide an upper bound

of the mean number jobs in the system under certain assumptions. This upper bound can directly

imply asymptotic optimality of JFSQ and JFIQ in the sense of minimum mean response time, which

we will define explicitly later. We also give a random graph construction of the graph𝐺 such that

𝐺 can satisfy Assumption 2 with high probability.

3.1 Upper Bound of the Mean Number of Jobs
Let 𝐾 be the minimum value such that 𝑁

∑𝐾
𝑚=1 𝜇𝑚𝛼𝑚 > 𝜆Σ. Such a 𝐾 must exist by the assumption

of sufficient service capacity. Assume that 𝜆Σ = 𝑁
∑𝐾
𝑚=1 𝜇𝑚𝛼𝑚 (1 − 𝛽) where 0 < 𝛽 ≤ 1, and denote

𝜆 =
𝜆Σ
𝑁
. Let

𝐶∗
1
= 𝛼1, · · · ,𝐶∗

𝐾−1 = 𝛼𝐾−1,𝐶
∗
𝐾 =

𝜆 − ∑𝐾−1
𝑚=1 𝜇𝑚𝛼𝑚

𝜇𝐾
,
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and let 𝐶∗ =
∑𝐾
𝑚=1𝐶

∗
𝑚 . Such definition is motivated by the mean-field limit of our system, which

will be illustrated later. The following result provides lower bounds for the expected service time

of an arbitrary job, and the mean number of jobs in the system.

Proposition 3.1. Suppose that the buffer size is infinite, i.e., 𝑏 = ∞. Let 𝑍 be the random variable
denoting the service time of an arbitrary job. Then for any stable policy, the mean number of jobs in
the system is lower bounded by 𝑁𝐶∗, and

E
[
𝑍
]
≥ 𝐶∗

𝜆
. (1)

The proof is provided in the appendix. Note that the assumption of an infinite buffer is to ensure

no loss of arrivals due to buffers. Although this paper assumes finite buffers, our results prove that

JFSQ and JFIQ have very low blocking probabilities. It means that our system under JFSQ and JFIQ

is close to a system with infinite buffers. Therefore, Proposition 3.1 is consistent with our main

results, and provides a lower bound on the mean response time for policies that can ensure nearly

zero blocking probabilities.

For every 1 ≤ 𝑚 ≤ 𝐾 , let R𝑚 be the set of servers of types 1 through𝑚. Let
ˆ𝛽 = 𝛽

∑𝐾
𝑚=1 𝛼𝑚 , and

𝜖 be a number in (0,
ˆ𝛽

4
]; we call 𝜖 the approximation error since we will later use this parameter to

characterize the near optimality of our routing policies. For any subset I ⊆ R, define NR (I) =
∪𝑟 ∈INR (𝑟 ) to be the set of ports connected to at least one server in I, and 𝐷I =

∑
ℓ∉NR (I) 𝜆ℓ

be the sum of arrival rates at ports not connected to I. Before stating our results on JFSQ and

JFIQ, we first make a few assumptions on the system. Let 𝜏1𝐾 =
𝜇1
𝜇𝐾
, 𝜏1𝑀 =

𝜇1
𝜇𝑀
, 𝜏𝐾𝑀 =

𝜇𝐾
𝜇𝑀

. To

reflect connectedness of the bipartite graph, we define 𝑝1 =
𝜖
6𝑏2
, 𝑝2 =

ˆ𝛽

2
. In addition, let

˜𝑑1, ˜𝑑2 to

be two constants that practitioners can control whose meaning would be clear in Assumption 2.

Specifically, they can be any value such that
˜𝑑1 ≤ 𝜖𝜇𝐾

12𝑏3
, ˜𝑑2 ≤ 𝜖𝜇𝐾

2𝑏
.

Assumption 1 (Buffer Size). For a fixed approximation parameter 𝜖 in (0,
ˆ𝛽

4
], the buffer size 𝑏

satisfies 6
√
𝜏1𝐾 ≤ 𝑏 ≤

⌊(
𝜖2𝑁

1152𝜏1𝐾 ln𝑁

)
1/5

⌋
.

Assumption 2 (Well Connectedness). The graph 𝐺 satisfies the following conditions:
• 𝐷I ≤ 𝑁 ˜𝑑1 for any I ⊆ R𝐾−1 with |I | ≥ 𝑁𝑝1;
• 𝐷I ≤ 𝑁 ˜𝑑2 for any I ⊆ R𝐾 with |I | ≥ 𝑁𝑝2.

In general, Assumption 2 requires that: 1) for jobs with only a few applicable servers, their arrival

rates are small; 2) for jobs with large arrival rates, they are connected to many servers. Such a

requirement enables that JFSQ and JFIQ behave almost the same as in a classical load balancing

system even though there are additional job-server constraints. We are now ready to state the main

result.

Theorem 3.2. Suppose that Assumptions 1 and 2 hold, and that the routing policy is either JFSQ or
JFIQ. Then for a sufficiently large 𝑁 , the following results hold:

(i) the expected number of jobs in servers of the first 𝐾 types divided by 𝑁 is bounded as

E

[
max

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) − (𝐶∗ + 𝜖), 0
)]

≤ 52𝜏1𝐾𝑏
2

𝜖𝑁
; (2)

(ii) if 𝐾 < 𝑀 , the expected number of jobs in the system divided by 𝑁 is bounded as

E

[
𝑀∑
𝑚=1

𝐶𝑚 (Q̄)
]
≤ 𝐶∗ +

(
1 + 𝜏𝐾𝑀

2

)
𝜖 + 2

√
5𝜏1𝑀𝑏 ln𝑁

𝑁
+ 60𝑏2

√
26𝜏1𝐾𝜏1𝑀

ˆ𝛽𝜖𝑁
; (3)
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(iii) the probability 𝑝B that an arriving job is blocked is bounded as

𝑝B ≤
˜𝑑2

𝜆
+ 52𝜏1𝐾𝑏

2

𝜖𝑁
. (4)

3.2 Asymptotic Optimality
Theorem 3.2 may be difficult to interpret since there are several parameters involved in the results.

So let us interpret the result for an important special case which is perhaps the one that is practically

most relevant. Suppose that the normalized arrival rate 𝜆, the proportions of different types of

servers {𝛼𝑚}, and 𝜖 are fixed. In most practical systems, the number of jobs that can wait at a

server is small, so let us suppose that 𝑏 is a fixed constant satisfying Assumption 2. Then, from (3),

it is clear that the normalized expected number of jobs in the system is asymptotically equal to

𝐶∗ +𝑂 (𝜖) in the many-server limit. The blocking probability goes to zero provided
˜𝑑2 = 𝑜 (1) and

the rate at which it goes to zero depends on rate at which
˜𝑑2 decreases with 𝑁 . From Proposition 3.1,

the lower bound on the normalized number of jobs in an infinite buffer system is 𝐶∗. This suggests
that JFSQ and JFIQ are near-optimal from the perspective of mean response time if the graph is

reasonably well connected; we make this argument more general (by allowing many parameters to

scale) and precise next.

To study the limit as 𝑁 approaches infinity, we let {𝐺𝑁 = (L𝑁 ,R𝑁 , 𝐸𝑁 ), 𝑁 ≥ 1} be a sequence
of bipartite graphs such that |R𝑁 | = 𝑁 and the buffer size of each server is given by 𝑏𝑁 . Here, the

number of servers, 𝑁 , is allowed to scale, but the server-type distribution (𝛼1, · · · , 𝛼𝑀 ), and the

service rate of each type of servers, (𝜇1, · · · , 𝜇𝑀 ), 𝜇1 > · · · > 𝜇𝑀 , are fixed. Further, the total arrival

rates at ports in L𝑁 , 𝜆Σ, is assumed to be equal to 𝑁
∑𝐾
𝑚=1 𝜇𝑚𝛼𝑚 (1 − 𝛽𝑁 ) for all 𝐺𝑁 . As before,

we can define a sequence of parameters {𝜖𝑁 , 𝑁 ≥ 1} that quantify the approximation error where

𝜖𝑁 ∈ (0,
ˆ𝛽𝑁
4
], and ˆ𝛽𝑁 = 𝛽𝑁

∑𝐾
𝑚=1 𝛼𝑚 . Now we can discuss the asymptotic performance of a routing

policy as 𝑁 → ∞.

Proposition 3.1 provides a lower bound on the expected service time of a job in the system with

infinite buffers. We thus have the following definition of an (asymptotically) optimal routing policy

in the bipartite load balancing system.

Definition 3.3 (Optimality in the Mean Response Time Sense). A stable routing policy is asymp-

totically optimal in the response time if the mean response time of jobs converges to
𝐶∗

𝜆
and the

blocking probability goes to zero when 𝑁 → ∞.

We can see that optimality in the mean response time is a stronger metric than the common

zero-waiting property discussed in the literature [17, 33, 44]. With this optimality, not only an

arriving job has asymptotically zero waiting time, but it also has the minimum possible mean

service time.

Then Theorem 3.2 immediately implies that both JFSQ and JFIQ are asymptotically optimal if

the load of the system is moderate and the graph 𝐺𝑁 is suitably well connected.

Corollary 3.4. Suppose that 𝜖𝑁 is both 𝑜 (1) and𝜔 (𝑙𝑛(𝑁 )𝑁 −0.5), and that both Assumptions 1 and
2 hold for 𝐺𝑁 when 𝑁 is sufficiently large. Then as 𝑁 → ∞, both JFSQ and JFIQ are asymptotically
optimal, and the expected queueing delay converges to zero for both policies.

Due to the relationship between 𝛽𝑁 and 𝜖𝑁 , it is not difficult to see that asymptotic optimality

holds for arrival rates upto the sub-Halfin-Whitt regime. We refer the reader to the appendix for a

proof of Corollary 3.4.
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3.3 Random Graph Models
We now discuss when a bipartite graph can satisfy Assumption 2 in random graph models. Suppose

the set of ports L and the set of servers R are fixed, but connections between them, i.e., the graph

𝐺 , is not determined. This section considers a random graph𝐺 where port 𝑖 connects with server 𝑗

with probability 𝑧𝑖 𝑗 . We devise an explicit construction of 𝑧𝑖 𝑗 and show that such a random graph

can satisfy Assumption 2 with a high probability. Our result first provides the construction of 𝑧𝑖 𝑗
when ports can have different arrival rates. Later, by restricting the scope to homogeneous arrival

rates among ports, we give a better construction where the graph𝐺 can have fewer edges. We are

now ready to state our results.

Theorem 3.5. Let𝐻 𝑗 =
2 ln 2(𝑁+𝐿)/𝑁

𝑝 𝑗
for 𝑗 ∈ {1, 2}. Consider the following construction of the graph

𝐺 . For each port ℓ ∈ L and each server 𝑟 ∈ R, the probability that they are connected is given by
𝑧ℓ,𝑟 = min

(
𝜆ℓ𝐻 𝑗

𝑁 ˜𝑑 𝑗
, 1

)
where 𝑗 = 1 if 𝑟 ∈ R𝐾−1 and 𝑗 = 2 if 𝑟 ∈ R𝐾\R𝐾−1. Then 𝐺 satisfies Assumption

2 with probability at least 1 − 2
−(𝑁+𝐿−1) . The expected total number of edges used in 𝐺𝑁 scales as

𝑂 ( (𝑁+𝐿)𝑏5
𝜖2

).

Next, we discuss the special case of homogeneous arrival rates.

Theorem 3.6. Suppose that all ports have the same arrival rates, that is, 𝜆ℓ ≡ ¯𝜆 for all ℓ ∈ L. Then

following the same construction of graph 𝐺 in Theorem 3.5 but with 𝐻 𝑗 = 6

(
− ln𝑝 𝑗 +

˜𝑑 𝑗

𝑝 𝑗 ¯𝜆
ln

2𝜇1
˜𝑑 𝑗

)
for 𝑗 ∈ {1, 2}, it holds that 𝐺 satisfies Assumption 2 with probability at least 1 − 2

(
𝑁
𝑁𝑝1

)−1
. The total

number of edges in 𝐺𝑁 scales as 𝑂
(
(𝑁+𝐿)𝑏3

𝜖
ln

𝑏
𝜖

)
.

Remark 1. The previous two theorems indicate that to achieve asymptotically optimal mean
response time and asymptotic zero waiting probability, the average number of connections of each port
is only 𝑂 ( 1

𝜖2
) for heterogeneous arrival rates, and 𝑂 ( 1

𝜖
ln

1

𝜖
) for homogeneous arrival rates, given that

𝐿 = Ω(𝑁 ), 𝑏 = 𝑂 (1). When 1/(1 − 𝜆) = 𝑂 (1), we only require 𝜖 = 𝑜 (1). Then the average number of
edges connected to each port becomes 𝜔 (1). Therefore, for achieving very small loss probability and
near-optimal response times, the number of edges in a random graph need to be only sparse compared
to a fully connected graph.

4 PROOF OF THE UPPER BOUND AND OPTIMALITY RESULTS
In this section, we provide the proofs of Theorem 3.2. These results respectively bound the mean

number of jobs in a finite-size system and show the asymptotic optimality for JFSQ and JFIQ in the

many-server limit and the sub Halfin-Whitt regime.

4.1 Proof Sketch
Ahead of the complete proof, we first provide a sketch of the proof reflecting intuitions behind

it. Recall that the goal is to bound the mean number of jobs in the system divided by 𝑁 , given by

E
[∑𝑀

𝑚=1𝐶𝑚 (Q̄)
]
. Here by definition, 𝐶𝑚 (Q̄) = ∑𝑏

𝑗=1 𝑠𝑚,𝑗 (Q̄). Our proof starts with the following

observation about the mean-field limit for JFSQ and JFIQ in the heterogeneous system.

4.1.1 Mean-Field Limit. Ideally, if the load 𝜆 is a constant, then as 𝑁 → ∞, it holds that

𝑠𝑚,1 (Q̄) ≈


𝛼𝑚, 𝑚 < 𝐾

𝐶∗
𝐾 , 𝑚 = 𝐾

0, 𝑚 > 𝐾

and 𝑠𝑚,𝑗 (𝑄) ≈ 0, ∀𝑚 = 1 . . . 𝑀, 𝑗 = 2 . . . 𝑏. (5)
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Roughly speaking, this limit tells us that all the first 𝐾 − 1 types of servers are busy, some servers

of type 𝐾 are busy, and all the servers with types greater than 𝐾 are idle.

The intuition behind (5) is as follows. In the regimes we are considering, there are many servers.

Therefore, a certain fraction of themmust be idle. Then by the definition of JFIQ and JFSQ, all arrivals

of jobs are routed to idle servers, at least in a fluid model. Therefore, the scaled number of waiting

jobs (i.e., not in service),

∑𝑀
𝑚=1

∑𝑏
𝑗=2 𝑆𝑚,𝑗 (Q) must converge to zero. For 𝑆1,1 (Q), · · · , 𝑆𝑀,1 (Q), JFIQ

and JFSQ always route jobs to fastest idle servers. Therefore, it must be the case that 𝑠𝑚,1 (Q) are
filled from 1 to𝑀 until

∑𝑀
𝑚=1 𝜇𝑚𝑠𝑚,1 (Q̄) = 𝜆. That is to say, the total departure rate is equal to the

total arrival rate. Therefore, we can ‘guess’ that the mean-field limit has the form (5).

Based on this limit, the scaled mean number of jobs can be decomposed as

E

[
𝑀∑
𝑚=1

𝐶𝑚 (Q̄)
]
= E

[
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
]
+ E

[
𝑀∑

𝑚=𝐾+1
𝐶𝑚 (Q̄)

]
. (6)

4.1.2 Lyapunov Drift Arguments. The drift argument starts by considering a Lyapunov function 𝑔

and setting its drift in steady-state equal to zero. Since we are considering continuous-time Markov

chains, this is equivalent to saying that E
[
𝐺𝑔(Q̄)

]
= 0 where 𝐺 is the generator of the Markov

chain (defined explicitly later). Initially, let us focus on the total queue length in the first 𝐾 types of

servers (scaled by 𝑁 ) and thus, choose the Lyapunov function to be a function of the scaled total

number of jobs in these servers and their queues, which we will call 𝑥 . By an abuse of notation, we

will rewrite the drift as E [𝐺𝑔(𝑥)] = 0. However, this drift may be hard to analyze. Instead, suppose

that the system was a simple deterministic fluid model of the form ¤𝑥 = −Δ for an appropriately

Δ > 0. The motivation for considering this fluid model is that, in the large-system limit, our system

behaves like a single-server queue with simple fluid dynamics. If this fluid limit were the true

system, then the drift of 𝑔 becomes simply −𝑔′(𝑥)Δ.We add and subtract this drift from the drift of

the stochastic system to obtain E [𝐺𝑔(𝑥) − 𝑔′(𝑥)Δ + 𝑔′(𝑥)Δ] = 0, which can be rewritten as

E [𝑔′(𝑥)Δ] = E [𝐺𝑔(𝑥) − (−𝑔′(𝑥)Δ)] .

We are interested in getting a bound on the steady-state expectation of ℎ(𝑥) = (𝑥 −𝐶∗ + 𝜖)+ where

𝜖 controls the approximation error. Therefore, we choose 𝑔 such that 𝑔′(𝑥)Δ = ℎ(𝑥) (this equality
is sometimes called Stein’s equation). Thus, the drift equation becomes

E [ℎ(𝑥)] = E [𝐺𝑔(𝑥) − (−𝑔′(𝑥)Δ)] .

Now, it is easy to see that we can bound E [ℎ(𝑥)] if we can show that the drift of the Markov

process E [𝐺 (𝑔(𝑥))] is approximately equal to −𝑔′(𝑥)Δ. The rest of the proof involves studying
E [𝐺𝑔(𝑥) − (−𝑔′(𝑥)Δ)] by choosing Δ = 𝜇1𝛿 where 𝛿 > 0. Define

𝑊 (q) =
𝐾∑
𝑚=1

𝜇𝑚𝑠𝑚,1 (q),

which is the rate that a job completion will happen if we only consider servers of the first 𝐾 types.

In Lemma 4.3, we show that E [𝐺𝑔(𝑥) − (−𝑔′(𝑥)Δ)] is approximately equal to

1

𝜇1𝛿
E

[
1

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) ≥ 𝐶∗ + 𝜖 + 1

𝑁

}
ℎ

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)
(𝜆 + 𝜇1𝛿 −𝑊 (Q̄))

]
. (7)

We want to upper bound this expression by a quantity which is small when 𝑁 is large. Note

that

∑𝐾
𝑚=1𝐶𝑚 (Q̄) is the total scaled queue length in the first 𝐾 types of servers and𝑊 (Q̄) =∑𝐾

𝑚=1 𝜇𝑚𝑠𝑚,1 (Q̄) can be interpreted as the departure rate from these servers. Thus, the above
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expression can be upper bounded by a small quantity if the following holds: whenever the total

queue length is large, the departure rate exceeds the arrival rate with high probability.

To establish this fact, the mean-field limit (5) motivates us to show that 𝑠𝑚,1 (Q̄) ≈ 𝛼𝑚 for𝑚 < 𝐾

and 𝑠𝐾,1 (Q̄) ≈ 𝐶∗
𝐾
. To be concrete, we show a two-stage state space collapse result through the

following two Lyapunov functions (omitting extra technical terms):

𝑉̃1 (q) = min

(
𝐾−1∑
𝑚=1

𝑏∑
𝑗=2

𝑠𝑚,𝑗 (q) +𝐶𝐾 (q),
𝐾−1∑
𝑚=1

𝛼𝑚 −
𝐾−1∑
𝑚=1

𝑠𝑚,1 (q)
)

(8)

𝑉̃2 (q) = min

(
𝐾∑
𝑚=1

𝑏∑
𝑗=2

𝑠𝑚,𝑗 (q),
𝐾−1∑
𝑚=1

𝐶∗
𝑚 + 𝜏1𝐾𝛿 −

𝐾∑
𝑚=1

𝑠𝑚,1 (q)
)
. (9)

The well-connectedness condition in Assumption 2 and the routing policy (JFSQ and JFIQ) ensure

that both of them have negative drifts when they are sufficiently large (Lemma 4.4 and Lemma 4.5).

We now provide some intuition to explain how the well-connectedness condition plays a role in

establishing the negative drift of these Lyapunov functions. We consider 𝑉̃1, the explanation for the

other Lyapunov function is similar. If 𝑉̃1 is large, it implies that both terms inside the min in (8) are

large. In particular, by focusing on the second term, we note that a large 𝑉̃1 implies that the (scaled)

number of used servers

∑𝐾
𝑚=1 𝑠𝑚,1 (q) is small. Equivalently, the number of idle servers is large. The

well-connected condition simply states that the arrival rates to large subsets of servers is large.

Thus, if 𝑉̃1 is large, the number of empty servers is large which implies they have a large arrival rate,

which in turn implies that the number of empty servers quickly decreases. The negative drift of 𝑉̃1

and 𝑉̃2 can be used to establish geometric tail bounds (Lemma 4.6) using standard drift arguments

to show that they are small with high probability.

Observe that when

∑𝐾
𝑚=1𝐶𝑚 (q) > 𝐶∗ + 𝜖 , these two Lyapunov functions are both equal

to the second term on their right hand side. Then in this case,

∑𝐾−1
𝑚=1 𝑠𝑚,1 (q) ≈ ∑𝐾−1

𝑚=1 𝛼𝑚 , and∑𝐾
𝑚=1 𝑠𝑚,1 (q) ≈

∑𝐾
𝑚=1𝐶

∗
𝑚 + 𝜏1𝐾𝛿 . It then implies 𝑠𝐾,1 (q) ≈ 𝐶∗

𝐾
+ 𝜏1𝐾𝛿 . Now that

∑𝐾
𝑚=1 𝜇𝑚𝐶

∗
𝑚 = 𝜆, it

holds𝑊 (q) ≈ 𝜆 + 𝜇1𝛿 with high probability. We thus prove that (7) should be small, and it leads to

a bound on the scaled mean number of jobs in the first 𝐾 types of servers.

Now for the remaining types of servers, the mean-field limit (5) indicates that almost all of them

are idle. We thus try to bound this third Lyapunov function,

∑𝑀
𝑚=𝐾+1𝐶𝑚 (Q̄). From the mean-field

limit, we know that

∑𝐾
𝑚=1 𝑠𝑚,1 (Q) ≈ 𝐶∗

. Therefore, approximately 𝑁

(∑𝐾
𝑚=1 𝛼𝑚 −𝐶∗

)
servers of

the first 𝐾 types are idle. Therefore, Assumption 2 ensures that very few jobs are routed to the

remaining types of servers under JFSQ and JFIQ. By utilizing a conditional geometric tail bound

(Lemma 4.6), we manage to show that

∑𝑀
𝑚=𝐾+1𝐶𝑚 (Q̄) is small with high probability, and finally

obtain a bound on its mean.

For the complete proof of Theorem 3.2, since our theorem consists of three parts, we prove each

of them in order, and combine them together at the end of this section.

4.2 Bound for the First 𝐾 Types of Servers
The first result, which bounds the number of jobs in the first 𝐾 types of servers, is the most

important part in the theorem, which is restated as follows.
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Lemma 4.1. Under Assumption 1 and Assumption 2, the expected number of jobs in servers of the
first 𝐾 types divided by 𝑁 is bounded as

E

[
max

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) − (𝐶∗ + 𝜖), 0
)]

≤ 52𝜏1𝐾𝑏
2

𝜖𝑁
(2)

if the routing policy is either JFSQ or JFIQ.

Proof. Throughout this proof, we assume all assumptions in Lemma 4.1 are satisfied. Recall

that the metric of interest is E
[
max

(∑𝐾
𝑚=1𝐶𝑚 (Q̄) − (𝐶∗ + 𝜖), 0)

)]
, where 𝐶∗ =

∑𝐾
𝑚=1𝐶

∗
𝑚 . To sim-

plify the notation, let 𝜂 = 𝐶∗ + 𝜖 , and denote ℎ(𝑥) = max(𝑥 − 𝜂, 0). Our goal is thus to bound

E
[
ℎ(∑𝐾

𝑚=1𝐶𝑚 (Q̄))
]
. The proof is motivated by the framework introduced in [33], and can be

divided mainly into three parts, generator coupling, gradient bounds and state-space collapse.

Generator Coupling. We couple our system with a fluid model that is simple, but can well

approximate the evolution of ℎ(∑𝐾
𝑚=1𝐶𝑚 (Q̄)). In particular, consider a fluid model ¤𝑥 = −𝜇1𝛿 where

𝛿 =
𝜇𝐾

6𝜇1𝑏
2
𝜖 . Let 𝑔(𝑥) be the solution to the following Stein’s equation of the fluid model,

𝜇1𝛿𝑔
′(𝑥) = ℎ(𝑥). (10)

The solution is unique, and is given by

𝑔(𝑥) = max(𝑥 − 𝜂, 0)2
2𝜇1𝛿

, 𝑔′(𝑥) = max(𝑥 − 𝜂, 0)
𝜇𝛿

, 𝑔′′(𝑥) =


0, 𝑥 < 𝜂

1

𝜇1𝛿
, 𝑥 ≥ 𝜂. (11)

The next step is to couple our system with the fluid model through this Stein’s equation.

To do so, recall that the system is a CTMC defined on queue lengths of servers, Q(𝑡). let 𝐺 be

the generator of our system such that for a queue state q, and any function 𝑉 defined on the state

space,

𝐺𝑉 (q) =
∑
q′
𝑟q,q′ (𝑉 (q′) −𝑉 (q)) (12)

where 𝑟q,q′ is the transition rate from state q to state q′. It is clear that𝐺𝑔(q) serves as an analog of

the drift of function 𝑔 at state q in a discrete-time Markov chain as in [14]. To couple our system

with the fluid model, we first need the following property, a key insight from [14] and [33].

Lemma 4.2. The expectation E
[
𝐺𝑔(∑𝐾

𝑚=1𝐶𝑚 (Q̄))
]
is equal to 0.

Then the two systems can be coupled by seeing that

E

[
ℎ

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)]

= E

[
𝑔′

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)
(𝜇1𝛿)

]
(13)

= E

[
𝐺𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)
− 𝑔′

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)
(−𝜇1𝛿)

]
. (14)

As a result, to bound E
[
ℎ

(∑𝐾
𝑚=1𝐶𝑚 (Q̄)

)]
, it is equivalent to bound (14).
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Gradient Bounds. We now utilize the explicit form of 𝑔(𝑥) in (11) to bound (14). First by

definition, it holds that for a state q,

𝐺𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (q)
)
=

∑
q′
𝑟q,q′

(
𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (q′)
)
− 𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (q)
))

= 𝜆Σ (1 − 𝑃𝑘 (q))
(
𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (q) + 1

𝑁

)
− 𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (q)
))

(Arrival transitions)

(15)

+ 𝑁𝑊 (q)
(
𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (q) − 1

𝑁

)
− 𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (q)
))

(Departure transitions)

(16)

where 𝑃𝑘 (q) is the probability that an arriving job is routed to a server of type greater than 𝐾 , and

𝑊 (q) = ∑𝐾
𝑚=1 𝜇𝑚𝑠𝑚,1 (q). Then by (14), we can get

E

[
ℎ

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)]

≤ E
[
𝑔′

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)
(𝜇1𝛿) (17)

+𝜆Σ

(
𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) + 1

𝑁

)
− 𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
))

(18)

+𝑁𝑊 (Q̄)
(
𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) − 1

𝑁

)
− 𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
))]

(19)

where we omit the term 𝑃𝑘 (Q̄) from (16) since 𝑔(𝑥) is an increasing function by (11). Now to

simplify the equation, we can do Taylor’s expansion on (18) and (19), and apply gradient bounds of

𝑔(𝑥). The result is summarized as follows whose proof is provided in the appendix.

Lemma 4.3. It holds that

E

[
ℎ

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)]

≤ E
[
1

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) ≥ 𝜂 + 1

𝑁

}
𝑔′

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)
(𝜇1𝛿 + 𝜆 −𝑊 (Q̄))

]
+ 38𝑏2𝜏1𝐾

𝜖𝑁
.

(20)

The remaining step is to bound the first term on the right hand side in (20), which is the main

part of this proof. The key insight is that as long as𝑊 (q) ≥ 𝜆 + 𝜇1𝛿 , it holds that the contribution
of q to the first term would be at most zero. Furthermore, this property only needs to hold when∑𝐾
𝑚=1𝐶𝑚 (q) ≥ 𝜂 + 1

𝑁
due to the indicator function. To justify this result, we establish two state

space collapse results as follows.

State Space Collapse. Recall that
∑𝐾
𝑚=1𝐶𝑚 (q) is the number of jobs in servers of the first 𝐾

types divided by 𝑁 . The intuition is to show that when this number is large, it holds that with high

probability,

𝑠1,1 (q) = 𝐶∗
1
, · · · , 𝑠𝐾−1,1 (q) = 𝐶∗

𝐾−1, 𝑠𝐾,1 > 𝐶
∗
𝐾 . (21)

That is to say, almost all servers of the first 𝐾 − 1 types are busy. And enough type-𝐾 servers are

busy such that their total departure rates (or works produced by these servers) are sufficient for

the total arrival rate 𝜆Σ.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 45. Publication date: December 2020.



Optimal Load Balancing with Locality Constraints 45:15

The following lemma indirectly shows that unless

∑𝐾
𝑚=1𝐶𝑚 (q) is small,

∑𝐾
𝑚=1 𝑠𝑚,1 (q) ≈

∑𝐾−1
𝑚=1 𝛼𝑚 .

In particular, it designs a Lyapunov function closely related to the above property. Due to space

limitations, the proof is deferred to the appendix.

Lemma 4.4. Consider the following Lyapunov function

𝑉1 (q) = min

(
𝑏∑
𝑗=1

𝑠𝐾,𝑗 (q) +
𝐾−1∑
𝑚=1

𝑏∑
𝑗=2

𝑠𝑚,𝑗 (q),
𝐾−1∑
𝑚=1

𝐶∗
𝑚 −

𝐾−1∑
𝑚=1

𝑠𝑚,1 (q)
)
. (22)

It holds that if 𝑉1 (q) ≥ 𝐵1 B 𝜏1𝐾𝛿 , then 𝐺𝑉1 (q) ≤ −𝜇1𝛿
2𝑏

.

In addition to Lemma 4.4 that focuses on the first 𝐾 − 1 types of servers, the following lemma

provides another Lyapunov function. This function is later used together with Lemma 4.4 to show

that if

∑𝐾
𝑚=1𝐶𝑚 (q) is large, then a certain number of type 𝐾 servers are busy. It then complements

the goal in (21). The proof of this lemma is similar to that of Lemma 4.4, and is provided in the

appendix.

Lemma 4.5. Consider the following Lyapunov function

𝑉2 (q) = min

(
𝐾∑
𝑚=1

𝑏∑
𝑗=2

𝑠𝑚,𝑗 (q),
𝐾∑
𝑚=1

𝐶∗
𝑚 + 𝐵2 + 3𝜏1𝐾 ¯𝛿 −

𝐾∑
𝑚=1

𝑠𝑚,1 (q)
)

(23)

where ¯𝛿 B 𝜏1𝐾𝛿 , and 𝐵2 B 1

2
𝜖 + ¯𝛿. It holds that if 𝑉2 (q) ≥ 𝐵2, then 𝐺𝑉2 (q) ≤ − 𝜇1𝛿

𝑏
.

To apply the above two lemmas, we need the following geometric tail bound from [53], which

originates in [5, 50]. This lemma translates the fact that a Lyapunov function has a negative drift to

the property that the function is within a certain region with high probability.

Lemma 4.6. Consider a continuous time Markov chain {S(𝑡) : 𝑡 ≥ 0} on a finite state space S.
Assume that it has a unique stationary distribution. For a Lyapunov function𝑉 : S → [0, +∞), define
𝐺𝑉 (s) = ∑

s′∈S 𝑟s,s′ (𝑉 (s′) −𝑉 (s)) where 𝑟s,s′ is the transition rate from state s to s′.
Suppose that

𝜈max B sup

s,s′∈S : 𝑟s,s′>0
|𝑉 (s) −𝑉 (s′) | < ∞; 𝑓max B max

0, sups∈S

∑
s′:𝑉 (s′)>𝑉 (s)

𝑟s,s′ (𝑉 (s′) −𝑉 (s))
 < ∞.

Given a set E. If for some 𝐵 > 0, 𝛾 > 0, 𝜉 ≥ 0, it holds: 1) 𝐺𝑉 (s) ≤ −𝛾 when 𝑉 (s) ≥ 𝐵 and s ∈ E; 2)
𝐺𝑉 (s) ≤ 𝜉 when 𝑉 (s) ≥ 𝐵 and s ∉ E,

then for every positive integer 𝑗 , if S̄ is the steady-state random variable, it holds

P
{
𝑉 (S̄) ≥ 𝐵 + 2𝜈max 𝑗

}
≤

(
𝑓max

𝑓max + 𝛾

) 𝑗
+

(
𝜉

𝛾
+ 1

)
P {𝑠 ∉ E} . (24)

Based on Lemma 4.6, we can bound the probability that 𝑉1 (q) or 𝑉2 (q) is large in the following

result.

Lemma 4.7. Let 𝜒 = 96𝜏1𝐾𝑏
3
ln𝑁 . With the same notation in Lemma 4.4 and Lemma 4.5, it holds

that
P

{
𝑉1 (Q̄) ≥ 𝐵1 +

𝜒

𝜖𝑁

}
≤ 𝑁 −2

;P
{
𝑉2 (Q̄) ≥ 𝐵2 +

𝜒

𝜖𝑁

}
≤ 𝑁 −2. (25)

Proof. Note that under the notation in Lemma 4.6, we have for both𝑉1 (q) and𝑉2 (q), 𝜈max =
1

𝑁
,

and 𝑓max ≤ 𝜇1. We first bound P
{
𝑉1 (q) ≥ 𝐵1 + 𝜒

𝜖𝑁

}
. Since by Lemma 4.4, when𝑉1 (q) ≥ 𝐵1, it holds
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𝐺𝑉1 (q) ≤ −𝜇1𝛿
2𝑏

. Then by taking the set E to be the empty set and taking 𝑗1 =
8𝑏
𝛿
log𝑁 , Lemma 4.6

shows that

P {𝑉1 (q) ≥ 𝐵1 + 2𝜈max 𝑗1} ≤
(
1 + 𝛿

2𝑏

)−𝑗1
≤ exp

(
− 𝑗1𝛿
4𝑏

)
= 𝑁 −2

(26)

where the last inequality comes from the fact that ln(1 + 𝑥) ≥ 𝑥/2 for 𝑥 ∈ [0, 1]. We can easily

verify that 2𝜈max 𝑗1 =
2

𝑁
· 48𝜇1𝑏

3

𝜇𝐾𝜖
=

𝜒

𝜖𝑁
. Similarly, take 𝑗2 =

4𝑏
𝛿
log𝑁 for𝑉2 (q). Together with Lemma

4.5, Lemma 4.6 shows that

P {𝑉2 (q) ≥ 𝐵2 + 2𝜈max 𝑗2} ≤
(
1 + 𝛿

𝑏

)−𝑗2
≤ exp

(
− 𝑗2𝛿
2𝑏

)
= 𝑁 −2. (27)

We complete the proof by noticing that 2𝜈max 𝑗2 =
2

𝑁
· 24𝜇1𝑏

3

𝜇𝐾𝜖
≤ 𝜒

𝜖𝑁
. □

Completing the Whole Proof. Finally, combining Lemma 4.7 with Lemma 4.3 help us complete

the proof. To see why, recall that it remains to bound

E

[
1

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) ≥ 𝜂 + 1

𝑁

}
𝑔′

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)
(𝜆 + 𝜇1𝛿 −𝑊 (Q̄))

]
. (28)

Let event D = {𝑉1 (Q̄) ≤ 𝐵1 + 𝜒

𝜖𝑁
} ∩ {𝑉2 (Q̄) ≤ 𝐵2 + 𝜒

𝜖𝑁
}. It holds that

(28) ≤ E
[
1

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) ≥ 𝜂 + 1

𝑁

}
𝑔′

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)
(𝜆 + 𝜇1𝛿 −𝑊 (Q̄))

�����D
]
+ 𝑔′(𝑏)𝜇1 (1 + 𝛿)P{ ¯D}

≤ E
[
1

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) ≥ 𝜂 + 1

𝑁

}
𝑔′

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)
(𝜆 + 𝜇1𝛿 −𝑊 (Q̄))

�����D
]
+ 2𝑏

𝛿𝑁 2
(1 + 𝛿) (29)

where the first inequality is by the law of total probability and the fact that 𝑔′(𝑥) is a positive

increasing function, that

∑𝐾
𝑚=1𝐶𝑚 (q) ≤ 𝑏 for all possible q, and that 𝜆 ≤ 𝜇1, and the second

inequality is by Lemma 4.7 that shows P{ ¯D} ≤ 2

𝑁 2
.

Therefore, it is sufficient to bound the first term in (29). The following lemma shows that this

term is indeed non-positive.

Lemma 4.8. For any q such that 𝑉1 (q) ≤ 𝐵1 + 𝜒

𝜖𝑁
and 𝑉2 (q) ≤ 𝐵2 + 𝜒

𝜖𝑁
, it holds that

1

{
𝐾∑
𝑚=1

𝐶𝑚 (q) ≥ 𝜂 + 1

𝑁

}
(𝜆 + 𝜇1𝛿 −𝑊 (q)) ≤ 0. (30)

Proof. W.L.O.G., we can directly assume

∑𝐾
𝑚=1𝐶𝑚 (q) ≥ 𝜂 + 1

𝑁
. Otherwise, (30) is already zero.

Then the key step is to show𝑊 (q) =
∑𝐾
𝑚=1 𝜇𝑚𝑠𝑚,1 (q) ≥ 𝜆 + 𝜇1𝛿 . By the definition of 𝑉1 (q) in

(23), since

∑𝐾
𝑚=1𝐶𝑚 (q) ≥ 𝜂 + 1

𝑁
, it holds that 𝑉1 (q) =

∑𝐾−1
𝑚=1𝐶

∗
𝑚 − ∑𝐾−1

𝑚=1 𝑠𝑚,1 (q). Furthermore, as

𝑉1 (q) ≤ 𝐵1 + 𝜒

𝜖𝑁
and 𝐶∗

𝑚 = 𝛼𝑚 for𝑚 < 𝐾 , it holds that

𝐾−1∑
𝑚=1

𝑠𝑖,1 (q) ≥
𝐾−1∑
𝑚=1

𝛼𝑚 − (𝐵1 +
𝜒

𝜖𝑁
). (31)

Since 𝑠𝑚,1 (q) ≤ 𝛼𝑚 for all𝑚, the total departure rate of servers of the first 𝐾 − 1 types is at least

𝐾−1∑
𝑚=1

𝜇𝑚𝑠𝑚,1 (q) ≥
𝐾−1∑
𝑚=1

𝜇𝑚𝛼𝑚 − 𝜇1
(
𝐵1 +

𝜒

𝜖𝑁

)
. (32)
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Then for 𝑠𝐾,1 (q), recall the definition of 𝑉2 (q) in (22). To show that 𝑉2 (q) is equal to the second

term in its definition, note that

𝐵2 + 3𝜏1𝐾 ¯𝛿 =
1

2

𝜖 + 𝜏1𝐾𝛿 + 3𝜏2
1𝐾𝛿 ≤ 1

2

+ 2𝜏1𝐾𝜖

3𝑏2
≤ 𝜖.

Then since

∑𝐾
𝑚=1𝐶𝑚 (q) ≥ ∑𝐾

𝑚=1𝐶
∗
𝑚+𝜖+ 1

𝑁
, it holds

∑𝐾
𝑚=1𝐶𝑚 (q) ≥ ∑𝐾

𝑚=1𝐶
∗
𝑚+𝐵2+3𝜏1𝐾 ¯𝛿 . Therefore,

𝑉2 (q) is equal to
∑𝐾
𝑚=1𝐶

∗
𝑚 + 𝐵2 + 3𝜏1𝐾 ¯𝛿 − ∑𝐾

𝑚=1 𝑠𝑚,1 (q), the second term in (22). By assumption,

𝑉2 (q) ≤ 𝐵2 + 𝜒

𝜖𝑁
. As a result,

𝐾∑
𝑚=1

𝑠𝑚,1 (q) ≥
𝐾∑
𝑚=1

𝐶∗
𝑚 + 3𝜏1𝐾 ¯𝛿 − 𝜒

𝜖𝑁
, (33)

and

𝑠𝐾,1 (q) ≥ 𝐶∗
𝐾 + 3𝜏1𝐾 ¯𝛿 − 𝜒

𝜖𝑁
(34)

because 𝑠𝑚,1 (q) ≤ 𝛼𝑚 = 𝐶∗
𝑚 for𝑚 < 𝐾 . From (32) and (34), it holds

𝑊 (q) =
𝐾−1∑
𝑚=1

𝜇𝑚𝑠𝑚,1 (q) + 𝜇𝐾𝑠𝐾,1 (q) ≥
𝐾−1∑
𝑚=1

𝜇𝑚𝛼𝑚 + 𝜇𝐾𝐶∗
𝐾 + 3𝜇𝐾𝜏1𝐾 ¯𝛿 − 𝜇1𝐵1 − 2

𝜇1𝜒

𝜖𝑁
(35)

≥ 𝜆 + 2

𝜇2
1

𝜇𝐾
𝛿 −

192𝜇2
1
𝑏3

𝜇𝐾𝜖𝑁
ln(𝑁 ) ≥ 𝜆 + 𝜇1𝛿 (36)

where the last inequality is because 𝜇1 > 𝜇𝐾 , and
𝜇2
1

𝜇𝐾
𝛿 ≥ 192𝜇2

1
ln(𝑁 )

𝜇𝐾𝜖𝑁
𝑏3 by Assumption 1. The

inequality (36) immediately implies the desired result. □

To conclude the proof of Lemma 4.1, by Lemma 4.3, the bound in (29) and Lemma 4.8, it holds

E

[
ℎ

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)]

≤ 2𝑏

𝛿𝑁 2
(1 + 𝛿) + 38𝑏2𝜏1𝐾

𝜖𝑁
≤ 12𝑏3𝜏1𝐾

𝜖𝑁 2
+ 2𝑏

𝑁 2
+ 38𝑏2𝜏1𝐾

𝜖𝑁
≤ 52𝑏2𝜏1𝐾

𝜖𝑁
. (37)

□

4.3 Bound for the Remaining Servers
Since Lemma 4.1 only bounds the mean number of jobs in servers of the first 𝐾 types, we need the

following result for the remaining servers in the system. This result shows that very few jobs will

be served by servers of the last𝑀 − 𝐾 types. Note that if 𝐾 = 𝑀 , then Lemma 4.1 already bounds

the mean number of jobs in the system.

Lemma 4.9. Suppose 𝐾 < 𝑀 . Under Assumption 1 and Assumption 2, if 𝑁 is sufficiently large, the
expected number of jobs in servers of the last𝑀 − 𝐾 types divided by 𝑁 is bounded as

E

[
𝑀∑

𝑚=𝐾+1
𝐶𝑚 (Q̄)

]
≤

˜𝑑2𝑏

𝜇𝑀
+ 2

√
5𝜏1𝑀𝑏 ln𝑁

𝑁
+ 8𝑏2

√
26𝜏1𝐾𝜏1𝑀

ˆ𝛽𝜖𝑁
. (38)

if the routing policy is either JFSQ or JFIQ.

Proof. To prove this result, let us consider the Lyapunov function𝑉3 (q) =
∑𝑀
𝑚=𝐾+1𝐶𝑚 (q). Then

by showing that this function has a negative drift when outside of a region, we can obtain a bound

on its expectation. To do so, define 𝐵3 as

𝐵3 =
1

𝜇𝑀

©­« ˜𝑑2𝑏 +
√√√
𝜇1𝜇𝑀

(
5𝑏 ln(𝑁 )

𝑁
+ 416𝜏1𝐾𝑏

4

ˆ𝛽𝜖𝑁

)ª®¬ . (39)
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Let E𝐾 = {q : ∑𝐾
𝑚=1𝐶𝑚 (q) ≤ 𝐶∗ +

ˆ𝛽

2
}. It holds that Q̄ lies in E𝐾 with high probability by the

following lemma whose proof is in the appendix.

Lemma 4.10. For any Δ ≥
ˆ𝛽

2
, it holds P{∑𝐾

𝑚=1𝐶𝑚 (Q̄) > 𝐶∗ + Δ} ≤ 104𝜏1𝐾𝑏
2

Δ𝜖𝑁 .

By Lemma 4.10, it holds that P{Q̄ ∉ E𝐾 } ≤ 208𝜏1𝐾𝑏
2

ˆ𝛽𝜖𝑁
. Then it is natural to discuss the drift of𝑉3 (q)

when it is greater than 𝐵3 by conditioning on whether q is in E𝐾 or not. The result is summarized

in this lemma, and the proof is in the appendix.

Lemma 4.11. When 𝑉3 (q) ≥ 𝐵3, it holds that

• if q ∈ E𝐾 , the drift is bounded as 𝐺𝑉3 (q) ≤ −𝐵3𝜇𝑀
𝑏

+ ˜𝑑2;
• if q ∉ E𝐾 , the drift is bounded as 𝐺𝑉3 (q) ≤ 𝜇1.

We now apply Lemma 4.6. Under the notation of that lemma, it holds 𝜈max =
1

𝑁
, 𝑓max ≤ 𝜇1 for

𝑉3 (q). Let 𝛾 B 𝐵3𝜇𝑀
𝑏

− ˜𝑑2, and take 𝑗3 =
2𝜇1 ln(𝑁 )

𝛾
. Applying Lemma 4.6 and using Lemma 4.11, it

holds that

P

{
𝑉3 (Q̄) > 𝐵3 +

2 𝑗3

𝑁

}
≤

(
1 + 𝛾

𝜇1

)−𝑗3
+

(
𝜇1

𝛾
+ 1

)
P{q ∉ E𝐾 } ≤ 𝑁 −2 + 416𝜇1𝜏1𝐾𝑏

2

𝛽𝜖𝑁
(40)

where the last inequality is because𝛾 < 𝜇1 when 𝑁 is sufficiently large. Furthermore, the expecation

of 𝑉3 (Q̄) can be bounded as

E
[
𝑉3 (Q̄)

]
≤ E

[
𝑉3 (Q̄)

����𝑉3 (Q̄) ≤ 𝐵3 +
2 𝑗3

𝑁

]
+ E

[
𝑉3 (Q̄)

����𝑉3 (Q̄) > 𝐵3 +
2 𝑗3

𝑁

]
P

{
𝑉3 (Q̄) > 𝐵3 +

2 𝑗3

𝑁

}
(41)

≤ 𝐵3 +
4𝜇1 ln(𝑁 )
𝛾𝑁

+ 𝑏
(
𝑁 −2 + 416𝜇1𝜏1𝐾𝑏

2

𝛽𝜖𝑁

)
(42)

≤ 𝐵3 +
5𝜇1 ln(𝑁 )
𝛾𝑁

+ 416𝜇1𝜏1𝐾𝑏
3

ˆ𝛽𝜖𝛾𝑁
. (43)

The definition of 𝐵3 in (39) and that of 𝛾 immediately give the desired result. □

4.4 Throughput Guarantee and the Proof of Theorem 3.2
The next lemma provides a bound on the blocking probability, and thus characterizes the effective

throughput of the system. Due to space limitations, the reader is referred to the appendix for the

proof.

Lemma 4.12. Under Assumptions 1 and 2, the probability 𝑝B that an arriving job is blocked is
bounded as

𝑝B ≤
˜𝑑2

𝜆
+ 52𝜏1𝐾𝑏

2

𝜖𝑁
. (4)

Wrapping up above lemmas, we can conclude the proof of Theorem 3.2.

Proof of Theorem 3.2. The first result and third result in Theorem 3.2 corresponds to Lemma

4.1 and 4.12. For the second result, notice that Lemma 4.1 implies

E

[
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
]
≤ 𝐶∗ + 𝜖 + 52𝜏1𝐾𝑏

2

𝜖𝑁
. (44)
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Then combining (44) and (4) in Lemma 4.9 and the assumption that
˜𝑑2 ≤ 𝜖𝜇𝐾

2𝑏
in Assumption 2, it

holds

E

[
𝑀∑
𝑚=1

𝐶𝑚 (Q̄)
]
= E

[
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
]
+ E

[
𝑀∑

𝑚=𝐾+1
𝐶𝑚 (Q̄)

]
≤ 𝐶∗ + 𝜖 + 52𝜏1𝐾𝑏

2

𝜖𝑁
+

˜𝑑2𝑏

𝜇𝑀
+ 2

√
5𝜏1𝑀𝑏 ln𝑁

𝑁
+ 8𝑏2

√
26𝜏1𝐾𝜏1𝑀

ˆ𝛽𝜖𝑁

≤ 𝐶∗ +
(
1 + 𝜇𝐾

2𝜇𝑀

)
𝜖 + 2

√
5𝜏1𝑀𝑏 ln𝑁

𝑁
+ 60𝑏2

√
26𝜏1𝐾𝜏1𝑀

ˆ𝛽𝜖𝑁
,

which is exactly (3). □

5 PROOF OF THE RANDOM GRAPH RESULTS
In this section, we prove Theorem 3.5. Since similar proof holds for Theorem 3.6, we provide that

proof in the appendix.

Proof Sketch. The result is proved by showing that almost every pair of large enough subsets

of L,R shares edges between the two sets because of the random graph structure. To show this

fact, we first bound the probability that two given subsets are disconnected. Then the union bound

concludes the proof since the total number of pairs of subsets is given by 2
𝐿+𝑁 .

5.1 Proof of Theorem 3.5
Proof. Recall the definition of 𝑝1, 𝑝2, ˜𝑑1, ˜𝑑2 in Assumption 2. W.L.O.G., assume 𝑁𝑝 𝑗 is an integer

for 𝑗 = 1, 2. Otherwise, we can raise 𝑝 𝑗 to satisfy this condition since the size of a subset must be

an integer. Suppose that we generate a bipartite graph 𝐺 as in Theorem 3.5. Let C𝑗 be the event
that𝐺 violates the 𝑗−th condition in Assumption 2. We bound P{C𝑗 } separately. To simplify the

notation, let us denote R1 = R𝐾−1,R2 = R𝐾 . And let us write 𝑧ℓ,𝑟 be the probability that a port ℓ

connects with a server 𝑟 in the graph 𝐺 .

First, define DK,I as the event that a subset K of L has no edges with a subset I of R. Then for

𝑗 = 1, 2,

C𝑗 =
⋃

K⊆L :

∑
ℓ∈K 𝜆ℓ>𝑁 ˜𝑑 𝑗

I⊆R 𝑗 : |I |≥𝑁𝑝 𝑗

DK,I . (45)

Fix 𝑗 ∈ {1, 2}. Let K be any subset of L satisfying

∑
ℓ∈K 𝜆ℓ > 𝑁 ˜𝑑 𝑗 , and I be any subset of

R 𝑗
satisfying |I | ≥ 𝑁𝑝 𝑗 . We want to bound P{DK,I}. Notice that by Assumption 2, it holds

𝑝1 < 𝑝2, ˜𝑑1 < ˜𝑑2, and
˜𝑑2
𝐻2

≥ ˜𝑑1
𝐻1

. Then by the construction of 𝐺 , if there is a port ℓ in K such

that 𝜆ℓ ≥ 𝑁 ˜𝑑 𝑗𝐻 𝑗 , this port must be connected to all servers in R 𝑗
, meaning that P{DK,I} = 0.

Therefore, we can assume that such port does not exist. Recall that 𝑧ℓ,𝑟 is the probability that port ℓ

is connected with server 𝑟 . It holds that

P{DK,I} =
∏
ℓ∈K

∏
𝑟 ∈I

(1 − 𝑧ℓ,𝑟 ) ≤ exp

(
−

∑
ℓ∈K

∑
𝑟 ∈I

𝑧ℓ,𝑟

)
≤ exp

(
−

∑
ℓ∈K

∑
𝑟 ∈I

𝜆ℓ𝐻 𝑗

𝑁 ˜𝑑 𝑗

)
, (46)

and thus

P{DK,I} ≤ exp

(
−|I|

∑
ℓ∈K 𝜆ℓ𝐻 𝑗

𝑁 ˜𝑑 𝑗

)
≤ exp(−𝐻 𝑗𝑁𝑝 𝑗 ) ≤ 2

−2(𝑁+𝐿) . (47)
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The first inequality is because ln(1 + 𝑥) ≤ 𝑥 for 𝑥 > −1, and 𝑧ℓ,𝑟 < 1. The second inequality is from

the construction of 𝐺 . The third inequality is from the definition of K and I. It thus holds that
P{C𝑗 } ≤ 2

𝑁+𝐿
2
−2(𝑁+𝐿) = 2

−(𝑁+𝐿)
by the union bound. Use the union bound once again, it holds

P{C1 ∪ C2} ≤ 2
−(𝑁+𝐿−1)

.

For the total number of edges used in 𝐺𝑁 , recall the definition of 𝑝1, 𝑝2, ˜𝑑1, ˜𝑑2 for a particu-

lar system in Assumption 2, and 𝐻1, 𝐻2 in Theorem 3.5. It holds that

˜𝑑1
𝐻1

= 𝑂 ( 𝜖2

𝑏5 (𝑁+𝐿)/𝑁 ), and
˜𝑑2
𝐻2

= 𝑂 ( 𝜖2

𝑏5 (𝑁+𝐿)/𝑁 ). Note that there are four types of connections on graph 𝐺𝑁 as per Theorem

3.5, we bound their numbers of edges separately. First, the number of ports with 𝜆ℓ ≥ 𝑁
˜𝑑1
𝐻1

is

bounded by
𝑁𝜇1𝐻1

𝑁 ˜𝑑1
= 𝑂 ( 𝑏

5 (𝑁+𝐿)
𝜖2

𝑁 ) because 𝜆Σ ≤ 𝑁𝜇1. Therefore, the number of connections from

them is bounded by 𝑂 ( 𝑏
5 (𝑁+𝐿)
𝜖2

) since there are 𝑁 servers. The same result holds for ports with

𝜆ℓ ≥ 𝑁
˜𝑑2
𝐻2

. Now for the remaining ports, the expected number of edges is upper bounded by

2

∑
ℓ∈L

𝜆ℓ
𝑁

(
𝐻1

˜𝑑1
+ 𝐻2

˜𝑑2

)
𝑁 = 𝑂

(
𝑏5 (𝑁+𝐿)

𝜖2

)
. Then to sum up, the expected number of edges in𝐺𝑁 scales

as 𝑂

(
𝑏5 (𝑁+𝐿)

𝜖2

)
. □

6 SIMULATION RESULTS
In this section, we present simulation results for JFSQ and JFIQ. In particular, the following two

settings are explored:

• we compare the mean response time of JFSQ, JFIQ with a recent paper [19] in a fixed-size

system;

• we study the convergence of JFSQ and JFIQ on a random bipartite graph in the many-server

regime.

We will also compare our policies with JSQ and JIQ where we assume that ties in those policies are

broken at random. Detailed results are as follows.

6.1 Performance in a Fixed-Size System
We first study one particular setting as in [19]. There are 100 servers with fast service rate

25

9
, and

400 servers with slow service rate
5

9
. Jobs arrive into the system in a Poisson process of rate 𝜆Σ, and

can be routed to any server. We simulate an infinite buffer system by setting the buffer size at each

server to 10
6
. We compare JFSQ and JFIQ with JSQ, JIQ and JSQ-(2,2) introduced in [19]. JSQ-(2,2)

is similar to Pod, and it is shown in [19] to perform better than other algorithms in light traffic. In

addition, the communication overhead of JSQ-(2,2) is also as low as that of JFIQ. We refer the reader

to the appendix for a detailed description of JSQ-(2,2). Besides, the lower bound result in Theorem

3.1 is plotted as a baseline. Define the system load to be
𝜆Σ
500

. By increasing the system load, we can

obtain Fig. 2. Clearly, Fig. 2 shows that JFSQ and JFIQ can achieve consistently fast mean response

(very close to the lower bound) ranging from light traffic to heavy traffic (the system load is around

0.98). For other policies, JSQ-(2,2) performs well in light traffic. However, JIQ and JSQ could have

relatively poor response time in light traffic, although JIQ is shown to have asymptotically zero

waiting time [44].

6.2 Convergence in the Many-Server Regime
Next we explore the convergence behavior of JFSQ and JFIQ when there are job-server constraints.

In particular, suppose there are 𝑁 servers in the system. We assume there are four types of servers

with the same amount of each type. Service times are all exponentially distributed, but with different

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 45. Publication date: December 2020.



Optimal Load Balancing with Locality Constraints 45:21

0.2 0.4 0.6 0.8 1.0
System Load

1

2

3

M
ea
n
R
es
po

ns
e
Ti
m
e JFIQ

JFSQ
JIQ
JSQ

JSQ-(2,2)

Lower Bound

Fig. 2. The Mean Response Time of Different Routing Policies in a Fixed-Size System with Increasing System
Load

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

Number of Servers

1

2

3

4

5

M
ea
n
R
es
po

ns
e
Ti
m
e JFIQ

JFSQ
JIQ
JSQ

Lower Bound

Fig. 3. The Mean Response Time of Different Routing Policies on Increasing-Sized Random Bipartite Graphs

service rate such that 𝜇𝑖 = 2
−𝑖+1, 𝑖 = 1, 2, 3, 4.We also study the convergence of JSQ and JIQ. JSQ-(2,2)

introduced above is not studied because it is designed for systems with two classes of servers.

The number of ports is set as 𝐿 = 𝑁 1.5
. The arrival rate to each port is assumed to be homogeneous,

and is equal to
𝜆Σ
𝐿
with 𝜆Σ = 0.9

∑
4

𝑖=1
𝑁𝜇𝑖
4
. Denote the system load as 𝜆 = 0.9. In the corresponding

bipartite graph, each port connects with each server with probability
2

√
ln𝑁

𝑁 (1−𝜆) ln
1

1−𝜆 according to

Theorem 3.6. The buffer size in this case is set as 𝑏 = 5 because in many-server systems, we

expect there to be little queueing and one should not need a large buffer size. Fig. 3 presents the

convergence behavior of the mean-response time for JFSQ, JFIQ, JIQ and JSQ. It is interesting

to notice that both JIQ and JFIQ suffer from slow mean response time when the system is small.

But when the number of servers is 2
11 = 2048, the mean response time of JFSQ and JFIQ is very

close to the lower bound. Such requirement on the number of servers is fine since modern cloud

platforms can easily possess tens of thousands of servers [2]. On the other hand, both JSQ and JIQ

also converge as 𝑁 increases. Nevertheless, their mean response time is not optimal because they

neglect server heterogeneity. Note that when the system is large, the blocking probability is nearly

zero, even with a small buffer size. The convergence of the blocking probability is provided in the

appendix. The setting is also extended to hyper-exponential service time distribution. For this new

distribution, we show that although JFSQ and JFIQ have slow mean response times initially, their

convergence behavior is similar to Fig. 3 when 𝑁 increases. We refer the reader to the appendix for

details.
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7 CONCLUSION
In this paper, we studied the performance of two load balancing policies, JFSQ and JFIQ for load

balancing on a bipartite graph. For a "well-connected" bipartite graph, we presented a bound on

the mean response time for finite-size systems, which implies asymptotic optimality in the mean

response time in both the many-server regime and the sub Halfin-Whitt regime. A by-product of

this paper is a novel technique for bounding the distance to the mean-field limit of heterogeneous

load balancing systems. In the analysis, we established three state-space collapse results to show

that the system behaves similar to its mean-field limit. We also presented how to construct a sparse

"well-connected" bipartite graph, where each left node is only connected to 𝜔 ( 1

(1−𝜆)2 ) right nodes
when arrival rates are heterogeneous, and only 𝜔 ( 1

1−𝜆 ln
1

1−𝜆 ) nodes for homogeneous servers,

given that the buffer size is a constant, and the number of left nodes is at least that of right nodes.

However, it is unknown whether these two bounds are tight. In addition, a more general model

than ours is to allow the service speed to depend on both the job types and the servers. Analyzing

the performance of such a model is still an open problem, which we leave for future research.
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A IMPLEMENTATION OF JFSQ AND JFIQ
In the following, we discuss how to implement JFSQ and JFIQ and their associated time complexity

and communication overhead.

We first consider JFSQ. Upon the arrival of a job at port ℓ , the dispatcher requests the queue

lengths from all servers that are connected to port ℓ . Then we find the server with the shortest

queue length. If there is a tie, we choose the one with the fastest service speed. In this way, the

time complexity and the communication overhead per arrival is𝑂 ( |𝑁𝐿 (ℓ) |), where 𝑁𝐿 (ℓ) is the set
of servers connected to port ℓ .

Now for JFIQ, we maintain 𝑁 variables 𝐼𝑟 , 1 ≤ 𝑟 ≤ 𝑁 in the memory of the dispatcher where

𝐼𝑟 = 1 if server 𝑟 is idle and 𝐼𝑟 = 0 if server 𝑟 is busy. Then when a job arrives at port ℓ , we find

𝑟 ∈ 𝑁𝐿 (ℓ) such that 𝐼𝑟 = 1 and 𝜇𝑟 is the maximum. If there is no such 𝑟 , we let 𝑟 to be a random

server in 𝑁𝐿 (ℓ). We then route the job to server 𝑟 . In addition, 𝐼𝑟 is set as zero. Moreover, when a

server becomes idle, it sends back a message to the dispatcher, and 𝐼𝑟 is set as one. We next analyze

the complexity of JFIQ. First, the time complexity per job is the same as JFSQ, and is equal to

𝑂 ( |𝑁𝐿 (ℓ) |). Second, we can see that the amortized number of messages per arrival between servers

and the dispatcher is at most one (and is fact smaller than that). This is because an arbitrary arrival

can incur at most one message. In a nutshell, for JFIQ, the time complexity per job is 𝑂 ( |𝑁𝐿 (ℓ) |)
and the averaged number of messages per job is at most one.
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B NOTATION TABLE
In Table 1, we summarize important notations used in the paper.

Table 1. Notation Table

Notation Definition
L The set of ports

R The set of servers

𝐸 Edges between ports and servers

𝐿 The number of ports

𝑁 The number of servers

𝑁𝐿 (ℓ) Set of servers connected with port ℓ

𝑁𝑅 (𝑟 ) Set of ports connected with server 𝑟

𝑁𝑅 (I) Set of ports connected with at least one server in the set of servers I
𝜆ℓ Arrival rate of jobs to port ℓ

𝜆Σ Total arrival rate of jobs to the system, given by 𝜆Σ =
∑𝐿
ℓ=1 𝜆ℓ

𝜆 Normalized total arrival rate, i.e., 𝜆 =
𝜆Σ
𝑁

𝐷I Sum of arrival rates at ports not connected with at least one server in I
b Buffer size at each server

𝑀 The number of types of servers

𝜇𝑚 Service rate of a server of type𝑚

𝛼𝑚 Fraction of type𝑚 servers

𝑁𝑚 The number of type𝑚 servers, given by 𝑁𝑚 = 𝑁𝛼𝑚
q State of queue lengths with 𝑞𝑟 being the queue length of server 𝑟

𝑠𝑚,𝑖 (q) The number of type𝑚 servers with queue length at least 𝑖 divided by 𝑁

𝐶𝑚 (q) The number of jobs in type𝑚 servers divided by 𝑁

𝛽 "Idle" fraction of service rate, i.e., 𝜆Σ = 𝑁
∑𝐾
𝑚=1 𝜇𝑚𝛼𝑚 (1 − 𝛽)

𝐶∗
𝑚 The number of busy type𝑚 servers in the mean-field limit divided by 𝑁

𝜖 Approximation error in analysis

𝜏𝑎𝑏 Ratio of the service rate of a type 𝑎 server over that of a type 𝑏 server

𝑝1, 𝑝2 Fraction of servers needed to test for well connectedness

˜𝑑1, ˜𝑑2 Upper bound of disconnected arrival rates (divided by 𝑁 )

𝑧ℓ,𝑟 Connecting probability of a port ℓ and a server 𝑟 in a random graph construction

C PROOF OF PROPOSITION 3.1
Proposition 3.1[Restated]. Suppose that the buffer size is infinite, i.e. 𝑏 = ∞. Let 𝑍 be the random

variable denoting the service time of an arbitrary job. Then for any stable policy, the mean number of
jobs in the system is lower bounded by 𝑁𝐶∗, and

E
[
𝑍
]
≥ 𝐶∗

𝜆
. (48)

Proof. For any𝑚 ∈ {1, · · · , 𝑀}, let 𝐼𝑚 denote the probability that an arriving job is scheduled

to a type-𝑚 server in steady state. Also, recall that 𝑠𝑚,1 is defined as a steady-state random variable

denoting the number of busy type-𝑚 servers divided by 𝑁 . Then because of stability and work

conservation law, it holds that for all𝑚 ≤ 𝑀 ,

𝜆Σ𝐼𝑚 = 𝑁𝜇𝑚E
[
𝑆𝑚,1

]
. (49)
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In particular,

𝜆 =

𝑀∑
𝑚=1

𝜆Σ𝐼𝑚

𝑁
=

𝑀∑
𝑚=1

𝜇𝑚E
[
𝑆𝑚,1

]
(50)

since

∑𝑀
𝑚=1 𝐼𝑚 = 1. Now notice that the mean service time of jobs is given by

E
[
𝑍
]
=

𝑀∑
𝑚=1

𝐼𝑚

𝜇𝑚
=

𝑀∑
𝑚=1

E
[
𝑆𝑚,1

]
𝜆

(51)

since the service time at type-𝑚 servers is exponentially distributed with mean
1

𝜇𝑚
, and 𝐼𝑚 satisfies

(49). To obtain a lower bound of E
[
𝑍
]
, consider the following linear programming problem.

min

1

𝜆

𝑀∑
𝑚=1

𝑥𝑚

s.t. 𝜆 =

𝑀∑
𝑚=1

𝜇𝑚𝑥𝑚, 𝑚 = 1, . . . , 𝑀

0 ≤ 𝑥𝑚 ≤ 𝛼𝑚, 𝑚 = 1, . . . , 𝑀

where 𝑥𝑚 is an analog of E
[
𝑆𝑚,1

]
, and the objective value is a lower bound of E

[
𝑍
]
because of

(50). Then since only the sum of 𝑥𝑚 matters, and 𝜇1 ≥ · · · ≥ 𝜇𝑀 , the optimal solution is exactly

given by 𝑥∗
1
= 𝛼1, · · · , 𝑥∗𝐾−1 = 𝛼𝐾−1, 𝑥∗𝐾 =

𝜆−∑𝐾−1
𝑚=1 𝜇𝑚𝑥𝑚
𝜇𝐾

, 𝑥∗𝑚 = 0 for 𝑚 > 𝐾 . Then it is clear that

E
[
𝑍
]
≥ 1

𝜆

∑𝑀
𝑚=1 𝑥

∗
𝑚 = 𝐶∗

𝜆
. □

D PROOF OF LEMMAS IN SECTION 4
D.1 Proof of Lemma 4.2

Lemma 4.2[Restated]. The expectation E
[
𝐺𝑔(∑𝐾

𝑚=1𝐶𝑚 (Q̄))
]
is equal to 0.

Proof. To simplify the notation, denote 𝑉 (q) = 𝑔(∑𝐾
𝑚=1𝐶𝑚 (q)) for a state q. Now that since

the system is stable (because of the assumption of finite buffers), there is a unique stationary

distribution 𝜋q that solves the balancing equation such that for every q,

𝜋q

∑
q′
𝑟q,q′ =

∑
q′
𝜋q′𝑟q′,q (52)

where 𝑟q,q′ is the transition rate from q to q′. Now that 𝑉 (q) is bounded (as

∑𝐾
𝑚=1𝐶𝑚 (q ≤ 𝑏), it

holds

E
[
𝐺𝑉 (Q̄)

]
=

∑
q
𝜋q

∑
q′
𝑟q,q′ (𝑉 (q′) −𝑉 (q))

= −
∑
q
𝜋q

∑
q′
𝑉 (q)𝑟q,q′ +

∑
q
𝜋q

∑
q′
𝑟q,q′𝑉 (q′)

= −
∑
q
𝑉 (q)

∑
q′
𝜋q𝑟q,q′ +

∑
q
𝑉 (q)

∑
q′
𝜋q′𝑟q′,q

= 0.

□
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D.2 Proof of Lemma 4.3
Lemma 4.3[Restated]. It holds that

E

[
ℎ

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)]

≤ E
[
1

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) ≥ 𝜂 + 1

𝑁

}
𝑔′

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)
(𝜆 + 𝜇1𝛿 −𝑊 (Q̄))

]
+ 38𝑏2𝜏1𝐾

𝜖𝑁
.

(20)

Proof. The idea is to utilize the result that E
[
ℎ

(∑𝐾
𝑚=1𝐶𝑚 (Q̄)

)]
≤ (17) (18)+(19), and to expand

(18) and (19) by Taylor’s expansion. Consider three cases of state q.
• First, if

∑𝐾
𝑚=1𝐶𝑚 (q) ≤ 𝜂 − 1

𝑁
, then 𝑔(∑𝐾

𝑚=1𝐶𝑚 (q) − 1

𝑁
), 𝑔(∑𝐾

𝑚=1𝐶𝑚 (q)), 𝑔(∑𝐾
𝑚=1𝐶𝑚 (q) + 1

𝑁
)

are all zero. This case has no contribution to the expectation;

• second, if

∑𝐾
𝑚=1𝐶𝑚 (q) ∈ (𝜂 − 1

𝑁
, 𝜂 + 1

𝑁
), by first-order Taylor’s expansion, there exists some

˜𝜉q, 𝜂q ∈ (𝜂 − 2

𝑁
, 𝜂 + 2

𝑁
), such that

𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (q) + 1

𝑁

)
− 𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (q)
)
=

1

𝑁
𝑔′( ˜𝜉q),

𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (q) − 1

𝑁

)
− 𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (q)
)
=
−1
𝑁
𝑔′(𝜂q);

• third, if

∑𝐾
𝑚=1𝐶𝑚 (q) ≥ 𝜂 + 1

𝑁
, by second-order Taylor’s expansion, there exists some 𝜉q, 𝜂q,

such that

𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (q) + 1

𝑁

)
− 𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (q)
)
=

1

𝑁
𝑔′

(
𝐾∑
𝑚=1

𝐶𝑚 (q)
)
+ 2

𝑁 2
𝑔′′(𝜉q),

𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (q) − 1

𝑁

)
− 𝑔

(
𝐾∑
𝑚=1

𝐶𝑚 (q)
)
= − 1

𝑁
𝑔′

(
𝐾∑
𝑚=1

𝐶𝑚 (q)
)
+ 2

𝑁 2
𝑔′′(𝜂q).

Then it holds that

E

[
ℎ

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)]

(53)

≤ (17) + (18) + (19) (54)

= E

[
1

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) ≥ 𝜂 + 1

𝑁

} (
𝑔′

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)
(𝜆 + 𝜇1𝛿 −𝑊 (Q̄))

)]
(55)

+ E
[
1

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) ≥ 𝜂 + 1

𝑁

} (
2

𝑁

(
𝜆𝑔′′(𝜉Q̄) +𝑊 (Q̄)𝑔′′(𝜂Q̄)

))]
(56)

+ E
[
1

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) ∈ (𝜂 − 1

𝑁
,𝜂 + 1

𝑁
)
} (
𝑔′

(
𝐾∑
𝑚=1

𝐶𝑚 (Q̄)
)
(𝜇1𝛿) + 𝜆𝑔′( ˜𝜉Q̄) −𝑊 (Q̄)𝑔′(𝜂Q̄)

)]
.

(57)

It suffices to bound (56) and (57). First, note that |𝑔′′(𝑥) | ≤ 1

𝜇1𝛿
for all 𝑥 by the explicit form of 𝑔(𝑥)

in (11). It holds

(56) ≤ 2

𝑁
· 1

𝜇1𝛿
· 2𝜇1 =

4

𝑁𝛿
=
24𝜏1𝐾𝑏

2

𝜖𝑁
. (58)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 45. Publication date: December 2020.



45:28 Wentao Weng, et al.

On the other hand, to bound (57), since

∑𝐾
𝑚=1𝐶𝑚 (Q̄), ˜𝜉q, 𝜂q ∈ (𝜂 − 2

𝑁
, 𝜂 + 2

𝑁
), their derivatives are

all bounded by
2

𝑁𝜇1𝛿
. Then

(57) ≤ 2

𝑁𝜇1𝛿
· (𝜇1𝛿 + 𝜇1) =

2

𝑁
+ 12𝜏1𝐾𝑏

2

𝜖𝑁
≤ 14𝜏1𝐾𝑏

2

𝜖𝑁
. (59)

Summing the above two equations completes the proof of Lemma 4.3. □

D.3 Proof of Lemma 4.4
Lemma 4.4[Restated]. Consider the following Lyapunov function

𝑉1 (q) = min

(
𝑏∑
𝑗=1

𝑠𝐾,𝑗 (q) +
𝐾−1∑
𝑚=1

𝑏∑
𝑗=2

𝑠𝑚,𝑗 (q),
𝐾−1∑
𝑚=1

𝐶∗
𝑚 −

𝐾−1∑
𝑚=1

𝑠𝑚,1 (q)
)
. (22)

It holds that if 𝑉1 (q) ≥ 𝐵1 B 𝜏1𝐾𝛿 , then 𝐺𝑉1 (q) ≤ −𝜇1𝛿
2𝑏

.

Proof. Since 𝑉1 (q) ≥ 𝐵1 by assumption, both of the following two properties holds:

𝑏∑
𝑗=1

𝑠𝐾,𝑗 (q) +
𝐾−1∑
𝑚=1

𝑏∑
𝑗=2

𝑠𝑚,𝑗 (q) ≥ 𝐵1; (60)

𝐾−1∑
𝑚=1

𝑠𝑚,1 (q) ≤
𝐾−1∑
𝑚=1

𝐶∗
𝑚 − 𝐵1 . (61)

Let T1,1 be the first term in 𝑉1 (q), and T1,2 be the second term. First, by definition,

𝐺𝑉1 (q) =
∑
q′
𝑟q,q′ (𝑉1 (q′) −𝑉1 (q))

=
∑

q′,arrival

𝑟q,q′ (𝑉1 (q′) −𝑉1 (q)) (62)

+
∑

q′,departure

𝑟q,q′ (𝑉1 (q′) −𝑉1 (q)) (63)

where we separate transitions by identifying those caused by a job arrival from those caused

by a job departure. Bounding (62) and (63) can then bound 𝐺𝑉1 (q). Next we consider two cases

corresponding to whether 𝑉1 (q) is equal to T1,1 or to T1,2.
Suppose that T1,1 ≤ T1,2. then in this case,

(63) ≤ −
(
𝑏∑
𝑗=1

𝜇𝐾 (𝑠𝐾,𝑗 (q) − 𝑠𝐾,𝑗+1 (q)) +
𝐾−1∑
𝑚=1

𝑏∑
𝑗=2

𝜇𝑚 (𝑠𝑚,𝑗 (q) − 𝑠𝑚,𝑗+1 (q))
)

(64)

= −
(
𝜇𝐾𝑠𝐾,1 (q) +

𝐾∑
𝑚=1

𝜇𝑚𝑠𝑚,2 (q)
)

(65)

≤ −𝐵1𝜇𝐾
𝑏

≤ −𝜇1𝛿
𝑏

. (66)

The first inequality (64) is because 𝑉1 (q) = 𝜏1,1, and only jobs departing from servers of type 𝐾 and

servers of types less than 𝐾 with queue length at least 2 can affect the value of 𝑉1 (q). The first
equation (65) comes from the fact that 𝑠𝑚,𝑏+1 = 0 for all𝑚. The last inequality is from (60) and the

non-decreasing property

𝑠𝑚,1 (q) ≥ 𝑠𝑚,2 (q) ≥ · · · 𝑠𝑚,𝑏 (q)
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for all𝑚.

On the other hand, to bound (62), notice that𝑉1 (q) can increase only when a job arrival is routed

to some servers of types at least 𝐾 . Then clearly,

(62) ≤
𝐿∑
ℓ=1

1

𝑁
𝜆ℓ · 1 {an arrival to port ℓ is routed to an idle server of types at least 𝑘 | q} . (67)

However, by (61), the number of idle servers of types less than 𝐾 is at least

𝑁

𝐾−1∑
𝑚=1

(
𝐶∗
𝑚 − 𝑠𝑚,1 (q)

)
≥ 𝑁𝐵1 =

𝑁𝜖

6𝑏2
.

Let I be the set of idle servers of types less than 𝐾 . Since |I | ≥ 𝑁𝜖
6𝑏2

, Assumption 2 guarantees

that

∑
ℓ∉𝑁R (I) 𝜆ℓ ≤ 𝑁 ˜𝑑1 =

𝑁𝜖𝜇𝐾
12𝑏3

. That is to say, the total arrival rates of ports not connected with

servers in I is bounded by 𝑁 ˜𝑑1. Now since our routing policy is either JFSQ or JFIQ, for those ports

connected with I, a job arrival must be routed to one server in I because servers in I are idle, and

are faster than other idle servers not in I. Therefore,

(67) ≤ 1

𝑁
· 𝑁𝜖𝜇𝐾
12𝑏3

≤ 𝜇1𝛿

2𝑏
. (68)

With (66) and (68), it holds 𝐺𝑉1 (q) ≤ −𝜇1𝛿
2𝑏

when T1,1 ≤ T1,2.
For the second case where T1,1 ≥ T1,2, it holds

(63) ≤
𝐾−1∑
𝑚=1

𝜇𝑚
(
𝑠𝑚,1 (q) − 𝑠𝑚,2 (q)

)
(69)

since 𝑉1 (q) increases only when a job departs from a server of type less than 𝐾 and only with this

single job in the server. Also, we can see

(62) ≤ − 1

𝑁

𝐿∑
ℓ=1

𝜆ℓ · 1 {an arrival to port ℓ is routed to an idle server of type less than 𝑘 | q} (70)

≤ 1

𝑁
(−𝜆Σ + 𝑁 ˜𝑑1) = −𝜆 + ˜𝑑1. (71)

The first inequality is because for arrival transitions, only jobs arriving to idle servers of types less

than 𝑘 can change 𝑉1 (q), and their arrivals will all decrease 𝑉1 (q) by 1

𝑁
by the definition of T1,2.

The second inequality is derived from the same argument of (68). Therefore, it holds that

𝐺𝑉1 (q) = (62) + (63) ≤ −𝜆 + ˜𝑑1 +
𝐾−1∑
𝑚=1

𝜇𝑚
(
𝑠𝑚,1 (q) − 𝑠𝑚,2 (q)

)
≤ −𝜆 + ˜𝑑1 +

𝐾−1∑
𝑚=1

𝜇𝑚𝛼𝑚 − 𝜇𝐾𝐵1 (72)

≤ −𝜇𝐾𝐵1 + ˜𝑑1 (73)

≤ −𝜇1𝛿
2𝑏

(74)

because of (61) and the assumption that 𝜆 ≥ ∑𝐾−1
𝑚=1 𝜇𝑚𝛼𝑚 .

Therefore, the above discussion proves that whenever 𝑉1 (q) ≥ 𝐵1, it holds 𝐺𝑉1 (q) ≤ − 𝜇1𝛿

2𝑏
. □
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D.4 Proof of Lemma 4.5
Lemma 4.5[Restated]. Consider the following Lyapunov function

𝑉2 (q) = min

(
𝐾∑
𝑚=1

𝑏∑
𝑗=2

𝑠𝑚,𝑗 (q),
𝐾∑
𝑚=1

𝐶∗
𝑚 + 𝐵2 + 3𝜏1𝐾 ¯𝛿 −

𝐾∑
𝑚=1

𝑠𝑚,1 (q)
)

(23)

where ¯𝛿 B 𝜏1𝐾𝛿 , and 𝐵2 B 1

2
𝜖 + ¯𝛿. It holds that if 𝑉2 (q) ≥ 𝐵2, then 𝐺𝑉2 (q) ≤ − 𝜇1𝛿

𝑏
.

Proof. Let T2,1 be the first term in 𝑉2 (q), and T2,2 be the second term. Since 𝑉2 (q) ≥ 𝐵2, both

the following hold:

𝐾∑
𝑚=1

𝑏∑
𝑗=2

𝑠𝑖 𝑗 (q) ≥ 𝐵2; (75)

𝐾∑
𝑚=1

𝑠𝑚,1 (q) ≤
𝐾∑
𝑚=1

𝐶𝑖𝑚 + 3𝜇 ¯𝛿. (76)

By definition,

𝐺𝑉2 (q) =
∑

q′,arrival

𝑟q,q′ (𝑉2 (q′) −𝑉2 (q)) (77)

+
∑

q′,departure

𝑟q,q′ (𝑉2 (q′) −𝑉2 (q)) . (78)

We then consider two cases. First, suppose that T2,1 ≤ T2,2. Then similar to the proof of Lemma 4.4,

using (75), it holds that

(78) ≤ − 1

𝑁

𝐾∑
𝑚=1

𝑏∑
𝑗=2

𝑁𝜇𝑚
(
𝑠𝑚,𝑗 (q) − 𝑠𝑚,𝑗+1 (q)

)
(79)

= − 1

𝑁

𝐾∑
𝑚=1

𝑁𝜇𝑚𝑠𝑚,2 (q) (80)

≤ −𝐵2𝜇𝐾
𝑏

= −𝜖𝜇𝐾
2𝑏

− 𝜇1𝛿

𝑏
. (81)

On the other hand, we have

(77) ≤
𝐿∑
ℓ=1

1

𝑁
𝜆ℓ · 1 {an arrival to port ℓ is routed to an idle server of types ≥ 𝑘 + 1 | q} . (82)

Notice that by (76), the number of idle servers of types no greater than 𝐾 satisfies that

𝑁

(
𝐾∑
𝑚=1

𝛼𝑚 −
𝐾∑
𝑚=1

𝑠𝑚,1 (q)
)

(83)

≥ 𝑁

(
𝐾∑
𝑚=1

𝛼𝑚 −
𝐾∑
𝑚=1

𝐶∗
𝑚 − 3𝜏1,𝐾 ¯𝛿

)
(84)

= 𝑁

(
𝛼𝐾 −

𝜆 − ∑𝐾−1
𝑚=1 𝜇𝑚𝛼𝑚

𝜇𝐾
− 3𝜏1,𝐾 ¯𝛿

)
(85)

= 𝑁 ·
∑𝐾
𝑚=1 𝜇𝑚𝛼𝑚 − 𝜆

𝜇𝐾
− 3𝑁𝜏1𝐾 ¯𝛿 (86)
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=
𝑁

𝜇𝐾

(
𝛽

𝐾∑
𝑚=1

𝜇𝑚𝛼𝑚 − 3𝜇1𝜏1𝐾𝛿

)
(87)

≥ 𝑁

(
ˆ𝛽 − 3𝜏1𝐾

𝜖

6𝑏2

)
≥ 𝑁 ˆ𝛽

2

(88)

where (88) is because 𝑏2 ≥ 𝜏1𝐾 by Assumption 1, and
ˆ𝛽 = 𝛽

∑𝐾
𝑚=1 𝛼𝑚 , and 𝜇1 > · · · > 𝜇𝐾 .

Let I be the set of idle servers of types no greater than 𝐾 . It then holds |I | ≥ 𝑁 ˆ𝛽

2
. Then By

Assumption 2, the total arrival rate of ports not connected with I is bounded by 𝑁 ˜𝑑2. Since the

routing policy is either JFSQ or JIFQ, jobs arriving to ports connecting with I must be routed to

servers in I. Therefore, it holds (82) ≤ ˜𝑑2 ≤ 𝜇𝐾𝜖

2𝑏
. Then in this case, we know

𝐺𝑉2 (q) = (77) + (78) ≤ −𝜖𝜇𝐾
2𝑏

− 𝜇1𝛿

𝑏
+ 𝜇𝐾𝜖

2𝑏
≤ −𝜇1𝛿

𝑏
.

Nowwe consider the second case, T2,1 ≥ T2,2. Similarly, it holds (78) ≤ ∑𝐾
𝑚=1 𝜇𝑚

(
𝑠𝑚,1 (q) − 𝑠𝑚,2 (q)

)
,

and

(77) ≤ − 1

𝑁

𝐿∑
ℓ=1

1

𝑁
𝜆ℓ · 1 {an arrival to port ℓ is routed to an idle server of types ≤ 𝑘 | q}

≤ −𝜆 + ˜𝑑2

(89)

where the last inequality follows the same argument as in the first case. Then it holds

𝐺𝑉2 (q) ≤
𝐾∑
𝑚=1

𝜇𝑚𝑠𝑚,1 (q) −
𝐾∑
𝑚=1

𝜇𝑚𝑠𝑚,2 (q) − 𝜆 + ˜𝑑2 (90)

≤
𝐾−1∑
𝑚=1

𝜇𝑚𝛼𝑚 + 𝜇𝐾 (𝐶∗
𝐾 + 3𝜇1 ¯𝛿) − 𝜆 −

𝜇𝐾𝐵2

𝑏 − 1

+ 𝜇𝐾𝜖
2𝑏

(91)

≤ 3𝜇1𝛿 −
𝜇𝐾𝐵2

𝑏 − 1

+ 𝜖

2𝑏
(92)

≤ 3𝜇1𝛿 −
𝜇𝐾𝜖

2(𝑏 − 1) +
𝜇𝐾𝜖

2𝑏
− 𝜇1𝛿

𝑏
(93)

≤ −𝜇1𝛿
𝑏
. (94)

The last inequality is because

𝜇𝐾𝜖

2(𝑏 − 1) −
𝜇𝐾𝜖

2𝑏
=
𝜇𝐾𝜖

2𝑏2
≥ 3𝜇1

𝜇𝐾𝜖

6𝜇1𝑏
2
= 3𝜇1𝛿.

Therefore, we complete the proof of Lemma 4.5. □

D.5 Proof of Lemma 4.10

Lemma 4.10[Restated]. For any Δ ≥
ˆ𝛽

2
, it holds P{∑𝐾

𝑚=1𝐶𝑚 (Q̄) > 𝐶∗ + Δ} ≤ 104𝜏1𝐾𝑏
2

Δ𝜖𝑁 .

Proof. By Lemma 4.1, it holds that

P

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) > 𝐶∗ + Δ

}
= P

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) −𝐶∗ −
ˆ𝛽

4

> Δ − 𝛽

4

}
(95)

≤ P
{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) −𝐶∗ −
ˆ𝛽

4

>
1

2

Δ

}
(96)
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≤
E

[
max

(∑𝐾
𝑚=1𝐶𝑚 (Q̄) −𝐶∗ −

ˆ𝛽

4
, 0

)]
1

2
Δ

(97)

≤ 208𝜏1𝐾𝑏
2

Δ𝜖𝑁
(98)

since 𝜖 ≤
ˆ𝛽

4
by assumption. □

D.6 Proof of Lemma 4.11
Lemma 4.11[Restated]. When 𝑉3 (q) ≥ 𝐵3, it holds that

• if q ∈ E𝐾 , the drift is bounded as 𝐺𝑉3 (q) ≤ −𝐵3𝜇𝑀
𝑏

+ ˜𝑑2;
• if q ∉ E𝐾 , the drift is bounded as 𝐺𝑉3 (q) ≤ 𝜇1.

Proof. By definition,

𝐺𝑉3 (q) =
∑
q′
𝑟q,q′ (𝑉3 (q′) −𝑉3 (q))

=
∑

q′,arrival

𝑟q,q′ (𝑉3 (q′) −𝑉3 (q)) (99)

+
∑

q′,departure

𝑟q,q′ (𝑉3 (q′) −𝑉3 (q)) . (100)

Note that since 𝑉3 (q) ≥ 𝐵3, and 𝑉3 (q) =
∑𝑀
𝑚=𝐾+1

∑𝑏
𝑗=1 𝑠𝑚,𝑗 (q), it holds that

(100) = −
𝑀∑

𝑚=𝑘+1
𝜇𝑚𝑠𝑚,1 (q) ≥ −𝐵3𝜇𝑀

𝑏
(101)

since 𝑠𝑚,1 (q) ≥ · · · ≥ 𝑠𝑚,𝑏 (q) and 𝑠𝑚,𝑏+1 (q) = 0 for all𝑚.

For (99), we consider two cases. First, if q ∈ E𝐾 , the number of idle servers of types no greater

than 𝐾 is given by

𝑁

(
𝐾∑
𝑚=1

𝛼𝑚 −
𝐾∑
𝑚=1

𝑠𝑚,1 (q)
)

≥ 𝑁

(
𝐾∑
𝑚=1

𝛼𝑚 −
𝐾∑
𝑚=1

𝐶𝑚 (q)
)

≥ 𝑁

(
𝐾∑
𝑚=1

𝛼𝑚 −𝐶∗ −
ˆ𝛽

2

)
= 𝑁

(
𝛽
∑𝐾−1
𝑚=1 𝛼𝑚𝜇𝑚

𝜇𝐾
−

ˆ𝛽

2

)
≥ 𝑁

ˆ𝛽

2

where the second inequality is because 𝑠𝑢𝑚𝐾
𝑚=1

𝐶𝑚 (q) ≤ 𝐶∗ +
ˆ𝛽

2
when q ∈ E𝐾 . Then since the

routing policy is either JFSQ or JFIQ, jobs arriving to ports connecting with idle servers of types

no greater than 𝐾 must be routed to those servers. And by Assumption 2, the total arrival rate of

disconnected ports is bounded by
˜𝑑2𝑁 . As a result,

(99) ≤ ˜𝑑2, (102)
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showing that 𝐺𝑉3 (q) ≤ −𝐵3𝜇𝑀
𝑏

+ ˜𝑑2 when q ∈ E𝐾 .
When q ∉ E𝐾 , it holds that (99) ≤ 𝜆 ≤ 𝜇1, and (100) ≥ 0. Therefore, 𝐺𝑉3 (q) ≤ 𝜇1. □

D.7 Proof of Lemma 4.12
Lemma 4.11[Restated]. Under Assumption 1 and Assumption 2, the probability 𝑝B that an arriving

job is blocked is bounded as

𝑝B ≤
˜𝑑2

𝜆
+ 52𝜏1𝐾𝑏

2

𝜖𝑁
. (4)

Proof. Denote 𝐵ℓ (q) = 1{∀𝑟 ∈ 𝑁𝐿 (ℓ), 𝑞𝑟 = 𝑏}. That is, whether all neighbors of port ℓ are full.
Then by definition,

𝑝B =
1

𝜆Σ

𝐿∑
ℓ=1

𝜆ℓE
[
𝐵ℓ (Q̄)

]
=

1

𝜆Σ

𝐿∑
ℓ=1

𝜆ℓE

[
𝐵ℓ (Q̄)

����� 𝐾∑
𝑚=1

𝐶𝑚 (Q̄) ≤ 3

]
P

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) ≤ 3

}
+ 1

𝜆Σ

𝐿∑
ℓ=1

𝜆ℓE

[
𝐵ℓ (Q̄)

����� 𝐾∑
𝑚=1

𝐶𝑚 (Q̄) > 3

]
P

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) > 3

}
≤ 1

𝜆Σ

𝐿∑
ℓ=1

𝜆ℓE

[
𝐵ℓ (Q̄)

����� 𝐾∑
𝑚=1

𝐶𝑚 (Q̄) ≤ 3

]
+ P

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) > 3

}
.

To bound P
{∑𝐾

𝑚=1𝐶𝑚 (Q̄) > 3

}
, notice that 𝐶∗ ≤ 1, so

P

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) > 3

}
≤ P

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) > 𝐶∗ + 2

}
≤ 52𝜏1𝐾𝑏

2

𝜖𝑁

by Lemma 4.10.

Then for the case

∑𝐾
𝑚=1𝐶𝑚 (q) ≤ 3, it holds that

∑𝐾
𝑚=1 𝑠𝑚,𝑏 (q) ≤ 3

𝑏
. Let I be the set of servers of

types no greater than 𝐾 with queue length less than 𝑏. Then we know |I | ≥ (1 − 3

𝑏
)𝑁 ≥

ˆ𝛽

2
𝑁 since

𝑏 ≥ 6. By Assumption 2, the total arrival rate of ports not connected with I is thus upper bounded

by 𝑁 ˜𝑑2. As a result,

𝑝B ≤ 1

𝜆Σ

𝐿∑
ℓ=1

𝜆ℓE

[
𝐵ℓ (Q̄)

����� 𝐾∑
𝑚=1

𝐶𝑚 (Q̄) ≤ 3

]
+ P

{
𝐾∑
𝑚=1

𝐶𝑚 (Q̄) > 3

}
≤

˜𝑑2

𝜆
+ 52𝜏1𝐾𝑏

2

𝜖𝑁
.

□

D.8 Proof of Corollary 3.4
Corollary 3.4[Restated]. Suppose that 𝜖𝑁 is both 𝑜 (1) and 𝜔 (𝑁 −0.5

ln(𝑁 )), and that both
Assumptions 1 and 2 hold for 𝐺𝑁 when 𝑁 is sufficiently large. Then as 𝑁 → ∞, both JFSQ and JFIQ
are asymptotically optimal, and the expected queueing delay converges to zero for both policies.

Proof. First since 𝜖𝑁 = 𝜔 (ln𝑁𝑁 −0.5), there is always a 𝑏𝑁 satisfying Assumption 1 when 𝑁

is sufficiently large. Let Q̄𝑁 be the queue-length random variable, and let 𝑝𝑁B be the blocking

probability for the 𝑁−th system. Applying Theorem 3.2 gives

E

[
𝑀∑
𝑚=1

𝐶𝑚 (Q̄𝑁 )
]
≤ 𝐶∗ +

(
1 + 𝜏𝐾𝑀

2

)
𝜖𝑁 + 2

√
5𝜏1𝑀𝑏𝑁 ln𝑁

𝑁
+ 60𝑏2𝑁

√
26𝜏1𝐾𝜏1𝑀

ˆ𝛽𝑁𝜖𝑁𝑁
,
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and 𝑝𝑁B ≤ 𝜖𝑁 𝜇𝐾
2𝑏𝑁 𝜆

+ 52𝜏1𝐾𝑏
2

𝑁

𝜖𝑁𝑁
for 𝑁 large enough.

Since 𝜖𝑁 = 𝑜 (1), 𝜖𝑁 = 𝜔 (𝑁 −0.5
ln𝑁 ), ˆ𝛽𝑁 > 𝜖𝑁 and 𝑏𝑁 satisfies Assumption 1, it holds that

lim𝑁→∞ E
[∑𝑀

𝑚=1𝐶𝑚 (Q̄𝑁 )
]
= 𝐶∗

. Then by Little’s Law, the expected mean response time E [𝑇𝑁 ] of
the 𝑁−th system is given by the mean number of jobs in the system divided by the effective arrival

rate. Therefore,

lim

𝑁→∞
E [𝑇𝑁 ] = lim

𝑁→∞

E
[
𝑁

∑𝑀
𝑚=1𝐶𝑚 (Q̄𝑁 )

]
𝜆Σ (1 − 𝑝𝑁B )

≤ 𝐶∗

𝜆

(
1 − lim𝑁→∞

𝜖𝑁 𝜇𝐾
2𝑏𝑁 𝜆

+ 52𝜏1𝐾𝑏
2

𝑁

𝜖𝑁𝑁

) =
𝐶∗

𝜆
,

whichmatches the lower bound in Theorem 3.2. Therefore, JFSQ and JFIQ are asymptotically optimal

in mean response time. On the other hand, let E
[
𝑇𝑁W

]
be the expected waiting time of jobs, and let

E [𝑍𝑁 ] be the expected service time in the 𝑁−th system. Then it holds E [𝑇𝑁 ] = E
[
𝑇𝑁W

]
+ E [𝑍𝑁 ].

Since E [𝑍𝑁 ] ≥ 𝐶∗

𝜆
,E

[
𝑇𝑁W

]
≥ 0, and 𝑙𝑖𝑚𝑁→∞E [𝑇𝑁 ] = 𝐶∗

𝜆
, it holds lim𝑁→∞ E

[
𝑇𝑁W

]
= 0. As a

result, JFSQ and JFIQ obtain asymptotic zero queueing delays. □

E PROOF OF RANDOM GRAPH RESULTS
Here we provide the missing proof of Theorem 3.6.

E.1 Proof of Theorem 3.6
Theorem 3.6[Restated]. Suppose that all ports share the same arrival rates, that is, 𝜆ℓ ≡ ¯𝜆

for all ℓ ∈ L. Then following the same construction of graph 𝐺 in Theorem 3.5 but with 𝐻 𝑗 =

6

(
− ln𝑝 𝑗 +

˜𝑑 𝑗

𝑝 𝑗 ¯𝜆
ln

2𝜇1
˜𝑑 𝑗

)
for 𝑗 ∈ {1, 2}, it holds that 𝐺 satisfies Assumption 2 with probability at least

1 − 2

(
𝑁
𝑁𝑝1

)−1
. The total number of edges in 𝐺𝑁 scales as 𝑂

(
(𝑁+𝐿)𝑏3

𝜖
ln

𝑏
𝜖

)
.

Proof. The proof is similar to that of Theorem 3.5. Let us follow the same notation in the proof

of Theorem 3.5. Fix 𝑗 ∈ {1, 2}. Similarly, let K be any subset of L satisfying

∑
ℓ∈K 𝜆ℓ > 𝑁 ˜𝑑 𝑗 , and I

be any subset of R 𝑗
satisfying |I | ≥ 𝑁𝑝 𝑗 . To bound P{DK,I}, W.L.O.G., we can assume every port

in K has arrival rate less than 𝑁 ˜𝑑 𝑗𝐻 𝑗 , otherwise P{DK,I} = 0. Then following the same argument

in the proof of Theorem 3.5, it holds P{DK,I} ≤ exp(−𝐻 𝑗𝑁𝑝 𝑗 ).
The key step is to obtain a bound on the number of pairs of feasible K,I so that we can use the

union bound. Let 𝑁
𝑗

K , 𝑁
𝑗

I be the amount of such sets, respectively. W.L.O.G., assume that 𝑁𝑝 𝑗 is an

integer since |I | must be an integer. Also, as all ports share the same arrival rate
¯𝜆, we can assume

𝑁 ˜𝑑 𝑗/ ¯𝜆 is an integer since the size of K must exceed this value. Then it holds that

𝑁
𝑗

K =

(
𝐿

𝑁 ˜𝑑 𝑗/ ¯𝜆

)
≤

(⌈𝑁𝜇1/ ¯𝜆⌉
𝑁 ˜𝑑 𝑗/ ¯𝜆

)
(103)

𝑁
𝑗

I =

(
𝑁

𝑁𝑝 𝑗

)
. (104)

We have the following lemma bounding a binomial number.

Lemma E.1. Fix an integer 𝑛. For any 0 < 𝛼 < 1

2
, if 𝛼𝑛 is an integer, then ln

( (
𝑛
𝛼𝑛

) )
≤ −3𝛼𝑛 ln𝛼 .

Proof. Let 𝑘 = 𝛼𝑛. It holds that(
𝑛

𝑘

)
=
𝑛(𝑛 − 1) · · · (𝑛 − 𝑘 + 1)

𝑘!
≤ 𝑛𝑘

𝑘!
.
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We know that 𝑒𝑘 =
∑
𝑖≥0

𝑘𝑖

𝑖!
. Therefore,

𝑘𝑘

𝑘!
≤ 𝑒𝑘 . It then implies that(

𝑛

𝑘

)
≤ 𝑛𝑘

𝑘!
≤ 𝑒𝑘𝑛𝑘

𝑘𝑘
=

(𝑒𝑛
𝑘

)𝑘
.

As a result,

ln

((
𝑛

𝛼𝑛

))
≤ 𝛼𝑛(1 − ln(𝛼)) ≤ −3𝑛𝛼 ln𝛼

because 𝛼 < 1

2
. □

Now by the definition of 𝑝 𝑗 , ˜𝑑 𝑗 , it holds 𝑝 𝑗 <
1

2
,
𝑁 ˜𝑑 𝑗 / ¯𝜆
⌈𝑁𝜇1/ ¯𝜆⌉

< 1

2
. Then by Lemma E.1, when 𝑁 is

sufficiently large,

ln

(
𝑁
𝑗

K

)
≤ −3𝑁𝑝 𝑗 ln𝑝 𝑗 , ln

(
𝑁
𝑗

I

)
≤ −3𝑁 ˜𝑑 𝑗/ ¯𝜆 ln

(
2𝜇1

˜𝑑1

)
. (105)

Therefore, it holds that

P{C𝑗 } ≤ 𝑁
𝑗

K𝑁
𝑗

I exp(−𝐻 𝑗𝑁𝑝 𝑗 ) ≤ exp

(
−𝑁𝑝 𝑗𝐻 𝑗 − 3𝑁𝑝 𝑗 ln𝑝 𝑗 − 3𝑁𝑝 𝑗

˜𝑑 𝑗

𝑝 𝑗 ¯𝜆
ln

(
2𝜇1

˜𝑑 𝑗

))
. (106)

By definition, 𝐻 𝑗 = 6

(
− ln𝑝 𝑗 −

˜𝑑 𝑗

𝑝 𝑗 ¯𝜆
ln

(
2𝜇1
˜𝑑 𝑗

))
. Then we can see

P{C𝑗 } ≤ exp(3𝑁𝑝 𝑗 ln𝑝 𝑗 ) ≤
(
𝑁

𝑁𝑝 𝑗

)−1
.

By the union bound, it holds that

P{C1 ∪ C2} ≤ 2

(
𝑁

𝑁𝑝1

)−1
.

since 𝑝1 < 𝑝2 <
1

2
. Therefore, the probability that𝐺𝑁 satisfies Assumption 2 is at least 1− 2

(
𝑁
𝑁𝑝1

)−1
.

For the total number of edges used in 𝐺𝑁 , consider the four types of connections on graph

𝐺𝑁 as per Theorem 3.5 and Theorem 3.6 where we use different 𝐻 𝑗 . we bound the number of

edges for each type as follows. First, through some calculations, 𝐻 𝑗 = 𝑂

((
1 + 1

𝑏 ¯𝜆

)
ln

(
𝑏
𝜖

))
, and

𝐻 𝑗
˜𝑑 𝑗
= 𝑂

(
𝑏3 ¯𝜆+𝑏2
𝜖 ¯𝜆

ln
𝑏
𝜖

)
.

Then the number of ports with 𝜆ℓ ≥ 𝑁
˜𝑑1
𝐻1

is bounded by
𝐿 ¯𝜆𝐻1

𝑁 ˜𝑑1
= 𝑂

(
(𝑁+𝐿)𝑏3
𝑁𝜖

ln
𝑏
𝜖

)
because 𝜆Σ = 𝐿 ¯𝜆.

Therefore, the number of connections from them is bounded by 𝑂

(
(𝑁+𝐿)𝑏3

𝜖
ln

𝑏
𝜖

)
since there are 𝑁

servers. The same result holds for ports with 𝜆ℓ ≥ 𝑁
˜𝑑2
𝐻2

. Now for the remaining ports, the expected

number of edges is upper bounded by

2

∑
ℓ∈L

𝜆ℓ

𝑁

(
𝐻1

˜𝑑1
+ 𝐻2

˜𝑑2

)
𝑁 = 𝑂

(
(𝑁 + 𝐿)𝑏3

𝜖
ln

𝑏

𝜖

)
.

Then to sum up, the expected number of edges in 𝐺𝑁 scales as 𝑂

(
(𝑁+𝐿)𝑏3

𝜖
ln

𝑏
𝜖

)
. □

F ADDITIONAL SIMULATION RESULTS
In this section, we provide missing details in the main text and give additional simulation results.
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Fig. 4. The Blocking Probability of Different Routing Policies on Increasing-Sized Random Bipartite Graphs

F.1 Description of JSQ-(2,2)
In JSQ-(2,2)[19], there are two parameters 𝑝𝐹 , 𝑝𝑆 . Then for each arrival of jobs, we find a server as

follows:

(1) sample 2 fast servers and 2 slow servers;

(2) if there is an idle fast server, route the job to this server;

(3) if there is an idle slow server, route the job to this server with probability 𝑝𝑆 , and route the

job to the fast server with shorter queue with probability 1 − 𝑝𝑆 ;
(4) otherwise, route the job to the fast server with shorter queue with probability 𝑝𝐹 ; and route

the job to the slow server with shorter queue with probability 𝑝𝑆 .

We set 𝑝𝑆 , 𝑝𝐹 to be the optimal values from Table 1 in [19].

F.2 Convergence of Blocking Probability
Fig. 4 provides the convergence of the blocking probability following the same setting as in Section

6.2. Unlike JSQ which is shown to be throughput optimal [11] (so is JFSQ), JIQ and JFIQ could lose

the capacity of the system. As in Fig. 4, when we set the buffer size to be 5, the blocking probability

of JIQ is around 1.5 percent, and that of JFIQ is around 1 percent. Interestingly, JFIQ seems to

be more stable. Nevertheless, the blocking probability of both algorithms decreases swiftly as 𝑁

increases.

F.3 Exploring More General Service Time Distribution
We present a preliminary study here that extends results proved in this paper. Roughly speaking,

we consider the same setting as in Section 6.2. However, we allow the service time distribution to

be hyper-exponential.

Still, suppose there are 𝑁 servers in the system where 𝑁 can scale up. Servers can be classified

into four types with different service speed. Each type consists of the same amount of servers.

Then let 𝑋 be a hyper-exponential distribution such that 𝑋 ∼ Exp(0.01) with probability 0.01, and

𝑋 ∼ Exp(1) with probability 0.99. The coefficient of variation of 𝑋 is around 7.071, which is higher

than that of an exponential distribution. Then for a type 𝑖 servers with 𝑖 ∈ {1, 2, 3, 4}, we assume

that the service time of a job at this server is independently and identically distributed as 2
𝑖−1𝑋 .

Similarly, we can define the service rate of type-𝑖 servers as 𝜇𝑖 =
1

2
𝑖−1E[𝑋 ] . Then the system load

is defined as
4𝜆Σ∑

4

𝑖=1 𝑁𝜇𝑖
where 𝜆Σ is the total arrival rate. We can also obtain the lower bound of the

mean response time as in Proposition 3.1.
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Fig. 5. The Mean Response Time of Different Routing Policies when Service Time is Hyper-Exponential
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Fig. 6. The Blocking Probability of Different Routing Policies when Service Time is Hyper-Exponential

The buffer size is set as 𝑏 = 5. Following the same setting of ports and construction of the random

graph, we obtain Fig. 5 for the mean response time of different policies, and the blocking probability

is shown in Fig.6. Notice that the performance of each policy degrades a lot for small systems

compared with Fig. 3. But when the system size scales up, both JFSQ and JFIQ have favorable mean

response time, which is very close to the lower bound. It suggests that our theoretical results may

hold for general distributions, which we leave for future studies.
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