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Applications in cloud platforms motivate the study of efficient load balancing under job-server constraints
and server heterogeneity. In this paper, we study load balancing on a bipartite graph where left nodes
correspond to job types and right nodes correspond to servers, with each edge indicating that a job type
can be served by a server. Thus edges represent locality constraints, i.e., an arbitrary job can only be served
at servers which contain certain data and/or machine learning (ML) models. Servers in this system can
have heterogeneous service rates. In this setting, we investigate the performance of two policies named
Join-the-Fastest-of-the-Shortest-Queue (JFSQ) and Join-the-Fastest-of-the-Idle-Queue (JFIQ), which are simple
variants of Join-the-Shortest-Queue and Join-the-Idle-Queue, where ties are broken in favor of the fastest
servers. Under a “well-connected” graph condition, we show that JESQ and JFIQ are asymptotically optimal in
the mean response time when the number of servers goes to infinity. In addition to asymptotic optimality,
we also obtain upper bounds on the mean response time for finite-size systems. We further show that the
well-connectedness condition can be satisfied by a random bipartite graph construction with relatively sparse
connectivity.

CCS Concepts: - Mathematics of computing — Queueing theory; Markov processes; « Networks —
Network performance analysis; Cloud computing.

Additional Key Words and Phrases: cloud computing; load balancing; asymptotic optimality; delay performance

ACM Reference Format:
Wentao Weng, Xingyu Zhou, and R. Srikant. 2020. Optimal Load Balancing with Locality Constraints. Proc.
ACM Meas. Anal. Comput. Syst. 4, 3, Article 45 (December 2020), 37 pages. https://doi.org/10.1145/3428330

1 INTRODUCTION

Many applications that use data centers, cloud computing systems and other data analytic platforms,
including Web search engines [23], cloud computing service [1], large-scale data processing [13],
and cloud storage have extremely stringent latency requirements. Ultra low latency guarantees in
these applications not only provide smooth user experience, but help improve company profits
[12].

A key component for achieving a fast response in the aforementioned systems are load balancing
algorithms, which are responsible for dispatching jobs to parallel servers. Motivated by the demand-
ing requirement of a low latency, there has been a line of recent research that aims to design smart
load balancing algorithms with delay performance guarantees. They often focus on the classical
load balancing model, where there are N identical servers with exponential service times and a
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dispatcher that assigns Poisson arrivals to one of the servers. It has been shown in this setting that
a class of load balancing policies including Join-the-Shortest-Queue (JSQ), Join-the-Idle-Queue
(JIQ) [34] and variants of the Power-of-d-Choices (Pod) [37, 49] which sample a sufficiently large
number of queues or exploit the parallelism of tasks within a job are able to achieve asymptotically
zero waiting time for a sufficiently large N.

However, the above classical load balancing model may not be appropriate for certain modern
cloud computing and data analytic applications due to the presence of job-server constraints. Under
such constraints, a job can only be dispatched to a subset of the N servers. These constraints,
often called locality constraints, are quite common in large-scale Machine Learning as a Service
(MLaaS) and serverless computing services supported by cloud computing platforms (e.g., Microsoft
Azure [36], Amazon Web Services [1], Google Cloud [22]). To give a concrete example, let us
consider MLaaS. In this setting, various well-trained machine learning models are deployed on
cloud platforms, say deep convolutional neural network (CNN) models for image classification and
natural language processing (NLP) models. A user’s image classification request can only be sent to
the servers on which the CNN models have been loaded. As a result, it is not appropriate to assume
that every request can be served by any server in the system. Other examples in which there are
inherent job-server constraints include online video services, such as TikTok, Netflix and Youtube.
In these applications, user requests can only be sent to servers with the required data (e.g., movies,
music). The ultimate goal in all these modern applications is to achieve a fast response time and
efficient resource (e.g., number of servers) usage while satisfying job-server constraints.

Inspired by these applications, in this paper, we take into account job-server constraints by
considering a bipartite load balancing model. In this model, job-server constraints are abstracted by
the edges in a bipartite graph, where the left nodes are called ports and the right nodes are called
servers. In the model, each port represents a job of a particular type which requires a specific chunk
of data or a specific machine learning model to execute, and thus can only be routed to specific
servers. Each port ¢ corresponds to Poisson job arrivals with rate A,. A job from a port ¢ can only
be sent to server r such that (¢, r) is an edge of the graph. Jobs routed to a server r are queued in a
buffer, and get service in a first-come first-serve (FCFS) manner. The service time of an arbitrary
job at server r is exponentially distributed with rate p, (possibly different).

Our model is similar with that studied in [11] where JSQ is shown to be throughput optimal
while no delay performance guarantee is provided. The bipartite graph model generalizes the load
balancing model on graphs introduced in [8, 39]. In their model, jobs arrive at each node with a
homogeneous rate, and an arbitrary job can be served by the node it arrives and its neighbors. It
has been shown that in this setting JSQ achieves zero delays under certain assumptions on graph
connectivity [39].

Inspired by the discussions above, we are particularly interested in the following question:

Are there simple policies that can achieve optimal response time in modern load balancing systems
with both job-server constraints and service-rate heterogeneity?

1.1 Main Contribution

This paper affirmatively answers the above question by presenting optimal policies as well as
performance bounds on the mean response time. The detailed contributions can be summarized as
follows.

First, we consider two policies: Join-the-Fastest-of-the-Shortest-Queues (JFSQ), and Join-the-
Fastest-of-the-Idle-Queues (JFIQ). We show that, under a ‘well-connected’ graph condition, they
can asymptotically achieve the minimum response time in both the many-server regime (the system
load A < 1 is a constant while the number of servers N — o0) and sub Halfin-Whitt (HW) regime
(A =1-N"%with @ < 0.5). The minimum response time metric is more stringent than the common
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"zero queueing delays" discussed before, and is especially important in systems with heterogeneous
servers. JESQ and JFIQ are simple variants of JSQ and JIQ adapted to job-server constraints, but
they break ties in JSQ and JIQ by choosing the fastest servers. Consequently, our results imply that
JSQ and JIQ have asymptotic zero waiting time for homogeneous servers. They are practical since
they only need comparisons between service speed rather than the exact service rates of servers. In
addition to the asymptotic result, we also obtained finite-system bounds on the mean response time.
Roughly speaking, we show that the difference between the mean response time in an N-server
system and that in the limit is bounded by O (€ + ((1 — A)eN)~'/?), where € is a parameter related
to the well-connectedness of the underlying bipartite graph, and A reflects the load of the system. It
is well known that Pod (power-of-d choices) routing does not achieve asymptotically zero waiting
time while JSQ and JIQ do so in large parallel server systems. Our results show that JFIQ and JFSQ
continue to achieve zero waiting time but in addition also provide mean response time optimality
even in non-parallel server systems such as bipartite graphs. Additionally, the communication
overhead between the router and the servers is very low under JFIQ.

Second, our theoretical results provide practical guidance in designing modern load balancing
systems. Besides the two simple but efficient algorithms, the underlying ‘well-connected’ condition
sheds light on the efficient deployment of various ML models or the required data among the
servers. In particular, the key message is that each movie on Netflix or each ML model deployed
on Microsoft Azure on average only needs to be loaded in w(1) servers for nearly optimal mean
response time. To give a concrete example, for a wide range of traffic patterns, we provide practical
design guidelines showing that if movies or machine learning models are randomly loaded on
servers according to some given probabilities, then JFSQ and JFIQ can guarantee nearly optimal
mean response time with high probability. More precisely, Let L be the number of job types (e.g.,
the number of movies or machine learning models), and N be the number of servers. Our result
LN
(1-1)?
if the arrival rates of jobs are uniform, then this number can be reduced to w (¥4 In {15).

A key theoretical contribution of the paper is showing that a recently-developed Lyapunov drift
method for studying parallel-server queueing systems can be generalized to bipartite graphs using
two key ideas: (i) we demonstrate something akin to state-space collapse and resource pooling by
exploiting the connectivity structure of the graph, and (ii) apply this idea iteratively twice, once to
bound the number of jobs in fast servers that are busy in the large-system limit and a second time
to bound the number of jobs in slow servers that the number is zero in the limit using a conditional
geometric tail bound.

indicates that on average, we only need w ( ) copies of data for good delay performance. And

1.2 Related Work

There is a vast literature on efficient load balancing policies, mostly in the classical load balancing
setting where there are N identical servers and the service rate is exponentially distributed. Upon
arrival, an arbitrary job can be sent to any of the N servers. It is now well-known that in this
setting JSQ is optimal [52] in a stochastic ordering sense. However, obtaining the exact steady state
performance of JSQ is difficult. The problem is partly solved in [15] which establishes that the
scaled queue length process of JSQ converges to a two-dimensional Ornstein-Uhlenbeck process,
and the fraction of waiting jobs vanishes in the Halfin-Whitt heavy traffic regime. Although this
result is on the process level, it is later confirmed for the steady state distribution by [6]. The tail of
the distribution is further studied in [4].

Since JSQ has significant communication overhead in large-scale systems, alternative policies
have been proposed and analyzed. One prominent policy is Power-of-d-Choices (Pod). In Pod, each
arrival of jobs probes d random servers, and joins the one with the shortest queue. [40] first shows
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that if d — oo, then both the fluid limit and the state occupancy distribution of Pod coincides
with that of JSQ in many-server limit. It implies that Pod has zero waiting time in many-server
limit. [40] also prove that the diffusion limit of Pod is the same as JSQ if d = (VN log N) in the
Halfin-Whitt heavy traffic regime, but it does not imply a steady-state performance guarantee. For
the many-server regime, a line of works [17, 18] study the minimum required resources (such as
memory, and communication overhead) to achieve zero waiting time.

When the system load A can also approach 1 as N increases (i.e. many-server heavy-traffic
regime), [31] shows that Pod can achieve asymptotic zero waiting time if d = w (ﬁ) when
1— A = w(N~Y°). For a heavier-traffic regime, a recent breakthrough is the work [33]. In the sub
Halfin-Whitt regime (1 — A = w(N~%%)), this work establishes asymptotic zero waiting property for
a large class of policies including JSQ, JIQ and Pod with d = O( I(E iv). The result is later extended to
the Beyond-Halfin-Whitt regime (1 — A = w(N 1)) [32], and to Coxian-2 service time distribution
[30]. When 1 -2 = O(N™1), it is known that the waiting time must be positive for all load balancing
policies [3, 25]. When jobs are divisible, [40, 53] shows similar result for Batch Sampling [41] and
Batch-Filling [57], which are batch variants of Pod.

Proving optimality of load balancing algorithms is more complicated when servers are heteroge-
neous. Simple heuristics, nevertheless, have been proposed for decades. We note that a policy called
Never Queue policy which is very similar to JFIQ was proposed in [43]. The Never Queue policy is
analyzed in the case of a centralized queue, but not for load balancing systems. Many studies have
focused on the heavy traffic regime where the system load converges to 1 while the number of
servers is fixed. In this regime, JSQ was shown to be delay optimal by the drift method [14]. Later,
[60] proves that a threshold policy is heavy-traffic optimal. The stability and optimality in heavy
traffic of Pod for heterogeneous servers were studied recently by [29]. Moreover, [59] provides
a simple criterion for load balancing algorithms to be heavy-traffic optimal. The assumption of
heavy traffic can be relaxed to many-server heavy traffic regime when 1 — A = o(N™*) [28, 58].
Nevertheless, the results mentioned above do not imply fast mean response time in the many-server
regime, which is more practical for cloud platforms. For the many-server regime, work in [44]
shows that JIQ has asymptotic zero waiting time as N — oo. However, this does not imply optimal
mean response time since the service time of jobs varies in different servers. A recent work [19]
takes heterogeneity into account by studying a system with fast and slow servers. Although [19]
obtains mean-field limit for a variant policy of Pod, the result does not imply optimal mean response
time.

Load balancing with job-server constraints is a long-standing problem in the literature. To the
best of our knowledge, [16] was the first to study a model where different types of jobs can only
served at certain sets of servers. Their model allows service rates to depend on both the job type and
the server serving the job. The stability condition of a class of routing policies is examined when the
service speed is independent of servers or independent of job types, and when there are two servers.
When the system is not stochastic, [38] proposes an online load balancing algorithm with the
optimal competitive ratio. A recent paper Cruise et al. [11] considers the stability of JSQ on the same
model as ours while no delay guarantee is provided. In Cardinaels et al. [9], redundancy policies
are explored in bipartite load balancing. They exploit a product-form steady state distribution in
heavy traffic which implies heavy-traffic optimality. Besides these papers, there are also studies
for load balancing on graphs. In [8, 21, 47], the impact of the graph structure on the performance
of Pod is studied. Mukherjee et al. [39] utilizes a stochastic coupling method to prove that JSQ on
graph can have the same performance as JSQ in the classical load balancing model in both the
many-server regime and the Halfin-Whitt regime under certain graph constraints. Therefore, it
implies that JSQ can also achieve zero waiting time in the many-server regime for a graph-based
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model. However, the model in [39] only considers identical servers and homogeneous arrival rates
of jobs, which is a special case of this paper.

We note that if servers share a central queue, then the bipartite graph model turns into the
skill-based model studied in the call center literature [9, 20, 48]. It is shown in [20, 48] that the
stationary distributions under a random assignment policy and several redundancy policies have
product forms. One related result to us is that our model becomes the same as a skill-based model,
and thus enjoys a product-form stationary distribution, if we send a job to a connected server with
least amount of work in its buffer [9, 20]. Such policy is, however, impractical since workloads
of jobs in cloud platforms suffer from volatility. Also, as [20] has pointed out, it is non-trivial to
obtain bounds on mean response time just from the product-form results. A similar model with the
skill-based model is investigated in [46], where there are multiple queues and servers, and a job to
a queue can only be served by a server connected with the queue. Tsitsiklis and Xu [46] showed
that in the many-server limit, even a sparse bipartite graph can have a large capacity region and a
diminishing mean delay.

Our bipartite graph model also resembles other problems in the literature. One particular model
is the job-server affinity model for data locality problems studied in [10, 51, 54, 55]. In the job-server
affinity model, if an arbitrary job is served by a server with its data, it has a fast constant service
rate. Otherwise, it has a slow service rate, meaning that this sever has to fetch data from somewhere.
However, the setting is not suitable in the context of MLaaS we discussed above. Here ML models
are usually reconfigured on machines periodically, and a new request will only be routed to those
servers with needed model [24]. Also, previous studies on job-server affinity models can only
guarantee heavy-traffic delay optimality [51, 54, 55], which does not induce extremely fast mean
response time required in cloud platforms.

From a methodological perspective, our paper builds on the drift method to obtain performance
bounds. In this method, one exploits the fact that the steady-state expectation of suitable functions
of the state of a Markov process does not change with time. This idea was developed in [14, 35, 50]
for the heavy-traffic regime where the idea of using the tail bounds of [5, 27] to prove state-state
collapse or resource pooling was introduced. The recent work in [33] developed a parallel approach
for the many-server regime where they introduced the notion of generator coupling inspired by
Stein’s method in [7, 26, 45, 56] and designed a clever Lyapunov coupling to show that, for JSQ-type
policies, the number of homogeneous servers utilized is large when the backlog is large. We will
call this latter idea state-space collapse since it is similar to the notion of state-space collapse in
the heavy-traffic regime. In this paper, we introduce new ideas to expand the applicability of the
techniques [33] to networks of heterogeneous servers.

Contemporaneous to our work, in [42], the authors study the waiting time of JSQ(d) policies in
bipartite graphs in the limit as the size of the graph goes to infinity. While the papers are motivated
by related problems, the models and routing policies studied, and the results in the two papers
are different. The authors in [42] consider the case of homogeneous servers with infinite buffers,
and show that the performance of JSQ(d) in a bipartite graph with limited connectivity converges
to the performance of the fully flexible system in terms of queue length (or waiting time) under
appropriate connectivity conditions. In addition, they prove that the occupancy in steady state
of the limited-connectivity system converges to the steady state of the fully flexible system. Our
paper considers the case of heterogenous arrival and service rates with finite buffers, and shows
that the waiting time in the queue and blocking probability both go to zero in the large-system
limit under the JFIQ and JFSQ routing policies. Additionally, the techniques used in the two papers
are different. We use the drift method to obtain performance bounds for finite-sized systems while
[42] uses process-level convergence techniques.
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Fig. 1. An example of the bipartite graph model. In this instance, jobs from port 1 can only be routed to server
1 and server 2.

2 MODEL

We consider load balancing in a bipartite graph G = (L, R, E) where £ and R are the set of left
nodes and right nodes, respectively, and E is the set of edges between these two sets of nodes.
Nodes in £ are indexed as {1,2,---,L} with L = |£|, and nodes in R are indexed as {1,2,---,N}
with N = |R|. For anode ¢ € L (or r € R), define N (¢) (or Nr(r)) to be the set of right (or left)
nodes it connects with. W.L.O.G., every N1 (¢), Nr(r) is assumed to be non-empty. To distinguish
between left and right nodes, we may refer to a node ¢ € L as port ¢, and a node r € R as server r.
See Fig. 1 for an illustration.

Jobs arrive at port £ according to a Poisson process with rate A, and the goal is to route them
to one of the servers connected to £ so as to minimize a certain performance metric of interest.
It is assumed that every server has a finite buffer of size b. When a job is routed to a server that
is currently processing another job, this new arrival will be placed in the buffer. But if there are
already b jobs (including the one being served), the new arrival is blocked and lost forever. We
assume that jobs in the buffer are served in a FCFS manner. The queue length Q, of a server r is
the number of jobs in the buffer plus one if there is a job running on the server.

To reflect the nature of server heterogeneity in a practical load balancing system, we assume that
there are M types of servers. For a type m server, the service time of a job running on it is assumed
to be exponentially distributed with mean me The arrival processes to the ports and the service
times of jobs are assumed to be independent. Denote the number of type m servers by N, and the
type of a server r by t,. Equivalently, we can write N, = Na,, with a,, € (0,1), ¥¥_ a,,, = 1. We
assume that there is sufficient service capacity, i.e., Ay = Zﬁ;l Ae <N an'le Um®m. W.L.O.G., server
types are indexed in decreasing order of their service rates so that type one servers are the fastest,
e, assume p3 > fig >+ > pp > 0.

We study two routing policies, Join-the-Fastest-of-the-Shortest-Queues (JFSQ) and Join-the-
Fastest-of-the-Idle-Queues (JFIQ) in bipartite load balancing systems. For JFSQ, upon the arrival
of a job at port £, we select a server r connected to port £ with the shortest queue length, that is,
r € arg min,en; (¢) Or. If there are multiple such servers, we select the one with the fastest service
rate, i.e. largest y;, , and break ties (if any) by randomly choosing one server. Alternatively, if we
use JFIQ, we find an idle server r € N (£) with the fastest service rate. If there is no idle server, we
select one server from N (£) randomly. The question of interest in this paper is whether these two
policies can achieve optimal job delays (at least for a large system) under appropriate conditions
on the underlying bipartite graph. We note that our routing policies JFIQ and JFSQ reduce to JIQ
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and JSQ, respectively, when all servers have the same service rates. In addition, the communication
overhead of JFIQ in our system can be the same as that of JIQ in the classical load balancing system.
That is, JFIQ incurs at most one amortized communication message per arrival. We will discuss the
detailed implementation and associated complexity of JESQ and JFIQ in the appendix.

2.1 State Representation

Before we proceed to state our results, we first state the notation that we will use in the paper. We
use capital letters to denote random variables, such as Q, () for the queue length of server r at
time ¢, and small letters to denote realizations.

Clearly, for the system considered in this paper, the sequence {Q(#) = (Q1(t),---,On(¢))} forms
a Continuous Time Markov chain (CTMC). To ensure that there is a unique stationary distribution
of Q(t), we assume that the system starts at Q(0) = 0 = (0, - - ,0), and the state space is restricted
to the set of states reachable from state 0. Then since each queue is served in a FCFS manner, the
Markov chain is irreducible, and hence has a unique stationary distribution because of a finite state
space. For each state q = (g1, -, gn), let

1
smi(@) = < 1{r € R: gr > ity = m}|

be the fraction of type m servers with queue length at least i. Besides, define

b

Crn(@) = D smi(),

i=1
which is the normalized (divided by N) number of jobs in type m servers.

Notation: As mentioned earlier, capital letters are reserved for random variables (such as Q(t)
for queue lengths at time ¢), and small letters are for realizations (such as q for a queue-length
state). We add a line on top of a variable meaning that it is in steady state (such as Q). This paper
makes use of asymptotic notations. For two positive functions f(x), g(x), we write f(x) = 0(g(x))

if sup limy o0 % = 0; write f(x) = O(g(x)) if sup limy_, % < oo; write f(x) = Q(g(x)) if

inf limy 0 % > 0; write f(x) = w(g(x)) if inf limy_,c0 = oco. We summarize key notations
of the paper in the Appendix.

f(x)
g(x)

3 MAIN RESULTS

We summarize our main results in this section. To be specific, our results provide an upper bound
of the mean number jobs in the system under certain assumptions. This upper bound can directly
imply asymptotic optimality of JFSQ and JFIQ in the sense of minimum mean response time, which
we will define explicitly later. We also give a random graph construction of the graph G such that
G can satisfy Assumption 2 with high probability.

3.1 Upper Bound of the Mean Number of Jobs

Let K be the minimum value such that N X _ 1, a,, > A5. Such a K must exist by the assumption
of sufficient service capacity. Assume that Az = N 3% _ y,a,,(1 — B) where 0 < B < 1, and denote
A
A=%. Let
p- K-1

* % * m=1 umam
Clzab"'aCK_l:aK—l,C = >

Hk
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and let C* = X _ C* . Such definition is motivated by the mean-field limit of our system, which
will be illustrated later. The following result provides lower bounds for the expected service time
of an arbitrary job, and the mean number of jobs in the system.

PROPOSITION 3.1. Suppose that the buffer size is infinite, i.e., b = co. Let Z be the random variable
denoting the service time of an arbitrary job. Then for any stable policy, the mean number of jobs in
the system is lower bounded by NC*, and

- c*
E|[Z] > R (1)

The proof is provided in the appendix. Note that the assumption of an infinite buffer is to ensure
no loss of arrivals due to buffers. Although this paper assumes finite buffers, our results prove that
JFSQ and JFIQ have very low blocking probabilities. It means that our system under JFSQ and JFIQ
is close to a system with infinite buffers. Therefore, Proposition 3.1 is consistent with our main
results, and provides a lower bound on the mean response time for policies that can ensure nearly
zero blocking probabilities.

For every 1 < m < K, let R,,, be the set of servers of types 1 through m. Let ﬁ =pYK_ am, and

€ be a number in (0, g] ; we call € the approximation error since we will later use this parameter to
characterize the near optimality of our routing policies. For any subset 7 C R, define Ng(7) =
Urer N®(r) to be the set of ports connected to at least one server in 7, and D7 = g pp (1) Ar
be the sum of arrival rates at ports not connected to 7. Before stating our results on JFSQ and

JFIQ, we first make a few assumptions on the system. Let 7jx = I’f—;, TiM = ;7_1:4’ KM = 5—; To

=

reflect connectedness of the bipartite graph, we define p; = #, p2=5.In addition, let cfl, cfz to
be two constants that practitioners can control whose meaning would be clear in Assumption 2.

Specifically, they can be any value such that dy < 155_1;1(3’ dy < ef—bK.

AssuMPTION 1 (BUFFER SI1ZE). For a fixed approximation parameter € in (0, g], the buffer size b

1/5
. €N
satisfies 64/Tigk < b < (1152r1KlnN) J ’

AssumPTION 2 (WELL CONNECTEDNESS). The graph G satisfies the following conditions:
e Dy < Nd~1 forany I C Rg_1 with|I| > Npy;
e Dy < Nd, forany I C Rg with |I| > Np,.

In general, Assumption 2 requires that: 1) for jobs with only a few applicable servers, their arrival
rates are small; 2) for jobs with large arrival rates, they are connected to many servers. Such a
requirement enables that JFSQ and JFIQ behave almost the same as in a classical load balancing
system even though there are additional job-server constraints. We are now ready to state the main
result.

THEOREM 3.2. Suppose that Assumptions 1 and 2 hold, and that the routing policy is either JFSQ or
JFIQ. Then for a sufficiently large N, the following results hold:

(i) the expected number of jobs in servers of the first K types divided by N is bounded as

521ikb?

B eN @

<

K
max (Z Cm(Q) - (C* +e6), o)
m=1

(i) if K < M, the expected number of jobs in the system divided by N is bounded as

M

A 5tmbIn N 26
D Q)] £ €+ (14 Y ¢y g [TIMITIN gy [2OTIKTM, "
m=1 2 N BeN
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(iii) the probability pg that an arriving job is blocked is bounded as

B ds .\ 527,xb?
ps = A eN

(4)

3.2 Asymptotic Optimality

Theorem 3.2 may be difficult to interpret since there are several parameters involved in the results.
So let us interpret the result for an important special case which is perhaps the one that is practically
most relevant. Suppose that the normalized arrival rate A, the proportions of different types of
servers {an,}, and € are fixed. In most practical systems, the number of jobs that can wait at a
server is small, so let us suppose that b is a fixed constant satisfying Assumption 2. Then, from (3),
it is clear that the normalized expected number of jobs in the system is asymptotically equal to
C* + O(€) in the many-server limit. The blocking probability goes to zero provided dy = 0(1) and
the rate at which it goes to zero depends on rate at which dy decreases with N. From Proposition 3.1,
the lower bound on the normalized number of jobs in an infinite buffer system is C*. This suggests
that JESQ and JFIQ are near-optimal from the perspective of mean response time if the graph is
reasonably well connected; we make this argument more general (by allowing many parameters to
scale) and precise next.

To study the limit as N approaches infinity, we let {Gny = (LN, RN, En), N > 1} be a sequence
of bipartite graphs such that |[Ryx| = N and the buffer size of each server is given by by. Here, the
number of servers, N, is allowed to scale, but the server-type distribution (e, - - - , aum), and the
service rate of each type of servers, (py, -+, ip), i1 > -+ > py, are fixed. Further, the total arrival
rates at ports in Ly, s, is assumed to be equal to N Zﬁzl Um@m (1 — BN) for all Gy. As before,
we can define a sequence of parameters {ey, N > 1} that quantify the approximation error where

en € (0, ﬁTN], and ﬁN = fn Zﬁzl am. Now we can discuss the asymptotic performance of a routing
policy as N — oo.

Proposition 3.1 provides a lower bound on the expected service time of a job in the system with
infinite buffers. We thus have the following definition of an (asymptotically) optimal routing policy
in the bipartite load balancing system.

Definition 3.3 (Optimality in the Mean Response Time Sense). A stable routing policy is asymp-
totically optimal in the response time if the mean response time of jobs converges to CT and the
blocking probability goes to zero when N — oo.

We can see that optimality in the mean response time is a stronger metric than the common
zero-waiting property discussed in the literature [17, 33, 44]. With this optimality, not only an
arriving job has asymptotically zero waiting time, but it also has the minimum possible mean
service time.

Then Theorem 3.2 immediately implies that both JFSQ and JFIQ are asymptotically optimal if
the load of the system is moderate and the graph Gy is suitably well connected.

COROLLARY 3.4. Suppose that ey is both 0(1) and w(In(N)N~°%), and that both Assumptions 1 and
2 hold for Gy when N is sufficiently large. Then as N — oo, both JFSQ and JFIQ are asymptotically
optimal, and the expected queueing delay converges to zero for both policies.

Due to the relationship between fx and e, it is not difficult to see that asymptotic optimality
holds for arrival rates upto the sub-Halfin-Whitt regime. We refer the reader to the appendix for a
proof of Corollary 3.4.
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3.3 Random Graph Models

We now discuss when a bipartite graph can satisfy Assumption 2 in random graph models. Suppose
the set of ports £ and the set of servers R are fixed, but connections between them, i.e., the graph
G, is not determined. This section considers a random graph G where port i connects with server j
with probability z;;. We devise an explicit construction of z;; and show that such a random graph
can satisfy Assumption 2 with a high probability. Our result first provides the construction of z;;
when ports can have different arrival rates. Later, by restricting the scope to homogeneous arrival
rates among ports, we give a better construction where the graph G can have fewer edges. We are
now ready to state our results.

THEOREM 3.5. LetH; = 2in2(N+L)/N for j € {1,2}. Consider the following construction of the graph

G. For each port ¢ € L and each server r € R, the probability that they are connected is given by

%gj, 1) where j = 1ifr € Rx_1 and j = 2 ifr € Rx\Rk-1. Then G satisfies Assumption
j

2 with probability at least 1 — 2~ N+~ The expected total number of edges used in Gy scales as
o( (N+L)b5)
€? :

Zpr = min (

Next, we discuss the special case of homogeneous arrival rates.

THEOREM 3.6. Suppose that all ports have the same arrival rates, that is, A, = A for all € € L. Then

following the same construction of graph G in Theorem 3.5 but with H; = 6 (— Inp; + % In Zf)

for j € {1,2}, it holds that G satisfies Assumption 2 with probability at least 1 — 2(NA;1)_1. The total

number of edges in Gy scales as O ((N+—ELW In g)

REMARK 1. The previous two theorems indicate that to achieve asymptotically optimal mean
response time and asymptotic zero waiting probability, the average number of connections of each port
is only O(e—lz) for heterogeneous arrival rates, and O(% In %) for homogeneous arrival rates, given that
L=Q(N),b=0(1). When1/(1 — 1) = O(1), we only require € = 0(1). Then the average number of
edges connected to each port becomes w(1). Therefore, for achieving very small loss probability and
near-optimal response times, the number of edges in a random graph need to be only sparse compared
to a fully connected graph.

4 PROOF OF THE UPPER BOUND AND OPTIMALITY RESULTS

In this section, we provide the proofs of Theorem 3.2. These results respectively bound the mean
number of jobs in a finite-size system and show the asymptotic optimality for JFSQ and JFIQ in the
many-server limit and the sub Halfin-Whitt regime.

4.1 Proof Sketch
Ahead of the complete proof, we first provide a sketch of the proof reflecting intuitions behind
it. Recall that the goal is to bound the mean number of jobs in the system divided by N, given by
E[Zh_; Cm(Q)]. Here by definition, Cp, (Q) = Z?zl Sm,j(Q). Our proof starts with the following
observation about the mean-field limit for JFSQ and JFIQ in the heterogeneous system.
4.1.1  Mean-Field Limit. 1deally, if the load A is a constant, then as N — oo, it holds that
o, m < K
$sm1(Q)  {Cr. m =K and smj(Q) 0, Vm=1...M,j=2...b. (5)
0,m>K
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Roughly speaking, this limit tells us that all the first K — 1 types of servers are busy, some servers
of type K are busy, and all the servers with types greater than K are idle.

The intuition behind (5) is as follows. In the regimes we are considering, there are many servers.
Therefore, a certain fraction of them must be idle. Then by the definition of JFIQ and JFSQ, all arrivals
of jobs are routed to idle servers, at least in a fluid model. Therefore, the scaled number of waiting
jobs (i.e., not in service), an/lzl Z?:z Sm,j(Q) must converge to zero. For 511(Q), -+, Sam,1(Q), JFIQ
and JFSQ always route jobs to fastest idle servers. Therefore, it must be the case that s,,1(Q) are
filled from 1 to M until ¥™_, 1,,5,1(Q) = A. That is to say, the total departure rate is equal to the
total arrival rate. Therefore, we can ‘guess’ that the mean-field limit has the form (5).

Based on this limit, the scaled mean number of jobs can be decomposed as

M K M
D Cn(Q]=E| ) Cn(Q) > cm@l : (6)
m=1 m=1

m=K+1

4.1.2  Lyapunov Drift Arguments. The drift argument starts by considering a Lyapunov function g
and setting its drift in steady-state equal to zero. Since we are considering continuous-time Markov
chains, this is equivalent to saying that E [Gg(Q)] = 0 where G is the generator of the Markov
chain (defined explicitly later). Initially, let us focus on the total queue length in the first K types of
servers (scaled by N) and thus, choose the Lyapunov function to be a function of the scaled total
number of jobs in these servers and their queues, which we will call x. By an abuse of notation, we
will rewrite the drift as E [Gg(x)] = 0. However, this drift may be hard to analyze. Instead, suppose
that the system was a simple deterministic fluid model of the form x = —A for an appropriately
A > 0. The motivation for considering this fluid model is that, in the large-system limit, our system
behaves like a single-server queue with simple fluid dynamics. If this fluid limit were the true
system, then the drift of g becomes simply —¢g’(x)A. We add and subtract this drift from the drift of
the stochastic system to obtain E [Gg(x) — g’ (x)A + g’ (x)A] = 0, which can be rewritten as

E[g'(x)A] =E [Gg(x) - (-g'(x)A)] .

We are interested in getting a bound on the steady-state expectation of h(x) = (x — C* + €)* where
€ controls the approximation error. Therefore, we choose g such that g’ (x)A = h(x) (this equality
is sometimes called Stein’s equation). Thus, the drift equation becomes

E[h(x)] =E[Gg(x) - (=g'(x)A)].

Now, it is easy to see that we can bound E [h(x)] if we can show that the drift of the Markov
process E [G(g(x))] is approximately equal to —g’(x)A. The rest of the proof involves studying
E [Gg(x) — (=g’ (x)A)] by choosing A = 16 where § > 0. Define

E =E +E

K
Wi(q) = Z FimSm.1(Q),
m=1

which is the rate that a job completion will happen if we only consider servers of the first K types.
In Lemma 4.3, we show that E [Gg(x) — (—¢g’(x)A)] is approximately equal to

K K
1 {Z Cm(Q) >C'+e+ %} h (Z Cm(Q)
m=1 m=1

We want to upper bound this expression by a quantity which is small when N is large. Note
that Zﬁ:l Cm(Q) is the total scaled queue length in the first K types of servers and W(Q) =
Zﬁzl UmSm,1(Q) can be interpreted as the departure rate from these servers. Thus, the above

! E
16

(/1+u15—W(Q))l~ (7)
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expression can be upper bounded by a small quantity if the following holds: whenever the total
queue length is large, the departure rate exceeds the arrival rate with high probability.

To establish this fact, the mean-field limit (5) motivates us to show that s,,1(Q) ~ a,, for m < K
and sg,1(Q) ~ Cy. To be concrete, we show a two-stage state space collapse result through the
following two Lyapunov functions (omitting extra technical terms):

y K-1 b K-1 K-1

Vi(q) = min (Z 2 5mi(@+ Ck(@), Y am = ) sm,1<q>) (8)

~ w0

75(q) = min (Z PERCIDNETILEDY sm,l(q)) : 9)
m=1 j=2 m=1 m=1

The well-connectedness condition in Assumption 2 and the routing policy (JFSQ and JFIQ) ensure
that both of them have negative drifts when they are sufficiently large (Lemma 4.4 and Lemma 4.5).
We now provide some intuition to explain how the well-connectedness condition plays a role in
establishing the negative drift of these Lyapunov functions. We consider V;, the explanation for the
other Lyapunov function is similar. If V; is large, it implies that both terms inside the min in (8) are
large. In particular, by focusing on the second term, we note that a large V; implies that the (scaled)
number of used servers ¥X_ s,,1(q) is small. Equivalently, the number of idle servers is large. The
well-connected condition simply states that the arrival rates to large subsets of servers is large.
Thus, if V is large, the number of empty servers is large which implies they have a large arrival rate,
which in turn implies that the number of empty servers quickly decreases. The negative drift of V;
and V, can be used to establish geometric tail bounds (Lemma 4.6) using standard drift arguments
to show that they are small with high probability.

Observe that when YX_ C,,(q) > C* + ¢, these two Lyapunov functions are both equal
to the second term on their right hand side. Then in this case, YX!s,,1(q) ~ X! a,, and
St Sm1(Q) & Yhoy Cr, + ik . It then implies sg 1 (q) ~ Cj, + 11 8. Now that Y, pmC, = A, it
holds W(q) ~ A + p;6 with high probability. We thus prove that (7) should be small, and it leads to
a bound on the scaled mean number of jobs in the first K types of servers.

Now for the remaining types of servers, the mean-field limit (5) indicates that almost all of them
are idle. We thus try to bound this third Lyapunov function, Y™ Cm(Q). From the mean-field

m=K+1

limit, we know that X _ s5,,1(Q) ~ C*. Therefore, approximately N (Zﬁzl Qm — C*) servers of
the first K types are idle. Therefore, Assumption 2 ensures that very few jobs are routed to the
remaining types of servers under JFSQ and JFIQ. By utilizing a conditional geometric tail bound
(Lemma 4.6), we manage to show that Z%:K +1Cm(Q) is small with high probability, and finally
obtain a bound on its mean.

For the complete proof of Theorem 3.2, since our theorem consists of three parts, we prove each
of them in order, and combine them together at the end of this section.

4.2 Bound for the First K Types of Servers

The first result, which bounds the number of jobs in the first K types of servers, is the most
important part in the theorem, which is restated as follows.
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LEMMA 4.1. Under Assumption 1 and Assumption 2, the expected number of jobs in servers of the
first K types divided by N is bounded as

K
E | max (Z Cm(Q) — (C* +e), O)l < SZTI—KbZ (2)

eN
m=1

if the routing policy is either JFSQ or JFIQ.

Proor. Throughout this proof, we assume all assumptions in Lemma 4.1 are satisfied. Recall
that the metric of interest is E [max (Zﬁ:l Cm(Q) — (C*+e), 0))] , where C* = In<1=1 C;,. To sim-

plify the notation, let 5 = C* + ¢, and denote h(x) = max(x — #,0). Our goal is thus to bound
E [h(Zﬁzl Cm(Q))]. The proof is motivated by the framework introduced in [33], and can be
divided mainly into three parts, generator coupling, gradient bounds and state-space collapse.

Generator Coupling. We couple our system with a fluid model that is simple, but can well
approximate the evolution of (XX _, C;,(Q)). In particular, consider a fluid model X = —1; 8 where
8 = £X €. Let g(x) be the solution to the following Stein’s equation of the fluid model,

6411 b2
169’ (x) = h(x). (10)
The solution is unique, and is given by
(x= .0 (x=1.0) b
max(x — 1, , max(x — 1, "

glx) = T g () = T () = 1 (1)

110 ud /ﬁ x>n.

1

The next step is to couple our system with the fluid model through this Stein’s equation.

To do so, recall that the system is a CTMC defined on queue lengths of servers, Q(t). let G be
the generator of our system such that for a queue state q, and any function V defined on the state
space,

GV(Q) = D rqq (V(@) - V(@) (12)

q

where rq ¢y is the transition rate from state q to state q". It is clear that Gg(q) serves as an analog of
the drift of function g at state q in a discrete-time Markov chain as in [14]. To couple our system
with the fluid model, we first need the following property, a key insight from [14] and [33].

LEMMA 4.2. The expectation E [Gg(z“ﬁ:1 Cm(Q))] is equal to 0.

Then the two systems can be coupled by seeing that

K K
E h(Z Cm(Q)||=E |9’ (Zcm(Q)) (u15)l (13)
K K
=E Gg(Z cm@))—g’ (Z cm@) (—ulfs)l. (14)

As a result, to bound E [h (Zﬁ:l Cm(Q))], it is equivalent to bound (14).
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Gradient Bounds. We now utilize the explicit form of g(x) in (11) to bound (14). First by
definition, it holds that for a state q,

Gy mZI:‘JICm(q)) =;rq,qf (g (;Cm(q’)) (Z Cm(q)))

K K
=As(1 - Pr(q)) (g (Z Cm(q) + %) - (Z m(q))) (Arrival transitions)
m=1 m=1

(15)

K K
+NW(q) (g (Z Cm(q) - %) -g (Z Cm(q))) (Departure transitions)
m=1 m=1 (16)

where Py (q) is the probability that an arriving job is routed to a server of type greater than K, and
W(q) = Zﬁ:l UmSm.1(q). Then by (14), we can get

K K
h(Z cm(@) E|g (Z cm(@) (115) (17)
m=1 m=1
K o1 K _
+As (g (mzl Cm(Q) + N) -9 (,,Z{ Cm(Q))) (18)

K K
HNW(Q) (g(z Cn(Q) - %) —g(z cm(c;»))l (19)

where we omit the term P;(Q) from (16) since g(x) is an increasing function by (11). Now to
simplify the equation, we can do Taylor’s expansion on (18) and (19), and apply gradient bounds of
g(x). The result is summarized as follows whose proof is provided in the appendix.

LEMMA 4.3. It holds that

) ¢ > o ! 38b%r
h (T; Cn(Q)|| <E|1 {; Cm(Q) 21+ ﬁ} (Z Cm(Q)) (18 + 1 —W(Q)) _NlK
(20)

The remaining step is to bound the first term on the right hand side in (20), which is the main
part of this proof. The key insight is that as long as W(q) > A + y18, it holds that the contribution
of q to the first term would be at most zero. Furthermore, this property only needs to hold when
K Cm(q) =+ % due to the indicator function. To justify this result, we establish two state
space collapse results as follows.

State Space Collapse. Recall that YX _ C,,(q) is the number of jobs in servers of the first K
types divided by N. The intuition is to show that when this number is large, it holds that with high
probability,

s11(q) = Cp, -+, sk-11(q) = Cx_ysk1 > C (21)

That is to say, almost all servers of the first K — 1 types are busy. And enough type-K servers are
busy such that their total departure rates (or works produced by these servers) are sufficient for
the total arrival rate Ay.
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The following lemma indirectly shows that unless X _, C,,,(q) is small, ¥X _ s,,1(q) = 32X 1 ar.

In particular, it designs a Lyapunov function closely related to the above property. Due to space
limitations, the proof is deferred to the appendix.

LEMMA 4.4. Consider the following Lyapunov function

K-1 b -1 K-1
Vi(q) = min Z s (@ + ) D smi(@), Z $ma(Q) . (22)
m=1 j=2 m=1 m=1

It holds that if Vi(q) > By := 116, then GV;(q) < ~42.

In addition to Lemma 4.4 that focuses on the first K — 1 types of servers, the following lemma
provides another Lyapunov function. This function is later used together with Lemma 4.4 to show
that if YX_ C,,(q) is large, then a certain number of type K servers are busy. It then complements
the goal in (21). The proof of this lemma is similar to that of Lemma 4.4, and is provided in the
appendix.

LEMMA 4.5. Consider the following Lyapunov function

K
V2(q) = min ZZsm,@ ZC +By+311k6 = ) sma(q) (23)
m=1 j=2 m=1

where § = 118, and By = %e + 4. It holds that if Vo(q) > B,, then GV3(q) < —‘%S.
To apply the above two lemmas, we need the following geometric tail bound from [53], which
originates in [5, 50]. This lemma translates the fact that a Lyapunov function has a negative drift to

the property that the function is within a certain region with high probability.

LEMMA 4.6. Consider a continuous time Markov chain {S(t) : t > 0} on a finite state space S.
Assume that it has a unique stationary distribution. For a Lyapunov functionV : § — [0, +00), define
GV(s) = Ygestss (V(s') — V(s)) wherersy is the transition rate from state s to s’

Suppose that

Vmax = sup  |V(s) = V(s')| < 00; fiax = max {0, sup Z rss (V(s") =V (s)) < c0.
8,8’ €S: rgy>0 seS "V (s)>V(s)

Given a set &. If for some B > 0,y > 0,& > 0, it holds: 1) GV (s) < —y whenV(s) > Bands € &; 2)

GV(s) < £ whenV(s) > Bands ¢ &,
then for every positive integer j, if S is the steady-state random variable, it holds

J
P{V(S) > B+ 2vpayj} < (ﬁ“—a) +(5+1)P{s¢8}. (24)
frax + ¥ Y
Based on Lemma 4.6, we can bound the probability that V;(q) or V2(q) is large in the following
result.

LEMMA 4.7. Let y = 9671k b® In N. With the same notation in Lemma 4.4 and Lemma 4.5, it holds

that

P{VI(Q) > B + %} < N‘Z;P<VZ(Q) > By + %} < N7 (25)

Proor. Note that under the notation in Lemma 4.6, we have for both V;(q) and V2(q), Vimax = #
and fiax < p1. We first bound P {Vl (qQ) = B + %} Since by Lemma 4.4, when V;(q) > By, it holds
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GVi(q) < %;5. Then by taking the set & to be the empty set and taking j; = % log N, Lemma 4.6
shows that

s\ 15
P{Vi(q) > By + 2Vmaxii} < [1+ | <exp|-L2) =N (26)
2b 4b
where the last inequality comes from the fact that In(1 + x) > x/2 for x € [0, 1]. We can easily
3
verify that 2vy.yj1 = % . 4i’;f = % Similarly, take j, = % log N for V,(q). Together with Lemma
4.5, Lemma 4.6 shows that
” Jj20
P{sz(q) ZB2+2Vmasz} < (1+E) < exp —%) :N_z. (27)
We complete the proof by noticing that 2vyax ja = % . 22’; 53 < % ]

Completing the Whole Proof. Finally, combining Lemma 4.7 with Lemma 4.3 help us complete
the proof. To see why, recall that it remains to bound

E

K K
1 {Z Cn(Q) 2 1+ %}g (Z cm(@) (A+md - W(Q»l : (28)
m=1

m=1

Let event D = {V;1(Q) < By + %} N{V2(Q) < B, + %} It holds that
u 1

1 Cn(Q) =n+—19
S cn@ = e s

K K
L {Z Cn(Q) 2 7+ %}g (Z cm@) (24 8~ W(Q))

where the first inequality is by the law of total probability and the fact that ¢g’(x) is a positive
increasing function, that ¥X_, C,,(q) < b for all possible q, and that A < y, and the second
inequality is by Lemma 4.7 that shows P{D} < %

Therefore, it is sufficient to bound the first term in (29). The following lemma shows that this
term is indeed non-positive.

(28) <E +g' (b (1 +8P{D}

K
>, cm(Q)) (A+md -~ W(Q))|D
m=1

2b

LEmMA 4.8. For any q such that Vi(q) < By + 2% and V3(q) < By + &, it holds that
K
13 Cl@) 2+t (46— W(g) <0. (30)
m=1 N

PrOOF. W.L.O.G., we can directly assume Y5 _ C,,(q) > n+ % Otherwise, (30) is already zero.
Then the key step is to show W(q) = XX | pmsm1(q) > A + 116. By the definition of V;(q) in
(23), since Zﬁzl Cm(qQ) = n+ %, it holds that V1(q) = Zln(l;i Cr, - ﬁ;i sm.1(q). Furthermore, as
Vi(q) < B + ELN and C, = a,, for m < K, it holds that

K-1

K-1
Z si1(q) = Z am — (B1 + %)- (31)

m=1

Since sp,1(q) < a;, for all m, the total departure rate of servers of the first K — 1 types is at least

K-1 K-1 ¥
Z ,Umsm,l(q) = Z Hm®m — H1 (Bl + _N) ’ (32)
m=1 m=1 €
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Then for sk 1(q), recall the definition of V2(q) in (22). To show that V2(q) is equal to the second
term in its definition, note that
= 1 1 2T1KE
By + 3118 = §E+ TS + 3758 < 5t S€
Then since Zm 1Cm(q) 2 ZK Cm +E+ ,it holds ZK Cm(q) = ZK Ci,+By+37:k 5. Therefore,

V2(q) is equal to Zm 1Ch+ B+ STlK(S Z 1Sm,1(q), the second term in (22). By assumption,
V2(q) < B + ;. As aresult,

K K
% N X
r; Sm,1(q) = r; Con +371k0 = 2. (33)
and
SK’l(q) > C}k( + 3T1K5 — m (34)
because s,,1(q) < am = C,, for m < K. From (32) and (34), it holds
K-1 K-1 e
" N 1
W(q) = ; HmSm,1(q) + pxsk,1(q) = ’; HmOm + pxCr + 3uxt1x6 — 1By — 2_N (35)
a0 1928p°
>a+28s - TR Ny 2 A+ w6 (36)
HK HKEN
2
where the last inequality is because p; > pg, and 5—;{5 lgzﬂ”‘#lﬁ by Assumption 1. The

inequality (36) immediately implies the desired result. O

To conclude the proof of Lemma 4.1, by Lemma 4.3, the bound in (29) and Lemma 4.8, it holds

38h2 Tk _ 12030 2b 38b rx 52b%rik
(ZC(Q))l<—(1 0) + =t S g < T (37)

]

4.3 Bound for the Remaining Servers

Since Lemma 4.1 only bounds the mean number of jobs in servers of the first K types, we need the
following result for the remaining servers in the system. This result shows that very few jobs will
be served by servers of the last M — K types. Note that if K = M, then Lemma 4.1 already bounds
the mean number of jobs in the system.

LEMMA 4.9. Suppose K < M. Under Assumption 1 and Assumption 2, if N is sufficiently large, the
expected number of jobs in servers of the last M — K types divided by N is bounded as

M [
Z m(Q)l <%0 5T1Mb InN 26T1KTIM (38)
\/ ﬂeN

m=K+1
if the routing policy is either JFSQ or JFIQ.

E

Proor. To prove this result, let us consider the Lyapunov function V3(q) = f\n/I:K +1Cm(q). Then
by showing that this function has a negative drift when outside of a region, we can obtain a bound
on its expectation. To do so, define Bs as

1 (.
B3 = — d2b+ Hilim
Hm

(Sbln(N) . 416r1Kb4) 39)

N /?GN
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Let &k = {q: XX_ Cn(q) < C* + g} It holds that Q lies in Ex with high probability by the

following lemma whose proof is in the appendix.
LEMMA 4.10. For any A > L it holds P{>K_ Cn(Q) > C* + A} < %.

By Lemma 4.10, it holds that P{Q ¢ &k} < zozfe—lflbz. Then it is natural to discuss the drift of V3(q)

when it is greater than Bs by conditioning on whether q is in Ex or not. The result is summarized
in this lemma, and the proof is in the appendix.

LEMMA 4.11. When V3(q) > Bs, it holds that

o ifq € &k, the drift is bounded as GV3(q) < —BsfM +dy;
e ifq ¢ Ek, the drift is bounded as GV3(q) < 1.

We now apply Lemma 4.6. Under the notation of that lemma, it holds vax = N s fmax < i for
V3(q). Lety = 3” M _ d,, and take jz = 2220 In(N) . Applying Lemma 4.6 and using Lemma 4.11, it

holds that

] - 2
P{VS(Q) >B3+%} < (1+1) (lﬂ+1) P{q ¢ &k} SN—2+416ﬂ1T1Kb (40)
Y

H peN

where the last inequality is because y < p; when N is sufficiently large. Furthermore, the expecation
of V3(Q) can be bounded as

_ _ _ 2j _ _ 2j - 2]
B [Vi(Q)] < B |[Va(QVa(Q) < By + 32| +E [Va(Q)|Va(Q) > By + | P {Va(Q) >By+ ﬁ}
(41)
41 In(N 416 b?
SB3+M+Z,(N2+&) (42)
YN BeN
5u; In(N 416 b
< B, 2 InN) | H16uTk (43)
YN ﬁeyN
The definition of B; in (39) and that of y immediately give the desired result. O

4.4 Throughput Guarantee and the Proof of Theorem 3.2

The next lemma provides a bound on the blocking probability, and thus characterizes the effective
throughput of the system. Due to space limitations, the reader is referred to the appendix for the
proof.

LEMMA 4.12. Under Assumptions 1 and 2, the probability pg that an arriving job is blocked is
bounded as

dz 527.'1]([72
ps = /1 eN

Wrapping up above lemmas, we can conclude the proof of Theorem 3.2.

(4)

ProOF oF THEOREM 3.2. The first result and third result in Theorem 3.2 corresponds to Lemma
4.1 and 4.12. For the second result, notice that Lemma 4.1 implies

Z Cm(Q)

m=1

52T b
<Cyet+ K

(44)
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Then combining (44) and (4) in Lemma 4.9 and the assumption that dy < eé’ff in Assumption 2, it
holds
M K M
B[ Cu(Q|=E|D Ca(Q|+E| ) Cm(Q)l
m=1 m=1 m=K+1
<Cres 527k b L& 2\/5r1MblnN 4 gp?, |20TKTIM
eN Hm N PeN
5timbIn N 26
<[ L [T e R T
2im N BeN
which is exactly (3). O

5 PROOF OF THE RANDOM GRAPH RESULTS

In this section, we prove Theorem 3.5. Since similar proof holds for Theorem 3.6, we provide that
proof in the appendix.

Proof Sketch. The result is proved by showing that almost every pair of large enough subsets
of L, R shares edges between the two sets because of the random graph structure. To show this
fact, we first bound the probability that two given subsets are disconnected. Then the union bound
concludes the proof since the total number of pairs of subsets is given by 25V,

5.1 Proof of Theorem 3.5

Proor. Recall the definition of py, pa, dy, d; in Assumption 2. W.L.O.G., assume Np; is an integer
for j = 1, 2. Otherwise, we can raise p; to satisfy this condition since the size of a subset must be
an integer. Suppose that we generate a bipartite graph G as in Theorem 3.5. Let C; be the event
that G violates the j—th condition in Assumption 2. We bound P{C;} separately. To simplify the
notation, let us denote R! = Rx_1, R? = Rk. And let us write z,, be the probability that a port ¢
connects with a server r in the graph G.

First, define Dy 1 as the event that a subset K of L has no edges with a subset 7 of R. Then for
j=12,

C = U Dy 1. (45)
KCL: Toex Ae>Nd;
ICR/: |I|>Np;
Fix j € {1,2}. Let K be any subset of L satisfying > ,cqc Ae > Ncij, and J be any subset of
R/ satisfying || > Np;. We want to bound P{Dy 7 }. Notice that by Assumption 2, it holds
p1 < pa, d; < dy, and I‘_% > 10_1711. Then by the construction of G, if there is a port ¢ in K such

that A, > Na.;jHj, this port must be connected to all servers in R/, meaning that P{Dy 7} = 0.
Therefore, we can assume that such port does not exist. Recall that z;, is the probability that port ¢
is connected with server r. It holds that

=[] []0-200 o[- 3 Yoo | <o - L0 20). o
J

teKrel teKrel teKrel

and thus
Zle?( Ae Hj

J

P{Dx.r} < exp|-I7]

) < exp(~H;Np;) < 272IN+D) (47)
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The first inequality is because In(1 + x) < x for x > —1, and z,, < 1. The second inequality is from
the construction of G. The third inequality is from the definition of K and 7. It thus holds that
P{C;} < 2N*L272(N*L) = 5=(N*L) by the union bound. Use the union bound once again, it holds
P{C1 UGy} < 2= (N*L-1),

For the total number of edges used in Gy, recall the definition of py, p», cil, 022 for a particu-
lar system in Assumption 2, and Hj, H; in Theorem 3.5. It holds that ﬁ = O(m) and

d

7= O(m) Note that there are four types of connections on graph Gy as per Theorem

3.5, we bound their numbers of edges separately. First, the number of ports with 1, > N g—l is

bounded by Nﬁ ZHl =0O( bs(g%) N) because Ay < Npj. Therefore, the number of connections from
1

them is bounded by O(%) since there are N servers. The same result holds for ports with

Ae =2 N izz Now for the remaining ports, the expected number of edges is upper bounded by

22 per N A (Hl + = ) N=0 (bs (g%)) . Then to sum up, the expected number of edges in Gy scales
as O (#) O

6 SIMULATION RESULTS

In this section, we present simulation results for JFSQ and JFIQ. In particular, the following two
settings are explored:

e we compare the mean response time of JESQ, JFIQ with a recent paper [19] in a fixed-size
system;
e we study the convergence of JFSQ and JFIQ on a random bipartite graph in the many-server
regime.
We will also compare our policies with JSQ and JIQ where we assume that ties in those policies are
broken at random. Detailed results are as follows.

6.1 Performance in a Fixed-Size System

We first study one particular setting as in [19]. There are 100 servers with fast service rate %, and
400 servers with slow service rate %. Jobs arrive into the system in a Poisson process of rate Ay, and
can be routed to any server. We simulate an infinite buffer system by setting the buffer size at each
server to 10%. We compare JFSQ and JFIQ with JSQ, JIQ and JSQ-(2,2) introduced in [19]. JSQ-(2,2)
is similar to Pod, and it is shown in [19] to perform better than other algorithms in light traffic. In
addition, the communication overhead of JSQ-(2,2) is also as low as that of JFIQ. We refer the reader
to the appendix for a detailed description of JSQ-(2,2). Besides the lower bound result in Theorem
3.1 is plotted as a baseline. Define the system load to be 22 55+ By increasing the system load, we can
obtain Fig. 2. Clearly, Fig. 2 shows that JFSQ and JFIQ can achieve consistently fast mean response
(very close to the lower bound) ranging from light traffic to heavy traffic (the system load is around
0.98). For other policies, JSQ-(2,2) performs well in light traffic. However, JIQ and JSQ could have
relatively poor response time in light traffic, although JIQ is shown to have asymptotically zero
waiting time [44].

6.2 Convergence in the Many-Server Regime

Next we explore the convergence behavior of JFSQ and JFIQ when there are job-server constraints.
In particular, suppose there are N servers in the system. We assume there are four types of servers
with the same amount of each type. Service times are all exponentially distributed, but with different
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service rate such that y; = 271, i = 1, 2, 3, 4. We also study the convergence of JSQ and JIQ. JSQ-(2,2)
introduced above is not studied because it is designed for systems with two classes of servers.
The number of ports is set as L = N1-3, The arrival rate to each port is assumed to be homogeneous,

and is equal to ATZ with Ay = 0.9 X%, %. Denote the system load as A = 0.9. In the corresponding

bipartite graph, each port connects with each server with probability If[(—'lln_% In ﬁ according to

Theorem 3.6. The buffer size in this case is set as b = 5 because in many-server systems, we
expect there to be little queueing and one should not need a large buffer size. Fig. 3 presents the
convergence behavior of the mean-response time for JFSQ, JFIQ, JIQ and JSQ. It is interesting
to notice that both JIQ and JFIQ suffer from slow mean response time when the system is small.
But when the number of servers is 2!! = 2048, the mean response time of JFSQ and JFIQ is very
close to the lower bound. Such requirement on the number of servers is fine since modern cloud
platforms can easily possess tens of thousands of servers [2]. On the other hand, both JSQ and JIQ
also converge as N increases. Nevertheless, their mean response time is not optimal because they
neglect server heterogeneity. Note that when the system is large, the blocking probability is nearly
zero, even with a small buffer size. The convergence of the blocking probability is provided in the
appendix. The setting is also extended to hyper-exponential service time distribution. For this new
distribution, we show that although JFSQ and JFIQ have slow mean response times initially, their
convergence behavior is similar to Fig. 3 when N increases. We refer the reader to the appendix for
details.
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7 CONCLUSION

In this paper, we studied the performance of two load balancing policies, JFSQ and JFIQ for load
balancing on a bipartite graph. For a "well-connected" bipartite graph, we presented a bound on
the mean response time for finite-size systems, which implies asymptotic optimality in the mean
response time in both the many-server regime and the sub Halfin-Whitt regime. A by-product of
this paper is a novel technique for bounding the distance to the mean-field limit of heterogeneous
load balancing systems. In the analysis, we established three state-space collapse results to show
that the system behaves similar to its mean-field limit. We also presented how to construct a sparse
"well-connected" bipartite graph, where each left node is only connected to «w( ﬁ) right nodes

when arrival rates are heterogeneous, and only w(ﬁ In ﬁ) nodes for homogeneous servers,
given that the buffer size is a constant, and the number of left nodes is at least that of right nodes.
However, it is unknown whether these two bounds are tight. In addition, a more general model
than ours is to allow the service speed to depend on both the job types and the servers. Analyzing
the performance of such a model is still an open problem, which we leave for future research.
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A IMPLEMENTATION OF JFSQ AND JFIQ

In the following, we discuss how to implement JFSQ and JFIQ and their associated time complexity
and communication overhead.

We first consider JFSQ. Upon the arrival of a job at port ¢, the dispatcher requests the queue
lengths from all servers that are connected to port ¢£. Then we find the server with the shortest
queue length. If there is a tie, we choose the one with the fastest service speed. In this way, the
time complexity and the communication overhead per arrival is O(|NL(¢)|), where Ny (£) is the set
of servers connected to port £.

Now for JFIQ, we maintain N variables I,,1 < r < N in the memory of the dispatcher where
I, = 1 if server r is idle and I, = 0 if server r is busy. Then when a job arrives at port ¢, we find
r € Np(£) such that I, = 1 and p, is the maximum. If there is no such r, we let r to be a random
server in N (£). We then route the job to server r. In addition, I, is set as zero. Moreover, when a
server becomes idle, it sends back a message to the dispatcher, and I, is set as one. We next analyze
the complexity of JFIQ. First, the time complexity per job is the same as JFSQ, and is equal to
O(|NL(£)]). Second, we can see that the amortized number of messages per arrival between servers
and the dispatcher is at most one (and is fact smaller than that). This is because an arbitrary arrival
can incur at most one message. In a nutshell, for JFIQ, the time complexity per job is O(|NL(¢)])
and the averaged number of messages per job is at most one.
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B NOTATION TABLE

In Table 1, we summarize important notations used in the paper.

Table 1. Notation Table

45:25

Notation | Definition

L The set of ports

R The set of servers

E Edges between ports and servers

L The number of ports

N The number of servers

NL(¢) Set of servers connected with port £

Ng(7) Set of ports connected with server r

Ngr(I) Set of ports connected with at least one server in the set of servers 7

Ae Arrival rate of jobs to port £

As Total arrival rate of jobs to the system, given by 1s = X%, A,

A Normalized total arrival rate, i.e., A = %

Dy Sum of arrival rates at ports not connected with at least one server in 7
b Buffer size at each server

M The number of types of servers

Um Service rate of a server of type m

am Fraction of type m servers

N, The number of type m servers, given by N, = Na,,

q State of queue lengths with g, being the queue length of server r
Sm,i(q) The number of type m servers with queue length at least i divided by N
Cm(q) The number of jobs in type m servers divided by N

B "Idle" fraction of service rate, i.e., Ay = N Zﬁzl Umm (1 = B)

Cr, The number of busy type m servers in the mean-field limit divided by N
€ Approximation error in analysis

Tab Ratio of the service rate of a type a server over that of a type b server
P1, D2 Fraction of servers needed to test for well connectedness

dy, dz Upper bound of disconnected arrival rates (divided by N)

Zor Connecting probability of a port £ and a server r in a random graph construction

C PROOF OF PROPOSITION 3.1

PROPOSITION 3.1[RESTATED]. Suppose that the buffer size is infinite, i.e. b = co. Let Z be the random
variable denoting the service time of an arbitrary job. Then for any stable policy, the mean number of
jobs in the system is lower bounded by NC*, and

- C*
E|[Z] > R

(48)

Proor. For any m € {1,---, M}, let I, denote the probability that an arriving job is scheduled
to a type-m server in steady state. Also, recall that 5, ; is defined as a steady-state random variable
denoting the number of busy type-m servers divided by N. Then because of stability and work
conservation law, it holds that for all m < M,

Aslm = NpmE [Sma] -

(49)
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In particular,

Moy M
2 -
= Z Tm = Z#mE [Sm1] (50)
m=1 m=1
since Z = 1. Now notice that the mean service time of jobs is given by

SEENES S

since the service time at type-m servers is exponentially distributed with mean #L, and I,, satisfies

“:lE

(49). To obtain a lower bound of E [Z ], consider the following linear programming problem.

min E Xm

s.t. A—Z,umxm, m=1,....M
m=1
0<xp<amy m=1,....M

where x;, is an analog of E [S_m,l], and the objective value is a lower bound of E [Z] because of

(50). Then since only the sum of x,, matters, a11<1d M1 = -+ 2 Uy, the optimal solution is exactly
: £ _ _ _ Zm HmXm _ PP
given by x1 =ay,- - ’x1*<—1 = 05K—1,X1*< = u—;x:” = 0 for m > K. Then it is clear that
_c
[ ] 2 Zm 1 :n - 1 o

D PROOF OF LEMMAS IN SECTION 4
D.1 Proof of Lemma 4.2
LEMMA 4.2[RESTATED]. The expectation E [Gg(Zﬁzl Cm(Q))] is equal to 0.

Proor. To simplify the notation, denote V(q) = 9(2§:1 Cm(q)) for a state q. Now that since
the system is stable (because of the assumption of finite buffers), there is a unique stationary
distribution 74 that solves the balancing equation such that for every q,

Tq Z qq = Z TqTq.q (52)
q ¢

where rq g is the transition rate from q to q". Now that V(q) is bounded (as Sk Cm(q < b), it
holds

E[GV(Q)] = Z 7 Z raq (V(@) = V(q))
- _ Z ﬂqz V(Qreq + Z g Z roqV(q')
=- Z V(q) Z Tqlqq + Z V(q) Z Tq'Tqq
q q q q

=0.
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D.2 Proof of Lemma 4.3
LEMMA 4.3[RESTATED]. It holds that

) C 3 0 ! / N e = 38b2T1K
E|h ;cm@) <E|1 ;Cm(Q)ZrHN g Z]lcm(Q) (A b - w(Q)| + 220
(20)

ProoF. The idea is to utilize the result that E [h (Zﬁzl Cm(Q))] < (17)(18)+(19), and to expand
(18) and (19) by Taylor’s expansion. Consider three cases of state q.

o First, if 3,y Cn(Q) < 17— 3, then g(X ey Cm (@) = 1) 9(Z ey Cn( @), 9(Z ey Con(@) + )
are all zero. This case has no contribution to the expectation;
e second, if YX_ C,.(q) € (- #, n+ ﬁ), by first-order Taylor’s expansion, there exists some

gq’ ﬁq €(n- %, n+ %), such that

> 1 < 1,
g (Z Cm(q) + N) -9 (Z Cm(q)) =59 ()

K 1 ’";1 ~1
g Cn(@-=]-9 Cn(@) | = —9'(flg);
[Sma-5) e[S ma) <o

e third, if ¥X_, Cpu(q) 2 7+ % by second-order Taylor’s expansion, there exists some &g, 774,
such that

(i (@) 1) (i ()) - (i ()) 29" (&)
g Cn(@Q+—= -9 Cn(Q) | =<4 Cm(Q) |+ 59" (&),
m=1 N m=1 N m=1 NZ ¥

< 1 < RS 2
9 (Z Can(q) - ﬁ) -9 (Z cm<q>) =-~9 (Z cm<q>) + 79" (na).

Then it holds that
[ K
E|h (Z Cm(Q))l (53)
< (15) + (_18) +(19) (54)
[ K 1 K
=E|1 {Z Cm(Q) 21+ N} (g' (Z Cm(Q)) (A+md - W(Q)))l (55)
- K ~ 1 2 ’” a ’
+E |1 {Z Cn(Q) 2 n+ N} (N (/19 (&o) + W(Q)g (UQ))) (56)
K
+E (1 {Z Cm(Q) € (n - % n+ %)} (9’ (Z Cm(Q)) (116) + 29’ (&g) - W(Q)g’(ﬁg))l :

(57)

It suffices to bound (56) and (57). First, note that |g” (x)| < ﬁ for all x by the explicit form of g(x)
in (11). It holds

2 4 241k b?
(56) < — - = K

oy = — 58
N ms “MTNsT T eN (58)
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On the other hand, to bound (57), since Zﬁzl Cm(Q), g?q, fiq € (n - %, n+ %), their derivatives are
all bounded by ﬁ Then

2 2 120xb® 14rgb?
57) < (bd+m) =—+ < . 59
(57) N (16 + p1) N N N (59)
Summing the above two equations completes the proof of Lemma 4.3. O

D.3 Proof of Lemma 4.4

LEMMA 4.4[RESTATED]. Consider the following Lyapunov function

K-1 b K-1
Vi(q) = min ZsmanZst(q) Zc* D smi(@)] (22)
m=1 j=2 m=1

It holds that if Vi(q) > By := 11xd, then GVi(q) < 2,

Proor. Since V1(q) > By by assumption, both of the following two properties holds:

K-1 b
ZSK;(qHZZSmJ(q) 2 By; (60)
m=1 j=2
S om@< > C By (61
m=1 m=1

Let 711 be the first term in V;(q), and 77, be the second term. First, by definition,
GVi(@) = ) raq (Vi(@) - (@)

-
= > rer (M(Q) - Vi(@) (62)

q’,arrival

+ D rer Q) - Vi(Q) (63)

q’,departure

where we separate transitions by identifying those caused by a job arrival from those caused
by a job departure. Bounding (62) and (63) can then bound GV;(q). Next we consider two cases
corresponding to whether V;(q) is equal to 771 or to 771 2.

Suppose that 771 < 71,. then in this case,

b K-1 b
(63) < - (Z pi (sk,j(q) = sk j+1(q)) + Z Hn (Sm,j (Q) = Sm,j+1(q)) (64)
j=1 m=1 j=2
K
- (uKsK,l (@) + ), HmSm2(Q) (65)
m=1
<P “;5. (66)

The first inequality (64) is because V;(q) = 71,1, and only jobs departing from servers of type K and
servers of types less than K with queue length at least 2 can affect the value of V;(q). The first
equation (65) comes from the fact that s, 541 = 0 for all m. The last inequality is from (60) and the
non-decreasing property

Sm,l(q) > Sm,2 ((1) EaN 'Sm,b(q)
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for all m.
On the other hand, to bound (62), notice that V;(q) can increase only when a job arrival is routed
to some servers of types at least K. Then clearly,

L
1
(62) < Z N/lg - 1 {an arrival to port ¢ is routed to an idle server of types at least k | q}. (67)
=1

However, by (61), the number of idle servers of types less than K is at least

K-1 Ne
N;(C ~sm1(q)) 2 NBy = .

6b2’ Assumption 2 guarantees

Let I be the set of idle servers of types less than K. Since |7| >
Neux That is to say, the total arrival rates of ports not connected with

that Z[&NR(I) A[ < N(,’il = 1203 -
servers in 7 is bounded by Nd;. Now since our routing policy is either JESQ or JFIQ, for those ports

connected with 7, a job arrival must be routed to one server in 7 because servers in I are idle, and
are faster than other idle servers not in 7. Therefore,

1 Ne.UK</11fS

67) < — - —_—.
(67) < N 1263 ~ 2b (68)
With (66) and (68), it holds GV;(q) < _#1 when 711 < 712.
For the second case where 771 > 7',2, it holds
K-1
(63) < > tim (Sm1(Q) = $ma(Q) (69)
m=1

since V;(q) increases only when a job departs from a server of type less than K and only with this
single job in the server. Also, we can see

(62) < —— Z A¢ - 1 {an arrival to port ¢ is routed to an idle server of type less than k | q} (70)
N =

1 « «
< N(—12+Nd1) =-A+d;. (71)
The first inequality is because for arrival transitions, only jobs arriving to idle servers of types less

than k can change V;(q), and their arrivals will all decrease V;(q) by & by the definition of 77 .
The second inequality is derived from the same argument of (68). Therefore, it holds that

K-1 K-1
GVA(Q) = (62) + (63) < =A+di+ D ftm (5m1(@) = 5m2(Q) < =A+di+ ) fimtlm — By (72)
m=1 m=1
< —ugB; + d, (73)
1d
<
<= (74)

because of (61) and the assumption that A > Y51 11, a,.

Therefore, the above discussion proves that whenever V;(q) > By, it holds GV;(q) < - zba O
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D.4 Proof of Lemma 4.5

LEmMMA 4.5[RESTATED]. Consider the following Lyapunov function

K
V,(q) = min Z Z sm,;(Q), Z C, +By+ 3110 — Z sm1(q) (23)
m=1

m=1 j=2
where § = 1150, and By = %e + 4. It holds that if Vo(q) > B,, then GV5(q) < —’%S.
ProOF. Let 751 be the first term in V2(q), and 75, be the second term. Since V2(q) > B, both
the following hold:

K b
Z Z sij(q) = By; (75)
m=1 j=2
Z Sma(Q) < Z Ch, + 36 (76)
m=1 m=1
By definition,
Ga(@= ) req (Va(q) — Va(®) (77)
q’,arrival
Y e (Va(q) - Va(q). (78)

q’,departure

We then consider two cases. First, suppose that 75 ; < 73,. Then similar to the proof of Lemma 4.4,
using (75), it holds that

K b
1
(78) < = D 2 Netm (sm (@) = smjo1 (@) (79)
m=1 j=2
L&
=< mzl Nitmm2(Q) (80)
Bapx e é
< - =——— -, 31
- b 2b b (81)
On the other hand, we have
L
1
(77) < Z ng -1 {an arrival to port ¢ is routed to an idle server of types > k+1|q}. (82)
=1

Notice that by (76), the number of idle servers of types no greater than K satisfies that

(Z Ay — Z sm,l(q)) (83)

m=1

K K
>N ( am— ) Cr — 31'1,1(5) (84)

m=1 m=1

A= 3K mttm <
=N (aK A X - 371,1(5) (85)
HK
K
_ -A _
=N- M —3N7ké (86)
Hk
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N K
= u—K (ﬂmz_lpm(lm - 3[117.'11(5) (87)
> N(,B 3T1K6b2) > NTﬁ (88)

where (88) is because b? > 7;x by Assumption 1, andﬁ =p Zﬁ:l Qm, and py > -+ > k.

Let I be the set of idle servers of types no greater than K. It then holds | 7| > NTﬂ Then By
Assumption 2, the total arrival rate of ports not connected with 7 is bounded by N d». Since the
routing policy is either JFSQ or JIFQ, jobs arriving to ports connecting with 7 must be routed to

servers in J . Therefore, it holds (82) < dy < & 212 Then in this case, we know

€K _ 0 pxe _ pad

G%(q)_(77)+(78)<_3_7+ K2

Now we consider the second case, 7, > 7. Similarly, it holds (78) < XX _, i (5m1(Q) = sm2(q)) .
and

A

L
1 1
(77) € —— — ¢ - 1 {an arrival to port ¢ is routed to an idle server of types < k | q}
5 ; e p yp Vg
< -A+d,

where the last inequality follows the same argument as in the first case. Then it holds

GVZ(q) < Z HmSm, 1((1) - Z HmSm, Z(q) A+ dZ (90)
m=1
< _ BBy | pke
2
fimm + ik (Ck +3p116) — b + = (91)
Foeet -1 2b
ﬂKBZ €
<3ud— — 92
S S b_1 + 2b (92)
HKE  pKE b
<3ud— _— - — 93
SO T T b ©3)
é
< ——. 94
<-4 (o)
The last inequality is because
HK € HKE _ Pk€ HKE
= A = 31116.
2b-1) 26 202 - Mempr M
Therefore, we complete the proof of Lemma 4.5. O

D.5 Proof of Lemma 4.10

LEMMA 4.10[RESTATED]. For any A > 2, it holds P{YX_, C,,(Q) > C* + A} < 1°4Ailﬁb .

Proor. By Lemma 4.1, it holds that

N b i
P{Z Cm(Q) >C*+A} {Z Cm(Q) - >A—Z} (95)
m=1
<P {Z C(Q) - C* - g > %A} (96)
m=1
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E [max (Zﬁzl Cm(Q)-C* - ‘é, 0)]

< 97
2087k b*
e 98
~  AeN (%8)
since € < g by assumption. O
D.6 Proof of Lemma 4.11
LEMMA 4.11[RESTATED]. When V3(q) > Bs, it holds that
e ifq € &k, the drift is bounded as GV3(q) < —le’;M +dy;
o ifq ¢ Ek, the drift is bounded as GV3(q) < 1.
ProoF. By definition,
GVa(q) = ) rqq (Va(q)) - Va(q))
7
= > req (B(Q) - Va(Q) (99)
q/,arrival
> req (B(q) - Va(@) . (100)
q’,departure
Note that since V3(q) > Bs, and V3(q) = ZA,;I:KH Z?zl Sm,j(q), it holds that
M Byjint
(100) = = 37 pimsma(q) 2 == (101)

m=k+1
since sp,1(q) = -+ - = sp,5(q) and sy, p41(q) = 0 for all m.

For (99), we consider two cases. First, if q € Eg, the number of idle servers of types no greater
than K is given by

K K
N (Z am — Z sm,l(q))
m]—(l mI—(l
=N (Z am — Z Cm(q))
ZN(iam—C*— f)
=N (ﬂ Zﬁi OmHm B)
HK 2
. N2
2

where the second inequality is because sumX_ Cn(q) < C* + g when q € Eg. Then since the
routing policy is either JFSQ or JFIQ, jobs arriving to ports connecting with idle servers of types
no greater than K must be routed to those servers. And by Assumption 2, the total arrival rate of
disconnected ports is bounded by JZN . As a result,

(99) < dy, (102)
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showing that GV3(q) < —B3I’;M +d, when q € &k
When q ¢ Ek, it holds that (99) < A < py, and (100) > 0. Therefore, GV53(q) < 1. O

D.7 Proof of Lemma 4.12

LEMMA 4.11[RESTATED]. Under Assumption 1 and Assumption 2, the probability pg that an arriving
job is blocked is bounded as
dNZ 521’1sz
<2y 4
P <~ N (4)
Proor. Denote B,(q) = 1{Vr € NL(¢), g, = b}. That is, whether all neighbors of port ¢ are full.
Then by definition,

m(Q) >3 P

K
+P {Z Cm(Q) > 3}

B[(Q)

L &
+EZA[E

=1

<% ZA{E

To bound P {251:1 Cm(Q) > 3}, notice that C* < 1, so
K K
_ _ N 521 b?
P{;Cm(Q) > 3} < P{;Cm(Q) >C +z} <=
by Lemma 4.10.

Then for the case Z 1Cm(q) < 3, it holds that Zm 15mb(q) < 3. Let I be the set of servers of

B/(Q) Zcm(Q) <3

types no greater than K with queue length less than b. Then we know 7| > (1-3)N > §N since
b > 6. By Assumption 2, the total arrival rate of ports not connected with 7 is thus upper bounded

by Nd;. As a result,

L
1

<— > AE

pB_AZfZ:; '

X .

~ dz 52T1Kb2

+P Cm(Q)>3}s—+ .
{mz_ll A eN

K
B, (Q)

D.8 Proof of Corollary 3.4

COROLLARY 3.4[RESTATED]. Suppose that ey is both 0(1) and w(N~%%In(N)), and that both
Assumptions 1 and 2 hold for Gy when N is sufficiently large. Then as N — oo, both JFSQ and JFIQ
are asymptotically optimal, and the expected queueing delay converges to zero for both policies.

Proor. First since ey = o(In NN7%), there is always a by satisfying Assumption 1 when N
is sufficiently large. Let Qn be the queue-length random variable, and let p%’ be the blocking
probability for the N—th system. Applying Theorem 3.2 gives

5Timbn In N 26
<C'+ (1 + —TKM) en + 24/ JOMON BN 60b3%, OTKTM
2 N PnenN
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N EN UK SZTleN
and py < 5% +

Since ey = 0(1), eN = w(N%InN), ﬂN > ey and by satisfies Assumption 1, it holds that
limy 00 E [Z]r\n/le Cm(QN)] = C*. Then by Little’s Law, the expected mean response time E [Ty] of
the N—th system is given by the mean number of jobs in the system divided by the effective arrival
rate. Therefore,

for N large enough.

. _ E[NZN Cn(QN)] c* c*
I\lfinooE [Tv] = A}I—r>rloo ) ml N < e bl | A

which matches the lower bound in Theorem 3.2. Therefore, JFSQ and JFIQ are asymptotically optimal
in mean response time. On the other hand, let E [qu\){,] be the expected waiting time of jobs, and let

E [ZN] be the expected service time in the N—th system. Then it holds E [Ty] = E [del] +E[ZN].
Since E [Zy] > C E [TN] 0, and limn_,oE [Tn] = CT it holds limy_,o E [qu\{,] =0.Asa
result, JESQ and ]FIQ obtain asymptotic zero queueing delays. O

E PROOF OF RANDOM GRAPH RESULTS

Here we provide the missing proof of Theorem 3.6.

E.1 Proof of Theorem 3.6

THEOREM 3.6[RESTATED]. Suppose that all ports share the same arrival rates, that is, A, =
forall ¢ € L. Then following the same construction of graph G in Theorem 3.5 but with H;

|
Il >

6 (— Inp; + 1% In zd—’jl) for j € {1,2}, it holds that G satisfies Assumption 2 with probability at least
1- Z(Nﬁl)_l. The total number of edges in Gy scales as O (M In g)

Proor. The proof is similar to that of Theorem 3.5. Let us follow the same notation in the proof
of Theorem 3.5. Fix j € {1,2}. Similarly, let K be any subset of L satisfying },cqc A¢ > chj, and 7
be any subset of R/ satisfying |7'| > Np;. To bound P{D 7}, WL.O.G., we can assume every port
in % has arrival rate less than Nd iHj, otherwise P{Dy r } = 0. Then following the same argument
in the proof of Theorem 3.5, it holds P{Dy r} < exp(—H;Np;).

The key step is to obtain a bound on the number of pairs of feasible K, I so that we can use the
union bound. Let N] NJ be the amount of such sets, respectively. W.L.O.G., assume that Np; is an
integer since |7 | must be an integer. Also, as all ports share the same arrival rate A, we can assume
Nd /A is an integer since the size of K must exceed this value. Then it holds that

i_( L fNul/ﬂ)

M= () < Nd, /] s
; N

N} = (ij). (104)

We have the following lemma bounding a binomial number.
LeEmMma E.1. Fix an integer n. Forany0 < a < 5 lfan is an integer, then In (( n)) < —3anlna.

Proor. Let k = an. It holds that

n\ n(n-1)-- (n—k+1) nk
(k)‘ k! =T
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We know that eX = Y., , " Therefore, &= < e. It then implies that
n nk eknk ( en )k
S—<—=\-] -
k k! Kk k

In (( " )) <an(l-In(a)) < -3nalna
an

As a result,

because o < % O

1 Ndj/A 1 Then by Lemma E.1, when N is

Now by the definition of p;, d;, it holds p; < > TNpya < 2

sufficiently large,
In (N;() < =3NpjInp;, In (N‘J,) < —3Nd~j/)r_ln (%) (105)
Therefore, it holds that
P{C;} < N;(Nj; exp(—H;Np;) < exp (—ijHj - 3Npjlnp; - SNPj% In (%)) ) (106)

By definition, H; = 6 (— Inp; - % In (zdﬂ)) Then we can see
j j

N \!
P{C;} < exp(3Np;lnp;) < ( ) )
j pPONp;Inp; Np;

By the union bound, it holds that

N -1
P{C,UGC} < Z(Npl) .

since p1 < p2 < 5 Therefore the probability that Gy satisfies Assumption 2 is at least 1 — 2( Nl\;l)_l.

For the total number of edges used in Gy, consider the four types of connections on graph
Gy as per Theorem 3.5 and Theorem 3.6 where we use different H;. we bound the number of

edges for each type as follows. First, through some calculations, H; = O ((l + —) In ( )), and

H; _ B3 A+b2 1. b
3 —O( = In2).

Then the number of ports with A, > N g is bounded by =75t “Hl =0 ( (N;]Le) Y nt ) because A5 = LA.
Therefore, the number of connections from them is bounded by (0] (@ In ;) since there are N
servers. The same result holds for ports with A, > N I%. Now for the remaining ports, the expected
number of edges is upper bounded by

3
[EL dl dz € €

Then to sum up, the expected number of edges in Gy scales as O ((N+W In %)

F ADDITIONAL SIMULATION RESULTS

In this section, we provide missing details in the main text and give additional simulation results.
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Fig. 4. The Blocking Probability of Different Routing Policies on Increasing-Sized Random Bipartite Graphs

F.1 Description of JSQ-(2,2)
In JSQ-(2,2)[19], there are two parameters pr, ps. Then for each arrival of jobs, we find a server as
follows:

(1) sample 2 fast servers and 2 slow servers;

(2) if there is an idle fast server, route the job to this server;

(3) if there is an idle slow server, route the job to this server with probability ps, and route the
job to the fast server with shorter queue with probability 1 — pg;

(4) otherwise, route the job to the fast server with shorter queue with probability pr; and route
the job to the slow server with shorter queue with probability ps.

We set ps, pr to be the optimal values from Table 1 in [19].

F.2 Convergence of Blocking Probability

Fig. 4 provides the convergence of the blocking probability following the same setting as in Section
6.2. Unlike JSQ which is shown to be throughput optimal [11] (so is JFSQ), JIQ and JFIQ could lose
the capacity of the system. As in Fig. 4, when we set the buffer size to be 5, the blocking probability
of JIQ is around 1.5 percent, and that of JFIQ is around 1 percent. Interestingly, JFIQ seems to
be more stable. Nevertheless, the blocking probability of both algorithms decreases swiftly as N
increases.

F.3 Exploring More General Service Time Distribution

We present a preliminary study here that extends results proved in this paper. Roughly speaking,
we consider the same setting as in Section 6.2. However, we allow the service time distribution to
be hyper-exponential.

Still, suppose there are N servers in the system where N can scale up. Servers can be classified
into four types with different service speed. Each type consists of the same amount of servers.
Then let X be a hyper-exponential distribution such that X ~ Exp(0.01) with probability 0.01, and
X ~ Exp(1) with probability 0.99. The coefficient of variation of X is around 7.071, which is higher
than that of an exponential distribution. Then for a type i servers with i € {1, 2, 3,4}, we assume
that the service time of a job at this server is independently and identically distributed as 2:71X.

Similarly, we can define the service rate of type-i servers as y; = m. Then the system load
is defined as 44’1]2\]”_ where Ay is the total arrival rate. We can also obtain the lower bound of the
i=1 i

mean response time as in Proposition 3.1.
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Fig. 6. The Blocking Probability of Different Routing Policies when Service Time is Hyper-Exponential

The buffer size is set as b = 5. Following the same setting of ports and construction of the random
graph, we obtain Fig. 5 for the mean response time of different policies, and the blocking probability
is shown in Fig.6. Notice that the performance of each policy degrades a lot for small systems
compared with Fig. 3. But when the system size scales up, both JFSQ and JFIQ have favorable mean
response time, which is very close to the lower bound. It suggests that our theoretical results may
hold for general distributions, which we leave for future studies.
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