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Abstract

Emerging applications such as autonomous drones and mas-
sively multiplayer gaming require real-time communication
between multiple geo-distributed participating entities. A
publish-subscribe system deployed on a geo-distributed edge
infrastructure would provide a scalable messaging middle-
ware for such applications. However state-of-the-art publish-
subscribe systems like Apache Pulsar and Kafka perform
inefficiently in a geo-distributed deployment due to hetero-
geneous client-broker latencies and constant client mobil-
ity. We present a novel control-plane architecture for geo-
distributed publish-subscribe systems that is capable of adap-
tive topic partitioning to enable low-latency messaging for
such applications. We leverage a peer-to-peer network co-
ordinate protocol for scalable estimation of network laten-
cies between publish-subscribe brokers and clients. Client-
broker latency and workload metrics are continuously col-
lected from brokers and used to detect latency violations or
workload imbalance, which triggers reassignment of topics.
We develop ePulsar, which incorporates the control-plane
architecture ideas into the popular Apache Pulsar publish-
subscribe system, retaining Pulsar’s data-plane APIs. We
evaluate the efficacy and overheads of the proposed con-
trol plane using workload scenarios representative of typical
edge-centric applications on an emulated geo-distributed
infrastructure.
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1 Introduction

Applications such as drone control and Massively Multi-
player Online Games (MMOG) need to support large amounts
of clients, retaining high throughput and low latency com-
munication. The synchronization decoupling provided by
publish-subscribe systems [14, 38] makes them an ideal mes-
saging middleware for supporting these applications. Typi-
cally, pub-sub systems consist of broker middleware nodes
that are responsible for message exchange within the sys-
tem. Popular pub-sub systems such as Apache Kafka and
Pulsar are commonly used for supporting low latency and
high throughput messaging for datacenter applications. Pub-
sub systems have been shown to be suitable for sharing
game state updates in MMOGs [6], swarm synchronization
for autonomous robots (drones) [4], and data distribution
for large-scale stream processing [16]. However, contem-
porary applications such as MMOGs, large scale IoT, and
Unmanned Aerial Vehicle (UAV) coordination pose latency
constraints that make cloud-based publish-subscribe system
deployments unsuitable due to the high WAN latency be-
tween clients and middleware nodes. Given the proximal
nature of edge resources, they can be utilized for hosting
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pub-sub middleware close to clients and thereby provide low
end-to-end pub-sub latency.

However, adapting state-of-the-art cloud-based pub-sub sys-
tems like Kafka and Pulsar to a geo-distributed edge infras-
tructure poses peculiar challenges. Such systems typically are
topic-based and they partition topics among brokers by com-
puting consistent-hash of topic name. Consistent hashing
ensures even distribution of load among brokers - which is
key to manageable end-to-end latency in datacenters where
the network topology is more or less homogeneous. However,
in edge infrastructure, the physical location of a client has
a significant impact on client-broker network latency, and
latency-agnostic consistent hashing does not account for net-
work proximity. In addition, client mobility requires constant
adaptation of topic partitioning to continuously provide low
end-to-end latency. The network infrastructure itself could
experience changes (e.g., increased latency between servers)
which might affect end-to-end latency. Finally, due to the
capacity constraints and limited statistical multiplexing at
edge sites, load-aware topic partitioning is important to avoid
workload hotspots and minimize end-to-end latency [22].

To address the above challenges, we design a novel edge-
centric control plane architecture for pub-sub systems. The

elements of this architecture include the following features,

which are the primary contributions of this paper: (1) A

network-proximity monitoring technique that leverages net-
work coordinates so that workload distribution can be latency-
sensitive. The technique uses a decentralized network coor-
dinates protocol [9, 23] to scalably obtain pairwise network

latency estimates between system entities. (2) A latency and

workload-aware adaptive topic partitioning policy that keeps

the end-to-end latency under the threshold set by the appli-
cation.

To put the above contributions into practice, we extend
Apache Pulsar - a popular cloud-based pub-sub system —
to build ePulsar, which offers the same functionality as
Pulsar alongside agile and adaptive topic partitioning to pro-
vide low end-to-end latency. We evaluate ePulsar against
realistic workload scenarios on an emulated geo-distributed
infrastructure to show the performance improvements over
off-the-shelf deployment of a cloud-based Pulsar. The com-
prehensive evaluation study forms the third contribution of
this paper. While the control plane ideas have been incorpo-
rated into Pulsar as a proof of concept, the ideas are general
and can be applied to any edge-centric pub-sub system.

The rest of the paper is structured as follows. We set the
context for this work in Section 2 and enumerate the control-
plane requirements of an edge-centric pub-sub system in
Section 2.4. The architecture of ePulsar is presented in Sec-
tion 3, followed by implementation details in Section 4. Sec-
tion 5 presents the results of microbenchmarking ePulsar;
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and end-to-end evaluations of two exemplar applications
with an emulated infrastructure. We conclude with a discus-
sion of future work in Section 6.

2 Context

We first describe the characteristics of the geo-distributed
edge infrastructure which would host both the edge-centric
pub-sub system and client applications (Section 2.1). We then
illustrate examples of applications that will benefit from an
edge-centric pub-sub system (Section 2.2). The state-of-the
art in pub-sub systems and their limitations in supporting
such geo-distributed applications are discussed next (Sec-
tion 2.3). The section concludes with the control-plane re-
quirements for an edge-friendly pub-sub system (Section 2.4).

2.1 Assumptions about Edge Infrastructure

We consider an edge computing infrastructure that con-
sists of multiple geo-distributed sites in each metropolitan
area. These sites comprise multiple server racks and could
be owned by service providers (such as AT&T and Com-
cast [28]), or by emerging edge solution providers (such as
EdgeMicro [26] and VaporlO [21]). Since these sites are lo-
cated just a few hops away from end-devices, they can be
accessed with low network latency. Such sites in different
cities along with cloud datacenters form a computational
continuum to serve latency-critical applications to a geo-
distributed set of clients.

2.2 Exemplar Applications

We describe two applications that would benefit from a geo-
distributed pub-sub system.

2.2.1 UAV Swarm Coordination

Operating swarms of unmanned aerial vehicles (UAVs) have
applications in smart cities, surveillance, etc. A common way
to operate UAV swarms is to assign one of the UAVs as the
swarm leader and the others as followers [34]. The leader re-
ceives commands from a control station and translates them
into actionable tasks, which are then conveyed to the follow-
ers to guide their motion. In addition, the swarm leader also
receives updates of relevant objects (e.g., obstacles) from the
followers and instructs the swarm members to update their
trajectory. Such communication has previously been mod-
eled using a pub-sub abstraction [4]. Ensuring low-latency
communication between leaders and followers, and between
leader and ground control is essential for the efficient opera-
tion of the swarm.

Swarm mobility leads to changes in the routing path of pack-
ets through cellular networks, causing increased communica-
tion delay between the drones and the pub-sub brokers [18].
Therefore, a latency-sensitive pub-sub system is necessary
to ensure proper swarm control.
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2.2.2 Massively Multiplayer Online Games (MMOG)

Cloud-based control of MMOG reduces users’ Quality of Ex-
perience (QoE) due to the high network latency between the
clients and the game server [8]. It has been shown [30] that
users would experience a much better QoFE (25% lower state
update latency) in MMOG if cooperating game servers are
hosted on edge infrastructure. Geographically distributed
end-users (avatars) connect to their geographically nearby
game servers. The game servers use a peer-to-peer archi-
tecture [3] with dedicated pairwise connections amongst
them to maintain the game state information, and commu-
nicate game state updates to the avatars in their respective
Area-of-Interest (Aol).

An edge-centric pub-sub system would offer a scalable al-
ternative to maintaining the game state among the server
instances, and the subscription of avatars to each server in-
stance. As gameplay progresses, commensurate with their
mobility pattern, avatars would unsubscribe and re-subscribe
to server instances based on Aol.

2.3 State-Of-The-Art Pub-Sub Systems

Apache Kafka and Apache Pulsar are popular cloud-based
pub-sub systems. Their simple and easy-to-use semantics
coupled with scalable performance for data communication
(high message throughput and low latency) make them at-
tractive platforms for structuring cloud-based applications.
However, the use cases identified earlier pose unique chal-
lenges due to the fact that the communicating entities are
mobile and geo-distributed. Thus a cloud-based pub-sub sys-
tem would not cater to their need for end-to-end low latency
guarantees between the communicating entities. While the
data plane of Apache Kafka and Apache Pulsar offer very
good performance, their control plane decisions (e.g., for
broker and bookie placement) assume all the communicating
entities reside in the cloud with uniform communication
latencies among the nodes. With mobility of clients in the
aforementioned applications, it is imperative that the con-
trol plane decisions take into account network proximity of
edge nodes to clients to ensure meeting end-to-end latency
constraints. Further, continuous monitoring of violations of
latency constraints is necessary to support such applications.

There has been prior work in building edge-centric pub-sub
systems, which include EMMA [31], FogMQ [1], and Mu-
tiPub [17]. However, these systems do not meet the data
communication and/or the scalability needs of the afore-
mentioned applications. EMMA does not handle message
reliability guarantees or at-least-once/exactly-once seman-
tics that are typically offered by commercial pub-sub systems.
FogMQ relies on creating a clone in the proximity of each
device to handle communication on behalf of that device.
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With a large number of participating clients, this design de-
cision will be a huge resource burden on the already scarce
edge resources making the system non-scalable. MultiPub
aims to provide latency guarantees for multi-region pub-sub
systems by relying on having detailed information of inter-
region latencies, as well as the network latency between
every client-broker pair. Although this might be tractable
for deployments with a handful of cloud regions, the much
denser distribution of edge sites makes monitoring and main-
taining such fine-grained latency information infeasible.

From an analysis of the state-of-the-art, we conclude that
cloud-based pub-sub systems owing to their maturity have
the best data plane and scalability attributes. However, a
careful rethink of the control plane for pub-sub systems is
needed to make such pub-sub systems operate adequately
for supporting novel geo-distributed edge applications like
the ones discussed in Section 2.2.

2.4 Control-Plane Requirements

We summarize the control-plane requirements for an edge-
friendly pub-sub system:

o It should facilitate latency-aware topic partitioning for
meeting application-specified end-to-end pub-sub latency
thresholds.

e It should offer scalable inter-site latency estimation to
support a large community of communicating entities.

o It should provide agile reconfiguration of topic parti-
tioning to minimize violation of end-to-end application-
specified latency thresholds.

The goal of this paper is to architect an agile control-plane
for an edge-friendly pub-sub system which should meet the
requirements mentioned above. To show the efficacy of this
control plane, we implement these ideas in Apache Pulsar.
However, the ideas are general and can be incorporated into
any edge-centric pub-sub system.

3 ePulsar Architecture

Fig. 1 shows the main architectural components of ePul-
sar and how it extends Pulsar’s control-plane to achieve the
requirements posed by geo-distribution. Given that we use
Apache Pulsar to evaluate the efficacy of our contributions,
we begin with a description of Pulsar’s control-plane de-
sign. In the subsequent subsections, we describe how the
architectural elements of ePulsar are integrated into Pulsar.

3.1 Control-plane Design of Apache Pulsar

Pulsar supports two types of topics - persistent and non-
persistent. Messages on persistent topics are logged on durable
storage of bookie nodes (instances of Apache BookKeeper)
for reliability [2], while non-persistent topics are not. Pul-
sar groups topics into bundles — the unit of monitoring and
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topic partitioning. This design choice was made to amor-
tize the amount of metadata needed to be tracked by the
system. Topics are assigned to bundles by performing con-
sistent hashing on the topic name. Each bundle is assigned
to a unique broker through topic partitioning. Pulsar uses a
ZooKeeper [20] instance to store cluster configuration data
such as active brokers, bookies, bundles, and broker to bundle
mapping. The ZooKeeper instance also serves as a reposi-
tory for monitoring data which is periodically updated by
each broker. Monitoring data comprises per-bundle traffic
load and each broker’s resource usage. The Load Manager
module of Pulsar processes the monitoring data to determine
candidate brokers for hosting a bundle, as well as to check if
the current topic partitioning needs to be updated. Such a
reconfiguration is needed when a broker is overloaded, in
which case some bundles are migrated to another broker.
Bundle migration in Pulsar is carried out by first having the
current broker relinquish ownership of them followed by
those bundles being lazily re-assigned to a less loaded broker
determined by the same topic partitioning policy.
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Figure 1: Architecture of ePulsar. The shaded components
are the unique enhancements in ePulsar. The entities with
dashed outlines represent baseline Pulsar’s components that
have been replaced with edge-centric implementations.
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3.2 Per-Topic Load and Latency Monitoring

One fundamental design departure from Pulsar is not bundling
topics into bundles, so that we can monitor and handle

broker-assignment of each topic independently. This design

choice is reflected in the monitoring module at each bro-
ker. As in Pulsar, each broker hosts modules for monitoring

resource usage (CPU, memory, and network bandwidth) at

the broker as well as per-topic traffic characteristics (includ-
ing message rate and number of clients). Additionally, we

also monitor the latency attributes of the broker and clients.
These monitored metrics are periodically reported to the

ZooKeeper instance. We now discuss in more detail the la-
tency monitoring module.

Decentralized Network Coordinate protocol. Scalable
and accurate measurement of network latencies between
clients and brokers is essential for the selection of a suitable
broker and ensuring low pub-sub latency. Network coor-
dinate (NC) systems are distributed protocols to scalably
determine the network proximity between a pair of nodes
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Notation Definition
t topic
P(t) producers of topic ¢
C(t) consumers of topic ¢
Ly (2) end-to-end latency constraint for topic ¢
Pt] broker hosting topic ¢
NC (i) network coordinate of entity i
NC(I) centroid network coordinate of entities in I
d (ncy, ncy) distance between network coordinates
W (1) Deviation of client NC from centroids of topic ¢
E(1) Worst-case end-to-end latency for topic ¢

Table 1: Notations used.

in a distributed system without performing direct measure-
ments [12]. Such systems embed nodes in a geometric space
such that the network latency between any two nodes can
be estimated by calculating the Euclidean distance between
their positions (coordinates) in this space. Doing so avoids
the network overhead of pair-wise direct measurements. We
employ a popular decentralized network coordinate protocol,
Vivaldi [9] with some enhancements proposed by Ledlie, et
al. [23] and Lee, et al. [24]. Prior art has shown that NC proto-
cols provide efficient, accurate, and stable latency estimates
in the wild [23].

Each broker’s Latency Monitoring module contains an agent
of the NC protocol, which interacts with its peer agents in
other brokers. NC agents are also run on client nodes and
they too form a part of the peer-to-peer (P2P) network of
agents along with the brokers. Through periodic communi-
cation with a finite set of peers, each agent converges on a
stable network coordinate. Each client periodically queries
the coordinate of its NC agent and reports it to the broker
that currently hosts its topic. Each broker periodically re-
ports the NC of its agent, along with the coordinates reported
by clients of its hosted topics to the ZooKeeper instance. This
combination of NCs for broker and clients is used to compute
the end-to-end pub-sub latency for a given topic.

Aggregation of Per-topic Latency Data. We reduce the
amount of per-topic monitoring data sent to ZooKeeper by
aggregating the network coordinates of multiple clients. For
each topic t that is hosted on broker b, we report the fol-
lowing data items through monitoring. Table 1 provides a
summary of notations used.

e Producer and Consumer Centroid. The producer and
consumer centroids provide an approximate location of
the network location of a topic’s clients. We compute
the centroid producer coordinate NCp () and centroid
consumer coordinate NC¢ (t) as follows.

NCp(t)=NC({i:ieP(t)})

NCc(t)=NC({izieC(1)})
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e Maximum Deviation from Centroids. To cope with
the loss of information with centroids, we send the max-
imum deviation of the clients’ coordinates from their
corresponding centroid. We denote this as W (t) and it is
computed as shown below.

max d (Nc (p),NCp (t)) + max d (Nc (c),NCo (t))

e Worst-case End-to-end Latency. For each topic ¢, we

compute the worst-case pub-sub latency across all producer-

consumer pairs. We denote this as E (t) and it is computed
as follows.
max d (Nc (p),NC(P [t])) + max d (Nc (c),NC(P [t]))
peP(t) ceC(t)
This information is used to determine whether the cur-

rent broker, denoted by P [¢] is meeting the topic’s end-
to-end pub-sub latency threshold.

One key point to take note of is that the volume of per-topic
monitoring data generated is independent of the number of
clients using that topic. Given the high heterogeneity of bro-
ker and client network locations in a geo-distributed setting,
this aggregation technique significantly reduces monitoring
data traffic. By contrast, a naive approach which records
the network coordinates of all clients would incur network
traffic proportional to the number of clients of each topic.

3.3 Latency and Load-Aware Topic Partitioning

ePulsar’s topic partitioning policy uses the fine-grained

per-topic latency and load monitoring data collected from

brokers to meet end-to-end latency guarantees. We imple-
ment this policy by extending the Load Manager module in

Pulsar, which periodically processes the latest monitoring

data and determines whether the currently observed system

state requires an update to the topic partitioning. An update
to topic partitioning may be required for one of two reasons.

(1) The end-to-end pub-sub latency for a topic E (t) exceeds
the topic’s prescribed threshold L, (1).

(2) Workload capacity on a broker exceeds a high watermark,
resulting in inflated processing latency on the broker. A
broker is said to be overloaded in case the consumption
of any one of the hardware resources (CPU, memory or
network bandwidth) exceeds a threshold, or if one of the
aggregate traffic parameters (e.g., output message rate)
exceeds a threshold. Through a comprehensive profiling
of Pulsar’s data-plane, we have identified the most rele-
vant traffic parameters and their respective thresholds
that indicate broker overload. In this scenario, the over-
loaded broker’s per-topic traffic load is analyzed and a
subset of topics are selected for migration, such that their
removal from the broker will result in reduction of load
below the high watermark.
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The pseudocode of this algorithm is presented in Algorithm 1.
First, we iterate through each topic and determine if its worst-
case end-to-end latency violates its threshold and if so we add
it to the set of topics to be migrated (lines 15-17). Next, we
determine the set of brokers that are overloaded (line 18). For
each such broker, we extract a set of topics whose migration
would result in avoiding overload (lines 19-21). We compute
repartitioning for these topics and final migration commands
(reconfigurations) is then executed by the Load Manager. The
logic for computing repartitioning of topics is present in the
PlaceTopics procedure. For each topic we first determine a
ranked set of latency-feasible brokers (Section 3.4.1). Next,
in the order of increasing size of the candidate set, we try to
place each topic on the candidate brokers, such that the topic
placement does not result in broker overload (lines 5-10).

The policy for determining overload of brokers, selecting
topics for migration, and finding candidate brokers are exten-
sible; we discuss them in detail in Section 3.4. In the event that
the Load Manager detects the need for topic repartitioning,
a new broker is selected for that topic, and a reconfiguration
of topic ownership is carried out (Section 3.6).

3.4 Topic Partitioning Policies

The latency and load-aware topic partitioning algorithm
discussed above provides an extensible framework for imple-
menting various policies. In this section we provide detail
into the policies we use for each of the constituent decision-
making steps in Algorithm 1.

3.4.1 Selecting Broker Based on End-to-End Latency

As a result of the fine-grained per-topic data collected by
the latency monitoring discussed in Section 3.2, we propose
the following policy to select a broker that keeps end-to-end
latency under a specified threshold. For each broker b that is
a potential candidate for hosting topic ¢, we compute W (¢, b),
the expected worst-case end-to-end latency that broker b
would be able to offer.

W (t,b) = d (N_Cp(t),NC(b))+d (N_Cc(t),NC(b))+W(t)

We then filter the set of brokers for which the approx. worst-
case end-to-end latency W (t, b) is under the topic’s threshold
L,y (t). If the set of latency-feasible brokers B (¢) is empty,
we return the entire broker list as candidates. We rank the
candidate brokers by increasing W (t, b).

3.4.2 Filtering Overloaded Brokers

We label a broker as overloaded if one of the following con-

ditions holds true.

(1) The utilization of broker’s hardware resources, namely
CPU, memory and network bandwidth exceeds a thresh-
old of 85% (same as Pulsar).

(2) Aggregate output message rate (messages/sec) at broker

exceeds the threshold R",. This condition ensures that
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Algorithm 1 Topic Manager algorithm. Inputs are Py (initial
topic partitioning) and M (monitoring data)

1: procedure PLACEToPICS(Tpnigr, P, M)

2 F « dict ()

3: for t € Tyyiy, do

4 F[t] « get_feasible_brokers_by_latency (t, M)
5 sort Tp,igr by increasing |F [¢] |

6 for t € Tyi4, do

7: for b.,nq € F[t] do

8 if can_host (b.qna, t, P, M) then > no broker

overload
9: p [t] — beana
10: break
11: return P

12: procedure PERFORMREPARTITIONING(Py, M)

13: R« {} > set of migration commands
14: Tmigr < {} v topics to migrate from curr broker
15: for t € Py.topics do

16: if latency_violated (t) then

17: Tmigr — Tmigr U {t}

18: Boverload < get_overloaded_brokers (Py, M)

19: for b € Byyerioad do > resource-based detection
20: Ty « get_topics_to_migrate (b, Py, M)

21 Tmigr « Tmigr UTy

22: P « PlaceTopics (Tnigr, Po, M)

23: R« {} > set of repartitioning commands
24: for t € Py.topics do

25: if P[t] # Py [t] then

26: R— RU{(t,Py[t],P[tD}

27: execute_reconfigs (R)

processing latency on the broker does not impact the end-
to-end latency. Through extensive profiling of ePulsar’s
data-plane (as described in Section 5.4), we determine
both the metric and the threshold for checking overload.

We note that more complex policies for determining broker
overload such as the one proposed by Khare, et al. [22] could
also be used. However, we defer the exploration of such
policies to future work.

3.4.3 Topic Selection to Migrate from Brokers

For simplicity, we assume that two topics with an identical
output message rate (msgs/sec) would incur identical load
on a broker. R,y (t) represents total incoming and outgoing
message rates for a topic ¢. To minimize the number of mi-
grations required, we prioritize migrating topics with higher
Rout (1). If the trigger for broker overload was high resource
usage, then we determine the target aggregate message rate
that topic migration should achieve to lower the resource
utilization below the threshold. We keep marking topics as
candidate for migration (in decreasing order of R,,; (¢)) until
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the target message rate is achieved. If the trigger for broker
overload was high aggregate output message rate, then we
remove topics (similar to the above description) until the
total output message rate falls below the threshold R*"

out*
3.5 Reducing Message Processing Latency

Broker communicating with a remote system entity in the
critical path of message processing can significantly impact
end-to-end latency, even though the broker has been chosen
keeping network proximity in mind. Such a workflow exists
in Pulsar’s data-plane, wherein serving persistent topics re-
quires the broker logging individual messages on the durable
storage of one or more BookKeeper nodes (bookies) before
the producer can be acknowledged. Thus latency-aware bro-
ker selection needs to be augmented with a suitable bookie
selection policy for end-to-end latency satisfaction.

ePulsar selects bookie nodes that are resident on the same
edge site as the broker to avoid remote communication in
the critical path. For better reliability, bookie nodes from
distinct racks on the same edge site (Section 2.1) are selected.
We allow developers to specify the number of bookie nodes
to persist a topic’s messages on, and the size of the write
quorum (number of bookie acks needed before acknowledg-
ing the producer). This design enables developer to choose a
tradeoff between fault-tolerance and latency overhead.

3.6 Control-Plane Agility for Reconfigurations

One of the requirements of ePulsar is to be responsive when
detecting and adapting to workload dynamism via topic re-
partitioning. ePulsar achieves this requirement by (a) better
coordination between Load Manager and brokers to reduce
per-topic migration time, and (b) exploiting concurrency to
increase topic migration throughput. We discuss both these
design choices in this section.

Enhanced Coordination. We perform topic unloading from
old broker and loading on new broker together as part of the
same workflow. We add coordination steps in the communica-
tion between the Load Manager and the brokers involved in a
topic migration. Fig. 2 shows the steps involved in ePulsar’s
migration workflow. The Load Manager sends a command
to the current broker to release the topic (1). The old broker
releases ownership of the topic by updating ZooKeeper (2).
Upon successful write to ZooKeeper, it terminates the con-
nections to the clients of that topic, providing them the new
broker’s address (3), and informs the newly chosen broker
to acquire ownership of this topic (4). Clients reconnect to
the new broker (7) and resume operation when their connec-
tions are established. Step 3 is an expanded control action in
ePulsar compared to baseline Pulsar. Specifically, notifying
the clients of the new broker is not part of the workflow of
baseline Pulsar. Further, step 4 does not exist at all in base-
line Pulsar. Step 3 lets clients know the next broker for the
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topic under migration and eliminates the need for clients to
perform topic lookup from the Load Manager. Step 4 allows
the old broker to proactively inform the new broker to ac-
quire ownership of the topic, which hides this latency for
communication with ZooKeeper (Step 6) from the clients,
thus reducing client downtimes. We define the duration be-
tween the Load Manager sending “Release Topic” command
to old broker (1) and receiving the “Topic Release Complete”
response (5) as the per-topic migration time. This metric rep-
resents the elapsed time incurred in the migration workflow
by the Load Manager for a single topic.
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Figure 2: Sequence diagram of ePulsar’s topic migration
workflow. The time duration for which a client remains dis-
connected from a broker is termed as client downtime.

Concurrent Topic Migration. ePulsar’s Load Manager
employs a pool of threads to execute topic migration. As
shown in Fig. 2, topic ownership in ZooKeeper is updated by
the individual brokers themselves. This strategy allows multi-
ple concurrent migrations to proceed, relying on ZooKeeper
for ensuring consistent updates to topic ownership. Fur-
ther, this strategy also allows the Load Manager to carry
out concurrent migration of topics to chosen brokers using
the thread pool. On the other hand, the Load Manager in the
baseline Pulsar carries out topic migration sequentially.

4 Implementation

We implement ePulsar by integrating the architectural com-
ponents presented in Section 3 into the control plane of
Apache Pulsar version 2.2.1. As we mentioned in Section 3.2,

for fine-grained monitoring we enforce the maximum num-
ber of topics in a bundle to be equal to 1, and split any bundle

immediately that is assigned more than one topic. Keeping

the bundle concept in tact allows ePulsar to leverage Pul-
sar’s bundle-oriented monitoring and load management sys-
tem. We maintain per-topic latency constraints in ZooKeeper

and allow application developers to specify them through a

command-line utility. The periodicity of processing monitor-
ing data in the Load Manager is 5 seconds.

Deployment Configuration of ePulsar. Broker and bookie
nodes are hosted both at edge sites for serving low-latency

applications as well as in a remote datacenter (i.e., cloud). The

Topic Manager role is assigned to a broker through leader
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election, although we restrict the role to be assigned to a
cloud broker because of better reliability of cloud resources.
The ZooKeeper instance is co-resident in the cloud. Clients
connect to the pub-sub infrastructure through various access
media, e.g., cellular (4G LTE), WiFi or wired networks.

Network Coordinate P2P System. We use Serf [19] as the
network coordinate agent as described in Section 3.2. Serf
agent uses a gossip protocol to discover peers in the clus-
ter, and newly joined nodes fetch information about seed
nodes from a central database. Member nodes of a Serf clus-
ter communicate with each other as per the enhanced Vivaldi
NC protocol, which has been shown to converge to stable
coordinates after 60 minutes of the NC cluster being up [23].

Integrating NC P2P System with ePulsar. Each of ePul-
sar’s entities - brokers and clients - run an instance of the
Serf agent that form a P2P cluster. We designate brokers in
the cloud as seed nodes of the NC cluster. ePulsar’s clients
can be static or mobile depending on the application use-case.

Through experimentation, we have found that the Vivaldi
NC protocol does not provide stable latency estimates when
mobile clients are nodes in the NC P2P cluster. However,
such mobile devices invariably connect to the Internet via
a nearby gateway node e.g., local breakout [25] for clients
running on a 4G/LTE network. We assume the presence of a
lightweight network coordinate proxy (NC Proxy) running
on such gateway nodes, serving as the source of network
coordinate information for the mobile clients connected to
that gateway node. Thus the NC of a mobile client defaults
to that of the gateway node that it is currently connected
to. Since all the data plane actions of a mobile client goes
through its associated gateway node (which serves as the
NC Proxy), the client-proxy latency is a constant factor in
the end-to-end delay, and is accounted for by adding it to
the height parameter of the proxy’s NC.

The entities in ePulsar running NC’s Serf agents (broker,
static clients, and NC proxies) are stable and have a much
longer uptime (on the order of days) compared to the 60
minute convergence time of the NC cluster. The client library
queries its current network coordinate (or that of its NC
proxy) periodically every 5 seconds and reports it to the
broker hosting its topic. Similarly, the broker queries its
current network coordinate periodically every 5 seconds.

5 Performance Evaluations

We evaluate ePulsar to validate the following hypotheses.

(1) Inter-node latency estimation using ePulsar’s network
coordinate protocol has high accuracy and imposes low
overhead on participating nodes (Section 5.3).

!Height component of Vivaldi’s NC accounts for constant latency faced by
clients due to their access network.
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(2) Per-topic aggregation of client NCs as centroids does not
result in selecting brokers that violate end-to-end (E2E)
latency constraints (Section 5.5), while providing consid-
erable savings in monitoring overhead (Section 5.6).

(3) Agility-oriented optimizations in the control-plane result
in reduction of migration overheads (client downtime and
per-topic migration time) over Pulsar (Section 5.7).

(4) ePulsar is able to meet E2E latency constraints for ex-
emplar applications (Section 5.8).

We verify the above hypotheses using two main methods: (1)
Microbenchmarks that analyze different parts of ePulsar’s
architecture in isolation. (2) End-to-end evaluations of multi-
ple application scenarios consisting of realistic infrastructure
topology and client workload.

5.1 Evaluation Scenarios

We wish to evaluate ePulsar under realistic infrastructure
and subscription patterns. For this purpose, we consider
the following evaluation scenarios from which we design
microbenchmarks and end-to-end experiments.

5.1.1 Unmanned Aerial Vehicle Swarms

A swarm consists of multiple drones that move together for
accomplishing a given task. The swarm contains a leader
drone and the rest are followers. Each swarm follows a Ran-
dom Waypoint mobility model [36].

Subscription Pattern. The leader drone sends movement
commands to the followers through a topic called follow_leader.
The followers communicate information extracted from on-
board sensors to the leader via a topic sensor_data. The E2E
pub-sub latency constraint is set at 40 ms.

Infrastructure. We consider a city-wide cellular network
equipped with edge resources, where UAVs use LTE as the
communication medium. We assume that the city is divided
into multiple Mobile Edge Computing (MEC) zones, each with
a single edge site. The locations of the edge sites is deter-
mined via k-means clustering on the cell tower locations
[35] of Atlanta [7]. The edge sites communicate with each
other via a city-level switch, with inter-site RTT of 30 ms.
Each edge site hosts a broker and an NC proxy. Each client
is directly connected to the edge site corresponding to its
current location based on k-means clustering. Since clients
are mobile, they query NC from the respective sites they are
directly connected to. The broker running the Load Man-
ager component and the ZooKeeper instance is hosted in the
cloud with a one-way latency of 40 ms to any edge site.

5.1.2 Massively Multiplayer Online Gaming

The MMOG scenario comprises multiple players joining a
game session from multiple cities across the USA. We con-
sider a distributed game server deployment with each city
hosting a game server. Each game server serves clients in
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the same city, and uses pub-sub middleware to exchange
game-state updates with other servers. Client avatar interac-
tions are modeled based on Destiny 2 [5], wherein avatars
form groups (uniformly sampled) and play with/against each
other. Each avatar has an exponentially distributed lifetime
for being present in the current group, after which it would
join another uniformly selected group.

Subscription Pattern. The subscription pattern is object-
based [6] wherein each avatar a is associated with a topic T,
to which the game server serving a’s client pushes informa-
tion about any action taken by that avatar. The game server
subscribes to the topics of all avatars in its current group
to receive updates about their gameplay actions. The E2E
pub-sub latency threshold is set to 100ms.

Infrastructure. We assume a multi-city infrastructure in
the US (similar to Google’s Edge network [30]) with each city
consisting of a game server and a pub-sub broker. Inter-city
latencies are modeled based on the WonderNetwork dataset
[32]. Latency between broker and game server in the same
city is set to 5 milliseconds. The broker hosting the Load
Manager component and the ZooKeeper instance is located
in the city of New York, which is also a part of the topology.

5.2 Evaluation Platform

The evaluation scenarios described in Section 5.1 pose the
following requirements to be satisfied by the evaluation plat-
form: (i) support a heterogeneous network topology, (ii) allow
emulation of unmodified software components (Pulsar enti-
ties and clients), and (iii) emulate device mobility. To satisfy
these requirements, we use the Containernet [29] evaluation
platform, which has also been used by previous edge comput-
ing research [15, 33]. Containernet uses Docker containers
as hosts (allowing use of unmodified software entities) in
network topologies emulated using Open vSwitch. We set
custom latencies on the network links using the Linux tool
tc (to support heterogeneous topologies), and remove/create
network links on the fly (to emulate device mobility).

The emulated infrastructure is deployed on an Ubuntu 16.04
VM with 48 CPU cores and 64 GB RAM. We use Docker’s
resource reservation to allocate dedicated resources to each
container and minimize performance interference.

5.3 Latency Estimation via Network Coordinates

Network coordinates offer a more scalable way of measuring
pairwise network latencies compared to direct per-pair mea-
surements. The intent in this subsection is to validate the first
hypothesis, namely, the efficacy of the NC protocol which is
used in ePulsar. For this purpose, we consider a simple yet
representative topology of an NC cluster as shown in Fig. 3a.
Nodes of the NC cluster are connected to a central switch.
All the nodes have the same link latency to the switch (which
is varied in the experiments using the Linux tc tool).
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Figure 3: Accuracy of the enhanced Vivaldi NC protocol
using a simple topology shown in Fig. 3a. The link latency is
controlled using the Linux tc tool.

Accuracy. We study the impact of two control variables
on RTT estimation accuracy of NC protocol: (1) number
of nodes in the NC cluster, and (2) the actual RTT setting
between the nodes. Metric of interest is per-pair error in
RTT estimation. Fig. 3 shows that the error remains rela-
tively constant and low (< 3.5 ms) with increasing number
of nodes. The error increases marginally with higher actual
RTT but remains small (< 6 %) in relation to the actual RTT
setting. There could be transient errors in latency estimation
as a result of unpredictable vagaries in the WAN which are
out of the control of the NC protocol. The optimizations to
the Vivaldi algorithm [23, 24] safeguard the NC protocol
from transient noise in RTT measurements between NC Serf
agents. ePulsar’s latency estimation accuracy is a function
of the enhanced Vivaldi NC protocol used by the Serf [19]
agent which ePulsar adopts as is. Transient errors in latency
estimation manifest in ePulsar as temporarily sub-optimal
broker selection that could violate E2E latency requirements
of the pub-sub clients. However, due to the transient nature
of these errors, the broker selection will self-correct itself.
Overhead of Running Agent. We measured the CPU and
memory usage of the NC agent with two control knobs: num-
ber of participating nodes in the protocol (varied from 2-128),
and the frequency of querying the agent for its coordinate
(varied from every second to every 5 seconds). The CPU
utilization for all the above configurations is less than one
percent while memory requirement is less than 15 MB.
This set of experiments and results confirms our first hypoth-
esis that using a decentralized network coordinate protocol
to estimate network latencies between entities is accurate.
At the same time, it incurs low resource overhead.

5.4 Profiling ePulsar’s Data-Plane

In this section we describe the methodology for determining
the traffic parameters and thresholds for determining the
broker overload (as mentioned in Section 3.4.2). We do so
by profiling the data-plane of ePulsar against the workload
generated by OpenMessaging benchmark[27]. Our evalua-
tion setup comprises 1 broker, 1 bookie and 2 client nodes
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each running on a separate virtual machine; each with 8
CPUs and 16 GB RAM. We focus on persistent topics for this
evaluation, as they exert more load on the data-plane. We
measure the E2E latency against a wide range of workloads
by changing the following traffic parameters: number of top-
ics, number of producers and consumers per topic, message
size, and per-topic messages rate. From the collected data, we
found that the aggregate output message rate (msgs/sec) on a
broker is strongly correlated with p95 E2E latency, and rates
higher than 1500K messages per second leads to significant
deterioration of processing latency on the broker. Therefore,
in the E2E evaluations, we use this threshold as a filter to
determine broker overload in the broker selection policy.

5.5 Broker Selection Policy Assessment

Earlier (in Section 3.4.1) we proposed a topic partitioning
policy for satisfying the latency constraints of topics. In
this section, we evaluate the effectiveness of the policy to
meet its objective for realistic infrastructure topologies and
client subscription patterns. We compare the proposed policy
against the following two baselines.

o AllPairs. Same as ePulsar, but instead of clients’ NC
centroids, AllPairs takes the NC of each individual client
and computes the expected E2E latency for each producer-
consumer pair. A broker is chosen only if the worst-case
EZ2E latency falls below the threshold.

e Pulsar. As mentioned in Section 2.3, Pulsar offers well-
developed data-plane semantics which are appropriate
for the target applications for the edge. Therefore, we
choose Pulsar as the other baseline. Pulsar uses consistent
hashing to compute the hash for a topic name. The output
space of the hash function is divided among all brokers
uniformly. The topic is assigned to the broker inside
whose partition the topic’s hash falls.

5.5.1 Methodology

For each representative application scenario mentioned in
Section 5.1, we generate infrastructure topologies with vary-
ing amount of geo-distribution. For the inter-city MMOG
topology we vary the number of cities, while for the UAV
swarm topology we vary the number of MEC zones in the
metropolitan area. For each such topology, we first emulate
the infrastructure of the given topology using Containernet.
After allowing the NC agents in brokers and clients to stabi-
lize for 10 minutes, we query each agent’s coordinate. The
querying is done once per topology. Using the coordinates
of all nodes in the topology, we can then estimate the E2E
delay for any producer-consumer pair of a topic given the lo-
cation of the clients and the broker hosting that topic. Based
on the specific application scenario’s subscription pattern,
we determine the clients for each topic and place them on
the nodes of the generated topology. The coordinates of the
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producers and consumers for each topic serve as the input
to the broker selection policy. We analyze the result of selec-
tion policy in terms of the E2E latency and violation ratio.
Violation ratio represents the fraction of producer-consumer
pairs for whom the latency threshold is violated. In the ex-
periments, we consider 1000 different random permutations
of client placement and topic subscriptions. The intent is to
have a large coverage of possibilities wherein clients could
be located in different geographical areas and/or could be
subscribing to different sets of topics.

5.5.2 MMOG Scenario

We vary the number of cities in the topology and distribute
a total of 1024 MMOG clients across all cities with equal
probability (following the strategy suggested in Deng, et
al. [11]). We randomly assign the clients into 128 groups to
simulate group formation during the session. Clients’ avatars
follow the subscription pattern described in Section 5.1.2.
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Figure 4: Analysis of broker selection policy for MMOG
application scenario.

Fig. 4a shows the worst-case E2E latency over all producer-
consumer pairs for all topics in the evaluation for the differ-
ent broker placement policies. Pulsar’s consistent hashing is
consistently worse than the two latency-aware placement
strategies (AllPairs and ePulsar’s policy). ePulsar offers a
worst-case latency similar to AllPairs. In Fig. 4b, the viola-
tion ratio for each broker selection policy is shown. Pulsar’s
consistent hashing causes a high number of violations due
to latency-agnostic topic partitioning, whereas AllPairs and
ePulsar offer similar levels of violation.

5.5.3 UAV Swarm Scenario

We vary the number of MEC zones in the simulated metro
area and distribute 16 UAV swarms in the city. Each swarm
comprises 8 UAVs, with one of them serving as the leader.

UAVs follow the subscription pattern described in Section 5.1.1.

Figs. 5a and 5b show the worst-case E2E latency and viola-
tion ratio over all producer-consumer pairs. Since ePulsar
performs latency-aware topic partitioning, the worst-case la-
tency remains under the threshold, resulting in no violations
even when the number of MEC zones is increased.
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Figure 5: Analysis of broker selection policy for UAV swarm
application scenario.

The results in this subsection, for both application scenarios,
validate the first part of the second hypothesis that the loss
of information by aggregating clients’ network coordinates
as centroids does not result in poor broker selection with
respect to meeting E2E latency constraints.

5.6 Monitoring Overhead Reduction

We evaluate the savings in monitoring traffic by aggregating
per-topic client NCs at the serving broker before reporting
them to ZooKeeper. This traffic is sent continuously through
the WAN and impacts scalability of the system, hence we
consider aggregate monitoring traffic rate as the metric-of-
interest. We focus our evaluation on a single broker hosting
topics with multiple clients - as the behavior is independent
of other brokers. We vary the number of topics hosted on the
broker and the number of clients connected to each topic.
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Figure 6: Monitoring traffic rate under varying number of
topics and clients per topic. ePulsar’s NC aggregation results
in considerable savings over naive AllPairs.

Fig. 6 shows the data rate of monitoring traffic sent to ZooKeeper.

An increasing number of topics results in higher data rate.
The rate of increase is higher without centroid aggregation
(AllPairs policy) and also with more clients per topic. ePul-
sar’s aggregation, however, causes data rate to be indepen-
dent of the number of clients - since a constant amount of
data is sent to ZooKeeper per topic. These results validate
the second part of the second hypothesis that aggregating
clients’ network coordinates as centroids results in reducing
the monitoring overhead.
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5.7 Reduction of Migration Overhead

Here we present the improvements due to ePulsar’s op-
timizations to Pulsar’s topic migration workflow. ePulsar
improves agility of the control-plane by improving coordi-
nation between the Load Manager and the brokers involved
in a migration. Higher concurrency for executing topic mi-
grations is another contribution that augments the control
plane agility. We choose two metrics of interest: (1) client
downtime during topic migration, i.e., time between discon-
nection from the old broker and establishment of connection
to the new broker, and (2) per-topic migration time to the
new broker. We vary the number of topics that are concur-
rently migrated, the one-way WAN latency between brokers
at the edge and the Load Manager, and the number of migra-
tion executor threads in the Load Manager. Our test setup
comprises 2 brokers and multiple client containers running
the client processes. For this experiment, we use a custom
Load Manager implementation that periodically triggers the
migration of all topics in the system from the first to the sec-
ond broker and back and so on. Each topic has only 1 client
so that we can focus on the worst-case client downtime.
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Figure 7: Comparison of topic migration overheads for base-
line Pulsar and ePulsar. Note that only ePulsar benefits
from multiple migration executor threads.

Fig. 7a shows that ePulsar’s client downtime is significantly
lower than that of baseline Pulsar when 128 topics are con-
currently migrated using 16 migration executor threads. The
optimized migration workflow of ePulsar (Fig. 2) is the pri-
mary reason for this performance gain. Multiple rounds of
communication with the remote Load Manager and ZooKeeper
through the WAN is the cause for the inflation of the client
downtime for the baseline. The higher the WAN latency be-
tween the broker and the Load Manager the higher the gain
for ePulsar. Fig. 7b shows the per-topic migration time with
varying number of topics and different settings of migration
executor threads. The one-way WAN latency from the broker
to the Load Manager is set at 40 ms for this experiment. ePul-
sar benefits from the concurrency in migration execution
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to reduce the per-topic migration time, while the baseline
Pulsar does topic migration sequentially (Section 3.6).

The results in this subsection validate the third hypothesis
regarding the agility of ePulsar to reduce the completion
time and client downtimes during topic migration.

5.8 End-to-End Evaluations

In this section, we evaluate ePulsar’s ability to respect E2E
latency constraints of the exemplar applications (Section 2.2),
and validate the fourth hypothesis. The metric we use for
the evaluation is E2E pub-sub latency - i.e., the elapsed time
between a client publishing on a topic and the receipt of the
published message by all the clients subscribing to that topic.

5.8.1 UAV Swarms Scenario

We consider the infrastructure topology described in Sec-
tion 5.1.1 with 4 MEC zones and emulate using Containernet.
We emulate each UAV swarm as an independent container
where the mobility of all of the members of the swarm are
identical. In the emulated network topology, each zone con-
sists of a network switch to which the broker and the NC
proxy connect. We create a link between the swarm’s con-
tainer and the switch corresponding to the swarm’s current
MEC zone. When a swarm moves into a new zone, the link to
the previous zone’s switch is removed and a link to the new
zone’s switch is created. We emulate 8 independent swarms,
each with 8 UAVs, following the Random Waypoint mobility
model in the city at a relatively high speed of 50 meters/sec?.
Both leader and followers generate 200 msgs/sec each of size
1 KB [37]. We perform this experiment for 10 minutes.

We show the E2E latency of a single representative topic
from each swarm in Fig. 8°. For each swarm. the E2E latency
remains under the latency threshold (40 ms) for most of the
experiment duration. Transient violations of latency thresh-
old occur when a swarm moves into a different MEC zone
than the one currently hosting the swarm’s topics. ePulsar’s
monitoring module detects such violations and triggers mi-
gration of the swarm’s topics to the broker at the new MEC
zone, after which the E2E latency returns back under the
latency threshold.

5.8.2 MMOG Scenario

We emulate a realistic instance of the MMOG scenario on an
infrastructure topology consisting of 5 cities in USA, as de-
scribed in Section 5.1.2. Each city contains 1 broker node and
multiple edge sites each running an NC proxy and a game
server (the game servers are stationary clients to ePulsar). 64
MMOG mobile clients are uniformly distributed among the

2We use such a high speed to trigger several mobility-driven topic migra-
tions during the experiment.

3To avoid cluttering the figure, we do not show all the topics of each swarm
since their behavior is identical.
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Figure 9: E2E Area-of-Interest (Aol) latencies for one representative client avatar in the MMOG scenario. Each line represents
the delay experienced in receiving updates made by individual avatars that are in the representative client’s Aol, and runs for
as long as the avatars are in the Aol of the representative client.

cities and they form groups at random. To model dynamism,
the emulated MMOG mobile clients leave their current group
after a period T, and join another group at random. Each
client samples T from an independent uniform distribution
between 30 and 60 seconds. We set the per-avatar update
message size to 998 bytes and the message rate to 300 mess-
sages/sec [38]. We perform this experiment for 10 minutes.

Fig. 9 shows the E2E Area-of-Interest (Aol) latency experi-
enced by one particular MMOG mobile client. During its
gameplay, a number of different avatars enter the Aol of the
given client’s avatar, and we denote the delay in receiving
their action updates by an individual line. Transient spikes in
EZ2E latency are observed when the change in subscriptions
to a topic causes the migration of the topic to a better broker.
ePulsar is able to consistently provide E2E latency below
the threshold of 100ms even with frequent Aol changes.

6 Conclusion and Future Work

We presented a control-plane architecture for edge-centric
pub-sub systems and integrated it into an open-source cloud-
centric pub-sub system Apache Pulsar. The resulting system,
ePulsar, performs latency-aware topic partitioning and sup-
ports agile reconfiguration in the event of E2E latency vio-
lation. For scalable inter-node latency estimation, ePulsar
incorporates an enhanced Vivaldi network coordinates pro-
tocol. ePulsar performs continuous monitoring to detect
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EZ2E latency violations, which triggers topic repartitioning
and migration of topics to new brokers. The control flow of
ePulsar is optimized to reduce client downtime and topic
migration overheads. Microbenchmarks and end-to-end eval-
uations show the agility of ePulsar relative to the baseline
Pulsar. While the design principles of ePulsar have been
demonstrated using Pulsar, the principles are general and can
be applied to any edge-centric topic-based pub-sub system.

Avenues for future work include reducing the dependence
on centralized components in the control-plane of ePulsar,
specifically the Load Manager and the ZooKeeper, thus in-
creasing ePulsar’s scalability in a geo-distributed setting.
Distributed management of topics in a pub-sub system has
been explored by Dedousis, et al. [10], and similar techniques
can be incorporated into ePulsar. Prior art has explored the
use of Raft consensus and Serf gossip protocol to replace
ZooKeeper in Kafka [13], and such ideas can be explored for
adoption in ePulsar as well.
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