
28

Where did my 256 GB go? A Measurement Analysis of
Storage Consumption on Smart Mobile Devices

ASHISH BIJLANI∗, Georgia Institute of Technology, USA
UMAKISHORE RAMACHANDRAN, Georgia Institute of Technology, USA
ROY CAMPBELL, University of Illinois at Urbana-Champaign, USA

This work presents the first-ever detailed and large-scale measurement analysis of storage consumption
behavior of applications (apps) on smart mobile devices. We start by carrying out a five-year longitudinal
static analysis of millions of Android apps to study the increase in their sizes over time and identify various
sources of app storage consumption. Our study reveals that mobile apps have evolved as large monolithic
packages that are packed with features to monetize/engage users and optimized for performance at the cost of
redundant storage consumption.

We also carry out a mobile storage usage study with 140 Android participants. We built and deployed a
lightweight context-aware storage tracing tool, called cosmos1, on each participant’s device. Leveraging the
traces from our user study, we show that only a small fraction of apps/features are actively used and usage is
correlated to user context. Our findings suggest a high degree of app feature bloat and unused functionality,
which leads to inefficient use of storage. Furthermore, we found that apps are not constrained by storage
quota limits, and developers freely abuse persistent storage by frequently caching data, creating debug logs,
user analytics, and downloading advertisements as needed.

Finally, drawing upon our findings, we discuss the need for efficient mobile storage management, and
propose an elastic storage design to reclaim storage space when unused.We further identify research challenges
and quantify expected storage savings from such a design. We believe our findings will be valuable to the
storage research community as well as mobile app developers.

CCS Concepts: • Information systems → Storage management; Mobile information processing sys-
tems; • Human-centered computing → Empirical studies in ubiquitous and mobile computing.

Additional Key Words and Phrases: storage management; mobile; smartphones

ACM Reference Format:
Ashish Bijlani, Umakishore Ramachandran, and Roy Campbell. 2021. Where did my 256 GB go? AMeasurement
Analysis of Storage Consumption on Smart Mobile Devices. Proc. ACMMeas. Anal. Comput. Syst. 5, 2, Article 28
(June 2021), 28 pages. https://doi.org/10.1145/3460095

∗A part of this work was done when the author was a graduate student at the University of Illinois at Urbana-Champaign.
1cosmos is available publicly at https://github.com/cosmost/cosmost

Authors’ addresses: Ashish Bijlani, ashish.bijlani@gatech.edu, Georgia Institute of Technology, 266 Ferst Dr, Atlanta,
Georgia, USA, 30313; Umakishore Ramachandran, rama@cc.gatech.edu, Georgia Institute of Technology, 266 Ferst Dr,
Atlanta, Georgia, USA, 30313; Roy Campbell, University of Illinois at Urbana-Champaign, 201 North Goodwin Avenue,
Urbana, Illinois, USA, 61801-2302, rhc@illinois.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
2476-1249/2021/6-ART28 $15.00
https://doi.org/10.1145/3460095

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.

https://doi.org/10.1145/3460095
https://doi.org/10.1145/3460095


28:2 Ashish Bijlani, Umakishore Ramachandran, and Roy Campbell

1 INTRODUCTION
Smart mobile devices have evolved as versatile and indispensable tools for everyday personal com-
puting needs. The evolution has led to a surge in mobile apps for entertainment, social networking,
health tracking, and home automation. GooglePlay alone now hosts over 2.3 million mobile Android
apps [2]. Users often install apps for faster performance and customized experience.

Nevertheless, the storage space on mobile devices is limited. Many of them are not provisioned
with an external flash memory [63]. Low-end budget devices place further storage restrictions, and
severely limit user experience [54]. As storage demands increase beyond the device capacity, users
are forced to uninstall apps and delete data [57, 64]. Alternatively, users purchase cloud storage
for data backup [12, 18, 21] or periodically upgrade devices by paying more for higher storage
capacity [68, 69].
As such, efficient management of storage on these devices is becoming increasingly important.

While anecdotal evidence suggests that user data (e.g., pictures, videos) consume high storage
space, modern apps also pose high storage demand. The maximum permissible sizes of GooglePlay
Android and iOS apps have only been growing since 2008. Today, a single app can occupy up to
4 GB of storage space. Yet, no systematic study has been carried out on the storage consumption
behavior of modern mobile apps.

This work presents the first-ever detailed measurement study of storage consumption behavior
of mobile apps. We perform multiple analyses on apps to report their overall behavior.
Large-scale longitudinal analysis. First, we carry out a longitudinal analysis of millions of
GooglePlay Android apps to study the increase in app sizes over five years, from 2014 to 2019
(see §3). Our findings suggest that as app stores increase app size limits over time, developers create
bigger apps that pose heavy storage demands. The number of apps consuming between 10 MB to
4 GB doubled in five years. Such apps are not limited to games and digital books, but spread across
various categories. We also analyze metadata of millions of iOS apps for comparative analysis, and
show similar finding.
We then perform static analysis of millions of Android apps to highlight the leading causes of

increased sizes over time. Our findings show that as an app gains popularity, developers pack more
features in the same app, creating super apps to engage users and monetize. The number of features
in top apps doubled in five years. These include both free and paid features, where the latter are
only unlocked once the user purchases them, but are needlessly always stored on the device.
The number of third-party libraries imported per-app for common tasks such as user authen-

tication and advertisements grew by 10x in five years, adding to app size. However, only a small
fraction of those library functions are actually used. Unused code contributes to unnecessary
storage consumption.
Furthermore, we found that despite Google’s effort to encourage developers to create small,

device-optimized apps [22, 26, 27], developers continue to create “build once, run everywhere”
universal apps that support multiple hardware (e.g., ARM, x86) and as well as regional languages.
Such universal apps reduce engineering effort and offer best performance on every device type, but
lead to redundant storage consumption.
Install-time behavior.We also evaluate storage consumption behavior of modern mobile apps
during fresh installation (no usage) by analyzing top 30 GooglePlay apps. We found that upon
installation, apps further expand to consume anywhere between 1.5x to 5x storage space of their
package (see §5). This increase is attributed to additional files created for performance.
User study. Finally, we report runtime storage utilization of Android apps by leveraging usage
traces from our user study with over 140 participants for 70 days (see §6). We built cosmos, a novel
lightweight context-aware storage tracing tool, and deployed it on each participant’s device. The

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



Where did my 256 GB go? A Measurement Analysis of Storage Consumption on Smart Mobile Devices 28:3

usage traces we collected revealed that only a small number of apps/features (and files) are actively
used and furthermore usage is correlated to user context. These findings suggest a high degree of
feature bloat and unused functionality in modern apps, which leads to wastage of storage.

Analyzing the traces, we also found that since apps are not constrained by storage quota, app de-
velopers freely use persistent storage by creating auxiliary files and frequently caching/prefetching
cloud content for performance. Many apps hoard additional data, such as analytics to track user
engagement, crash reports for debugging, and advertisements for monetization. However, unlike
cached content, which is automatically deleted when the device runs low on storage space, app
data continues to persist on the device, sometimes even after the app is uninstalled. We detected
several old video/image advertisements and residual files on user devices.
Finally, guided by our findings, we identify challenges and opportunities to design an efficient

mobile storage management system. Specifically, we propose context-sensitive elastic storage for
smart mobile devices and identify multiple techniques such as content adaptation, deletion, dedupli-
cation, and compression to automatically reclaim storage space occupied by inactive apps/features.
Our preliminary evaluation with top 30 Android apps shows that on average about 25 MB (21.34%)
of storage savings could be achieved per app, with almost no latency or battery drain using just
one of the aforementioned reclamation techniques.
Contributions. In summary, this paper makes the following contributions.
− We carry out a five-year longitudinal static analysis of millions of Android apps and report the
increase in their sizes ( §3) and highlight various sources of app storage consumption ( §4).
− We further perform install-time study of top 30 Android apps to show that apps expand to
consume additional storage space upon installation ( §5).
− Leveraging the storage traces from 140 Android users, we also present our findings on the
runtime storage utilization behavior of modern mobile apps ( §6). To the best of our knowledge, this
is the first-ever large-scale and detailed measurement study on the storage consumption behavior
of modern mobile apps.
− Drawing upon our findings, we propose an elastic storage design for smart mobile devices,
identify research challenges, and quantify expected storage savings from such a design ( §7.1). We
believe our findings will be valuable to not only the storage research community, but also mobile
app developers.

2 BACKGROUND
In this section, we cover the basics of Android app anatomy as well as present a background on
different storage areas available to mobile app developers on Android.
App structure. Android supports two types of development environments, namely Java and native
C/C++. A Java source file is first compiled into a bytecode .class file, which is then linked with
third-party .jar libraries to produce a classes.dex file. Each DEX file can contain up to 65,000
methods. Therefore, large apps typically consist of many .class files and split functionality across
multiple DEX files. In contrast, C/C++ sources are compiled into dynamic .so libraries that contain
native (e.g., ARM, x86) machine code. All DEX files, native libraries, and auxiliary asset files (e.g.,
icons) are packed into a single App Package (APK) zip file.
In addition to the APK, developers can optionally provide up to two monolithic expansion

files [31], known as Opaque Binary Blobs (OBB), to add additional auxiliary multimedia resources
as needed (e.g., sound, animations). OBB files allow developers to supplement the app APK and
pack more functionality without bloating the APK.
Installation process. During app installation, the app APK is downloaded from GooglePlay. All
app executable files (DEX, libs) are extracted from the APK for faster runtime access, and stored

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



28:4 Ashish Bijlani, Umakishore Ramachandran, and Roy Campbell

Partition Area FS

/ Internal RootFS
/system Internal EXT4
/data Internal EXT4
/data/media Prm Ext FUSE

App Storage Location Dir Type

/data/app/app/base.apk APK file
/data/dalvik-cache/app OAT file
/data/data/app Priv dir*
/PExt/data/Android/app Pub dir*

App Dir* Type

app/files/ Java Code, Data
app/libs/ Native Code
app/databases/ State (SQLite)
app/shared_prefs/ State (XML)
app/cache/ Cached Data

Table 1. Storage paritions on Android devices. A large part of internal /data parition is exposed as primary
external /data/media partition. Each app is assigned private (under internal) as well as public (under primary

external) storage areas (dirs) to host its code and data. App files residing in public app storage area can be accessed

by all other installed apps with read/write permissions. Typically app code (java classes and native libraries) and

structured data (e.g., XML, databases) are stored in private app dirs and large unstructured files (e.g., OBB files)

are stored in public app dirs. App APK and perf-optimized OAT files are stored in internal data partition.

on the device under app-specific directories. At this time, any OBB files are also downloaded and
stored on the external partition under an app-private directory (see Table 1.)

Unlike native code, DEX bytecode is agnostic to the native machine architecture; thus it requires
compilation into native machine code to be able to run on the device. Older Android versions
used the Dalvik Virtual Machine (VM) runtime that performed Just-in-Time (JIT) compilation of
DEX files. Version 5 introduced Ahead-of-Time (AOT) compilation of DEX files into optimized
OAT files during installation. AOT compilation of Java bytecode is configurable. It ranges from
compiling “everything” to “interpret only”. While the former improves app runtime performance,
the latter provides performance similar to Dalvik VM. By default, most methods in an OAT file
are precompiled to maximize runtime performance. Consequently, OAT files consume significant
storage space and incur a longer installation time.

Once an app is installed, its compressed APK file is also stored on the device at all times for the
app to directly access its asset files as well as for the system to perform delta updates to the app.
This technique results in two copies of every executable file in an app: 1) the original (compressed)
APK, and 2) an optimized OAT that trades in more storage for performance.
Storage areas and partitions. Android offers two types of storage areas, namely internal and
external. The internal storage area is a built-in non-volatile flash memory containing critical
partitions such as boot (for bootloader and kernel), system (for system software), and data (for app
and user data). The internal storage, however, is not directly accessible to the user. In contrast, the
external storage area contains only of the data partition and is directly accessible to the user (e.g.,
over USB). Table 1 shows various Android storage areas and partitions.
Furthermore, an Android device can contain two types of external storage areas: built-in non-

removable (primary) and removable (secondary) external areas. An example of the latter would be
/sdcard that is mounted when an external removable flash memory card is plugged into the device.
However, many smart mobile devices today are not equipped with an external flash memory slot.
Therefore, in this work, we only focus on the consumption of internal and primary external storage
areas since they are fixed in size (non-removable) and shared by all apps with no per-app storage
quota limits.
Storage abstractions. Android provides various storage abstractions, such as files, databases, and
xml schemas. App developers can choose to store raw bytes in the form of traditional files or make
use of high-level storage abstractions such as databases and xml schemas to store formatted data.
App storage directories. Each user-installed app is assigned two data directories: a default internal
(under /data/data/) and an external (under /data/media/Android/data). These directories are
named after the app package name. Table 1 shows various designated app data directories on

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



Where did my 256 GB go? A Measurement Analysis of Storage Consumption on Smart Mobile Devices 28:5

Android. Directories in internal storage are private and exclusively owned by respective apps.
Whereas, directories in external storage are public and can be accessed by apps with permissions.

Being private to apps, internal directories are primarily intended for hosting proprietary code
(e.g., java classes, libraries) and private data (e.g., user preferences/account). In contrast, being
public, external directories are typically used for storing app auxiliary data (e.g., icons) and any
public user content such as music, videos, photos, and documents that can be accessed by other
apps as well.

Based on the type of content (raw bytes or formatted data), developers can pick the appropriate
app directory to store it. For example, it is advisable to store temporary data such as web content and
temporary files under cache because when the device runs low on storage space, files under cache
are automatically deleted by the system to reclaim space. In contrast, databases and shared_prefs
directories contain stateful persistent data (e.g., user preferences). Due to lack of per-app storage
quotas on Android, there are no limits on the amount of data an app can host in its storage
directories.

3 MODERN MOBILE APPS
To understand how app sizes have evolved over time, we performed a longitudinal study of millions
of GooglePlay Android apps from 2014 to 2019. For comparative analysis, we also performed a
study of millions of modern iOS. In this section, we report our study methodology and findings.

(a) Growth over the years.

Max
Size

Android Apps (%) iOS (%)
’14 (1.4M) ’19 (1.9M) ’19 (1.2M)

50MB 99.224 94.139 65.33
100MB 0.3221 5.0365 20.81
1 GB 0.4395 0.7973 13.63
2 GB 0.0124 0.0243 0.193
3 GB 0.0008 0.0016 0.028
4 GB 0.0001 0.0006 0.009

(b) Change in five years.

Fig. 1. App installation sizes of GooglePlay Android and AppleStore iOS apps from 2014 to 2019.

Questions. Our study answers the following questions about mobile apps:
− How much storage is consumed by app installation files? How has this changed over time?
− Does device type (tablet vs. phone, high- vs low-resolution display) affect app installation size?
− What effect does app category have on its size? What categories are likely to be large?
− What effect does app installation size have on its popularity (downloads) and vice-versa?
Methodology. Popular mobile app stores such as GooglePlay and AppleStore provide APIs to
fetch the most current metadata on all apps, such as app size, category, and number of downloads.
We wrote scripts to download and analyze such metadata. It is worth noting that GooglePlay does
not provide a precise number of downloads (or installs) per app; instead, it only provides download
range approximations. AppleStore, on the other hand, provides no statistics on app downloads.

In this study, we only report app sizes: storage space consumed by all app components downloaded
from the official store during installation. An Android app consists of an APK file and up to two
OBB files. Therefore, its size is the sum of all such files downloaded during installation. In contrast,
an iOS app is downloaded as a single zipped archive .ipa file, which constitutes 100% of its size.
Dataset. Our dataset consists of only metadata (name, size, category) of millions (M) of GooglePlay
Android and iOS apps. Specifically, the dataset includes the metadata of,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



28:6 Ashish Bijlani, Umakishore Ramachandran, and Roy Campbell

− 1.4M Android apps collected in October, 2014 by PlayDrone [66].
− 2.2M Android apps collected in December, 2016 by OSSPolice [19].
− 1.1M and 1.9M Android apps we collected in July, 2018 and August, 2019, respectively.
− 1.2M iOS apps we collected in August, 2019 from AppleStore using iTunes Preview [3].
Our GooglePlay crawler to discover and download apps is based on PlayDrone [66].
App sizes. Figure 1a shows our findings on app sizes. We found a sharp increase in both the number
of available GooglePlay Android apps (1.4 vs. 2.2M) and the average app size (7.89 vs. 17.16 MB) in
five years. In 2014, only 20% of apps were more than 10 MB in size. That number grew by 50% in
2016 and doubled in 2019; that is, over 40% of the apps from 2019 were over 10 MB in size. We also
found a small (<1%) increase in the number of apps over 1 GB.
Furthermore, over 5% apps from 2019 consume 50-100 MB in size, compared to only 0.3% such

apps in 2014 (see Figure 1b). We believe this increase is due to the change in GooglePlay app
submission policies in 2015 that allowed developers to publish an app with APK size of up to
100 MB (i.e., 2x the prior limit of 50 MB [32]). Figure 3 shows change in maximum permissible app
sizes over time.

Fig. 2. Analysis of app sizes of common GooglePlay Android apps from 2014 to 2019.

Common apps across years.We compared the common set of apps over the years to understand
their evolution over time. Our findings suggest that popular apps grew more in size on average,
compared to other apps. This behavior is captured by Figure 2. Of the 931.9K common apps between
2014 and 2016, 1,270 (0.13%) received 10-100M downloads and grew by 3 MB on average. Whereas,
18 received 1-5B downloads and grew by 6 MB on average. Similarly, of the 356.2K common apps
between 2016 and 2018, 16 (0.45%) received 500M-1B downloads and grew by 10 MB on average. The
aforementioned pattern suggests that once an app becomes popular (i.e., receives more downloads),
more features are added in the same app to engage and monetize users, which results in higher
storage consumption. We further discuss this behavior in §4.
iOS apps. Apple has also been increasing the Over-The-Air (OTA) download limits since 2008 [6].
As a result, developers create bigger apps. We found that 34.67% of 1.2 million iOS apps consume
more than 50 MB. 20.81% of apps consumed 100 MB–1 GB. Almost 11% were 100–250 MB in size.
Whereas, 13.63% of apps consumed 1–2 GB.

An astute readermay notice that the iOS apps aremuch bigger in size thanAndroid apps. However,
the app size numbers are not directly comparable. Unlike Android app sizes that depict the sizes of
compressed app APK files, iOS app sizes depict app install sizes and not the sizes of compressed
IPA files downloaded from AppleStore. iOS apps contain native machine executable code. Whereas,
Java code in Android apps is compiled into the native machine code during installation, resulting
in higher install app size. We further discuss this phenomenon in §5.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



Where did my 256 GB go? A Measurement Analysis of Storage Consumption on Smart Mobile Devices 28:7

Fig. 3. Change in maximum permissible app sizes and Over-The-Air (OTA) install sizes under GooglePlay

Android and AppleStore iOS apps policies over time [6, 29, 30]. GooglePlay imposes a limit of 100 MB on Android

APKs [32]. However, developers can create bigger apps by supplementing the APK with two monolithic OBB files,

each up to 2 GB in size (see §2). Similarly, iOS apps have a 60 MB limit on the main Mach-O executable file to

enforce clear separation between required binary assets and media files [6].

It is also important to note that the iOS app sizes used in this study are universal sizes provided
by iTunes Preview [3], and not device-specific sizes available from the AppleStore app on an iOS
device. Apple uses App Thinning [4] technology that detects the target device type and downloads
only device-specific code and auxiliary components when installing an app. As such, device-specific
iOS apps are typically smaller in size than universal iOS apps. For instance, the size of Facebook and
Uber apps we collected in 2019 for iPhone8 Plus devices were 231.5 MB and 277.3 MB, respectively.
Whereas, the sizes of their universal iOS apps from the same year were 426 MB (1.84x) and 384 MB
(1.38x), respectively.
App size vs. category. We compared sizes of apps from 2014 and 2019 across different categories,
and found that average app size in each category grew at least by 50% in five years. Table 2 shows
our findings. Average size of media/videos apps increased the most: 2.8x from 7.02 MB in 2014 to
19.70 MB in 2019; followed by gaming apps that increased 2x in size (from 13.73 MB to 33.72 MB),
on average. Gaming apps were the highest in number as well each year, although we saw a decline
in their overall number from 17.26% in 2014 to 14.90% in 2019. In contrast, the average size of digital
books increased by almost 50%, from 8.44 MB in 2014 to 12.77 MB in 2019.

Figure 4b further shows the change in distribution of app sizes across various categories. We
found that large (>= 1 GB) apps are not limited to graphics-rich games or digital books, but span
across multiple categories, including fitness, education, and music/video. While limited to digital
books in 2014, modern games, music/video, and travel apps can also occupy up to 4 GB.
App size vs. downloads. To understand the effect of app size on its download count, we first
group apps according to their sizes as small (<= 50 MB), medium (>50 MB and < 1GB), and large
(>=1GB). We then compared app downloads across these groups to obtain a percentage cumulative
distribution of apps downloads against their sizes, shown in Figure 4a. We found that a fewer
number of large apps receive as many downloads as small or medium apps. In fact, the number
reduces even further for apps over 3 GB in size. This behavior was consistent across apps we
analyzed from 2014 as well as 2019, which suggests that the size of an app may affect its overall
download count. Specifically, users may shun downloading large apps, given the storage space
constraints on mobile devices.
However, the percentage of popular apps (with >= 1 million downloads) remains almost the

same across groups. For example, 6.10% of medium and 6.79% of large apps were downloaded at
least one million times in 2019, indicating that popular apps are downloaded regardless of their
size. Note that we use app download range as a proxy for app popularity.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



28:8 Ashish Bijlani, Umakishore Ramachandran, and Roy Campbell

(a) # App downloads vs. sizes. Fewer large apps (>=1GB) receive as many installs as small (<=50MB).

(b) App sizes vs. categories. Large (>=1GB) apps span across multiple categories.

Fig. 4. Analysis of millions of GooglePlay Android apps collected in 2014 [66] and 2019.

App
Category

And (’14,1.4M) And (’19,1.9M) iOS (’19,1.2M)
% MB % MB % MB

GAMES 17.26 13.73 14.90 33.72 16.80 103.86
EDUCATION 7.76 10.29 9.34 16.74 10.12 71.19
TRNSPT/MAPS 1.23 5.16 1.24 14.06 1.27 62.59
TRAVL/LOCAL 4.66 9.33 3.22 19.27 4.44 67.49
BOOKS/REFS 5.56 8.44 5.02 12.77 2.94 70.75
MUSIC/AUDIO 3.83 10.58 6.20 15.76 2.91 51.32
MEDIA/VIDEO 1.68 7.02 0.64 19.70 2.37 48.80
HLTH/FITNESS 2.85 7.12 3.40 18.26 4.29 55.20
TOOLS/UTILS 6.61 2.30 6.44 8.15 6.58 35.64
OTHER 48.56 4.92 49.60 13.22 48.28 45.34
OVERALL 100 7.89 100 17.16 100 61.22

Table 2. Change in the number and average sizes of Android and iOS apps across categories.

App size vs. device. Android supports many devices, each one is different in multiple aspects,
such as form factor (tablet vs. phone), hardware architecture (x86 vs. ARM), or screen size and
resolution. Historically, developers created apps that were compatible by default on most devices by
packing multiple redundant resources in a single APK (e.g., multiple resolution images for different
screen sizes, multiple native libraries for different CPU architectures). During app usage, Android
system selects appropriate device-specific resources. However, as mobile hardware evolved and
devices became more fragmented, this design resulted in bloated apps that waste storage space.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



Where did my 256 GB go? A Measurement Analysis of Storage Consumption on Smart Mobile Devices 28:9

For the past few years, Google has been encouraging developers to publish multiple smaller
APKs for the same app [26], each optimized for a particular device configuration. App Bundles [22]
were also introduced in 2018 to allow developers to submit a single bundle (max 150 MB) of
code/resources instead of submitting multiple APKs to target different devices. During installation,
GooglePlay then generates appropriate APKs on the fly from app bundles based on the device
configuration so that only absolutely necessary code/resources are downloaded on the device.

To determine the number of apps supporting optimized APKs, we wrote a Soup [52] scraper that
collects generic metadata fromGooglePlay app webpages. Apps which support optimized per-device
APKs do not show fixed installation sizes in their description on GooglePlay webpages; instead their
size varies with each device [26]. We analyzed the metadata for app installation sizes and found
that only 58.3K (3.4%) of 1.7M apps from 2019 contain “varies with device” in their size description
(i.e., support device-specific APKs). 4.3K of them received at least 1M downloads. Whereas, the
remaining 96.6% apps were universal; that is, developers create a single app to target multiple
devices, resulting in apps that consume unnecessary storage. 22.6K such apps were downloaded at
least 1M times.

To summarize:
• Both the number of mobile apps and themaximum permissible app size, have been increasing
over the years: installation of a single app can consume up to 4 GB of space.
• Developers capitalize on increasing app size limits to create feature-rich and immersive
apps. As an app gains popularity, more features are packed in the same app to engage and
monetize users, resulting in storage-heavy super apps.
• Apps over 1 GB are not limited to games or e-books, but spread across multiple categories.

4 STATIC CODE ANALYSIS
We also performed longitudinal static analysis of millions of free GooglePlay Android apps to study
their evolution over time and identify various causes of app size increase. We present our study
methodology and findings here.
Questions.We sought answers to the following questions.
− What causes mobile apps to continue to grow in size? How has this behavior changed over time?
− What third-party SDKs (libraries) are used by apps? How much do they contribute to app size?
− What kind of assets and resources are used by apps? What effect do they have on app size?
Methodology.We used state-of-the-art static analysis tools (e.g., apktool, dex2jar) to decompile
the app APKs, and manually inspected the content and size of DEX files, native libraries, and any
asset files present (e.g., icons). We further analyzed APK Java executables using LibScout [7] to
determine third-party Java libraries being used and detected API calls. Similarly, we analyzed native
libraries used.
Dataset. Our dataset consists of APK and OBB files of millions of free GooglePlay Android apps.
− 1.1M free apps collected in Oct’14 by PlayDrone [66].
− 1.6M free apps collected in Dec’16 by OSSPolice [19].
− 1.7M free apps that we collected in Aug’19.
Table 4 summarizes various sources of app APK storage consumption as per our findings.

App composition. We found that modern apps are large and complex installation packages,
consisting not only of executable binaries and libraries, but also various auxiliary resources, such as
icons, images, animations, sounds, videos, text and xml files needed by the app to provide rich user
experience. For instance, files under app resource dir res/mipmap/ contains various icons needed
by the app. Similarly, res/values/strings.xml file holds app strings. On Android, these auxiliary

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



28:10 Ashish Bijlani, Umakishore Ramachandran, and Roy Campbell

(a) (b)

(c) (d)
Fig. 5. Static analysis of GooglePlay Android APKs collected in 2014 [66], and 2019, respectively.

files are part of the app APK, and are not extracted on device during installation; instead, apps read
them directly from the zipped APK. We found a 27.23% and 32.71% increase in the number and
average size of such auxiliary files, respectively from 2014 to 2019.
App features. A typical Android app has multiple Activities. Each Activity implementation is
placed in a separate Java (or C/C++) file, and offers a particular feature (e.g., login, take photo). Since
users interact only with Activities, we use them as a proxy for app features. Our analysis reveals
that modern apps contain more Activities. In particular, we found an average of 14.14 Activities
per app across app from 2019, compared to only 10.18 in 2014. Figure 5 shows our findings.
Compared to an average increase of 4 Activities per app across all apps, we found an average

increase of 100 Activities in top 30 GooglePlay apps, each with at least 5 million downloads. Table 6
reports the numbers. These results corroborates our findings on the increase in sizes of top apps
from §3. Specifically, as apps become popular (e.g., reach 100K installations), developers pack
more features within the same super app to offer one-stop experience to their users and create an
ecosystem for more monetization. For instance, Tencent added payments and ride sharing, among
other services. Similarly, Uber added e-bike rentals and food delivery services. Consequently, such
super apps grow substantially more in size on average over the years compared to other apps. This
behavior is further captured by Figure 2 and discussed in §3.
Java libraries. To quickly bring apps to market, app developers often focus on unique app features,
and rely on third-party libraries or Software Development Kits (SDKs) to import common features.
We analyzed apps in our dataset with LibScout [7] to list various Java libraries being used.

LibScout is resilient against common bytecode (e.g., identifier renaming) as well as code-based (e.g.,
API hiding) obfuscation techniques.

We first leverage pre-compiled Java JAR files from Maven [61] and JCenter [11] to generate a
database of unique library profiles. The database is then fed to LibScout, which decompiles Java

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



Where did my 256 GB go? A Measurement Analysis of Storage Consumption on Smart Mobile Devices 28:11

SDK Type Popular Examples # Apps (%)
2014 2019

Advertising FBAudience, AdCol, Chartboost 41.14 82.70
Analytics Flurry, Google, HockeyApp 3.90 21.31
SocialMedia Facebook, Twitter, WeChat 29.78 74.28
Cloud Amazon, Dropbox, Twilio 1.56 3.99
Utilities JodaTime, OkHttp, Crashlytics 74.78 87.83

Table 3. Distribution of various types of SDKs across Android apps
in five years, from 2014 to 2019.

App APK (2019) Avg (%)

ARM Native Lib 18.3
- Dup ARM Libs 63.69
Non-ARM Native Lib 28.31
Java Classes/SDKs 29.39
Misc (res, assets) 24

Table 4. Various sources of app APK
storage consumption.

classes.dex files in apps, compares them against the database, and produces a list of matching
libraries found in apps.

LibScout detected 5.77M and 55.30M Java libraries (full matches); whereas, 3.4M and 20M were
partially matched or unmatched in 1.1M (from 2014) and 1.7M (from 2019) free Android apps,
respectively. Overall, we found that the average number of Java libraries per app increased from
7.72 in 2014 to 62.38 (800% increase) in 2019, which adds to the storage pressure. Also, the average
number of classes per app increased from 1.76K in 2014 to 5.16K in 2019, which signifies 3x more
code in modern apps. These classes include all Java code: app-specific proprietary code as well as
generic third-party Java libraries.

The detected libraries suggest that apps rely on third-party SDKs for a host of functionality, such
as tracking analytics, advertisements, and various utilities (e.g., debugging). Table 3 summarizes
popular SDK types we found. The number of apps containing in-app advertisements and social
media plugins increased by 2x and 2.5x, respectively in five years.
SDKCode Bloat. Third-party SDKs implement generic functionality. For example, a cryptographic
library may implement multiple encryption algorithms. However, only a subset of SDK methods is
used by developers, even though the entire third-party SDK is imported and distributed with the
app, resulting in code bloat. Our LibScout analysis reveals that no method was used for 13.28% Java
libraries in 1.7M apps from 2019. Furthermore, less than 40 methods were used for 40% of SDKs.
Developers also add multiple third-party SDKs for the same functionality. For example, many

apps integrate both Google and Facebook social media SDKs to offer easy account login functionality.
However, the user may only use their favorite, rendering others unused.
Native libraries. Besides Java libraries, Android apps also contain C/C++ native libraries compiled
to machine code (see §2). We found that both the number of apps containing native libraries and
the average number of native libraries per app increased by 10% in five years. Figure 5b shows the
distribution. Specifically, 290K (24.42%) of 1.1 million free Android apps contain at least one native
library in 2014. Average number of native libraries across those 290K apps was 3.2. In contrast, of
1.77 million free apps from 2019, 669K (37.7%) contain native libs. In 2016, 640.7K (32.52%) of 1.97M
free apps contained at least one native lib, with an average of 6.3 native libraries per app.
Universal Apps.We also found cross-architecture x86/x86_64, ARMv5/v8, MIPS/MIPS64 native libs,
consuming an average of 10 MB per app that will never be accessed on ARMv7 devices. The number
of such libraries increased significantly in five years: 2.4M and 4M were found across 640K and 669K
apps with native libraries in 2016 and 2019, respectively. The average number of ARMv7 libraries
across 669K apps from 2019 was 4 per app; whereas, redundant libraries grew to 6. Table 5 provides
the breakdown.
This trend suggests that despite Google’s guidelines to create smaller and device-specific opti-

mized apps [22, 26, 27], developers create universal apps. It is important to note that ARM devices
are backward compatible; that is, a native library compiled for ARMv5 or ARMv7 architecture is
compatible with an ARMv8 Android device. Similarly, x86 Android devices can emulate ARM

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



28:12 Ashish Bijlani, Umakishore Ramachandran, and Roy Campbell

instructions using a binary translator [46] at runtime, trading performance and battery. How-
ever, developers include individual CPU-specific libraries to provide improved performance and
experience.
Unstripped native libs. By default, the Android development environment (Android Studio)
removes (strips) all debug information that may be embedded in native libraries by compiler. App
developers may disable stripping during app development phase for easier debugging at the cost
of generating bigger libraries, and re-enable for a lean release. However, 25% of the apps with
native libraries we analyzed from 2014, contain at least one unstripped library, adding to the storage
pressure. In 2019, the number of unstripped libraries fell to 13.2%.

In addition to debug info, native libraries also contain symbols for the linker to resolve references
at runtime. By default, the compiler adds symbols for all exported functions that may potentially be
invoked at runtime. However, it needlessly increases the library size, particularly if the app only
invokes a small fraction of such functions at runtime. We found that about 88% of native libraries
have more than 50 exported functions that further add to the library size.

CPU # Apps (%) # Libs (%)
’14 ’19 ’14 ’19

ARMv5 63.08 44.10 32.40 8.86
ARMv7 74.75 94.35 53.16 38.41
ARMv8 0.04 42.39 0.02 12.95
MIPS 9.38 23.46 2.93 3.92
MIPS64 0.04 9.65 0.02 1.42
X86 24.39 67.94 11.16 24.85
X86_64 0.05 36.26 0.03 9.58
OTHER 0.35 0.08 0.28 0.02

Table 5. Change in num of Android apps
supporting multiple CPU types over years.

App # Activtis Size (MB) # Libs
’14 ’19 ’14 ’19 ’14 ’19

AmznKdle 65 123 30.83 37.29 2 54
AgryBrds 12 25 47.26 99.00 3 8
Dropbox 55 130 28.24 50.62 4 12
LinkedIn 53 104 28.07 29.44 2 9
Facebook 208 563 25.20 51.58 44 140
Tencent 489 900 27.58 105.70 58 212
Twitter 98 193 14.29 20.77 20 48
Yelp 138 263 14.60 24.30 10 80
Fitbit 87 250 16.63 57.44 0 208
Starbucks 6 56 7.80 42.75 12 92

Table 6. Change in sizes, num of Activities and native libs
across top 10 (>1B installs) Android apps over years.

Duplicate code. As mentioned above, apps use third-party SDKs to implement common features.
However, such common SDKs lead to code duplication. For example, 28% to 90% of apps that we ana-
lyzed from 2019 contain the same version of at least one library package from com.android.support.
6.6% of apps contain the same version of OkHttp library. Duplication can also occur when multiple
apps from the same vendor are installed. For instance, Facebook and Instagram apps contain the
same version of libvideo.so and libfb.so.

To find duplicate native libraries across all apps from 2019, we extracted libraries from app APKs
using apktool, and calculated md5sum for each library. We only analyzed ARMv7 libraries as most
(94.35% of 669K) apps contain such native libraries (see Table 5). We found 2.1 million (91.84%)
ARMv7 native libraries across all apps contain at least one duplicate library, occupying a total of
4.48 TB of redundant space. Therefore, a simple file-level deduplication scheme could save 4.48 TB
across 2.1 million apps (i.e., 2.13 MB per app on average).
In-app products. Another source of increase in app sizes is the use of paid in-app products for
monetization. Developers allow users to purchase additional features or related products from
within their apps. For instance, Disney Pet Palace book allows users to purchase more pets. Similarly,
games allow users to purchase advanced levels. However, such features will only be accessed once
paid for and unlocked. We found that about 118K apps from 2019 support in-app purchases,
consuming unnecessary storage space.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



Where did my 256 GB go? A Measurement Analysis of Storage Consumption on Smart Mobile Devices 28:13

Opaque Binary Blobs. Developers can supplement the app APK with two monolithic OBB files,
each up to 2 GB (see §2). We inspected OBB files from 150 large (> 100MB) GooglePlay Android
apps across all categories with at least 1M downloads to understand how developers use OBB files.

We found that OBBs are zipped archives of multiple small files. Games and digital books develop-
ers leverage OBBs to hide proprietary implementation (e.g. 3D textures) [24]. For example, 1497 MB
OBB from Asphalt 8 Airborne racing game contains 11K distinct objects — binary (e.g. shaders,
textures), text/xml, and multimedia objects (e.g. images) — ranging from 100 bytes to 13.47 MB.
Developers also abuse OBB files to build universal apps, bundling auxiliary assets catering to

more than one demographic region (e.g. text/audio in various languages) and device type (e.g. ARM
vs. x86, phone vs. tablet). For example, OBB archive from Nightmares from the Deep game contains
445 icons and images containing non-English content (totaling 10 MB).

To summarize:
• Modern apps pack more features and third-party SDKs/libraries. Number of features in top
apps doubled in five years, resulting in bigger apps.
• Most apps are universal, containing cross-architecture native libraries for improved perfor-
mance on every device type at the cost of more storage.
• Apps also contain paid features that are only unlocked once the user purchases them.
Nevertheless, such features consume storage space regardless.
• Installation of apps that use common SDKs or are from the same vendor result in duplicate
SDKs and libraries, consuming redundant storage space.

5 INSTALL-TIME BEHAVIOR.
Apart fromAPK andOBB files that are downloaded fromGooglePlay, an Android appmay download
or create additional files during the installation process, leading to additional storage consumption.
To understand such additional install-time storage requirements, we now present results from our
analysis of fresh installation (no usage) of apps.

Fig. 6. Install-time storage consumption analysis of top (>10M downloads) Android apps collected in Aug, 2018.

Upon installation, apps expand to further consume additional storage, primarily due to creation of pre-JITed OAT

files and decompressing libraries to offer better performance.

Questions. During this study, we sought answers to the following questions.
− How much storage do apps consume immediately upon fresh installation (no usage)?

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



28:14 Ashish Bijlani, Umakishore Ramachandran, and Roy Campbell

− Do app installations consume additional storage beyond app sizes? If so, how much and what causes
this additional storage consumption?

Dataset.We analyzed top 30 GooglePlay apps from 2018, each with at least 5 million downloads.
Methodology. We performed fresh manual installation of each of the apps in our dataset on a LG
Nexus 5 device, and used Android Debug Bridge (ADB) shell scripts to inspect sizes of files in app
storage areas (see §2) without using launching the app.
Findings. Figure 6 shows our findings. We found that upon installation, 27 apps expand to further
consume at least 1.5x storage space of their respective package. Facebook app, in particular, expands
from a 64 MB package to consume sizable 265 MB (over 4x increase) when installed.
OAT creation. The primary reason for additional storage consumption during installation is
creation of additional files. During the installation process, each classes.dex in app APK is parsed
by the ART/Dalvik JVM. The resulting pre-compiled classes.dex bytecode, called OAT, is stored
on the device so that any future app execution occurs without the need for further JIT compilation,
resulting in better performance and user experience at runtime. Post installation, the compressed
APK file is also stored on the device, resulting in two copies of each app classes.dex file–one in
the APK and another in pre-compiled OAT file.
Unzipped libraries. During installation, native libraries are also extracted on the device for faster
I/O at the cost of more storage consumption. For example, Facebook APK extracts over 120 native
libraries. Once installed, the app extracts additional 70 native libraries and Java DEX files from
zipped asset resources, namely from libs.xzs archive, consuming additional 50 MB.
Additional persistent files. We found that apps also create databases and xml files under
shared_prefs upon installation to host app settings. Apps that need auxiliary OBB files as a
part of their functionality, download such files upon first activation (usage) of the app, not during
installation. A few apps also download or create additional resources separately as needed. For
instance, Facebook app preallocates storage space by creating a large 20MB file.

To summarize: Upon installation, Android apps create optimized code and additional files to
provide high performance at the cost of more storage consumption.

6 USER STUDY
To gain insight into the runtime storage consumption behavior of today’s mobile apps, we carried
out a study with Android users in the wild. The purpose of the study was to answer the following:

− Storage consumption: How many apps do users install on average? How much storage do apps
consume after weeks/months of usage? How much is consumed by user data (e.g., photos, videos)?
− Storage usage: How many apps (and features) do users interact with daily on average? How many
installed executables (e.g., libs) and auxiliary files are actually used actively?

6.1 Study methodology
Participants. Our study was conducted with participants recruited via PhoneLab [45], a mobile
testbed at the University of Buffalo. PhoneLab allows researchers to deploy and test Android
changes with 100–300 participants, who are university affiliates (i.e., faculty, staff, students) across
diverse groups of age, gender, and occupation [55]. We provided our Android changes to PhoneLab
administrators, who then made our study available to their participant pool to volunteer.
Our initial sample consisted of 231 PhoneLab participants. However, data from 91 participants

were removed due to substantial missing data. The final sample used in this study consisted of 140
participants, who provided complete data across 70 days.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



Where did my 256 GB go? A Measurement Analysis of Storage Consumption on Smart Mobile Devices 28:15

OS and device. PhoneLab provided a 16 GB LG Nexus5 device to each participant, which they use
as their primary smartphone for the study duration, allowing us to collect representative usage
data. The device ran Android Lollipop version 5.0.1, customized to collect data from the Android
Logcat memory buffer [28]. Data collected was stored on the device and securely uploaded to the
PhoneLab servers over HTTPS every night when connected to WiFi.
Privacy. To ensure the privacy of participants, PhoneLab anonymized all device identifiers when
collecting data. Approval from the Institutional Review Board was obtained prior to the study.
Tracing tool. Smartphones are highly personal consumer devices. As such, each user persona type
(e.g., gamer vs. non-gamer) is likely to have a completely different device usage patterns.

Therefore, we built a novel context-aware storage tracing tool, called cosmos, that not only
collects low-level file system events, but also logs apps being used, along with various device
contextual attributes (e.g., location). It consists of a daemon process and a native library that is
transparently loaded into each Android app using LD_PRELOAD when the app is launched. Upon
initialization, the library hooks relevant file system APIs (e.g., open, read) in bionic C library by
registering wrappers functions that intercept and log file system requests. Table 7 summarizes APIs
we hook and data we collect. This design requires no change to individual apps or the Android
framework. We deployed cosmos on each participant’s device as a background system service that
posts data to the Android Logcat buffer, which is collected by the PhoneLab framework.
We have designed cosmos particularly for lightweight continuous data collection on mobile

devices. For instance, we avoid periodic polling for device context in order to minimize the runtime
overhead; instead, our daemon process subscribes to various Android services to collect contextual
attributes. Our wrapper library allocates a large user-space memory buffer in each app to allow
bulk posting of file system events and minimize IO overhead. Figure 7 shows its performance.
In contrast, existing file system monitoring tools such as inotify [44] pose high memory and

performance overhead due to recursive watchpoints on each dir [14]. User-space file system tracing
based on FUSE [59] (e.g., loggedfs [20]) incur up to 4x performance overhead [65]. In-kernel tracing
frameworks (e.g., ftrace) log system-wide low-level file system requests, and thus require large
kernel memory buffers. Also, requests from Android system services must be filtered to only capture
storage accesses from apps.

Nevertheless, cosmos fails to log memory-mapped I/O traffic as no file system API (read/write)
calls are made. Nevertheless, eBPF [38] kernel extensions could be leveraged to selectively capture
such low-level requests from user space [9, 10]. We leave this as future work.
Platform changes and data collection.We collect the following data for all the participants.

(1) Detailed low-level file system activity traces, and relevant parameters (e.g., file path, size, offset).
(2) Detailed device and app usage statistics (e.g., app Activity invoked by the user). We made a
small change to the core Android framework to track app Activity usage.
(3) Stateful device updates, such as network connectivity changes, and storage reclamation events.
(4) Multiple spatio-temporal contextual attributes such as device location, time of the day, and
physical activity of the user (e.g., on foot, in vehicle, etc.). Table 9 lists them.

The data we collected can be accessed publicly from PhoneLab [49]. We focused only on the
storage consumption of the /data partition because it is fixed in size, shared among all apps, and
also hosts user data such as videos, pictures, and documents (see §2 for details).

6.2 Findings.
Here we present our findings by analyzing the data collected from our user study.
App storage consumption.We found that on average a user has 122 apps installed. 91 of those
were pre-installed system apps (i.e., apps installed in the system partition). Such pre-installed

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



28:16 Ashish Bijlani, Umakishore Ramachandran, and Roy Campbell

API Input Parameters

Read File descr, Offset, Length
Write File descr, Offset, Length
Open File descr, File path
Mmap File descr, Access perms

Table 7. Bionic C APIs we hook for collecting

file system traces.

Device Event Android Service Description

Bluetooth BluetoothAdapter Pairing Updates
Battery BatteryManager Battery Status
Cellular ConnectivityMngr Cellular Info
Wireless WifiManager Wifi SSID
Storage StorageServer Storage reclaim

Table 8. Android system services we subscribe to for collecting

contextual attributes.

Attribute Android Service Context

Timestamp System Time Day, Time
Location LocationServices Location
UserActvty ActvtyRecognition Walk, Drive
Table 9. Summary of Contextual data collected.

Vendor Example apps

AOSP Clock, Email, Phone, Settings
Google Maps, Docs, Photos, GMS, Play
LG Update, SprintHiddenMenu
Qualcomm redbend.vdmc, qcrilmsgtunnel

Table 10. Preinstalled system apps.

User Apps Installed Apps Used # Features Used (%)
Total System User Avg Daily Overall Avg Daily Overall

A 135 97 38 17 45 1.36 7.24
B 113 95 18 11 32 1.31 5.53
C 116 93 23 15 34 1.51 9.93
D 123 95 28 8 23 1.41 5.56
E 121 97 24 10 37 0.84 4.94
F 130 97 33 16 36 1.14 4.19
G 107 96 11 15 31 1.34 6.05
H 115 91 24 18 37 0.71 3.82
I 166 102 64 13 51 0.80 5.68
J 124 92 32 17 39 1.15 5.32
K 122 90 32 12 34 0.99 3.94
L 129 96 33 12 34 1.20 7.38
M 132 98 34 19 59 0.99 5.90
N 145 98 47 11 35 0.45 2.59
O 146 99 47 15 41 1.05 4.41
P 122 96 26 12 35 1.20 8.50
Q 131 91 40 18 30 0.79 5.33
R 145 99 46 8 41 0.43 3.16
S 121 89 32 14 50 1.09 6.80
T 117 92 27 10 25 0.26 4.26
U 123 94 29 16 45 1.26 6.40

Table 11. Snapshot of device storage consumption across 21 users. On average, each user has 122 apps installed.

91 of those were pre-installed system apps. However, only a small fraction of apps, features, and native libraries

are actively used daily.

apps are installed by phone vendors, manufacturers, or carrier providers. We list a few examples
in Table 10.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



Where did my 256 GB go? A Measurement Analysis of Storage Consumption on Smart Mobile Devices 28:17

Fig. 7. Performance of cosmos across top 12 apps (see §5) as measured by app launch latency and battery use.

Evaluation setup and methodology are the same as in §7.1.

Figure 8 shows the breakdown of storage consumption of the /data partition for 20 different users
chosen at random. The space consumption of an app is calculated as the sum of sizes of its individual
files found in various designated internal as well as external app storage locations (see Table 1).
Space consumed by the OS is calculated based on the files present in the internal /data partition
that do not belong to any app. User data such as documents, pictures, and videos are identified by
their file type and location in primary external partition (or /sdcard). For instance, on Android
devices, pictures taken using the digital camera on the device are stored under /data/media/DCIM,
whereas apps save picture messages in /data/media/Pictures. Similarly, audio files are stored in
/data/media/audio.

As seen in the figure, apps consume almost 50% of the total storage across users, on average.
Apart from user data (e.g., pictures/videos) that is commonly known to consume significant storage
space due to high-quality multimedia content, we found that over time modern apps also can
occupy a significant storage space. For instance, app consumption exceeds 60% for user-H and
user-N, even though none of the apps are over 1 GB, suggesting data accumulation over time.

Fig. 8. Breakdown of /data storage partition snapshot of randomly selected 21 users. The space consumption

of an app is calculated from the sizes of its various individual files found in various internal as well as external

storage areas (see Table 1). misc includes files in public /sdcard dirs.

Storage abuse. To get more insights into what causes apps to accumulate data over time, we
further studied the storage consumption of apps as per various designated app storage locations on
Android devices (see Table 1). Figure 9 shows the breakdown of storage consumption. We found
that on average 20% and 11.86% of the available storage space is consumed by app caches (C) and
files (F), respectively across 21 users.
This suggests that apps abuse persistent storage by creating files as needed and frequently

caching or prefetching content from the Cloud to improve app runtime performance and offer a
streamline user experience. As a result, through the daily use of apps, mobile devices accumulate
large amounts of data and quickly exhaust storage space.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



28:18 Ashish Bijlani, Umakishore Ramachandran, and Roy Campbell

Fig. 9. Further breakdown of storage consumption of apps in Figure 8 as per the app storage areas (see Table 1),

namely files (F), cache (C), databases (D), shared preferences (S), native libraries (L), OBB files (O), APK files (A),

and Dalvik cache (V) shows that apps frequently persist data on the device (e.g., caches, files, db, libs) to provide

low latency and streamline experience, particularly under fickle network conditions. Cache dir space is blindly

reclaimed when the device runs low on storage regardless of device/apps usage pattern. In contrast, the space

occupied by other app persistent storage areas (e.g., files, DBs) is not reclaimed until the app is manually deleted.

Fig. 10. Fitbit app storage consumption over time for user-O. The area shaded in grey represents the private

cache dir. Cache files are created (shown as red triangles) and accumulated over time. However, only a small

fraction of those files are actually used (shown in blue plus symbols), and only a few are deleted by the app

(shown in yellow dots). When the device storage consumption reaches 90%, space occupied by cached files is

reclaimed (depicted by green stars). Due to blind reclamation of cached data, files in the working set are recreated

on demand, yielding poor performance.

Yet, apps are not constrained by storage consumption limits [25]. When the overall device
consumption reaches 90% threshold, all app caches are automatically cleared by Android storage
service. However, blind removal of cachedworking set not only affects the performance of frequently
used apps, but also for such apps the caches are quickly repopulated on next usage. For example,
for user-O storage space occupied by Fitbit cache is cleared, but is repopulated the same day as
seen in Figure 10.

Apart from frequently caching temporary data, We found that apps also freely hoard persistent
data as needed, such as analytics to track user engagement, crash reports for debugging, and
advertisements (ads) for monetization. Developers use a number of third-party SDKs for ads and
collect user analytics (see Table 3). The number of apps using advertisement SDKs doubled in
2019 from 2014 as reported in §4. Such SDKs allow users to build custom, interactive (video),
and engaging ads for monetizing and promoting their apps. Since some ads may require more
bandwidth, and can take time to load, they are persisted on the device for a period of time to
avoid re-fetching. Persisted ads are also shared across apps using the same advertisement SDK by
installing them on the public /sdcard partition.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



Where did my 256 GB go? A Measurement Analysis of Storage Consumption on Smart Mobile Devices 28:19

Fig. 11. Free space available on device over time for user-L. As the storage consumption reaches 90%, the system

reclaims storage space by blindly deleting app caches. However, due to extensive usage, app caches are repopulated

quickly. Red regions represent reclamation periods.

During our study we found that free games, in particular, download and persist high-definition
in-app video ads. While app caches are temporary and reclaimed automatically, persistent data is
never reclaimed. Removal requires manual deletion or app uninstallation. We detected several old
video (mp4) and image (png) ads from AdColony, UnityAds, and Chartbooster across user devices.
Hoarded crash logs and analytics data were also found.

Fig. 12. Min storage on iPhones grew from 16 GB

in 2014 [68] to 64 GB in 2019 [69], while the average

capacity on Android remains 54 GB [15].

Overall Avg (%)

Apps 53.70
UserData (Pic/Vid) 30.13
Miscellaneous 16.17

App Avg (%)

Code (APK, OAT, OBB) 73.12
Cache (/cache) 14.23
Data (Files, XML, DBs) 12.65

Table 12. Different sources of mobile stor-

age consumption.

Unused apps/features. While our static analysis (§4) shows that modern apps pack 2x more
features, findings from our user study shows that app usage follows the Pareto Principle; i.e., only a
10% of app features and files are actively used, on average. We found this behavior to be consistent
across most of the study participants. Table 11 summarizes our findings. This usage behavior
suggests that modern apps are heavily bloated: 90% number of app executables and third-party
libraries that are persisted on device and optimized for performance during installation (see §5),
are not actively used.
For example, apps integrate multiple third-party social media SDKs (e.g., Facebook) to offer

easy account creation functionality. However, only one is used; code of remaining SDKs is never
executed. Many free apps (e.g., games) offer in-app purchases of additional features. Such features
will only be accessed once paid for and unlocked. Similarly, only a fraction of native libraries are
used. For example, Facebook APK installs over 100 native libraries. However, we found that for most
users less than 50 such libraries were used over the course of 70 days of the app usage. Similarly,
LinkedIn app installs four native libraries. However, only three were used for all users.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



28:20 Ashish Bijlani, Umakishore Ramachandran, and Roy Campbell

Furthermore, app usage is highly correlated to user context. For example, user-H uses the Maps
app only once a week, every Sunday. Similarly, user-N uses the Yelp app only on weekends.
Redundantmetadata. Functionally similar apps operating on the same data create their own copy
of metadata, resulting in unnecessary storage consumption. For example, various photo viewing,
editors, file browsers, and Cloud-based personal storage apps (e.g., Dropbox) allow users to browse
stored docs, photos, videos. For better performance, each such app generates their own thumbnails
of all videos and photos, resulting in redundant metadata that wastes storage space.

To summarize:
• A significant chunk of device storage is consumed by apps, which includes a number of
pre-installed system apps. However, only a small fraction of apps and features are actively
used, resulting in sub-optimal use of device storage.
• Apps are not constrained by storage quota limits, and freely consume persistent storage by
frequently caching data and creating auxiliary files as needed.
• All app caches are automatically and blindly deleted in Android under high storage pressure,
which impacts the performance of actively used apps.

7 MOBILE STORAGE MANAGEMENT
In this section, we first discuss the need for an efficient storage management system for mobile
devices, and then present future opportunities and challenges.
Storage demand vs. capacity. Our longitudinal study shows that modern mobile apps have
evolved as large feature-rich monolithic packages: an app from 2019 packs 2x more features and
consumes 2x more storage than that from 2014 (see Table 6). Furthermore, such storage-heavy apps
are not limited to games or e-books, but span across multiple categories. We believe that this trend
will continue, particularly as the mobile technology (e.g., 5G) evolves and richer, more immersive
apps supporting Augmented Reality, Artificial Intelligence, and 4K graphics are introduced.
To accommodate increasing demands, smartphones have seen growth in storage capacity. For

instance, the minimum storage on iPhones quadrupled, from 16 GB in 2014 [68] to 64 GB in 2019 [69].
Figure 12 shows the trend. However, low-end budget devices are still prevalent. According to
Counterpoint Research [15], the global average storage capacity of smartphones sold in 2019 was
about 54 GB and 134 GB for Android and iOS smartphones, respectively. Since Android holds about
86% of the global market [37], we deduce that conservatively at least 43% of the smartphone users
own low-end devices, with less than 64 GB of storage in 2019. Such devices, more common in
developing countries [58], severely limit user experience [54, 57, 64]. Therefore, similar to battery
and cellular data, storage is an increasingly critical budgeted resource on mobile devices.
Storage capacity vs. bloatware. Although users can choose to pay a premium price for additional
mobile storage [69], our analysis shows that mobile OSes and apps are not optimized for storage.
A high percentage of storage is consumed by OS and pre-installed bloatware (shown in Figure 8).
Modern apps are monolithic feature-rich and universal packages that contain: a) 3x more Java
code, all of which is precompiled to native machine code for best runtime performance, trading at
least 50% more storage per app (see Figure 6), b) cross-architecture native libs for best performance
on every device type (see Table 5), and c) generic third-party libs, which are only partially used
(see §4). As such, today’s apps are heavily optimized for performance at the cost of higher storage
consumption. While high performance does matter for apps that are frequently used, our user
study shows that only 10% of apps/features are actively used (see §6). Furthermore, developers
freely abuse persistent storage to cache data for streamlined user experience, host ads and user
analytics for monetization.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



Where did my 256 GB go? A Measurement Analysis of Storage Consumption on Smart Mobile Devices 28:21

7.1 Design space: challenges and opportunities
In the light of aforementioned findings, there is an increasing need for an efficient storage manage-
ment system on smart mobile devices. Here, we discuss a few design opportunities and challenges.
1. Cloud storage. The cloud offers a naturally attractive solution to mobile storage constraints. In
fact, iOS v11 can offload infrequently used apps from iPhone storage to iCloud [5]. Currently, only
app packages are offloaded, which are re-downloaded on demand from the app store. Whereas, app
data (e.g., login credentials) are retained on device for future stateful accesses.
However, this design, may not be optimal if entire app packages are downloaded repeatedly

on demand only to access a handful of app features, which is a typical usage pattern as per our
findings in §6. Additionally, blindly offloading all app data will also offload unwanted files, such as
crash logs, user analytics, video/image ads that are hoarded on the device (see §6), merely shifting
the problem to managing the cloud storage; users still need to perform manual management to
delete data or pay more for usage.
2. Storage quota. A typical approach to limit and manage storage consumption is to introduce
per-app storage quotas. While quota limits may prevent apps from abusing storage to freely cache
and hoard data (e.g., analytics, ads), identifying appropriate limits is challenging.

Static limits will not scale as more functionality is introduced and apps grow in size. Additionally,
developers may have to redesign apps to work within the quota limits without any discernible
impact on user experience.
3. Elastic storage. Elastic quota model [72] overcomes these shortcomings by hard-limiting only
persistent consumption and allowing apps to temporarily grow beyond the quota limits depending
upon the available storage space. Temporary space consumed beyond quota is reclaimed under
high storage pressure. Nevertheless, enforcing elastic quota requires one to identify when and what
data must persist on the device or be reclaimed.
One way to address this is to let each app implement its own logic to identify and reclaim

unwanted data. However, it will result in duplicate effort across apps, and place the burden on
developers. We assert that mobile OSes must perform centralized and transparent management
of storage resources on behalf of the user. For example, a core storage management service that
automatically reclaims space occupied by unwanted apps/features would be useful to the entire
community of app developers.
Our user study shows that app usage is highly correlated to user context and not all apps are

equally important to all users. Specifically, we found that the relative importance of apps not only
varies with the user (e.g., gamer vs. non-gamer), but also varies for the same user depending on the
context (e.g., home vs. office). Table 11 captures this behavior. Therefore, for efficient use of mobile
storage, novel techniques must be developed to learn app usage behaviors of the user and perform
storage management according to the user’s context-sensitive storage requirements.
Modern mobile OSes already host a personal assistant that tracks user’s device usage habits

and provides context-based app recommendations. This functionality could be extended to also
learn about user’s everyday storage needs, and build working set storage profiles to automatically
identify unwanted apps/features, which could be reclaimed for more efficient use of storage.

Besides relying on the cloud for hierarchical management (i.e., offloading data), which may not
always be optimal as mentioned above, multiple techniques such as content adaptation, deduplica-
tion, compression, could be leveraged to reclaim contextually unwanted data. Here, we evaluate
these techniques to provide an estimate on potential storage saving and performance implications.
a.) Content adaptation. During app installation, Java code is pre-compiled into native code (OAT)
for best runtime performance (see §5). By default, all Java methods are compiled, which results in
storage consumption of at least 1.5x the size of app APK. However, our findings in §6 show that

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



28:22 Ashish Bijlani, Umakishore Ramachandran, and Roy Campbell

only a small fraction of app features are used. For example, in-app purchases are only accessed if
the user has paid for and unlocked them. Similarly, not all Java methods of third-party SDK are
used (see §4). Depending on the functionality, only a few Java classes and their corresponding
resource files (e.g., images, sound files) are accessed. As such, optimizing all app features by trading
in more storage leads to inefficient use of storage resources.
Performing pre-compilation on only a subset of Java classes (e.g., frequently used features)

can save storage by reducing the size of the generated OAT file, and potentially offer similar
performance. Further savings could be achieved by temporarily deleting OAT files of rarely or
infrequently used apps and falling back to regular (non-optimized) executable code, thereby freeing
up at least 50% of the APK storage space per-app. Figure 13 shows storage savings achieved under
adaptive compilation.

Fig. 13. Resource trade off in OAT generation as measured across top 30 apps in Figure 6.

To evaluate expected storage savings and performance impact from adaptive OAT generation, we
use the same set of 30 top GooglePlay apps as in §5. All experiments have been carried out on a LG
Nexus 5 device, running Android v6.0.1 and Linux kernel v3.4. The power measurements are taken
using the Trepen profiling app from Qualcomm [51]. We first install fresh copies of apps. Then
each app is started once manually since the first launch may perform necessary initialization (e.g.,
account creation, fetch/create additional files, cache data) and may take longer than subsequent
launches. Once all the apps have been initialized, we reboot the device and perform scripted launch
of each app 3 times and report average numbers. Previous instances of apps are force-killed before
each run to make sure that cold performance numbers are captured. We disabled device network
connectivity to eliminate external noise (e.g., battery drain from fetching data over the network)
Inspired by prior works [71], the app launch time reported is simply the total time taken to display
the app main activity as measured by Android ActivityManager framework.

Figure 13 shows the CDF of cold app launch times, battery consumption, and storage savings as
measured under following settings:
− Speed pre-complies all Java code to native for best runtime performance (default Android setting),
− Quicken [23] optimizes some Java code to get better runtime interpreter performance, and
− NoOAT, which decompresses Java methods on the fly from the zipped app APK in memory and
relies exclusively on runtime interpretation of code.

On average, we see about 25 MB (21.34%) reduction in the size of OAT file per app for Quicken,
with almost no latency or battery drain. This is because the generated code is optimized for runtime
interpretation. Whereas, NoOAT offers more savings, about 50 MB (or 42.78%) per app on average,
as there is no optimized OAT file anymore. However, these storage savings come at a small cost
in terms of app latency (avg 1 sec) and battery drain as shown in Figure 13 due to on-the-fly
decompression of code. We believe this overhead is acceptable to access infrequently used apps.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



Where did my 256 GB go? A Measurement Analysis of Storage Consumption on Smart Mobile Devices 28:23

0 20000 40000 60000 80000 100000 120000
Blocks

Launch Tutorial Level-1

Fig. 14. OBB accesses across three different levels

Similarly, compression can also be employed to transparently reclaim storage space occupied by
persistent data of rarely used apps. However, on-the-fly decompression of data will incur battery
overhead and runtime latency as in case of NoOAT above. Since mobile devices work with limited
resources (e.g., battery) and high app latency can degrade user experience [60], an efficient mobile
storage management system must carefully balance multiple concerns.
b.) Code deduplication. Common files across apps can be consolidated using deduplication. For
example, we found 2 of the top 30 apps use same the version of Joda-Time SDK to implement
timezone functionality. Microsoft Skydrive app and Fruit Ninja game contain the same version of
crashlytics SDK native library, each consuming 121 KB and 185 KB of storage space on ARM and
x86 architectures, respectively. Similarly, Dropbox and Snapchat apps contain the same version of
librsjni library, each consuming 50 KB. Overall, we found that a total of 1 MB (0.85%) per app
could further be saved by simple file-level deduplication of native libraries found in the APKs of
top 30 apps. Deduplication at finer granularity (e.g., block-level) could potentially yield additional
storage savings.

However, online (synchronous) deduplication scheme that hashes every I/O block while it is being
written to disk can negatively impact the device battery life and user experience on mobile devices.
Therefore, offline (asynchronous) deduplication is more suitable for mobile devices. Furthermore,
opportunistic offline deduplication can be performed when the device is being charged.
c.) Deletion. Our findings show that apps freely use persistent storage to offer streamlined user
experience by frequently caching data. Since cached data is temporary and could be fetched (from
cloud) on demand, additional storage savings could be achieved by simply deleting caches of
infrequently used apps. However, careful app profiling must be done so as to not delete the app
working set files or on-demand downloading of such data may drain the battery, incur cellular data
usage, and cause runtime latency.
Similarly, unnecessary cross-architecture x86 and MIPS native libraries on ARMv7 devices could

be safely deleted as they will never be used.
Savings from OBB files. We monitored accesses to OBB files during app usage by leveraging file
system tracing hooks, and found that different objects inside monolithic OBB archives are accessed
at different times, depending upon usage. For instance, games contain multiple levels. Every level
accesses only a few objects (associated with it) to display on the screen. Figure 14 shows accesses
to a 475 MB OBB archive from three different levels of Nightmares from the Deep, an adventure
game. As shown, a markedly different chunk of the OBB is accessed by different levels of the game.
Each game level demands different playing skills for users ranging from beginners to experts.

As such, not all levels are accessed simultaneously. Depending upon the user’s expertise, different
levels and features associated with them will be accessed at different times. For inexperienced
users, level with the highest difficulty may even never be accessed. Similarly, experts may no longer
access initial levels if the player is far through the game.
Similarly, due to the complexity and graphical richness, these large apps contain interactive

tutorials for improved user learning and engagement. Some apps, such as adventure games and
digital books targeting kids, also contain story narratives to build context and provide background

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



28:24 Ashish Bijlani, Umakishore Ramachandran, and Roy Campbell

information. However, these tutorials and narratives may never be accessed once the user gets
acquainted with the features. Therefore, depending upon usage, a significant chunk of storage
occupied by OBB files could be freed and downloaded again from the app store when needed.
Role of app developers. Developers can follow Google’s guidelines and create smaller device-
optimized apps [22, 26, 27] as opposed to creating bigger universal apps. Additionally, developers
can modify Android compiler flags (e.g., include -fvisibility=hidden for GCC) to reduce the
number of unnecessary debug symbols, generating smaller libraries.

8 RELATEDWORK
The following prior works compare closely to the work presented in this paper.
Study of mobile apps. A number of prior works have analyzed mobile apps and app store
data for app popularity/download patterns [41, 43, 48, 70], app ratings/reviews [62], security
issues [13, 16, 19, 50, 74], identifying app clones [42, 67, 73], and third-party code reuse [7, 19]. For
example, Petsas, et al. [48] studied app download patterns, popularity trends, and development
strategies in the mobile app ecosystem. Xu, et al. [70] used cellular network traces to study diverse
usage behaviors of mobile apps. Tian, et al. [62] evaluated mobile apps in terms of code complexity,
Android API usage, and a number of other factors to distinguish between high and low rated apps.

PlayDrone [66] was the first work that analyzed GooglePlay Android apps at scale and pro-
vided insights into app store data, such as app categories, download statistics, and security issues.
CredMiner [74] uses app decompilation and program slicing to detect apps that leak developer
credentials. OSSPolice [19] focused on identifying license violations and security issues with third-
party open-source JAVA and native software libraries in mobile apps. Similarly, LibScout [7] studied
security issues with Java third-party libraries. Both the tools detect libraries and correlate them
with publicly known vulnerability data to identify impacted apps. However, none of the prior works
studied mobile storage consumption, which is the focus of this work.
Study of storage and file systems. Douceur, et al. [17] carried out a large-scale study of file
systems. Agrawal, et al. [1] studied temporal storage changes in Windows systems over time such
as directory size, file age, and total storage consumption by taking snapshots.

Harter, et al. [33] studied I/O behavior of the Mac OS file system. Whereas, Lee, et al. [40] focused
on I/O behavior on Android-based smartphones. In this work, we focus on smart mobile storage,
and provide detailed insights into the storage consumption behavior of mobile apps.
Storage management. Harmonium [56] introduced motif abstraction for storage management
that allows applications to reconstruct contracted files either by decompressing or fetching over
the network. Similar techniques could be leveraged to manage mobile storage.

Elastic quota [72] manages storage by hard-limiting only persistent data and allowing temporary
data to grow or be reclaimed depending upon the available storage space. However, it requires the
user to identify when and what data should persist or be thrown away.We propose context-sensitive
storage management to automatically identify unwanted apps/features on mobile devices.
Context-aware computing. On mobile devices, several studies have looked at using contextual
information for app prediction for better manageability of apps on the home screen [8, 36, 75],
reduce launch latency [71], target ads [53], and data prefetching [34, 47]. In this work, we propose
the use of contextual information for automated storage management on mobile devices.
Other related work. RedDroid [39] performs static analysis of Android apps to remove code bloat.
Like RedDroid, we also carry out static analysis of mobile apps to identify various sources of app
storage consumption.

WearDrive [35] offloads energy intensive tasks from smartwatches to smartphones. In contrast,
we identify multiple techniques to reclaim storage space occupied by infrequently used apps on
smart devices.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.



Where did my 256 GB go? A Measurement Analysis of Storage Consumption on Smart Mobile Devices 28:25

9 CONCLUSION
Smart mobile devices have evolved as versatile personal digital tools with availability of millions
of apps for everyday computing needs. However, dependence on a single device for a host of
computing tasks leads to high storage demands. Amid mounting anecdotal evidence suggesting lack
of enough storage on mobile devices, a little is known about the utilization of storage by modern
mobile apps.
In this work, we presented the first-ever large-scale longitudinal static analysis of millions

of Android apps to study the increase in their storage footprint over time and identify various
sources of storage consumption. Our results show that mobile apps have evolved as large complex
installation packages and heavily optimized for performance at the cost of more storage. Developers
create universal apps to reduce the engineering effort and offer best performance on every device
type, pack more features in the same app to monetize/engage users, and use a number of third-party
libraries. While it clearly signifies evolution of the mobile app ecosystem in terms of functionality, it
also implies heavy storage demands. A single app can occupy up to 4 GB of storage space. We believe
this trend will continue as the mobile technology evolves (e.g., 5G) and richer, more immersive
apps supporting Augmented Reality, Artificial Intelligence, and 4K graphics are introduced.

Although users can pay a premium price for additional storage, our Android storage usage study
with 140 participants shows that modern apps are bloated with features. Users typically use only
a fraction of apps/features actively and usage is highly correlated to user context. Our analysis
suggest a high degree of feature bloat and unused functionality in modern apps, which leads to
wastage of storage.

We further show that app developers freely abuse persistent storage by frequently caching
cloud data for best performance and streamlined user experience, download advertisements for
monetization, and store user analytics as well as debug/crash logs. Through the daily and extensive
use, these devices accumulate large amounts of data and quickly exhaust storage space.

In the light of our detailed analysis and insights, there is an increasing need for efficient mobile
storage management. In this work, we take the first step by proposing an elastic storage design
for smart mobile devices, identify research challenges, and show promising preliminary storage
savings from such a design.

10 ACKNOWLEDGMENTS
We would like to thank our shepherd, Dr. Arif Merchant, and all anonymous reviewers for their
insightful feedback and suggestions, which substantially improved the content and presentation of
this paper. This work was funded in part by NSF CPS program Award #1446801, NSF CNS program
Award #1909346, and a gift from Microsoft Corp.

REFERENCES
[1] Nitin Agrawal, William J Bolosky, John R Douceur, and Jacob R Lorch. 2007. A five-year study of file-system metadata.

ACM Transactions on Storage (TOS) 3, 3 (2007), 9–es.
[2] AppBrain. 2019. Number of Android applications. https://www.appbrain.com/stats/number-of-android-apps
[3] Inc. Apple. 2008. iTunes preview (app store). https://itunes.apple.com/genre/ios/id36?mt=8
[4] Inc. Apple. 2018. Reducing Your App’s Size. https://developer.apple.com/documentation/xcode/reducing_your_app_

s_size
[5] Inc. Apple. 2019. If you need more space for an update. https://support.apple.com/en-us/HT203097
[6] Apple, Inc. 2015. Now Accepting Larger Binaries - News and Updates - Apple Developer. https://developer.apple.com/

news/?id=02122015a
[7] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable Third-Party Library Detection in Android and its Security

Applications. In Proceedings of the 23rd ACM Conference on Computer and Communications Security (CCS). ACM, Vienna,
Austria.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.

https://www.appbrain.com/stats/number-of-android-apps
https://itunes.apple.com/genre/ios/id36?mt=8
https://developer.apple.com/documentation/xcode/reducing_your_app_s_size
https://developer.apple.com/documentation/xcode/reducing_your_app_s_size
https://support.apple.com/en-us/HT203097
https://developer.apple.com/news/?id=02122015a
https://developer.apple.com/news/?id=02122015a


28:26 Ashish Bijlani, Umakishore Ramachandran, and Roy Campbell

[8] Ricardo Baeza-Yates, Di Jiang, Fabrizio Silvestri, and Beverly Harrison. 2015. Predicting The Next App That You Are
Going To Use. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. Shanghai,
China, 285–294.

[9] Ashish Bijlani and Umakishore Ramachandran. 2018. A Lightweight and Fine-grained File System Sandboxing
Framework. In Proceedings of the 9th Asia-Pacific Workshop on Systems (APSys). ACM, Jeju Island, South Korea.

[10] Ashish Bijlani and Umakishore Ramachandran. 2019. Extension Framework for File Systems in User space. In
Proceedings of the 2019 USENIX Annual Technical Conference (ATC). USENIX, Renton, WA, 121–134.

[11] Bintray.com. 2016. JCenter is the place to find and share popular Apache Maven packages. https://bintray.com/
bintray/jcenter

[12] Box, Inc. 2015. Box | Free Cloud Storage. https://www.box.com/
[13] Kai Chen, PengWang, Yeonjoon Lee, XiaofengWang, Nan Zhang, Heqing Huang, Wei Zou, and Peng Liu. 2015. Finding

Unknown Malice in 10 Seconds: Mass Vetting for New Threats at the Google-Play Scale. In Proceedings of the 24th
USENIX Security Symposium (Security). Washington, DC.

[14] J. Corbet. 2017. Superblock watch for fsnotify. https://lwn.net/Articles/718802/
[15] Counterpoint Research. 2019. Average Storage Capacity in Smartphones to Cross 80GB by End-2019. https:

//www.counterpointresearch.com/average-storage-capacity-smartphones-cross-80gb-end-2019/
[16] Matthew L Dering and Patrick McDaniel. 2014. Android market reconstruction and analysis. In 2014 IEEE Military

Communications Conference. IEEE, 300–305.
[17] John R. Douceur and William J. Bolosky. [n. d.]. A Large-Scale Study of File-System Contents. SIGMETRICS Perform.

Eval. Rev. (May [n. d.]), 59–70.
[18] Dropbox, Inc. Feb 2015. Dropbox - Your stuff, anywhere. https://www.dropbox.com/
[19] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke Lee. 2017. Identifying Open-Source License Violation

and 1-day Security Risk at Large Scale. In Proceedings of the 24th ACM Conference on Computer and Communications
Security (CCS). ACM, Dallas, Texas, 2169–2185.

[20] R. Flament. 2019. LoggedFS - Filesystem monitoring with Fuse. https://rflament.github.io/loggedfs/
[21] Inc. Google. 2015. Google Drive - Cloud Storage & File Backup for Photos, Docs &More. https://www.google.com/drive/
[22] Inc. Google. 2019. About Android App Bundles. https://developer.android.com/guide/app-bundle/
[23] Inc. Google. 2019. Configuring ART. https://source.android.com/devices/tech/dalvik/configure
[24] Inc. Google. 2019. Data and file storage overview. https://developer.android.com/training/data-storage
[25] Inc. Google. 2019. Faster Storage Statistics. https://source.android.com/devices/storage/faster-stats
[26] Inc. Google. 2019. Multiple APK support. https://developer.android.com/google/play/publishing/multiple-apks.html
[27] Inc. Google. 2019. Reduce APK size. https://developer.android.com/topic/performance/reduce-apk-size
[28] Inc. Google. 2020. Android Logcat system. https://developer.android.com/studio/command-line/logcat
[29] Google, Inc. 2010. Android Market Client Update | Android Developers Blog. http://android-developers.blogspot.com/

2010/12/android-market-client-update.html
[30] Google, Inc. 2012. Android Apps Break the 50MB Barrier | Android Developers Blog. http://android-developers.

blogspot.se/2012/03/android-apps-break-50mb-barrier.html
[31] Google, Inc. 2019. APK Expansion Files | Android Developers. https://developer.android.com/google/play/expansion-

files
[32] Google, Inc. September 2015. Support for 100MB APKs on Google Play | Android Developers Blog. http://android-

developers.blogspot.com/2015/09/support-for-100mb-apks-on-google-play.html
[33] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2011. A file is

not a file: understanding the I/O behavior of Apple desktop applications. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP). Cascais, Portugal, 71–83.

[34] Brett D. Higgins, Jason Flinn, T. J. Giuli, Brian Noble, Christopher Peplin, and David Watson. 2012. Informed Mobile
Prefetching. In Proceedings of the 10th ACM International Conference on Mobile Computing Systems (MobiSys). ACM,
Lake District, United Kingdom.

[35] Jian Huang, Anirudh Badam, Ranveer Chandra, and Edmund B. Nightingale. 2015. WearDrive: Fast and Energy-Efficient
Storage for Wearables. In Proceedings of the 2015 USENIX Annual Technical Conference (ATC). USENIX, Santa Clara, CA,
613–625.

[36] Ke Huang, Chunhui Zhang, Xiaoxiao Ma, and Guanling Chen. 2012. Predicting Mobile Application Usage Using
Contextual Information. In Proceedings of the 2012 ACM International Joint Conference on Pervasive and Ubiquitous
Computing. ACM, Pittsburgh, Pennsylvania, 1059–1065.

[37] IDC. 2019. Smartphone Market Share. https://www.idc.com/promo/smartphone-market-share/os
[38] IOVisor 2017. eBPF: extended Berkley Packet Filter. https://www.iovisor.org/technology/ebpf
[39] Yufei Jiang, Qinkun Bao, Shuai Wang, Xiao Liu, and Dinghao Wu. 2018. RedDroid: Android Application Redundancy

Customization Based on Static Analysis.. In Proceedings of the 29th International Symposium on Software Reliability

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.

https://bintray.com/bintray/jcenter
https://bintray.com/bintray/jcenter
https://www.box.com/
https://lwn.net/Articles/718802/
https://www.counterpointresearch.com/average-storage-capacity-smartphones-cross-80gb-end-2019/
https://www.counterpointresearch.com/average-storage-capacity-smartphones-cross-80gb-end-2019/
https://www.dropbox.com/
https://rflament.github.io/loggedfs/
https://www.google.com/drive/
https://developer.android.com/guide/app-bundle/
https://source.android.com/devices/tech/dalvik/configure
https://developer.android.com/training/data-storage
https://source.android.com/devices/storage/faster-stats
https://developer.android.com/google/play/publishing/multiple-apks.html
https://developer.android.com/topic/performance/reduce-apk-size
https://developer.android.com/studio/command-line/logcat
http://android-developers.blogspot.com/2010/12/android-market-client-update.html
http://android-developers.blogspot.com/2010/12/android-market-client-update.html
http://android-developers.blogspot.se/2012/03/android-apps-break-50mb-barrier.html
http://android-developers.blogspot.se/2012/03/android-apps-break-50mb-barrier.html
https://developer.android.com/google/play/expansion-files
https://developer.android.com/google/play/expansion-files
http://android-developers.blogspot.com/2015/09/support-for-100mb-apks-on-google-play.html
http://android-developers.blogspot.com/2015/09/support-for-100mb-apks-on-google-play.html
https://www.idc.com/promo/smartphone-market-share/os
https://www.iovisor.org/technology/ebpf


Where did my 256 GB go? A Measurement Analysis of Storage Consumption on Smart Mobile Devices 28:27

Engineering (ISSRE). IEEE, Memphis, Tennessee, 189–199.
[40] Kisung Lee and Youjip Won. 2012. Smart layers and dumb result: IO characterization of an android-based smartphone.

In Proceedings of the tenth ACM international conference on Embedded software. 23–32.
[41] Huoran Li, Xuan Lu, Xuanzhe Liu, Tao Xie, Kaigui Bian, Felix Xiaozhu Lin, Qiaozhu Mei, and Feng Feng. 2015. Charac-

terizing smartphone usage patterns from millions of android users. In Proceedings of the 2015 Internet Measurement
Conference. 459–472.

[42] Mario Linares-Vásquez, Andrew Holtzhauer, Carlos Bernal-Cárdenas, and Denys Poshyvanyk. 2014. Revisiting android
reuse studies in the context of code obfuscation and library usages. In Proceedings of the 11th Working Conference on
Mining Software Repositories. 242–251.

[43] Wei Liu, Ge Zhang, Jun Chen, Yuze Zou, and Wenchao Ding. 2015. A Measurement-Based Study on Application
Popularity in Android and IOS App Stores. In Proceedings of the 2015 Workshop on Mobile Big Data (Mobidata âĂŹ15).
Association for Computing Machinery, 13–18.

[44] Robert Love. 2005. Kernel korner: Intro to inotify. Linux Journal 2005 (2005), 8.
[45] Anandatirtha Nandugudi, Anudipa Maiti, Taeyeon Ki, Fatih Bulut, Murat Demirbas, Tevfik Kosar, Chunming Qiao,

Steven Y. Ko, and Geoffrey Challen. 2013. PhoneLab: A Large Programmable Smartphone Testbed. In Proceedings of
First International Workshop on Sensing and Big Data Mining (SENSEMINE’13). Association for Computing Machinery,
4:1–4:6.

[46] NetworkWorld. 2014. Intel confronts a big mobile challenge: Native compatibility. https://www.networkworld.com/
article/2360304/intel-confronts-a-big-mobile-challenge-native-compatibility.html

[47] Abhinav Parate, Matthias Böhmer, David Chu, Deepak Ganesan, and Benjamin M. Marlin. 2013. Practical Prediction
and Prefetch for Faster Access to Applications on Mobile Phones. In Proceedings of the 2013 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. ACM, Zurich, Switzerland, 275–284.

[48] Thanasis Petsas, Antonis Papadogiannakis, Michalis Polychronakis, Evangelos P Markatos, and Thomas Karagiannis.
2013. Rise of the planet of the apps: A systematic study of the mobile app ecosystem. In Proceedings of the 2013
conference on Internet measurement conference. 277–290.

[49] PhoneLab. 2016. Data Release. https://phonelab.readthedocs.io/en/latest/data.html
[50] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and Zhong Chen. 2014. Autocog: Measuring

the description-to-permission fidelity in android applications. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. 1354–1365.

[51] Inc. Qualcomm. 2018. Trepn Power Profiler - Qualcomm Developer Network. https://developer.qualcomm.com/
software/trepn-power-profiler

[52] Leonard Richardson. 2019. Beautiful Soup. https://www.crummy.com/software/BeautifulSoup/
[53] John P. Rula, Byungjin Jun, and Fabian Bustamante. 2015. Mobile AD(D): Estimating Mobile App Session Times for

Better Ads. In Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications. Santa Fe,
New Mexico, USA, 123–128.

[54] SanDisk. 2018. 62 Percent of Indians Run Out of Smartphone Space Every 3 Months: SanDisk. https://gadgets.ndtv.
com/mobiles/news/62-percent-of-indians-run-out-of-smartphone-space-every-3-months-sandisk-1829349

[55] Jinghao Shi, Edwin Santos, and Geoffrey Challen. 2019. Lessons from Four Years of PHONELAB Experimentation.
arXiv:cs.NI/1902.01929

[56] Helgi Sigurbjarnarson, Petur Orri Ragnarsson, Ymir Vigfusson, and Mahesh Balakrishnan. 2014. Harmonium: Elastic
Cloud Storage via File Motifs. In Proceedings of the 6th Workshop on Hot Topics in Storage and File Systems (HotStorage).
USENIX, Philadelphia, PA.

[57] Ankur Singla. 2017. The mobile app industry’s worst-kept secret. https://ankursingla.com/2017/01/31/reasons-for-
the-high-uninstall-rates-in-india/

[58] Statcounter. 2019. Mobile Operating System Market Share India. https://gs.statcounter.com/os-market-share/mobile/
india

[59] M. Szeredi and N.Rauth. 2018. Fuse - filesystems in userspace. https://github.com/libfuse/libfuse
[60] Tech Crunch. 2013. Users Have Low Tolerance For Buggy Apps âĂŞ Only 16% Will Try A Failing App More Than

Twice. http://techcrunch.com/2013/03/12/users-have-low-tolerance-for-buggy-apps-only-16-will-try-a-failing-app-
more-than-twice/

[61] The Apache Software Foundation. 2016. Apache Maven Project. https://maven.apache.org/index.html
[62] Yuan Tian, Meiyappan Nagappan, David Lo, and Ahmed E Hassan. 2015. What are the characteristics of high-rated

apps? a case study on free android applications. In 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 301–310.

[63] TmoNews. 2012. Google Head Of Android User Experience Explains The Lack Of SD Cards For Nexus De-
vices. http://www.tmonews.com/2012/10/google-head-of-android-user-experience-explains-the-lack-of-sd-cards-
for-nexus-devices/

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.

https://www.networkworld.com/article/2360304/intel-confronts-a-big-mobile-challenge-native-compatibility.html
https://www.networkworld.com/article/2360304/intel-confronts-a-big-mobile-challenge-native-compatibility.html
https://phonelab.readthedocs.io/en/latest/data.html
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler
https://www.crummy.com/software/BeautifulSoup/
https://gadgets.ndtv.com/mobiles/news/62-percent-of-indians-run-out-of-smartphone-space-every-3-months-sandisk-1829349
https://gadgets.ndtv.com/mobiles/news/62-percent-of-indians-run-out-of-smartphone-space-every-3-months-sandisk-1829349
https://arxiv.org/abs/cs.NI/1902.01929
https://ankursingla.com/2017/01/31/reasons-for-the-high-uninstall-rates-in-india/
https://ankursingla.com/2017/01/31/reasons-for-the-high-uninstall-rates-in-india/
https://gs.statcounter.com/os-market-share/mobile/india
https://gs.statcounter.com/os-market-share/mobile/india
https://github.com/libfuse/libfuse
http://techcrunch.com/2013/03/12/users-have-low-tolerance-for-buggy-apps-only-16-will-try-a-failing-app-more-than-twice/
http://techcrunch.com/2013/03/12/users-have-low-tolerance-for-buggy-apps-only-16-will-try-a-failing-app-more-than-twice/
https://maven.apache.org/index.html
http://www.tmonews.com/2012/10/google-head-of-android-user-experience-explains-the-lack-of-sd-cards-for-nexus-devices/
http://www.tmonews.com/2012/10/google-head-of-android-user-experience-explains-the-lack-of-sd-cards-for-nexus-devices/


28:28 Ashish Bijlani, Umakishore Ramachandran, and Roy Campbell

[64] USA Today. 2014. iOS8 users massively deleting to make room. http://www.usatoday.com/story/tech/columnist/
talkingtech/2014/09/18/ios8-users-massively-deleting-to-make-room/15834211/

[65] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. 2017. To FUSE or Not to FUSE: Performance of
User-Space File Systems. In 15th USENIX Conference on File and Storage Technologies (FAST) (FAST 17). USENIX, Santa
Clara, CA.

[66] Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A Measurement Study of Google Play. In Proceedings of the
2014 ACM SIGMETRICS Conference. ACM, Austin, TX.

[67] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. 2015. Wukong: A scalable and accurate two-phase approach
to android app clone detection. In Proceedings of the 2015 International Symposium on Software Testing and Analysis.
71–82.

[68] Wikipedia. 2015. iPhone 7. https://en.wikipedia.org/wiki/IPhone_7
[69] Wikipedia. 2019. iPhone XS. https://en.wikipedia.org/wiki/IPhone_XS
[70] Qiang Xu, Jeffrey Erman, Alexandre Gerber, Zhuoqing Mao, Jeffrey Pang, and Shobha Venkataraman. 2011. Identifying

Diverse Usage Behaviors of Smartphone Apps. In Proceedings of the 2011 ACM SIGCOMM Conference on Internet
Measurement Conference (IMC ’11). ACM, 329–344.

[71] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu. 2012. Fast app launching for mobile devices
using predictive user context. In Proceedings of the 10th ACM International Conference on Mobile Computing Systems
(MobiSys). ACM, Lake District, United Kingdom, 113–126.

[72] E. Zadok, J. Osborn, A. Shater, C. P. Wright, K. Muniswamy-Reddy, and J. Nieh. 2004. Reducing Storage Management
Costs via Informed User-Based Policies. In Proceedings of the 12th NASA Goddard, 21st IEEE Conference on Mass Storage
Systems and Technologies (MSST). College Park, MD, USA.

[73] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu. 2014. ViewDroid: Towards obfuscation-
resilient mobile application repackaging detection. In Proceedings of the 2014 ACM conference on Security and privacy
in wireless & mobile networks. 25–36.

[74] Yajin Zhou, Lei Wu, Zhi Wang, and Xuxian Jiang. 2015. Harvesting developer credentials in android apps. In Proceedings
of the 8th ACM conference on security & privacy in wireless and mobile networks. 1–12.

[75] Xun Zou, Wangsheng Zhang, Shijian Li, and Gang Pan. 2013. Prophet: What app you wish to use next. In Proceedings
of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, Zurich, Switzerland,
167–170.

Received February 2021; revised April 2021; accepted April 2021

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 28. Publication date: June 2021.

http://www.usatoday.com/story/tech/columnist/talkingtech/2014/09/18/ios8-users-massively-deleting-to-make-room/15834211/
http://www.usatoday.com/story/tech/columnist/talkingtech/2014/09/18/ios8-users-massively-deleting-to-make-room/15834211/
https://en.wikipedia.org/wiki/IPhone_7
https://en.wikipedia.org/wiki/IPhone_XS

	Abstract
	1 Introduction
	2 Background
	3 Modern Mobile Apps
	4 Static Code Analysis
	5 Install-time behavior.
	6 User Study
	6.1 Study methodology
	6.2 Findings.

	7 Mobile storage management
	7.1 Design space: challenges and opportunities

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

