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A CASE FOR ELEVATING  
THE EDGE TO BE A  
PEER OF THE CLOUD

Over the last 20 years, mobile computing has evolved to encompass a wide 
array of increasingly data-rich applications. Many of these applications 
were enabled by the Cloud computing revolution, which commoditized 
server hardware to support vast numbers of mobile users from a few 

large, centralized data centers. Today, mobile’s next stage of evolution is spurred by 
interest in emerging technologies such as Augmented and Virtual Reality (AR/VR), 
the Internet of Things (IoT), and Autonomous Vehicles. New applications relying 
on these technologies often require very low latency response times, increased 
bandwidth consumption, and the need to preserve privacy. Meeting all of these 
requirements from the Cloud alone is challenging for several reasons. First, the 
amount of data generated by devices can quickly saturate the bandwidth of backhaul 
links to the Cloud. Second, achieving low-latency responses for making decisions 
on sensed data becomes increasingly difficult the further mobile devices are from 
centralized Cloud data centers. And finally, regulatory or privacy restrictions on 
the data generated by devices may require that such data be kept locally. For these 
reasons, enabling next-generation technologies requires us to reconsider the current 
trend of serving applications from the Cloud alone. 

Recently there has been a growing interest 
in the use of Edge computing to meet the 
unique challenges posed by emerging 
mobile applications. In the Edge computing 
paradigm, applications are served from 
a series of micro data centers that are 
geographically distributed throughout 
the last mile of the network. These micro 
data centers may exist in a variety of 
locations, such as the wiring closet of a 
hotel or the base of a cell tower. Given their 
small physical footprint, the amount of 
hardware resources that they can provide 
are considerably more limited and far more 
heterogeneous. Likewise, facilities such as 
power, cooling, and network connectivity 

can vary from location to location. Sup- 
porting next-generation applications at 
the Edge requires us to work within these 
limitations to achieve a high degree of 
multi-tenancy while providing the Cloud-
like experiences to which application 
developers have become accustomed. By 
collocating computing resources close 
to client devices, it becomes feasible to 
provide several points of data aggregation 
with low-latency connectivity and localized 
processing and storage of data. However, 
realizing this vision is not as simple as 
moving applications directly from Cloud 
to Edge. While there has been industry 
movement towards Edge computing [1, 2] 

this movement has been incremental and 
limited to a client-server relationship with 
the Cloud. We believe that there is a need 
to rethink the system-level abstractions 
for hosting the next generation mobile 
applications in the horizontal and vertical 
continuum of computational elements 
in the Edge-Cloud ecosystem (Figure 1). 
Specifically, we argue the need for elevating 
the Edge to be a peer of the Cloud.

A NEXT GENERATION 
APPLICATION FOR THE EDGE
We can better understand the need for the 
Edge as a peer to the Cloud by looking at the 
next evolution of one of mobile’s killer apps: 
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social media. The advent of this technology 
has enabled people to share photos, videos, 
and text with friends and family across the 
world. The next generation of social media 
applications will be far more immersive. 
People will use phones and other AR devices 
to bridge their virtual interactions with 
the real world. These interactions will be 
bolstered by the rich streams of data from 
IoT devices, providing unprecedented 
experiences. 

Consider a scenario where people gather 
for a parade, such as the annual Macy’s 
Thanksgiving Day Parade in New York City.  
Events of this type can host millions of 
spectators and thousands of exhibitors over 

parade routes spanning many city miles. [3] 
In our futuristic scenario, each spectator has 
a camera-equipped AR device that overlays 
rich data feeds on their views of the event. 
Each of these views is highly individualized, 
and may include information about parade 
floats, commentary from other spectators, 
video or text conversations with friends, 
and data gathered from sensors along the 
route. These devices give spectators access 
to parts of the parade only available through 
AR, and allow them to interact with parade 
elements in real time. Additionally, parade 
personnel, law enforcement, and paramedics 
utilize AR-enabled headsets to assist 
spectators through tasks, such as locating 

children who have been separated from 
parents or ensuring the safety and security 
of attendees by automatically monitoring 
any suspicious activities. 

Providing rich experiences for users 
and assuring safety via support personnel 
requires processing a large amount of data 
while ensuring consistency and availability 
among end-users’ devices and parade 
elements in the geographical vicinity of one 
another. If we conservatively estimate that 
the data feed from each AR-enabled device 
will require 10 Mbps of bandwidth, the large 
number of parade attendees could quickly 
saturate a 10 Gbps uplink to the Cloud. 
This data must be processed in a timely 
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manner, such that information associated 
with the object in view may be retrieved and 
overlaid on that object without perceptible 
delay or inconsistency to the user. If two 
users are looking at the same part of the 
parade route, it is important that they see 
the same common data displayed at the 
same time to enable a shared experience. 
Data associated with each object and user 
may also be privacy sensitive in nature, 
meaning that it may need to remain local to 
its source. For example, an attendee could 
use their personal device to locate a family 
member in the crowd via facial recognition, 
and local laws may require this tracking 
to be performed within the same region 
where it originates. When we consider that 
similar operations are being performed in 
tandem by thousands of users within the 
same area, we quickly realize that enabling 
such functionality without an agile Edge 
infrastructure can become untenable.

Enabling Cloud-like functionality across 
the Edge requires us to make inroads in 
several research areas. Developers have come 
to expect strong programming models and 
performance guarantees for the applications 
they create. To meet these expectations, we 
need to devise new methods of managing 
control and data planes to ensure timely  
resource placement decisions in a decentral- 
ized manner across heterogeneous micro 
data centers. At the same time, these 
orchestration efforts must maximize the 

efficiency of data storage and computation 
runtimes to ensure high utilization of limited 
Edge resources.

PROGRAMMING MODELS
More than a decade of research into Cloud 
computing has provided us with robust 
programming models that allow for the 
seamless development of applications for 
the Cloud. The reliability of the Cloud allows 
these models to abstract away the need to 
account for issues such as backend failures or 
latency and bandwidth limitations between 
services supporting application components. 
This contrasts with development for the Edge, 
where creating effective applications currently 
requires several careful considerations. The 
placement and orchestration of application 
components at the Edge is difficult to perform 
manually, requiring domain expertise beyond 
the purview of most developers. At the 
same time, it is equally difficult to perform 
these operations in an automated fashion 
without some strong notion of application 
semantics. To address this problem, we must 
provide simple programming models that 
either implicitly or explicitly expose enough 
semantic information without creating an 
undue burden on developers.

An Edge-centric programming model 
must hide all the complexities of where and 
how the program components should be 
executed to achieve optimal performance. 
For example, the programming model 

provided by the Apache Spark cluster-
computing framework [4] allows developers 
to harness the power of big data without 
needing to understand the intricacies of 
placement and availability in a distributed 
computing environment. We must 
support the same degree of functionality 
for developers at the Edge by providing 
programming idioms for a geo-distributed 
setting, which we describe below.

Composition & Synthesis of Application 
Pipelines: In our motivating scenario, 
users rely on video streams to enhance 
their experiences. One enhancement to this 
experience is the ability to identify and track 
parade objects. For example, a spectator may 
wish to be notified when the camera sees 
their favorite celebrity, and then retrieve 
information about the float on which the 
celebrity is riding. 

This operation requires performing image  
recognition on video frames from the AR 
device to identify the celebrity’s current 
position and then tracking the celebrity 
and float across the spectator’s field of view. 
A programming model at the Edge could 
provide a declarative framework with a SQL-
like syntax to allow developers to express 
their intentions for tracking objects via image 
recognition without the need to understand 
the specifics of how the task is performed. 
The declarative framework provides a way 
for users to intuitively compose queries for 
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FIGURE 2. An example orchestration framework, wherein monitoring data is 
aggregated in individual micro data centers and shared among them to make 
coordinated deployment and migration decisions to meet application SLOs.

FIGURE 1. An Edge Computing ecosystem comprising mobile 
devices, IoT platforms, gateways, micro data centers, and the Cloud.
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desired outcomes. The framework would 
automatically synthesize the query into a 
Data Flow Graph (DFG) where each node is a 
function that must be executed in a pipelined 
manner to service the query. In this way, 
domain experts in fields such as computer 
vision can guide the synthesis of complex 
application components without needing 
to be directly involved in the application 
development. Similarly, app developers 
can benefit from such domain expertise 
without the need to learn new techniques 
or algorithms beyond their sphere of 
knowledge. A generic declarative framework 
for all use cases would neither be feasible 
nor appropriate given the diversity in the 
application landscape. Instead, we envision 
a domain-specific approach that allows the 
synthesis stage to convert an SQL-like query 
into a DFG sharing generic application 
components from a shared library while 
giving the latitude to the domain expert 
and/or the app developer to specify user-
defined components to be included in the 
execution pipeline.

Performance Guarantees Through Service  
Level Objectives: From a developer’s per- 
spective, the unaided deployment of appli- 
cations on an Edge computing infrastructure 
is a daunting task. Applications have diverse 
performance requirements, and to ensure 
these requirements are met the developer 
would need to keep track of variables such 
as the locations of both clients and micro 
data centers, the network connectivity 
status of these micro data centers, and the 
current resource capacities and utilization 
of Edge sites. These requirements are 
exacerbated for next generation applications 
characterized by high device mobility and 
the consequent churn in resource usage 
at an Edge site. To alleviate this burden, 
developers should instead be provided with a 
way to express their application performance 
requirements as a series of Service Level 
Objectives (SLOs), which provide hints to the 
resource orchestrator about each application’s 
requirements. The SLOs must specify end-
to-end requirements so that all sources 
of performance overheads are considered 
during the orchestration of application 
components across a heterogeneous 
infrastructure. An example of such an SLO 
would be the latency lower-bound needed 
to provide real-time tracking of events in 

the parade and presenting such events to 
the user. If an application’s SLO cannot be 
met (e.g., due to lack of resources at the 
Edge), we rely on a combination of access 
policies, priority of operations, and graceful 
degradation of services to provide as much 
of the requested functionality as possible. 
An access policy dictates whether new 
incoming requests are allowed, while priority 
of operations determines the order in which 
existing users will have their workloads 
processed. Where possible, a service may 
be gracefully degraded by measures such as 
decreasing camera frame rates or switching 
to a less accurate machine learning model 
to reduce resource utilization at the expense 
of achieving outputs of the highest quality. 
This method allows us to continue to 
provide some level of service until adequate 
resources become available again.

Failure Handling: When working within 
Edge computing environments, we cannot 
assume the availability of consistent power, 
cooling, or connectivity. The framework 
should provide a strong failure handling 
model in the presence of failures to ensure 
recovery and completion of the elements of 
the application components in the DFG. For 
example, if one or more Edge sites disappear 
during the pipelined execution of an image 
processing operation, the framework should 
recognize this failure and redistribute 
workloads to available Edge sites while 
updating graph dependencies.

AUTONOMOUS ORCHESTRATION
Applications expressed in an Edge program-
ming model need to be executed on the 
limited resources of a heterogeneous Edge 
infrastructure while maintaining SLOs. 
A control plane orchestrator responsible 
for monitoring the health and resource 
utilization of Edge sites is needed to make 
informed scheduling decisions. Several  
components are needed to make such an 
agile control plane a reality.

SLO-aware Deployment and Adaptive 
Reconfiguration of Applications: The 
orchestrator should take specifications 
synthesized by the programming model and 
use them to inform its decision on placing 
application components throughout the 
Edge. Examples of specifications include 
end-to-end performance requirements 

and dependency on specialized hardware 
devices. Application placement would also 
need to consider infrastructure-specific goals 
such as reliability, load balancing to avoid 
hotspots, and ensuring high utilization of 
scarce edge resources.

The high degree of dynamism (e.g., 
due to client mobility or temporary skews 
in workload) at the Edge necessitates the 
continuous adaptation of applications to 
meet SLO guarantees and maintain efficient 
usage of resources. Continuously monitoring 
the performance of deployed applications is 
required so that reconfiguration decisions 
are performed in an agile manner. The 
orchestrator maintains a reconfiguration 
policy to determine the appropriate actions for 
each application instance. Such operations can 
range from scaling application components 
both horizontally and vertically as well as 
enabling the live migration of applications 
commensurate with client mobility.

Control Plane Decentralization: Some  
Edge communications must pass through 
public infrastructure, which will decrease  
the perceived reliability of the network 
compared to Cloud data centers. To achieve 
high availability, the control-plane must 
either be decentralized or federated, such 
that multiple autonomous components in 
charge of different parts of the infrastruc-
ture can provide resources efficiently and 
independently, even in partial-disconnection 
scenarios. As an added benefit, decentraliza-
tion also makes continuous monitoring of 
applications and resources more scalable. 

Additionally, decentralization forces the 
use of efficient mechanisms for tracking 
the state of partitioned resources while 
simultaneously achieving globally optimal 
placements. Ideally, this state would appear 
as a single consistent view to orchestration 
algorithms in each micro data center and 
applications. One possible implementation 
of the orchestration framework is illustrated 
in Figure 2. In this diagram, distributed 
monitoring components track the health 
and performance of both micro data center 
hardware and application components and 
report these statistics to the distributed 
orchestrators. These orchestrators coordinate 
among each other to share monitoring 
information and use this knowledge to 
make intelligent management decisions 
guaranteeing end-to-end SLOs.
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APPLICATION STORAGE
The typical way of handling application  
data in the Cloud is by leveraging platform 
services like key-value stores and publish-
subscribe systems, such that the manage
ment of data is abstracted away from the 
developer. These services were designed 
and optimized for a Cloud data center 
environment, where strong connectivity 
and reliability are assumed to be readily 
available. Adapting such services for the 
Edge requires a change in design to account 
for situations where these assumptions may 
not hold.

Data Partitioning for Low Latency: Data 
partitioning in key-value stores like Cassandra 
[5] and publish-subscribe systems like 
Pulsar [6] fundamentally rely on selecting 
the best server to host a partition of data. 
Enabling such functionality at the Edge 
is possible by creating data store systems 
where a developer may provide constraints 
on data access latencies used to determine 
the optimal set of Edge sites for hosting each 
client’s data, as illustrated in Figure 3. User 
mobility could result in violating the latency 
constraints specified by the developer. 
Upon noticing such violations, the system 
would transparently relocate the data to an 
appropriate Edge site based on proximity  
of the end-device.

Consistency vs. Fault-Tolerance Tradeoff: 
The higher failure probability of Edge infra-
structure requires the use of replication to 
ensure fault-tolerance, and thereby introduces 
novel challenges for maintaining consistency 
among replicas. Providing stronger guarantees 
than eventual consistency is conducive to 
faster development time and fewer bugs. [7] 
Strongly consistent operations require multiple 
roundtrips between replicas, and therefore 
low-latency data access necessitates that all 
replicas be in close proximity to each other. 
Unfortunately, doing so leads to an increased 
vulnerability to correlated failures. [8] One 
way to cope with this tradeoff is through novel 
consistency models as introduced by Gupta, 
et al. [9] and Saurez et al. [10] The consistency 
semantics in these works allow the system to 
perform geo-replication with a reasonable 
degree of fault-tolerance and lower overhead 
than traditional geo-replicated databases, 
while providing low latency access for data of 
immediate interest as shown in Figure 3. 

Handling Skews in Workload: Spatial and 
temporal skews in workloads can lead to 
hotspots which can adversely impact the 
tail latency of responses. [11] One way 
to address this problem is through data 
distribution schemes that are a hybrid of (1) 
schemes that partition data for low-latency, 
and (2) schemes that provide even load 

distribution. One approach for key-value 
stores is proposed by Gupta, et al. [12], 
wherein the partition key of a data item is 
calculated using its location and a consistent 
hash of its timestamp and item-type field. 
Another approach worth considering is the 
live migration of data away from overloaded 
Edge sites in order to reduce the load on 
them and handle skews of a transient nature.

The above approaches to addressing the 
challenges of storage at the Edge should 
be integrated to create an overall storage 
architecture. Such an integrated architecture 
would seamlessly provide the look and 
feel of a fast and reliable storage while 
abstracting away all the intricacies of the 
Edge environment from the developers.

APPLICATION EXECUTION
In a traditional Cloud model, we assume 
the notion of unlimited computing power. 
This assumption allows us to provision 
continuously running dedicated virtual 
machines or containers for hosting each 
application. In contrast, limited computing 
resources at the Edge make it impractical 
to perform such provisioning in every 
situation. To enable the high degree of 
multi-tenancy needed to support a variety of 
applications, we must devise new paradigms 
for the runtimes which execute applications.

If we consider our motivating scenario, we 
can see that different application components 
will have different computational lifetimes. 
For example, if the social media platform 
is performing a large amount of image 
recognition processing while emergency 
personnel look for a missing child, it would 
make sense to devote a longer running 
container to these operations during periods 
of high activity. In contrast, if content 
generation from users is infrequent during 
the same period, it would make sense to serve 
these operations on an ad-hoc basis. These 
patterns suggest we can achieve a higher 
degree of efficiency by adopting a hybrid 
model for execution environments that hosts 
applications commensurate with their needs.

One method for hosting applications on 
an ad-hoc basis comes from the notion of 
Function-as-a-Service (FaaS). In the FaaS 
model, applications exist as single purpose 
functions which only execute for a limited 
period of time when they are called and 
then shut down until needed again. Each 
function is hosted in a separate container, 
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FIGURE 3. A high-level view of 
replicated data storage spanning 
Edge and Cloud. Data is kept 
strongly consistent for geo-local 
clients while being eventually 
consistent for failure tolerance by 
replicating to distant copies.
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which is instantiated upon function 
invocation and destroyed after a brief period 
of inactivity. Since application components 
only exist on an as-needed basis, we avoid 
unnecessarily committing resources and in 
turn allow a greater degree of sharing for 
those resources. The FaaS computing model 
allows us to achieve the much higher degree 
of multi-tenancy needed to serve a large 
number of clients.

Longer running applications would best 
be served by the more traditional method 
of hosting in containers. Containers provide 
a lightweight mechanism for segmenting 
operating system components and limiting 
resource consumption specific to one or 
more processes. However, we still must 
ensure these containers are properly adapted 
for Edge computing scenarios. For example, 
situations may arise where long-running 
applications must be temporarily pre-empted 
to serve spikes in demand for short-term 
applications. Ensuring that we may safely 
make these trade-offs allows us to provide 
many of the benefits of a traditional hosting 
model when necessary while still maximizing 
the utilization of limited resources. 

In both scenarios, opportunities for 
innovation exist in two ways. First, we can 
improve container runtimes to meet the 
requirements of the Edge. The runtimes 
in state-of-the-art container frameworks 
include a broad array of functionality, which 
may not be needed in an Edge computing 
environment. Such unnecessary functional-
ity adds overhead, which manifests itself in 
issues such as the cold start problem, where 
container instantiations introduce delays  
of 300 ms or more before a function can 
begin execution. These delays destroy the 
low-latency advantages of hosting applica-
tions at the Edge and must be reduced or 
eliminated. The second opportunity for 
innovation exists in developing new runtime  
methods for executing applications. For  
example, Hall et al. [13] discuss the use of 
the WebAssembly binary format as a way to 
provide strong isolation and resource pro-
visioning mechanisms to functions without 
the overhead of containers.

A hybrid runtime could leverage in-
novations from both approaches to provide 
low-latency application executions. For 
short-running applications, a lightweight 
model such as WebAssembly could be used 
to provide fast loading and portability. For 
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longer running applications, the traditional 
container-based model could be used. The 
execution platform could switch between 
serving applications with either model based 
on their recent characteristics.

CONCLUSION
The task of elevating the Edge to be a peer 
of the Cloud is not without challenges. 
However, it is important to meet these 
challenges if we wish to enable the next wave 
of mobile applications. These applications all 
share common requirements for dynamic 
scalability, low-latency communication, and 
efficient in-network processing to provide 
the Sense-Process-Actuate workflow used 
in dealing with real-world data streams, 
suggesting that there is a common solution 
to meet their needs. The notion of Edge 
computing seeks to extend the utility of the 
Cloud to the last mile of the network. Its goal 
is to provide this utility through resources 
that are hierarchical and geo-distributed 
in nature. To enable an autonomous Edge, 
horizontal peer-to-peer interactions among 
Edge sites is essential. This need stems from 
the fact that different interacting client 
devices may be connected to different Edge 
sites at the same time. Such interactions 
are made possible by programming model, 
orchestration, storage, and execution 
paradigms which are specifically tailored 

to the unique challenges of the Edge. By 
building these paradigms, we elevate the Edge 
to be a peer to the Cloud, in turn creating the 
next evolution in mobile computing. n
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