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A CASE FOR ELEVATING

THEEDGETOBEA
PEER OF THE CLOUD

ver the last 20 years, mobile computing has evolved to encompass a wide
array of increasingly data-rich applications. Many of these applications
were enabled by the Cloud computing revolution, which commoditized
server hardware to support vast numbers of mobile users from a few
large, centralized data centers. Today, mobile’s next stage of evolution is spurred by
interest in emerging technologies such as Augmented and Virtual Reality (AR/VR),
the Internet of Things (IoT), and Autonomous Vehicles. New applications relying
on these technologies often require very low latency response times, increased
bandwidth consumption, and the need to preserve privacy. Meeting all of these
requirements from the Cloud alone is challenging for several reasons. First, the
amount of data generated by devices can quickly saturate the bandwidth of backhaul
links to the Cloud. Second, achieving low-latency responses for making decisions
on sensed data becomes increasingly difficult the further mobile devices are from
centralized Cloud data centers. And finally, regulatory or privacy restrictions on
the data generated by devices may require that such data be kept locally. For these
reasons, enabling next-generation technologies requires us to reconsider the current

trend of serving applications from the Cloud alone.

Recently there has been a growing interest
in the use of Edge computing to meet the
unique challenges posed by emerging
mobile applications. In the Edge computing
paradigm, applications are served from

a series of micro data centers that are
geographically distributed throughout

the last mile of the network. These micro
data centers may exist in a variety of
locations, such as the wiring closet of a
hotel or the base of a cell tower. Given their
small physical footprint, the amount of
hardware resources that they can provide
are considerably more limited and far more
heterogeneous. Likewise, facilities such as
power, cooling, and network connectivity

can vary from location to location. Sup-
porting next-generation applications at
the Edge requires us to work within these
limitations to achieve a high degree of
multi-tenancy while providing the Cloud-
like experiences to which application
developers have become accustomed. By
collocating computing resources close

to client devices, it becomes feasible to
provide several points of data aggregation
with low-latency connectivity and localized
processing and storage of data. However,
realizing this vision is not as simple as
moving applications directly from Cloud
to Edge. While there has been industry
movement towards Edge computing [1, 2]

14 GetMobile September 2020 | Volume 24, Issue 3

this movement has been incremental and
limited to a client-server relationship with
the Cloud. We believe that there is a need
to rethink the system-level abstractions

for hosting the next generation mobile
applications in the horizontal and vertical
continuum of computational elements

in the Edge-Cloud ecosystem (Figure 1).
Specifically, we argue the need for elevating
the Edge to be a peer of the Cloud.

A NEXT GENERATION
APPLICATION FORTHE EDGE

We can better understand the need for the
Edge as a peer to the Cloud by looking at the
next evolution of one of mobil€’s killer apps:
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social media. The advent of this technology
has enabled people to share photos, videos,
and text with friends and family across the
world. The next generation of social media
applications will be far more immersive.
People will use phones and other AR devices
to bridge their virtual interactions with

the real world. These interactions will be
bolstered by the rich streams of data from
IoT devices, providing unprecedented
experiences.

Consider a scenario where people gather
for a parade, such as the annual Macy’s
Thanksgiving Day Parade in New York City.
Events of this type can host millions of
spectators and thousands of exhibitors over

parade routes spanning many city miles. [3]
In our futuristic scenario, each spectator has
a camera-equipped AR device that overlays
rich data feeds on their views of the event.
Each of these views is highly individualized,
and may include information about parade
floats, commentary from other spectators,
video or text conversations with friends,
and data gathered from sensors along the
route. These devices give spectators access
to parts of the parade only available through
AR, and allow them to interact with parade
elements in real time. Additionally, parade
personnel, law enforcement, and paramedics
utilize AR-enabled headsets to assist
spectators through tasks, such as locating

children who have been separated from
parents or ensuring the safety and security
of attendees by automatically monitoring
any suspicious activities.

Providing rich experiences for users
and assuring safety via support personnel
requires processing a large amount of data
while ensuring consistency and availability
among end-users’ devices and parade
elements in the geographical vicinity of one
another. If we conservatively estimate that
the data feed from each AR-enabled device
will require 10 Mbps of bandwidth, the large
number of parade attendees could quickly
saturate a 10 Gbps uplink to the Cloud.
This data must be processed in a timely
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manner, such that information associated
with the object in view may be retrieved and
overlaid on that object without perceptible
delay or inconsistency to the user. If two
users are looking at the same part of the
parade route, it is important that they see
the same common data displayed at the
same time to enable a shared experience.
Data associated with each object and user
may also be privacy sensitive in nature,
meaning that it may need to remain local to
its source. For example, an attendee could
use their personal device to locate a family
member in the crowd via facial recognition,
and local laws may require this tracking
to be performed within the same region
where it originates. When we consider that
similar operations are being performed in
tandem by thousands of users within the
same area, we quickly realize that enabling
such functionality without an agile Edge
infrastructure can become untenable.
Enabling Cloud-like functionality across
the Edge requires us to make inroads in
several research areas. Developers have come
to expect strong programming models and
performance guarantees for the applications
they create. To meet these expectations, we
need to devise new methods of managing
control and data planes to ensure timely
resource placement decisions in a decentral-
ized manner across heterogeneous micro
data centers. At the same time, these
orchestration efforts must maximize the
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FIGURE 1. An Edge Computing ecosystem comprising mobile
devices, loT platforms, gateways, micro data centers, and the Cloud.
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efficiency of data storage and computation
runtimes to ensure high utilization of limited
Edge resources.

PROGRAMMING MODELS

More than a decade of research into Cloud
computing has provided us with robust
programming models that allow for the
seamless development of applications for
the Cloud. The reliability of the Cloud allows
these models to abstract away the need to
account for issues such as backend failures or
latency and bandwidth limitations between
services supporting application components.
This contrasts with development for the Edge,
where creating effective applications currently
requires several careful considerations. The
placement and orchestration of application
components at the Edge is difficult to perform
manually, requiring domain expertise beyond
the purview of most developers. At the
same time, it is equally difficult to perform
these operations in an automated fashion
without some strong notion of application
semantics. To address this problem, we must
provide simple programming models that
either implicitly or explicitly expose enough
semantic information without creating an
undue burden on developers.

An Edge-centric programming model
must hide all the complexities of where and
how the program components should be
executed to achieve optimal performance.
For example, the programming model

provided by the Apache Spark cluster-
computing framework [4] allows developers
to harness the power of big data without
needing to understand the intricacies of
placement and availability in a distributed
computing environment. We must

support the same degree of functionality
for developers at the Edge by providing
programming idioms for a geo-distributed
setting, which we describe below.

Composition & Synthesis of Application
Pipelines: In our motivating scenario,

users rely on video streams to enhance

their experiences. One enhancement to this
experience is the ability to identify and track
parade objects. For example, a spectator may
wish to be notified when the camera sees
their favorite celebrity, and then retrieve
information about the float on which the
celebrity is riding.

This operation requires performing image
recognition on video frames from the AR
device to identify the celebrity’s current
position and then tracking the celebrity
and float across the spectator’s field of view.
A programming model at the Edge could
provide a declarative framework with a SQL-
like syntax to allow developers to express
their intentions for tracking objects via image
recognition without the need to understand
the specifics of how the task is performed.
The declarative framework provides a way
for users to intuitively compose queries for
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FIGURE 2. An example orchestration framework, wherein monitoring data is
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aggregated in individual micro data centers and shared among them to make
coordinated deployment and migration decisions to meet application SLOs.




desired outcomes. The framework would
automatically synthesize the query into a
Data Flow Graph (DFG) where each node is a
function that must be executed in a pipelined
manner to service the query. In this way,
domain experts in fields such as computer
vision can guide the synthesis of complex
application components without needing

to be directly involved in the application
development. Similarly, app developers

can benefit from such domain expertise
without the need to learn new techniques

or algorithms beyond their sphere of
knowledge. A generic declarative framework
for all use cases would neither be feasible
nor appropriate given the diversity in the
application landscape. Instead, we envision
a domain-specific approach that allows the
synthesis stage to convert an SQL-like query
into a DFG sharing generic application
components from a shared library while
giving the latitude to the domain expert
and/or the app developer to specify user-
defined components to be included in the
execution pipeline.

Performance Guarantees Through Service
Level Objectives: From a developer’s per-
spective, the unaided deployment of appli-
cations on an Edge computing infrastructure
is a daunting task. Applications have diverse
performance requirements, and to ensure
these requirements are met the developer
would need to keep track of variables such
as the locations of both clients and micro
data centers, the network connectivity
status of these micro data centers, and the
current resource capacities and utilization
of Edge sites. These requirements are
exacerbated for next generation applications
characterized by high device mobility and
the consequent churn in resource usage

at an Edge site. To alleviate this burden,
developers should instead be provided with a
way to express their application performance
requirements as a series of Service Level
Objectives (SLOs), which provide hints to the
resource orchestrator about each application’s
requirements. The SLOs must specify end-
to-end requirements so that all sources

of performance overheads are considered
during the orchestration of application
components across a heterogeneous
infrastructure. An example of such an SLO
would be the latency lower-bound needed

to provide real-time tracking of events in

the parade and presenting such events to
the user. If an application’s SLO cannot be
met (e.g., due to lack of resources at the
Edge), we rely on a combination of access
policies, priority of operations, and graceful
degradation of services to provide as much
of the requested functionality as possible.
An access policy dictates whether new
incoming requests are allowed, while priority
of operations determines the order in which
existing users will have their workloads
processed. Where possible, a service may
be gracefully degraded by measures such as
decreasing camera frame rates or switching
to a less accurate machine learning model
to reduce resource utilization at the expense
of achieving outputs of the highest quality.
This method allows us to continue to
provide some level of service until adequate
resources become available again.

Failure Handling: When working within
Edge computing environments, we cannot
assume the availability of consistent power,
cooling, or connectivity. The framework
should provide a strong failure handling
model in the presence of failures to ensure
recovery and completion of the elements of
the application components in the DFG. For
example, if one or more Edge sites disappear
during the pipelined execution of an image
processing operation, the framework should
recognize this failure and redistribute
workloads to available Edge sites while
updating graph dependencies.

AUTONOMOUS ORCHESTRATION
Applications expressed in an Edge program-
ming model need to be executed on the
limited resources of a heterogeneous Edge
infrastructure while maintaining SLOs.

A control plane orchestrator responsible
for monitoring the health and resource
utilization of Edge sites is needed to make
informed scheduling decisions. Several
components are needed to make such an
agile control plane a reality.

SLO-aware Deployment and Adaptive
Reconfiguration of Applications: The
orchestrator should take specifications
synthesized by the programming model and
use them to inform its decision on placing
application components throughout the
Edge. Examples of specifications include
end-to-end performance requirements

and dependency on specialized hardware
devices. Application placement would also
need to consider infrastructure-specific goals
such as reliability, load balancing to avoid
hotspots, and ensuring high utilization of
scarce edge resources.

The high degree of dynamism (e.g.,
due to client mobility or temporary skews
in workload) at the Edge necessitates the
continuous adaptation of applications to
meet SLO guarantees and maintain efficient
usage of resources. Continuously monitoring
the performance of deployed applications is
required so that reconfiguration decisions
are performed in an agile manner. The
orchestrator maintains a reconfiguration
policy to determine the appropriate actions for
each application instance. Such operations can
range from scaling application components
both horizontally and vertically as well as
enabling the live migration of applications
commensurate with client mobility.

Control Plane Decentralization: Some
Edge communications must pass through
public infrastructure, which will decrease
the perceived reliability of the network
compared to Cloud data centers. To achieve
high availability, the control-plane must
either be decentralized or federated, such
that multiple autonomous components in
charge of different parts of the infrastruc-
ture can provide resources efficiently and
independently, even in partial-disconnection
scenarios. As an added benefit, decentraliza-
tion also makes continuous monitoring of
applications and resources more scalable.
Additionally, decentralization forces the
use of efficient mechanisms for tracking
the state of partitioned resources while
simultaneously achieving globally optimal
placements. Ideally, this state would appear
as a single consistent view to orchestration
algorithms in each micro data center and
applications. One possible implementation
of the orchestration framework is illustrated
in Figure 2. In this diagram, distributed
monitoring components track the health
and performance of both micro data center
hardware and application components and
report these statistics to the distributed
orchestrators. These orchestrators coordinate
among each other to share monitoring
information and use this knowledge to
make intelligent management decisions
guaranteeing end-to-end SLOs.
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APPLICATION STORAGE

The typical way of handling application
data in the Cloud is by leveraging platform
services like key-value stores and publish-
subscribe systems, such that the manage
ment of data is abstracted away from the
developer. These services were designed
and optimized for a Cloud data center
environment, where strong connectivity
and reliability are assumed to be readily
available. Adapting such services for the
Edge requires a change in design to account
for situations where these assumptions may
not hold.

Data Partitioning for Low Latency: Data
partitioning in key-value stores like Cassandra
[5] and publish-subscribe systems like
Pulsar [6] fundamentally rely on selecting
the best server to host a partition of data.
Enabling such functionality at the Edge

is possible by creating data store systems
where a developer may provide constraints
on data access latencies used to determine
the optimal set of Edge sites for hosting each
client’s data, as illustrated in Figure 3. User
mobility could result in violating the latency
constraints specified by the developer.
Upon noticing such violations, the system
would transparently relocate the data to an
appropriate Edge site based on proximity
of the end-device.

Consistency vs. Fault-Tolerance Tradeoff:
The higher failure probability of Edge infra-
structure requires the use of replication to
ensure fault-tolerance, and thereby introduces
novel challenges for maintaining consistency
among replicas. Providing stronger guarantees
than eventual consistency is conducive to
faster development time and fewer bugs. [7]
Strongly consistent operations require multiple
roundtrips between replicas, and therefore
low-latency data access necessitates that all
replicas be in close proximity to each other.
Unfortunately, doing so leads to an increased
vulnerability to correlated failures. [8] One
way to cope with this tradeoff is through novel
consistency models as introduced by Gupta,
et al. [9] and Saurez et al. [10] The consistency
semantics in these works allow the system to
perform geo-replication with a reasonable
degree of fault-tolerance and lower overhead
than traditional geo-replicated databases,
while providing low latency access for data of
immediate interest as shown in Figure 3.

Handling Skews in Workload: Spatial and
temporal skews in workloads can lead to
hotspots which can adversely impact the
tail latency of responses. [11] One way

to address this problem is through data
distribution schemes that are a hybrid of (1)
schemes that partition data for low-latency,
and (2) schemes that provide even load

FIGURE 3. A high-level view of °

replicated data storage spanning
Edge and Cloud. Data is kept

)
SlaSasS

strongly consistent for geo-local Cloud servers .4
clients while being eventually R
consistent for failure tolerance by . ofl}\ o
replicating to distant copies. emmTTTTTTTT ég\\‘~1~~ . ry -
Pl Nt BREI .—{\_/
P [0 =) ﬁé’ ° &—
// o . \\
' Sync Data @
replication item g \
0 ! Interested ",
I . i
_o_{% ' K clients o o i
[ \ ]

=

Developer specifieg/'/
latency bound .-~

distribution. One approach for key-value
stores is proposed by Gupta, et al. [12],
wherein the partition key of a data item is
calculated using its location and a consistent
hash of its timestamp and item-type field.
Another approach worth considering is the
live migration of data away from overloaded
Edge sites in order to reduce the load on
them and handle skews of a transient nature.
The above approaches to addressing the
challenges of storage at the Edge should
be integrated to create an overall storage
architecture. Such an integrated architecture
would seamlessly provide the look and
feel of a fast and reliable storage while
abstracting away all the intricacies of the
Edge environment from the developers.

APPLICATION EXECUTION
In a traditional Cloud model, we assume
the notion of unlimited computing power.
This assumption allows us to provision
continuously running dedicated virtual
machines or containers for hosting each
application. In contrast, limited computing
resources at the Edge make it impractical
to perform such provisioning in every
situation. To enable the high degree of
multi-tenancy needed to support a variety of
applications, we must devise new paradigms
for the runtimes which execute applications.
If we consider our motivating scenario, we
can see that different application components
will have different computational lifetimes.
For example, if the social media platform
is performing a large amount of image
recognition processing while emergency
personnel look for a missing child, it would
make sense to devote a longer running
container to these operations during periods
of high activity. In contrast, if content
generation from users is infrequent during
the same period, it would make sense to serve
these operations on an ad-hoc basis. These
patterns suggest we can achieve a higher
degree of efficiency by adopting a hybrid
model for execution environments that hosts
applications commensurate with their needs.
One method for hosting applications on
an ad-hoc basis comes from the notion of
Function-as-a-Service (FaaS). In the FaaS
model, applications exist as single purpose
functions which only execute for a limited
period of time when they are called and
then shut down until needed again. Each
function is hosted in a separate container,



which is instantiated upon function
invocation and destroyed after a brief period
of inactivity. Since application components
only exist on an as-needed basis, we avoid
unnecessarily committing resources and in
turn allow a greater degree of sharing for
those resources. The FaaS computing model
allows us to achieve the much higher degree
of multi-tenancy needed to serve a large
number of clients.

Longer running applications would best
be served by the more traditional method
of hosting in containers. Containers provide
a lightweight mechanism for segmenting
operating system components and limiting
resource consumption specific to one or
more processes. However, we still must
ensure these containers are properly adapted
for Edge computing scenarios. For example,
situations may arise where long-running
applications must be temporarily pre-empted
to serve spikes in demand for short-term
applications. Ensuring that we may safely
make these trade-offs allows us to provide
many of the benefits of a traditional hosting
model when necessary while still maximizing
the utilization of limited resources.

In both scenarios, opportunities for
innovation exist in two ways. First, we can
improve container runtimes to meet the
requirements of the Edge. The runtimes
in state-of-the-art container frameworks
include a broad array of functionality, which
may not be needed in an Edge computing
environment. Such unnecessary functional-
ity adds overhead, which manifests itself in
issues such as the cold start problem, where
container instantiations introduce delays
of 300 ms or more before a function can
begin execution. These delays destroy the
low-latency advantages of hosting applica-
tions at the Edge and must be reduced or
eliminated. The second opportunity for
innovation exists in developing new runtime
methods for executing applications. For
example, Hall et al. [13] discuss the use of
the WebAssembly binary format as a way to
provide strong isolation and resource pro-
visioning mechanisms to functions without
the overhead of containers.

A hybrid runtime could leverage in-
novations from both approaches to provide
low-latency application executions. For
short-running applications, a lightweight
model such as WebAssembly could be used
to provide fast loading and portability. For

longer running applications, the traditional
container-based model could be used. The
execution platform could switch between
serving applications with either model based
on their recent characteristics.

CONCLUSION

The task of elevating the Edge to be a peer
of the Cloud is not without challenges.
However, it is important to meet these
challenges if we wish to enable the next wave
of mobile applications. These applications all
share common requirements for dynamic
scalability, low-latency communication, and
efficient in-network processing to provide
the Sense-Process-Actuate workflow used

in dealing with real-world data streams,
suggesting that there is a common solution
to meet their needs. The notion of Edge
computing seeks to extend the utility of the
Cloud to the last mile of the network. Its goal
is to provide this utility through resources
that are hierarchical and geo-distributed

in nature. To enable an autonomous Edge,
horizontal peer-to-peer interactions among
Edge sites is essential. This need stems from
the fact that different interacting client
devices may be connected to different Edge
sites at the same time. Such interactions

are made possible by programming model,
orchestration, storage, and execution
paradigms which are specifically tailored

to the unique challenges of the Edge. By
building these paradigms, we elevate the Edge
to be a peer to the Cloud, in turn creating the
next evolution in mobile computing. B
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