EM-based Radar Signal Processing and Tracking
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Abstract—Maximizing the signal-to-noise ratio (SNR) associ-
ated with a measurement augmenting the radar system with
an iterative Expectation-Maximization (EM) algorithm versus
traditional signal processing algorithms. Maximizing the achiev-
able SNR minimizes measurement precision affected by thermal
noise, and track precision is enhanced given precise, unbiased,
range measurements. While the radar is tracking the kinematic
state (i.e., position, velocity, and acceleration) of the target,
optimal signal processing requires knowledge of the target’s
signature, range rate, and range acceleration. Increasing the SNR
of individual measurements by enhanced signal processing results
in reduced settling time for the track filter and less valuable radar
resources required to achieve a specified track quality. Moving
targets introduce range-walk (RW), which degrades coherent
processing leading to a reduction in SNR and blurring the point
target response in range-Doppler Matrix (RD), resulting in poor
Range estimate to the Tracker. Traditional radar architectures
require excessive iterations of the track loop with the associated
measurements to achieve a specified track quality threshold.
In this paper, the Expectation-Maximization (EM) algorithm,
an iterative and inference approach, is employed to provide
from the Tracker estimates for velocity and acceleration to
the Signal Processor the unobserved variables to maximize the
measurement’s SNR.

Index Terms—Signal Processing, Tracking, Expectation-
Maximization Algorithm, Accelerating Targets, Sensor Process-
ing and Architectures

I. INTRODUCTION

A moving target exhibits range walk (RW) over a coherent
processing interval(CPI). If the range walk and nonlinear slow-
time phase changes are not compensated for, prior to coherent
processing over slow time, a loss in signal-to-noise ratio (SNR)
is observed. Compensating for RW requires knowledge or
an estimate of the target’s range rate and acceleration. In a
tracking radar, measurement precision is inversely related to
SNR and directly impacts track performance. In addition, over
short time intervals, estimates of abrupt changes in the target’s
velocity and acceleration are needed to maintain track.

Uncompensated RW produces a blurred (expanded) point
target response in both range and Doppler. The blurred re-
sponse degrades one’s ability to estimate the target’s range
under reduced SNR. In this paper, we examine the use of an
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iterative Expectation-Maximization (EM) algorithm [1], resi-
dent in the Signal Processor (SP) cite{moon1996expectation
to estimate changes in the target’s kinematics and to correct for
RW leading to enhanced measurement precision in both range
and angle. The algorithm’s expectation component incorpo-
rates a Kalman filter resident within the SP to estimate kine-
matic changes from CPI to CPI [2]. Traditional approaches to
RW correction use predicted tracker states which don’t account
for acceleration changes between measurements. The updated
target states are then applied in reprocessing the current CPI to
improve the measurement precision. The approach is intended
to aid the Tracker and SP in responding to kinematic changes
occurring between track updates, thus increasing a track’s
quality performance and reduce the required track’s lifecycle
timeline while optimizing valuable radar resources usages [3].

In many practical sensor learning settings, only a subset
of relevant features or variables might be observable [4]. The
current research state to improve tracking for moving targets
(e.g., maneuvers) relies upon predefined models, based on
knowledge, that assumes feature state and an understanding
of the expected target acceleration performance [5]. There has
been extensive research and development in signal processing
and tracking algorithms to increase object tracking fidelity for
accelerating and maneuvering targets

The EM algorithm provides an innovative approach for
learning in the presence of unobserved variables to enhance
algorithm performance [1]. EM is an iterative method for find-
ing the maximum likelihood estimates of parameters [6] in a
statistical model, where the model depends on the unobserved
variable. In this case, the unobserved variables are range
rate and radial acceleration. The EM algorithm’s potential
drawbacks are, in some cases, 1) an inability to converge to
a reliable answer for the unobserved variable(s) and 2) the
time duration to achieve convergence. EM’s creation of the
unobserved variables may not consistently support the sensor’s
near-real-time timelines [7] and its decision-making ability
to attain convergence [8] [9]. However, we will demonstrate
that the proposed EM algorithm enabling RW correction to
meet our objectives for enhancing measurement precision and
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Fig. 1: Traditional sensor’s pipeline the Signal Processor
creates a RD Map for a range measurement to the Tracker
for each scheduling period suffers an SNR loss given
the uncertainty in the Tracker’s predicted states used to
correct for RW.

timeliness.

The traditional signal and data processor approach is de-
picted in Figure 1. The Tracker provides a prediction of the
radial velocity and acceleration components for the k+1 state
given the k measurement. The SP applies the predictions to
correct for RW in the k+1 CPL. The RW correction consists
of a linear phase ramp applied on a per pulse basis in
the frequency domain based on the appropriate delay and a
quadratic phase correction. The RW algorithm aligns the target
returns to the center of the CPI. The RD map consists of pulse
compression and a discrete Fourier transform (DFT) across
slow time. The challenge occurs when the acceleration and
associated dependent velocity change between track updates.
Thus, the RW correction is degraded by incorrect kinematic
predictions.

We propose augmenting the SP to support an iterative EM
algorithm to enhance measurement and tracker performance.
The modifications to the SP are provided in Figure 2 and are
highlighted below.

o Expectation (E-step) — Given the current range measure-
ment extracted from the RD map, a Kalman filter is
applied to update the target’s kinematic state to include
unobserved variables, range rate v, and radial acceleration
a.

e Maximum likelihood — Given the new state estimate
(provided by the expectation step - Kalman filter), the
updated velocity and acceleration states are applied to the
RW correction module, and the CPI data is reprocessed
to yield an improved range and SNR estimate.

o« The EM algorithm is repeated until the target SNR
reaches a maximum value.

As noted previously, uncompensated RW produces a blurred
response across range and Doppler. An example of the blurred
response for a single point target is depicted in Figure 3(a).
In this instance, we are showing a portion of the range-
Doppler (RD) space. The color-coding is intended to show
detections post coherent processing. A detection within a RD
cell is denoted by a "1" or a yellow coloring. Blue denotes
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Fig. 2: Signal Processor creates an RD Map and provides
a range measurement Z R and SNR for Z to the Tracker.
The first EM iteration is initiated on the 3rd measurement
resulting from the Tracker and Kalman Filter processing
initial velocity ¥ and acceleration @ estimates. For each
new measurement, the next EM iteration E- and M-steps
is executed.

no detections. In the absence of the RW, the normalized peak
response would have a value of 0 dB; however, in this example,
the normalized peak is -8.98 dB representing a loss in SNR
over the no RW case. Applying RW correction with reasonable
but imperfect knowledge of the target kinematics is depicted
in Figure 3(b). One observes an obvious tighter response in
RD, and the normalized peak is -1.598. With RW correction,
the SNR has improved by more than 6dB. The Cramer Rao
Lower Bound (CRLB) on measurement precision is inversely
proportional to the square root of SNR as noted below

o=k ()
V25NR

where k is a constant and ¢ is the resolution in a given
dimension [4]. By increasing the SNR, we have improved the
measurement precision in range as well as other dimensions
as applicable (e.g., monopulse angle estimation).

This paper introduces enhancements to the Signal Proces-
sor’'s and Tracker’s architecture that strengthens the radar
system’s ability to track accelerating targets within a shorter
timeline and with less demand on valuable radar resources.
The remainder of the paper is organized as follows. Section
Il provides an overview of the radar system model using
in our analysis and provides additional detail regarding the
EM algorithm. Section III provides a maneuvering target
experimental results demonstrating the potential performance
improvement, and Section IV summarizes our conclusions and
proposed future work.

II. RADAR APPLICATION’S EM MODEL FOR MOVING
TARGETS

This section provides a more detailed discussion of the
model and the SP and Tracker employing the EM algorithm
for RW correction and parameter estimation of the unobserved
variables.
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Fig. 3: (a) The blurred detection response across RD and
associated SNR loss when not compensating for RW. (b) A
more compact response when applying RW compensation
and an associated reduction in SNR loss.

A. Radar System Model

In our work, we are modeling a pulse-Doppler X-Band radar
[10]. The radar employs a linear frequency modulated (LFM)
pulse. The pulse width is 10 ms, and the swept bandwidth is 10
MHz. A CPI consists of 1024 pulses. The long CPI is needed
to achieve the desired SNR. A pulse repetition frequency of 10
kHz is employed. For our examples, the target is intentionally
positioned to be range unambiguous; however, the target’s
Doppler is ambiguous. The duration of CPI is 0.1024 seconds,
and the track update rate is 1 Hz. The radar system parameters
are summarized in Table 1.

[ Parameter [ Value | Description ]
Frequency 10E9 | Hz
Pulse Width 10E-6 | microseconds
Bandwidth 10E6 MHz
Pulse Repetition Freq 10E3 Hz
Number of Pulses 1024
CPI Duration 0.1024 | seconds
Range Resolution 15 meters
Unambiguous Range 15,000 | meters
Unambiguous Velocity 150 meters/sec
Track Update Rate 1 Hz

TABLE I. Matlab model of a pulse-Doppler X-Band radar
and schedules Linear Frequency Modulation (LFM) wave-
forms scheduling 1024 pulses at each Coherent Processing
Interval (CPI)

B. Target Scenario

To demonstrate the utility of the EM algorithm, we define
a scenario where the radar initially encounters a target with

constant velocity, 300 meters/sec, and an acceleration 9.8
meters/sec?) (1g), which it acquires and places in track. In
Section III we created an experiment for a target exhibits a
0.5g maneuver [11] that initiates in the time interval between
two intervening track updates and is maintained over several
track update periods. The EM algorithm enables an immediate
estimate of the acceleration employing the next CPI’s data and
compensates for the additional RW and SNR loss.

C. Signal Processing and Tracker

Referring to Figure 2, an RW correction is applied to the
in-phase and quadrature (I/Q) samples comprising a CPI based
on the Tracker’s predicted state for measurement k+1. Once
RW correction has been applied, a matched filter is applied
in range, and a DFT is applied across slow time to form the
RD map. A detection threshold is then applied to the map
based on the desired probability of false alarm. A clustering
algorithm [12] [13] is then applied to the detections to
associate them with a given target. The specific clustering
algorithm is a "density-based spatial clustering of applications
with noise" (DBSCAN) [14] [15]. The RD cells associated
with the target cluster are used to estimate the range to the
target. The range estimate is based on a power weighted
centroiding algorithm. An estimate of the SNR is obtained
based on the peak amplitude within the target cluster. When
employing the EM algorithm, the range estimate and estimate
measurement variance are passed to the Kalman filter. The
Kalman filter returns an updated target statement, which is
then passed to the RW correction (RWC) step, and the RD
map processing is repeated. The second pass through RD map
results is then passed to the Kalman filter for a second state
update [16]. The final updated stated is passed to the RWC,
and RD processing and the estimated range and measurement
variance are then sent to the Tracker.

The results will analyze the iterative algorithm’s ability to
adjust rapidly to create high-fidelity measurements and track.
The target’s initial configuration are defined as constant .5g,
a(4.9 meters/sec?), with 30 dB SNR settings for an X-band
radar experiment. The target is within the radar range, and
the initial range is 4500 meters, with the target’s trajectory
increasing in the range from the radar. Target sensitivity is de-
creasing, for each range measurement (R), because the object’s
trajectory is increasing in range. Its initial velocity estimate
is 300 meters/sec, which increases during the maneuver with
each subsequent measurement (V) resulting from the object’s
acceleration effects.

The accelerating target adverse effects on the range-Doppler
Matrix, for Signal Processor we elected for detection process-
ing to utilize the DBSCAN clustering algorithm. The algo-
rithm creates clusters from the detections above the calculated
SNR threshold. The Signal Processor selects the cluster with
the maximum number of detections and then calculate the
average of all the detection ranges to generate R measurement.
The Tracker will process the first measurement and use R
from the Signal Processor to initiate the track and create the
initial covariance matrix based on the measurement’s SNR,



the variance of the measurement errors (R1), and default
parameters. The second measurement will calculate an esti-
mate for v based on range estimates from both measurements
and update the covariance. The third measurement will start
the EM algorithm because the Tracker will use all three
measurements to calculate an estimate for the unobserved
variables for velocity v and acceleration a.

Table II demonstrates for the 1g target starting at 30 dB
SNR, the Tracker, and Kalman filter predictions for a state
vector (X1, X2, and X3) and Covariance Matrix state based
on each measurement processing described in Figure 2. SNR
decreases per measurement because the target’s tragjectory is
increasing in range. This section demonstrates the EM-based
algorithm accomplishing our goals to reduce the need for
valuable radar resources while increasing SNR, resulting in
higher confidence in track quality in a compressed timeline.

Meas | SNR Rhat Det PeakdB X1 X2 X3
1 30.0 | 4517.7 | 2323 -7.46 4517.7 0.0 0.00
2 28.9 | 4821.4 | 1050 -7.44 4821.4 | 303.7 | 0.00
3 27.8 5136.4 808 -7.67 5136.4 | 320.6 11.27
3-EM | 27.8 | 51374 | 434 -0.73 5137.2 | 321.8 | 12.12
4-EM | 26.7 | 5462.4 | 433 -0.66 5462.4 | 330.0 | 9.57
5-EM 25.7 5797.1 259 0.24 5797.6 | 340.2 10.02

TABLE II: The table demonstrates the 1) Tracker building
up the State Vector (X1, X2, and X3) for its traditional
processing and initiating and seeding the iterative EM steps
with © and @ for acceleration and velocity estimates. 2)
Maximum likelihood algorithm (3-EM, 4-EM and 5-EM)
in the Signal Processor reprocessing the receive data using
the calculated unobserved variables from the E-step to
increase the measurement SNR and provide a quality input
the Kalman Filter to create a higher confidences track state
[17] and Covariance Matrix.

Figure 4 demonstrates the radar model’s performance and
the differences for the 1)traditional radar tracking closed-loop,
2)new EM iterative control loop, and 3) target’s truth. Figure
4 4 plots are the difference for range, velocity, acceleration,
and normalize peakdB (zero is maximum peakdB). The data
validates that the EM-Based approach increases the accuracy
of the Signal Processor’s generated measurement and Tracker
and Kalman filter’s processing for a 1g accelerating object.
The next step for this research to demonstrate that the EM
iterative control loop can be implemented in a real-time
architecture.

III. EXPERIMENT, RESULTS, AND ANALYSIS

In this section, we perform an experiment with a constant
velocity target observed on the 4th track update in the previous
section. During the interval between the 4th and 5th track
update, the target implements a 0.5 g maneuver. Table III
contains measurement and track metrics on the 4th through
7th measurements. The last steps on the 4th CPI include the
tracker state update and the target’s prediction for the 5Sth track
update. In this instance, the predicted velocity is 300.2 m/sec,
and the predicted acceleration is 0.03 meters/sec?). Employing
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Fig. 4: 1g constant acceleration target (a) RangeEM esti-
mate converge on 1st EM-based measurement (3rd) and
Traditional grow on each measurement, (b) VelocityEM
converge on first EM measurement, (¢) AccelerationEM
converge on the 2nd EM-based measurement (4th mea-
surement), and (d) PeakdBEM on average per EM mea-
surement increase by at least 6.7 dB
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Func meas | SNR dB | Peak dB | Range Vel Acc
Tracker 1 30.0 dB -4.21 4516.0 0.0 0.0
Tracker 2 28.9 dB -5.03 4816.5 0.04 1.09
Tracker 3 27.8 dB -4.45 5116.4 | 299.5 | -0.68
Kalman 3 27.8 dB 0.16 5116.7 300 -0.36
Kalman 3 27.8 dB 0.16 5116.7 300 -0.35
Predict 4 n/a n/a 5416.6 | 299.7 | -0.35
Kalman 4 25.8 dB 0.22 5417.0 | 300.3 | -0.08
Kalman 4 25.8 dB 0.20 5417.0 | 300.3 | -0.08
Tracker 4 25.8 dB -0.20 54169 | 300.2 | 0.03
Predict 5 n/a n/a 5717.1 | 300.2 | 0.03
Kalman 5 259 -2.46 57199 | 3042 | 298
Kalman 5 25.9 -0.45 5719.8 | 3042 | 2.98
Tracker 5 259 -0.45 5719.7 | 304.1 | 2.94
Predict 6 n/a n/a 6025.3 | 307.1 2.94
Kalman 6 25.0 -0.37 6026.9 | 309.4 | 4.68
Kalman 6 25.0 0.11 60269 | 3094 | 4.68
Tracker 6 25.0 0.11 6027.0 | 3094 | 4.70
Predict 7 n/a n/a 6338.8 | 314.1 | 2.94
Kalman 7 24.1 0.00 6339.6 | 3153 | 5.54
Kalman 7 24.1 -0.03 6339.6 | 3153 | 5.54
Tracker 7 24.1 -0.03 6339.6 | 3153 | 5.53

TABLE III: Maneuver started between CPI 4 5. The truth
for measurements 4, 5, 6 7 a) Range truth 5415.4, 5718.1,
6025.7, 6338.2 b)Velocity truth 300.0, 305.1, 310.0, 314.9
c)Acceleration truth 0, 4.9, 4.9, 4.9. Table demonstrates
EM-based algoritm converges on measurement 6

the predicted target state in the initial RWC resulted in an
SNR loss of 2.46 dB. The first pass through the Kalman filter
yields an estimated velocity of 304.2 m/sec and an estimated
2.98 meters/sec?) acceleration. Employing these estimates, the
RWC improved the SNR results in less than 0.5 dB of loss.
The second pass through the Kalman and RWC yields similar
results. Employing the EM algorithm within a single CPI,
we have improved velocity and acceleration estimates and
increased the measurement SNR. An additional improvement
is observed on the next track update.

The plots in Figure 5 show the comparisons for Tracker’s
states (range, velocity, and acceleration) and the SP measure-
ment SNR as a function of each CPI or measurement index
over 7 CPIs. Each plot contains truth, the state estimates
employing traditional processing, and the state estimates em-
ploying the EM-based algorithm. The rapid convergence of
the EM algorithm provides tracking stability for accelerating
targets and a direct benefit in reducing the need to maintain
the object’s track, shorten the needed track lifecycle, and
reducing the need for essential radar sensor resources. The
EM-based algorithm creates for .5g target processing produced
an unblurred RDM and cluster of detections that results in
higher SNR >2 dB, Figure 6.

IV. PROCESSOR ARCHITECTURE

As demonstrated, an EM-based approach to RWC and
parameter estimation can improve track performance by re-
sponding to acceleration changes between track updates within
a single measurement period. The additional benefits include a
reduction in radar resources and the timeline needed to address
a maneuvering target [5].

The EM approach is iterative and will increase the SP
processing execution by a factor of three or more depending on
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Fig. 5: .5g constant acceleration target estimate start to
converge on 5th EM-based measurement and improve the
critical peakdb by 2.01 dB

the number of times the RWC and RD processing are called.
The proposed control loop architecture breaks away from the
traditional track closed-loop pipeline approach where the SP
and Tracker elements were disjointed elements. The control
loop [3] EM-based includes iterations within the SP and
collocated Kalman filter intended to maximize SNR.

As part of our future research, we will be developing and

optimizing the signal and data processor to accommodate the
proposed approach, emphasizing real-time application [18]
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Fig. 6: .5g target maneuver I/Q reprocessing data resulting
from the EM-based algorithm rapidly adjust to target RW
in range and Doppler space and creation of a high quality
detection cluster

V. CONCLUSION AND NEXT STEPS

We have shown that unreliable preconfigured models for
airborne targets or multi-sensor configurations are not required
to track maneuvering and constant accelerated targets. The re-
search established an integrated Signal Processing and Track-
ing augmented with an iterative Expectation-Maximization
algorithm. For the E-step, the Tracker and Kalman Filter
provides the uncertain kinematic state of the accelerating
target and knowledge-aided for the unobserved variables to
allow the Signal Processor to perform the M-step (maximum
likelihood) that results in higher SNR up to 7db. The EM
research only requires no more than two iterations to converge.
This modification to the traditional pipeline architecture will

benefit sensor processing for many different applications (im-
age processing, cellular phones, communications, sonar, and
collision avoidance systems).

The next research step is being implemented to the EM-
based algorithm to utilize an IMM filter to support multiple
maneuvering targets changing velocity and acceleration. Add
direction of arrival (DOA) estimates to the EM-based radar
algorithm and C++ control looped implementation to verify it
can support near real-time sensor latency requirements. Future
research plans will be based on the algorithm’s success to false
alarms, track multiple closely-spaced targets in the presence
of clutter or jamming, and maneuvering targets.
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