
Coral-Pie: A Geo-Distributed Edge-compute Solution
for Space-Time Vehicle Tracking

Zhuangdi Xu
xzdandy@gatech.edu

Georgia Institute of Technology

Harshil S Shah
hshah88@gatech.edu

Georgia Institute of Technology

Umakishore Ramachandran
rama@gatech.edu

Georgia Institute of Technology

Abstract
We present a distributed system architecture which is scal-
able by design for cross-camera vehicle tracking at video
ingestion time dubbed Coral-Pie. To meet the latency bounds
for timely processing of every frame at each camera, we as-
sociate dedicated low-cost computational resource for each
camera, which consists of two Raspberry Pi 3B+’s and one
Coral Accelerator (EdgeTpu). The end-to-end system gen-
erates and stores the tracks in a graph database for easy
querying. We use the Cloud-Edge-Device continuum to ap-
propriately place the components of the distributed system
architecture. Using the timing profiles of the sub-tasks in-
volved in the continuous processing that needs to happen
on every frame in each camera, we map the elements of the
processing onto the computational resource associated with
each camera. Performance evaluation of the proof-of-concept
system is conducted using live streams fromfive campus cam-
eras. The evaluation includes microbenchmarks as well as
application level studies. The controlled experiments using
live cameras are augmented with a simulation-based study to
show the self-healing property of the system and the system
scalability.

CCSConcepts: •Computer systems organization→Dis-
tributed architectures; Sensor networks;Real-time sys-
temarchitecture; •Human-centered computing→Ubiq-
uitous and mobile computing.

Keywords: geo-distributed edge architecture, large-scale cam-
era network, multi-camera vehicle tracking

ACM Reference Format:
Zhuangdi Xu, Harshil S Shah, and Umakishore Ramachandran. 2020.
Coral-Pie: A Geo-Distributed Edge-compute Solution for Space-
Time Vehicle Tracking. In 21st International Middleware Conference

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Middleware ’20, December 7–11, 2020, Delft, Netherlands
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8153-6/20/12. . . $15.00
https://doi.org/10.1145/3423211.3425686

(Middleware ’20), December 7–11, 2020, Delft, Netherlands.ACM,New
York, NY, USA, 15 pages. https://doi.org/10.1145/3423211.3425686

1 Introduction
The ubiquity of cameras and other sensors in our environ-
ment coupled with advances in computer vision and ma-
chine learning has enabled several novel applications com-
bining sensing, processing, and actuation. Often referred to
as situation awareness applications [28], they span a vari-
ety of domains including safety (e.g., surveillance [3, 35]),
retail (e.g., drone delivery [2, 34]), and transportation (e.g.,
assisted/autonomous driving [21, 44]). Since many of these
applications are latency sensitive and network bandwidth
hungry [26] in addition to being geo-distributed, edge/fog
computing [7, 29] has emerged as a new trend in catering to
their computational needs. Low-cost processing resources
such as Rasperry Pis [10], and TPUs [12] are enabling just-
in-time processing of sensor streams close to their sources.
As a concrete example, consider creating a space-time track
of a suspicious vehicle using camera networks in a city. Man-
ually checking the camera streams and searching for the tra-
jectory of a suspicious vehicle after an incident has occurred
(e.g., robbery) is extremely labor-intensive and error-prone
due to lapses in attention [23]. With all the advances in do-
main expertise (such as computer vision and machine learn-
ing), and computational infrastructure (sensors and edge
computing), time is ripe for building intelligent systems that
replace manual labor and aid human decision-making. In the
surveillance example, an intelligent system would analyze
the distributed camera streams at ingestion time and gen-
erate the space-time tracks rather than postmortem. Such
an intelligent camera network system combines distributed
systems research and computer vision domain expertise.
Using Space-Time Vehicle Tracking (STVT) at ingestion time
as a concrete example, this paper builds the elements of a
distributed system architecture and its implementation that
allows the necessary computer vision modules to be plugged
in easing the burden on the domain experts for developing
such next generation applications.
Systems exist for tracking vehicles with known signatures
(e.g., license plate number) [8, 31]. The limitation with such
systems is that suspicious vehicles have to be registered in
advance so that they can be detected and tracked in real
time. There has been work on the database side for building
efficient query processing systems on archived video [13, 22].

1

400

https://doi.org/10.1145/3423211.3425686
https://doi.org/10.1145/3423211.3425686

Middleware ’20, December 7–11, 2020, Delft, Netherlands Zhuangdi Xu, Harshil S Shah, and Umakishore Ramachandran

However, we are not aware of any end-to-end system that
cross-correlates video streams from a network of cameras to
build space-time tracks of vehicles in real time.
In this work, we propose a system called Coral-Pie for gen-
erating the space-time tracks of all vehicles all the time at
video ingestion time from a distributed camera network. Such
a system would alleviate the need to know the signature of
a vehicle we wish to track ahead of time since all vehicles
are being tracked all the time.
There are several challenges to building an end-to-end sys-
tem as envisioned by Coral-Pie. The first challenge is timely
processing of the video from a camera to detect and generate
a signature for each vehicle appearing in the field of view
(FOV) of a camera. Of course, such processing has to happen
simultaneously on all the cameras concurrently. Further, for
cross-correlation across cameras, a detected vehicle should
be re-identified if it is part of a space-time track for a specific
vehicle that is being constructed on the fly. This calls for a
distributed processing architecture to support the camera
network with appropriate cost-effective building blocks in
terms of hardware resources for each camera, and a map-
ping of the application components on to these resources for
camera processing. The second challenge is communicating
the signatures of detected vehicles to adjacent cameras in a
scalable manner that reduces the overall necessity to coordi-
nate across cameras. The third challenge is camera topology
management. When camera failures occur or new cameras
are deployed, the geographical relationship between cam-
eras (i.e., the camera topology) and the coordination between
cameras needs to be updated. Pausing the whole system, and
manually reconfiguring the camera topology is not desirable,
which calls for automating the camera topology manage-
ment.
In this work, we address the above challenges to building an
end-to-end camera network management system. Though
we use STVT as a specific use case to ground the work,
aspects of this system are generic and would be reusable for
other applications that desire to use such a camera network.
Specifically, we make the following contributions:
• A scalable by design distributed edge architecture for
tracking all vehicles all the time that addresses the pro-
cessing needs for each camera with pluggable computer
vision components for detection and re-identification.
The novelty of our architecture lies in the horizontal com-
munication among edge (camera) nodes, autonomous
camera topologymanagement, and design considerations
for scalable implementation for a large-scale camera net-
work.
• A proof-of-concept implementation of the architecture,
Coral-Pie, using a combination of Raspberry Pis and
Coral TPU as an edge node.

Analyzing Querying

A B

C D E

C D
E

A B
E

D

Figure 1: This figure shows an example of Space-Time Vehicle
Tracking (STVT). Five cameras A, B, C, D, E are located at road
intersections, continuously monitoring the vehicles’ movement.
We have a distributed system analyzing the camera feeds and con-
struct the trajectory of all vehicles (e.g., the red and yellow one).
Meanwhile, the authority can query the trajectory of any target
vehicle. The reconstructed trajectory may contain errors. In this
given example, the red vehicle did not go through camera D.

• An in situ evaluation of Coral-Pie using video streams
from real-world roadside cameras to demonstrate the
practicality of Coral-Pie.

The rest of the paper is organized as follows. Section 2 de-
fines the problem statement and the scope of this paper.
Section 3 presents the system architecture addressing the
three challenges mentioned earlier. Section 4 presents the
implementation details of Coral-Pie. Section 5 shows the
results of evaluating Coral-Pie with a limited number of on-
campus camera streams and the efficacy of Coral-Pie for
scaling up to large-scale camera networks. Section 6 dis-
cusses how the Coral-Pie architecture can be generalized
and reused for other smart camera applications. Section 7
discusses the related work. Section 8 presents concluding
remarks and directions for future work.

2 Problem Statement
Figure 1 shows the setup for the problem being addressed
in this paper. Cameras are statically and geographically dis-
tributed at the road intersections (or along the road), contin-
ually monitoring the movement of vehicles.1 Cameras need
not necessarily be “smart” by themselves; but each camera
should have computational resources “nearby” to process
its video stream in real-time. The computational resources
can be dedicated edge devices or virtualized containers, ei-
ther physically collocated with the cameras or connected
to the cameras through a local area network. We assume a
well-connected network (e.g., LAN for a dedicated environ-
ment such as a campus or WAN for a city-scale deployment)
allowing the cameras plus their associated computational

1Moving cameras can be supported in Coral-Pie with the camera topology
server (presented in Section 3.3), but they are outside the scope of this paper.

2

401

Coral-Pie: A Geo-Distributed Edge-compute Solution for Space-Time Vehicle Tracking Middleware ’20, December 7–11, 2020, Delft, Netherlands

resources to communicate amongst themselves faster than
the movement of the vehicles between any two cameras. In
other words, the horizontal network resources across the
cameras are not considered as constraints in this work.
In this paper, we use the following taxonomy:
• Device: A low-cost platform (e.g., Raspberry Pi and as-
sociated camera) with limited computational capability.
• Edge: Amulti-tenant micro-datacenter housed in a small-
footprint location (e.g., central offices of Telcos), expected
to host up to a few server racks. Edge sites will be typi-
cally one (or few) network hop(s) away from the entities
that it directly interacts with.
• Cloud: A multi-tenant datacenter (e.g., Amazon AWS)
with virtually infinite resources, and nondeterministic
latency to the edge (due to WAN routing).

Given this setup, we would like to explore the design space
for a smart camera system wherein the live camera streams
are processed locally, and each camera is communicating and
collaborating with other cameras to build up the trajectory
of all the vehicles moving through the road network. We
do not assume that the cameras are present at each road
intersection, we do expect a dense deployment of cameras in
the rest of the paper. In Section 5.5, we discuss what happens
when the density of the cameras decreases.
2.1 Scope of the Paper
The focus of the paper is on solving the system challenges
for such a distributed camera network for enabling sophisti-
cated multi-camera vision applications. The vision compo-
nents themselves are pluggable for the application of inter-
est. In this work, we use well-known computer vision tech-
niques for vehicle detection, tracking, and re-identification.
We show in Section 5.6, that even with off-shelf computer
vision algorithms and models, Coral-Pie can already achieve
reasonable results.
The system can be queried for the space-time track of any
vehicle of interest (e.g., for law enforcement)2. Accuracy
of the space-time tracks generated by Coral-Pie (i.e., false
positives and false negatives) is tied to the sophistication of
the computer vision techniques used. For e.g., as shown in
Figure 1, the system returns 𝐴 → 𝐵 → 𝐷 → 𝐸 as the
track for the red car; but the ground truth shows that it
did not go through camera D. Such ambiguities due to the
vision algorithms can be easily pruned by analyzing a few
frames of videos around the ambiguity either manually or
by employing more sophisticated vision techniques.

3 Distributed System Architecture
In this section, we explore the design space of a scalable
system architecture for a geo-distributed camera network.
One intuitive design is to stream camera feeds to the cloud
for analysis, since in principle, there are virtually infinite
2Note that design and evaluation of the query interface is outside the scope
of this paper and is part of future work (Section 8).

Edge Device

Pipeline

Edge Node

Storage

Cloud

Camera Topology
Server

Vehicle
Identification

Vehicle
Re-identification

Communication

Figure 2: System Architecture: The figure shows the system archi-
tecture that spans Cloud, Edge, and Devices; and the mapping of
the application components of STVT.

computational capacity in the cloud. However, the back-
haul network bandwidth needed to stream the video from
a dense deployment of a geo-distributed camera network is
infeasible [3]. Typical IP camera bandwidth requirement is
between 2-24 Mbps [9], and if the camera stream is transmit-
ted using HTTP/MJPEG protocol, the bandwidth can go up
to 32Mpbs [42]. Furthermore, due to the network bandwidth
pressure it becomes untenable to sustain a good frame rate
from the cameras to the cloud thus affecting the quality of the
camera processing results. For e.g., prior art [42] has shown
that only a frame rate of 3 FPS was possible at the cloud while
it was possible to get 15 FPS at the edge for accessing camera
streams from a campus camera network. Lastly, despite the
fact that there are virtually infinite resources in the cloud,
we wish to provide guaranteed computational resources for
each camera stream toward our goal of scalable by design.
For these reasons, Coral-Pie uses a distributed edge architec-
ture (Figure 2) which accomplishes four sub-goals of scalable
by design: (a) eliminates the network bandwidth pressure
for streaming the cameras to the cloud, (b) provides the nec-
essary computational capacity for each camera on the device
associated with it, (c) manages the mapping of the software
components in each device to achieve the necessary frame
rate for camera processing, and (d) uses the device-edge-
cloud continuum for appropriately placing the application
components of STVT.
We summarize the functional components of STVT as de-
picted in Figure 2:
1. Upon a camera joining the system, it registers with the

Camera Topology Server and gets the topology informa-
tion of the local road network.

2. For each frame, Vehicle Identification recognizes when-
ever a vehicle enters and leaves the camera’s FOV, and
generates a vehicle detection event for each vehicle.

3. Then, for each vehicle detection event, Communication
sends the event to the downstream cameras (determined

3

402

Middleware ’20, December 7–11, 2020, Delft, Netherlands Zhuangdi Xu, Harshil S Shah, and Umakishore Ramachandran

by the road network and the direction of vehicle’s mo-
tion) to inform them that the detected vehicle is likely
to appear in their respective FOV shortly. Every down-
stream camera receives this detection event and adds it
into its candidate pool of Vehicle Re-identification.

4. Meanwhile, Vehicle Re-identification tries to match each
vehicle detection event from those in its candidate pool.
In other words, Vehicle Re-identification (if successful)
confirms that a vehicle detected by an upstream camera
also passed through the FOV of this camera.

5. Upon completion of processing a camera frame, Stor-
age persistently stores the frame, registers and extends
a vehicle’s trajectory based on Vehicle Re-identification
results.

We elaborate on the details of each of these functional compo-
nents and their placement in the computational continuum
to achieve our goal of scalable by design in the following
subsections.
3.1 Placement of the Application Components
Steps 2-5 in the above summary happens on each captured
frame from the camera in a pipelined fashion. The pipelined
processing steps include vehicle identification, communica-
tion to peers, vehicle re-identification, and finally storage of
the frame. Figure 2 shows a suggested mapping of the appli-
cation components across the device-edge-cloud continuum.
All the heavy-lifting with respect to the real-time camera
processing, which includes Vehicle Identification, Communi-
cation, and Vehicle Re-identification, are performed on the
dedicated computational resource (i.e., device) associated
with each camera. This arrangement ensures that we can
provide deterministic latency bounds for these image pro-
cessing tasks. Alternatively, we could also satiate the compu-
tational needs for these tasks on the edge node via virtualized
resources so long as the latency bounds can be met. Most
importantly, the camera streams need not be pushed to the
cloud ensuring that there is no pressure on the backhaul
network bandwidth.
Our goal is to achieve scalable by design both in terms of
cost and performance for STVT. To this end, the cost of the
“device” should just be a reasonable increment to the cost of
the camera itself. Thus the device will not have sufficient
storage and computational capability to support on-device
storage. Therefore, a viable alternative is to offload Storage to
a nearby edge node as shown in Figure 2, which by definition
is more powerful. Since we are offloading to a local edge node,
the backhaul wide-area network (WAN) is not pressured.
As we will see in Section 4, this design decision also helps
balance the pipeline of tasks that need to be performed on
each frame.
Camera topology management maintains the geographical
relationship between the cameras and gets updated when a
new camera is deployed or an old camera is removed. We
do not expect such churn in the topology to be frequent;

A

C

B

1 A identifies the red vehicle,
and informs B and C.

B and C respectively receive the message,
and keep it in their respective local candidate pools. 2

3

B identifies the red vehicle and re-identifies
it from its candidate pool.

4

B confirms the red vehicle re-identification to A. 5

A notifies C to remove the red vehicle from its candidate pool.6

T
IM

E
LIN

E

Figure 3: Communication Protocol: This figure summarizes a com-
plete communication session when a vehicle moves between Cam-
era A and Camera B. Upon identification by Camera A, the mini-
mum downstream camera set (Cameras B and C) are notified; Upon
re-identification by Camera B, the red vehicle is removed from the
candidate pool of Camera C.

further topology management is also not in the critical path
of real-time camera processing. Therefore, it makes sense
to have that functionality to be hosted in the cloud without
hurting the scalability of the system.
3.2 Communication Between Cameras
Optimal communication between cameras is critical for the
STVT, from the perspectives of scalability, processing speed
(end-to-end latency), and accuracy of the system. Flooding
detection events to all cameras in a broadcast manner is
no good. Such flooding not only hurts the scalability of the
system but also increases the computational burden (both
latency and false positives) on vehicle re-identification since
the size of the search space (i.e., the candidate pool) becomes
larger.
Under a dense camera deployment, the topography of the
road network and the direction of the vehicle’s motion pro-
vide us a direct hint as to which set of potential cameras
the vehicle is likely to pass through next. Take the yellow
vehicle in Figure 1 as an example. When camera C saw the
yellow vehicle moving to the right, it knew the yellow vehi-
cle would enter into camera D’s FOV shortly 3, so camera
C only needs to inform camera D about the arrival of the
yellow vehicle. The general idea holds, even if we do not
have cameras deployed at every road intersection, but the
number of cameras that should be informed will increase.
For e.g., in Figure 3, without a camera at the traffic light,
camera A needs to inform both cameras B and C, since it
does not know whether the red vehicle will make a left turn
or not at the intersection.

3U-turn is not discussed in this paper. U-turn can be supported by including
a given camera in its own minimum downstream camera set.

4

403

Coral-Pie: A Geo-Distributed Edge-compute Solution for Space-Time Vehicle Tracking Middleware ’20, December 7–11, 2020, Delft, Netherlands

Based on the above observations, we design the following
communication protocol for STVT. First, we call the set of
cameras that the detected vehicle could potentially pass
through first before it can reach other cameras in the system
— minimum downstream camera set (abbrev., MDCS). For ex-
ample, in Figure 3, the detected red vehicle (heading towards
the right) at Camera A has a minimum downstream cam-
era set {B, C}. The proposed protocol has two stages — the
informing stage and the confirming stage. At the informing
stage, a camera sends a vehicle detection event (described in
Section 4.1.2) to the cameras in its MDCS. Upon the vehicle
arriving at one of the cameras in the MDCS set, confirming
stage of the protocol begins. The camera that successfully
re-identifies the vehicle will confirm the re-identification
event to its predecessor. The predecessor camera will then
communicate the confirmation message to all the others in
its MDCS completing the confirming stage of the protocol.
The confirming stage of the protocol is important for garbage
collection of the candidate pool (see Section 4.1.3). Figure 3
shows the communication protocol in action when the red
vehicle moves from Camera A to B.
For a given topography of the road network, the MDCS for
any camera is a finite small set. By definition the MDCS
for a given camera is proximal to its geo-location. Thus, re-
gardless of the size of the camera network deployment, the
communication complexity for each vehicle detection that a
given camera is involved in (i.e., the number of messages ex-
changed) is finite and small. And due to the geo-local nature
of the communication protocol, there is minimal network in-
terference for the communication that occurs simultaneously
across disjoint road segments. Therefore, the communication
protocol adheres to the scalable by design goal of Coral-Pie.
3.3 Camera Topology Management
Camera topology management deals with the deployment
of the cameras on the road network and determination of
the MDCS for each camera with respect to the direction
of movement of vehicles that appear in its FOV. There are
two important observations in this regard: (1) under a static
camera topology (and in the absence of any camera failures),
the MDCS for a given camera is the same for all detected
vehicles that are headed in the same direction; (2) a vehicle
in the FOV of a given camera has only a finite set of moving
directions due to the road network. Based on these observa-
tions, we can use the camera topology to preconfigure the
MDCS for all cameras and accordingly set up long-term com-
munication channels between a given camera and its MDCS
set. Such preconfiguration avoids the overhead of calculating
MDCS at runtime and is yet another element of the scalable
by design principle of Coral-Pie.
It is tedious to manually configure the MDCS for each cam-
era. Further, cameras are also vulnerable to failures. Exam-
ples include hardware failures, power failures, network fail-
ures, cameras becoming dysfunctional due to the flakiness

(L) (R)

Figure 4: The camera topology is stored as a graph with road
intersections as vertices and lanes as directed edges. The vertices
are marked as either equipped with a camera or not. EC and CB are
one-way roads while the rest are two-way. We have four cameras
A, B, C, D deployed in the left camera topology. For example, doing
a DFS from camera D (shown as red edges in the figure), we know
its MDCS is either {B} for← direction or {C} for ↑ direction. Later,
in the right camera topology, we remove the camera B (e.g., due
to failures) and deploy a new camera E to the network. Similarly,
doing another DFS from camera D, we get its new MDCS which is
{A} for← direction or {E} for ↑ direction.

of streams they produce, and software crashes. These fail-
ures will change the camera topology in real-time from the
original deployment, and consequentially change the MDCS
for the affected cameras. Fortunately, the preconfiguration
of MDCS can be fully automated. In Coral-Pie, a camera
topology server (shown in Figure 2) is responsible for auto-
matically updating the camera topology and MDCS upon
the addition of new cameras or the removal of existing dys-
functional cameras.
The camera topology server first loads the topology of the
road network under the camera system as a graph and anno-
tates the vertices (road intersections) equipped with cameras,
as the example shown in Figure 4. For simplicity, discussion
in this section only covers the cameras deployed at road
intersections. In Section 4.3, we show how to handle cam-
eras along the lanes. To find the MDCS for a given camera
along a specified moving direction, we can do a depth-first
search (DFS) from the camera in the graph, and the recursion
branch of DFS returns whenever it visits a vertex equipped
with a camera. Figure 4(L) shows the DFS from camera D
and reveals its MDCS as {B} for← direction and {C} for ↑
direction.
When a new camera joins the system, a timer associated with
the camera sends a periodic “heartbeat” message to the server
at a preconfigured time interval, which is an indication to
the server that the camera is still active in the network. In
Section 5.4, we show how the heartbeat ratio affects Coral-
Pie’s healing time upon camera failures. When the server
receives a “heartbeat” message from a new camera, it will
use the latitudinal and longitudinal information to add that
camera to the existing topology. Then the server performs a
DFS search on the graph to determine the MDCS for both
the newly-joined camera and the existing cameras that are
affected by this change in the topology. For e.g., in Figure 4(R),
when camera E joins the network, camera D’s ↑ direction

5

404

Middleware ’20, December 7–11, 2020, Delft, Netherlands Zhuangdi Xu, Harshil S Shah, and Umakishore Ramachandran

MDCS is affected and becomes {E}. Loss of heartbeat message
from a given camera will trigger the topology adjustment
as well. Camera B in Figure 4(R) becomes inactive and the
topology server will stop receiving heartbeat messages from
it. Then the server will update the MDCS for the affected
cameras, namely, {A, C, D} in a similar fashion.

4 Implementation
Section 3 presented the high-level architecture of Coral-Pie
that ensures that the end-to-end system is scalable by design
irrespective of the geographical size of the camera network.
We also discussed the appropriate placement of the applica-
tion components in the device-edge-cloud continuum based
on the latency criticality of the component.
The continuous processing that happens on every frame at
each camera has to be carefully timed and mapped on to
dedicated compute resources associated with each camera
to achieve an acceptable end-to-end performance. The ele-
ments of this continuous processing, shown in Figure 2, are
vehicle identification, vehicle re-identification, communication
between cameras, and storage of the constructed trajectory
and the raw frames. The storage element of this continu-
ous processing is not in the critical path of constructing the
trajectory of the vehicle. On the other hand, vehicle identi-
fication and communication have to be completed before a
detected vehicle appears in the FOV of the next downstream
camera. Note that there could be multiple vehicles in each
frame depending on the traffic conditions and each vehicle
identification will result in a communication event. Fortu-
nately, the communication time is upper bounded by the
time it takes a vehicle to move between cameras. Even at
100 kmph, and distance between two cameras of 100 meters,
this gives a communication latency upper bound of approx.
4 seconds, which can be met quite easily.
However, all the elements of this continuous processing have
to happen within a tight latency budget to ensure that we
can sustain a good frame rate and ensure that the application-
level performance metrics (false positives and false negatives)
are acceptable. With preliminary experiments, we have es-
tablished that a minimum frame rate of 10 FPS is necessary
to achieve acceptable application-level performance met-
rics, and is further validated by the evaluations presented in
Section 5.6. This gives a latency bound of 100 ms for each
sub-task that is involved in the continuous processing on
each frame. In Section 4.1, we describe implementation de-
tails on how we have selected the computational resources
for each device, and how we map the elements of the contin-
uous processing on to them to stay within the latency bound
for each sub-task. Section 4.2 describes the implementation
of the trajectory and frame storage which is offloaded to an
edge node. Finally, Section 4.3 describes the implementation
of the camera topology server, which runs in the cloud.

4.1 Continuous Processing on Each Frame
The critical path of continuous processing includes Vehicle
Identification, Inter-Camera Communication, and Vehicle
Re-identification. Vehicle Identification (Section 4.1.2) is re-
sponsible for identifying vehicles within each camera’s FOV,
while Inter-Camera Communication (Section 4.1.3) and Vehi-
cle Re-identification (Section 4.1.4) are responsible for track-
ing vehicles across cameras. In the rest of this subsection,
we start with the selected computational resources for each
camera (Section 4.1.1), then elaborate on how we map these
three critical elements on them to meet the latency bound
of 100 ms for each sub-task, and finally, we summarize the
design space we have explored (Section 4.1.5) before arriving
at this implementation decision.
4.1.1 Computational Resources for Each Camera
Vehicle Identification and Re-identification are computation-
ally intensive vision algorithms, which are pluggable mod-
ules to suit the taste of the domain experts and their goals for
achieving their application level performance targets. For the
purposes of this work, we have implemented off-the-shelf
algorithms for these elements to have an end-to-end solution
for STVT. In particular, detection (which is part of vehicle
identification) based on DCNN model [11] is the most com-
pute intensive algorithm. Therefore, we dedicate a Google’s
EdgeTPU [12] for the detection sub-task.
In addition to the Google EdgeTPU, each camera is equipped
with two Raspberry Pi 3B+’s (abbrev., RPi)4. The RPis are
inter-connected through a local area network, and the Ed-
geTPU is a USB accelerator connected to one of the RPis.
Thus the dedicated computational resources for each camera
amounts to a total cost of approx. $1455. Raspbian-lite [19] is
chosen as the operating system for each RPi, and the Coral-
Pie’s application instances running on each RPi is developed
in Python 3.7.
4.1.2 Vehicle Identification
The goal of the vehicle identification element (shown in Fig-
ure 2) is to recognize the appearance of each vehicle within
one camera and generate a unique vehicle detection event
for it. Accomplishing this element involves detecting vehi-
cles in each frame, tracking them as long as they remain
in the FOV of the camera, and extracting a feature set for
each vehicle. For the effectiveness of the space-time vehicle
tracking, the FOV of the cameras should cover all lanes, so
that there is no hidden path for vehicles to leave the camera
network. Occlusions (e.g., a truck might hide a smaller car)

4Recently released Raspberry Pi 4 with 4GB memory and USB 3.0 support
can further strengthen our work. Raspberry Pi 3 has only 1GB memory
and USB 2.0 support. However, Raspberry Pi 4 was not available when we
started this work.
5Other popular hardware for machine learning includes NVIDIA Jetson
Nano [24] and Intel NCS2 [17]. However, on standard existing bench-
marks [1], Google Edge TPU outperforms them both in cost and vehicle
identification latency.

6

405

Coral-Pie: A Geo-Distributed Edge-compute Solution for Space-Time Vehicle Tracking Middleware ’20, December 7–11, 2020, Delft, Netherlands

Raspberry Pi 1

Vehicle Identification Element

Fetch

Inference +
Post Processing

Load + Resize

Figure 5: Vehicle Detection on RPi 1: Three stage-pipeline with
five sub-tasks as shown.

could inevitably cause false negatives for vehicle identifica-
tion. However, havingmultiple cameras from different angles
at a given intersection would help to reduce the impact of
such occlusions.
Vehicle Detection
To detect vehicles from every frame, we use a pre-trained
model — MobileNetSSD V2 (COCO) [11] on EdgeTPU for
inference, which takes 80-90ms irrespective of the number
of vehicles in the frame.
Given that DCNN-based vehicle detection is the most com-
putationally intensive task in the whole pipeline RPi 1, to
which the EdgeTPU is attached, is dedicated to this task. A
three-stage pipeline (each stage is an independent thread) is
deployed on RPi 1 for vehicle detection, as shown in Figure 5:
the first stage fetches the frame from the camera (roughly
60-70 ms at 15 FPS); second stage decodes the frame and
resizes it (roughly 90 ms); and third stage does the inference
and post-processing (roughly 90 ms).
The inference yields a list of bounding boxes which sym-
bolizes the positions of all vehicles within the frame. Then
post-processing uses a 3-step procedure to filter out “unde-
sired” bounding boxes: 1) The label generated by the infer-
ence should be one of {car, bus and track}. 2) The “confidence”
(returned by the inference) needs to be larger than the pre-
defined minimum confidence threshold (e.g., our prototype
system in Section 5.1 uses 0.2). 3) The centroid of the bound-
ing box needs to be inside the Context of Interest (CoI) area
of the camera. For each camera, we manually define a CoI
area, which is usually the central area of the camera’s FOV.
Bounding boxes whose centroids are outside the CoI are
discarded because they are usually too blurred to contain
the details and would lead to false positives in STVT.
The filtered bounding boxes with the frame are then sent
to RPi 2 for the remaining tasks of the vehicle identification
element on RPi 2. The communication between the two RPis
is based on the non-blocking ZeroMQ message.
Vehicle Tracking and Feature Extraction
Before a vehicle leaves a given camera’s FOV, it would appear
in consecutive frames and be detected multiple times. We
need to identify the fact that these detections (i.e., bounding
boxes) are from the same vehicle and ultimately generate
a single detection event for that vehicle by a given camera.

Raspberry Pi 2

Vehicle Identification Element

From Rpi 1
Load Communication

Vehicle
Re-identification

Storage Client

Track +
Extraction

Figure 6: Tasks Mapped onto RPi 2: It includes vehicle tracking and
feature extraction sub-tasks of vehicle identification; additionally
communication between cameras, vehicle re-identification, and the
storage client are also mapped onto RPi 2.

The function of vehicle tracking sub-task is de-duplication
of detection events for the same vehicle during its journey
through the FOV of a given camera.
We use Sort Tracker [4] to track vehicles between frames
during its journey through the FOV of a given camera. We
feed the bounding boxes received from RPi 1 into the Sort
Tracker, which assigns an ID for each bounding box. A new
ID implies that the bounding box belongs to a new vehicle
that is entering the camera, and an old ID implies that the
bounding box belongs to an old vehicle that has been de-
tected in previous frames and fed into the Sort Tracker. In
other words, each ID represents a unique vehicle within a
camera’s FOV.6 A vehicle is considered leaving the camera
when its ID does not appear in the output of the Sort Tracker
formax_age (i.e., a pre-defined threshold) consecutive frames.
The max_age parameter can give us some tolerance over the
false negatives of vehicle detection, and thus increases the
fidelity for correctly generating a detection event for each
vehicle. We choose max_age to be 3 in our prototype system
in Section 5.1.
Upon the vehicle leaving the camera’s FOV, two features are
extracted from the tracklet of the vehicle (i.e., the sequence
of the bounding boxes).
• The direction of motion of the vehicle is estimated by
drawing a line linking the centroids of bounding boxes in
time order and adjusted by the camera’s native videoing
angle.
• An adaptive histogram [30] (i.e., signature) for the vehicle,
which represents the color and shape of the vehicle giving
more weightage for the pixels in the center of the bound-
ing boxes for the vehicle. Color-histogram by itself is not
capable of distinguishing between vehicles with similar
colors. However, coupling this feature with the tempo-
ral and spatial locality of a given vehicle’s movement
between adjacent cameras, it is still possible to achieve
a highly accurate cross-camera vehicle re-identification
with color histograms [25].

Finally, a detection event is generated for the vehicle which
is a JSON object that contains the name of the camera that

6The scope of Sort Tracker’s ID is local, and it does not represent any
features of the vehicle and cannot be used for cross-camera tracking.

7

406

Middleware ’20, December 7–11, 2020, Delft, Netherlands Zhuangdi Xu, Harshil S Shah, and Umakishore Ramachandran

Raspberry Pi 2

Vehicle
Re-identification

Vehicle detection
event

Connection Manager

Cloud

Camera Topology
Server

Socket Group

Other Cameras'
Socket Group

Candidate Pool

Vehicle IdentificationStorage Client

Figure 7: Inter-Camera Communication: The red rectangle zooms
into the functionality of the Communication element of continuous
processing in each camera.

detected the vehicle, the UTC timestamp of the detection, the
features including moving direction and adaptive histogram,
the ID of the vehicle generated by the Sort Tracker, and the
ID of the corresponding vertex in the trajectory graph (see
Section 4.2.1).
Figure 6 shows the tasks that are mapped onto RPi 2. There
are three stages (each is an independent thread) deployed
on RPi 2. The “Load” stage on RPi 2 is the same as the one
on RPi 1. The second stage carries out the Vehicle Tracking
and Feature Extraction sub-tasks of the vehicle identifica-
tion element (their combined latency is less than that of
“Load”). The output of the Vehicle Identification element —
a stream of vehicle detection events is given as the input
to the last stage of the pipeline on RPi 2, which completes
the remaining elements of continuous processing on each
frame, namely, Communication, Vehicle Re-identification,
and Storage Client.
4.1.3 Inter-Camera Communication
Figure 7 zooms into the communication component on RPi
2, which consists of a connection manager, a socket group,
and a candidate pool. Socket Group is a collection of socket
communication between nearby cameras, more precisely, a
hashmap between the moving direction and sockets to the
cameras in the corresponding MDCS. Upon the arrival of
a detection event from Vehicle Identification, based on the
vehicle’s moving direction, the Socket Group can directly
forward it to the downstream cameras. Meanwhile, the Con-
nection Manager sends heartbeat messages to the Camera
Topology Server periodically and receives the latest MDCS
information in the background. Upon a change in the topol-
ogy (due to the removal or addition of nearby cameras), it
re-configures the Socket Group accordingly. Socket Group
also includes a listening thread to handle messages from
other cameras. Upon receiving an “informing notification”
(Section 3.2) from an upstream camera, the connection man-
ager appends the associated event 𝑒𝑖 into its candidate pool

for use by the Vehicle Re-identification element. Upon receiv-
ing a “confirming notification” from a downstream camera
(Section 3.2), the connection manager will send a confirm-
ing notification to all the other downstream members in its
MDCS. Upon receiving a “confirming notification” from an
upstream camera, the connection manager annotates the
associated event 𝑒𝑖 as “matched” in its candidate pool. All
matched events are ready to be garbage collected. However,
to reduce false negatives, pruning of matched events are
done only when the candidate pool grows too large.
4.1.4 Vehicle Re-identification
As we mentioned earlier in Section 3, the goal Vehicle Re-
identification (shown in Figure 2) is to match each vehicle
detection event (𝑒𝑡) at a given camera from those in its can-
didate pool (Figure 7). The candidate pool data structure
contains a list of detection events, [𝑒1, 𝑒2, . . . , 𝑒𝑛], that was
received from upstream cameras. This matching is done by
calculating the Bhattacharyya distance [37] between the
adaptive histogram of 𝑒𝑡 and 𝑒𝑖 . If this distance 𝐵ℎ𝑎𝑡𝑡 (𝑒𝑡 , 𝑒𝑖)
is smaller than the pre-configured Bhatt_threshold, then 𝑒𝑖
is successfully matched with 𝑒𝑡 . The matching results (i.e.,
𝑒𝑖 and 𝑒𝑡) will then be given to the Storage Client (shown
in Figure 7) for updating the trajectory of the vehicle. The
successful match will also notify the communication man-
ager (Figure 7) to report the match to the upstream camera
as part of the communication protocol (Section 3.2).
For every matched event 𝑒𝑖 , we annotate it as “matched”
in the candidate pool, which implies that it can be safely
removed from the candidate pool. Notice that it is best not to
do this removal immediately. The reason is that the reported
matching could be a false positive and we want to make sure
that eager pruning of the candidate pool does not lead to
false negatives. Therefore, the pruning of the candidate pool
is done only when the pool grows too large.
4.1.5 Exploration of Design Space
We conducted extensive design space exploration before
we arrived at the specific implementation described in the
above subsections. We summarize some of the key design
alternatives that were explored.
Computational resources per camera. Initially, we ex-
perimented with a single RPi for each camera. However, we
quickly realized that to meet the sub-100 ms latency for each
subtask, we needed to add an additional RPi and split the
computation to be performed on each frame as detailed in
the above subsections. Further, the DCNN-based detection al-
gorithm, being the most computationally intensive, required
dedicating an EdgeTPU connected to the first RPi just for the
detection task.
Choice of vision algorithms.We experimented with sev-
eral vision algorithms such as YOLO [27], Deep Sort [39], and
GoogLeNet [43]. However, we found them to be computa-
tionally expensive. We also experimented with an alternative

8

407

Coral-Pie: A Geo-Distributed Edge-compute Solution for Space-Time Vehicle Tracking Middleware ’20, December 7–11, 2020, Delft, Netherlands

method, namely, “detect-and-track” that is often used to re-
duce the computational cost of tracking a vehicle during its
passage through the FOV of a camera. In this method, the
detection model is run at a specific frame interval (e.g., every
5 frames), and a KCF tracker [14] is used for tracking the
detected vehicle(s) on the intervening frames. We found this
method to be not robust enough for vehicle identification.
However, with a dedicated EdgeTPU for the detection task,
we were able to run the detection algorithm on every frame,
and use it in tandem with the Sort tracker as described in
Section 4.1.2 to get robust vehicle identification results.
Image Serialization. The raw pixels of an image coming
from the camera into RPi 1 have to be communicated to the
other computational resources attached to each camera (RPi
2, and storage server). “Image serialization” is the process
of converting the raw image into other formats (e.g., JPEG,
NumPy [33]) before transporting it among the computational
resources. We experimented with these options for image
serialization but both these options turned out to be compu-
tationally expensive on RPi.7 Instead, we chose to keep the
image in its raw form for transportation, which incurs addi-
tional communication latency and impacts the time of the
Load subtask. However, this option turned out to be much
better from the point of overall latency for the pipelined
processing and helped us achieve the 100 ms latency bound
for the subtasks.
Mapping tasks to the RPis.We experimented with several
different mappings of the elements of the continuous pro-
cessing on the two RPi’s before setting on the ones detailed
in the above subsections. For example, it made logical sense
to map all the subtasks for Vehicle Identification onto one
RPi.8 However, this mapping resulted in increasing the re-
source contention between different elements of the pipeline
mapped to a single RPi and broke the target latency bound.
4.2 Trajectory Storage and Frame Storage
We need a persistent store for the space-time tracks gener-
ated by the camera network as well as for the raw frames
captured from the cameras (if further analyses are needed
on the raw streams). Both due to the limited storage capacity
and the unacceptably high computational cost for encod-
ing/decoding the raw image frames on RPi, it is infeasible
to host the persistent store on the compute resources asso-
ciated with each camera. Instead, Coral-Pie uses a nearby
Edge nodes to act as persistent stores (the Storage compo-
nent shown in Figure 2). A given Edge node may serve as
the persistent store for a small set of cameras in the same
geographical neighborhood.

7For e.g., conversion to JPEG took 135 ms and conversion via the NumPy
route took over 100 ms.
8This would involve moving the Track + Extraction in Figure 6 to Figure 5,
so that all the subtasks of Vehicle Identification are on RPi 1.

4.2.1 Trajectory Storage
The trajectory of all vehicles is stored in one composite prob-
abilistic graph, where vertices are detection events generated
on cameras, and edges connecting vertices build up the tra-
jectory of a given vehicle. Given the ground truth, the graph
should be composed of several disjoint paths, where every
path represents the trajectory of a unique vehicle, and every
intermediate vertex should have exactly one incoming and
one outgoing edge. In Coral-Pie, to ensure that false positives
do not mask out the true positives, every vertex is allowed to
have multiple incoming and outgoing edges and the weight
of every edge is the confidence (aka Bhattacharyya distance)
between two connected vertices (aka detection events).
The incremental construction of a vehicle’s trajectory graph
happens as follows: (a) Upon generating a detection event 𝑒 ,
a new vertex 𝑣𝑒 is inserted into the graph,whose attributes
contain an index for the time interval when the vehicle ap-
peared in the camera stream. Then the ID of 𝑣𝑒 is added back
to the JSON object of 𝑒 such that 𝑣𝑒 can be accessed from
other cameras. (b) Upon finding a match between 𝑒 and 𝑒𝑘 ,
where 𝑒𝑘 is an event from the camera’s candidate pool, a
directed edge 𝑒𝑘 → 𝑒 pointing to the newer detection 𝑒 is
inserted into the graph, and the weight of the edge is set
to the Bhattacharyya distance between the color histogram
of 𝑒 and 𝑒𝑘 . To query the trajectory of a particular vehicle,
one can start at a known detection for that vehicle, i.e., a
known vertex in the trajectory graph, and traverse the graph
using incoming and outgoing edges from that vertex. The
result would be a collection of paths containing false posi-
tives, which can be further pruned by a human user or more
advanced analytics in the Cloud.
In Coral-Pie, the trajectory graph server (included in the
Storage in Figure 2) is implemented using JanusGraph data-
base [18], hosted on a nearby Edge node. Each camera has a
JanusGraph client (part of Storage Client in Figure 6), which
sends requests to the server for vertex and edge insertions.
4.2.2 Frame Storage
Frame storage is not critical for STVT, but it is essential for
a real-world smart camera system such that the user can
verify and visualize the trajectory of vehicles. Keeping raw
video footage may also be needed from a law enforcement
perspective. As we mentioned earlier, image encoding and
decoding is expensive on RPi. Thus after the Vehicle Identifi-
cation is complete on a frame, the Storage Client (Figure 6)
sends the raw video frame (using non-blocking Zero MQ
message) and annotations (i.e., metadata associated with the
frame such as bounding boxes and tracking information) to
the frame storage server designated for this camera on an
edge node.
4.3 Camera Topology Server
The Camera Topology Server resides in the cloud and uses
OSMnx [6] to acquire the base road map corresponding to
the camera network deployment. If the camera is at a road

9

408

Middleware ’20, December 7–11, 2020, Delft, Netherlands Zhuangdi Xu, Harshil S Shah, and Umakishore Ramachandran

1 2

[Camera A] [Camera B]

[Camera C, Camera D]

Figure 8: Cameras at non-intersections: Vertices represent road
intersections. Camera A is at vertex 1. Camera B is at vertex 2.
Camera C and D lie along the lane between vertex 1 and 2, and
thus are assigned to the edge between these vertices. We use a list
structure to indicate that Camera C is close to vertex 1, and Camera
D is close to vertex 2.

intersection, the server uses the camera’s latitude and longi-
tude to locate the nearest vertex in the base map and assigns
the camera to that vertex. If a camera is not at an intersec-
tion but along the lane, the topology server assigns it to the
appropriate edge (i.e., lane) using a list structure that pre-
serves the geographical order of the cameras in that road
segment. When performing a DFS mentioned in Section 3.3
to calculate the MDCS, the server checks cameras at both
vertices and edges, and returns the first camera it visits in
each DFS path. For e.g., in Figure 8, doing a DFS from camera
B returns camera D as its MDCS.

5 Performance Evaluation
We have built an end-to-end prototype of Coral-Pie as proof
of concept. We have also carried out controlled experiments
and evaluation of Coral-Pie using five live street cameras
controlled by the campus police. The focus of the perfor-
mance evaluation is to showcase the system aspects of the
distributed architecture.
5.1 Prototype System
As detailed in Section 4, each camera in Coral-Pie is associ-
ated with two RPis and one TPU that serve as the dedicated
computational resource per camera. The cameras that are
used in the evaluation are under the control of campus po-
lice and require accessing them through an authenticated
gateway server. The gateway is two network hops away on
a LAN from the RPis, and the measured latency is 2ms. Con-
sequently, the camera stream is fetched in a frame-by-frame
manner using HTTP requests from the Avigilon server that
serves as the secure gateway. The resolution of each camera
frame is 1280×1024. The maximum frame rate possible from
the gateway for live camera streams is ~15 FPS. We heuristi-
cally choose the parameters of the vision algorithm, namely,
minimum confidence threshold and max_age. Specifically, we
set the minimum confidence to be 0.2 and max_age to be 3.
Figure 9 shows the field of view of the 5 campus cameras
and their context of interest (CoI).
The results to be presented in this section are based on con-
trolled experiments that use frames collected simultaneously
from live campus cameras. Due to the shortage of human-
resources on labelling the ground truth, we limit the con-
trolled experiments to 10000 frames from 5 cameras (i.e.,
2000 frames per camera).

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5

Figure 9: The FOV of the five campus cameras used in the evalua-
tion study. Context of interest (CoI) shown as red polygons.

Raspberry Pi 1
Fetch 67ms Load 94ms
Resize 2ms Inference 93ms

Post-Inference 1ms RPi1_To_RPi2 1ms
Raspberry Pi 2

Track 10ms Feature Extraction 4ms
Communication 2ms Vehicle-Reid 12ms

Trajectory Storage 28+30ms Frame Storage 1ms
Table 1: Coral-Pie Latency Summary: Timings for all the sub-tasks
that need to execute for the continuous processing of every frame on
each camera. The latency number for each sub-task is the average
over 2000 frames.

5.2 Microbenchmarks
Table 1 presents the measured latency for each of the sub-
tasks for the continuous processing on each framewith Coral-
Pie. Fetch, Load, and Inference are three costly operations
on the first RPi which justifies our three-stage pipeline de-
sign. The high latency of Load indicates image decoding is
inefficient on RPi. Inference latency can be further reduced
by replacing Raspberry Pi 3 B+ with Raspberry Pi 4 which
supports USB 3.0. Due to the nature of the pipelined archi-
tecture of Coral-Pie, the overall throughput is limited by the
slowest stage in the first RPi, namely, Load. Still Coral-Pie
is able to keep up a processing speed of 10.4 FPS with live
campus camera streams, which is 5X times better than what
is possible with a naive sequential execution of all the ele-
ments of the continuous processing that needs to happen on
every frame.
5.3 Effectiveness of Communication Protocol
We first want to show that the proposed communication
protocol in Coral-Pie meets expectations. In other words,
when a vehicle arrives at a camera, the detection event sent
by the upstream cameras should be ready in the camera’s
candidate pool for re-identification. This is illustrated in the
results shown in Figure 10(a), wherein arrival of vehicles
at Camera 1 is shown by blue dots and the arrival of the
corresponding “informing” message of the communication
protocol from the upstream cameras is shown by redmarkers.
The informing message arrives well ahead of the vehicle
arrival event at the camera. We start and stop the whole
camera system simultaneously in the experiment, so the first
several vehicles do not have detection events sent by the
upstream cameras and the last several vehicles are still on
their way to the camera’s field of view. The point of this
experiment is to show that the communication protocol in

10

409

Coral-Pie: A Geo-Distributed Edge-compute Solution for Space-Time Vehicle Tracking Middleware ’20, December 7–11, 2020, Delft, Netherlands

2 4 6 8 10 12 14 16
vehicle Id

20

40

60

80

100

120

Ti
m

el
in

e
(s

ec
on

ds
)

Arrival of Message (Detection Event)
Arrival of Vehicle

(a)

1 2 3 4 5
Camera

0

10

20

30

40

50

60

Pe
rc

en
ta

ge

23.08%

17.65%

33.33%

23.08%

0.00%

(b)
Figure 10: (a) Shows the vehicle arrival time and corresponding
message (detection event sent by upstream cameras) arrival time
on Camera 1. The green dashed line indicates the interval between
two arrival times. The stepped structure is caused due to traffic
lights. (b) Shows the percentage of spurious detection events in
each camera’s respective candidate pool.

Coral-Pie will not be the cause for any false negatives of
vehicle trajectory9.
The second experiment concerns the number of spurious
“informing messages” received by each camera due to the
communication protocol. Ideally, such messages go to ex-
actly the next downstream camera to construct the space-
time trajectory for a vehicle. Without an oracle to guide the
communication protocol does the next best thing to use the
topography and send such messages to the cameras in the
MDCS. Except for the specific downstream camera that gets
to re-identify the vehicle, such messages are spurious for all
the others in the MDCS. Such messages result in spurious
entries in the candidate pool, increasing the latency for the
re-identification algorithm and also potentially causing false
positives of any vehicle re-identification algorithm which
may not be 100% robust. To measure the amount of such
spurious entries, we first isolate the computer vision errors
(e.g., false positives from vehicle identification also result in
redundant events in downstream camera’s candidate pool)
by manually labeling the ground truth from 2000 consecu-
tive frames on each camera and accounting the “unmatched”’
detection events (at the end of the experiment) in the can-
didate pool as “redundant”. As shown in Figure 10(b), the
percentage of redundant events in each camera’s candidate
pool is low (as a comparison broadcasting such messages to
all the five cameras results in over 83% redundant events).
Furthermore, most of these “redundant” events are caused by
specific vehicles that have not yet reached the downstream
camera’s FOV at the end of the controlled experiment; there-
fore, they may not be redundant in the long run.
5.4 Fault Tolerance
Coral-Pie is self-healing in the presence of failures, because
the topology server automatically detects failures and recre-
ates the new camera network topology and disseminates it
to the affected cameras. Upon a camera failure, the camera
topology server and the communication component on each

9Inadequacy of vision algorithms could still lead to false negatives as we
observe in Section 5.6.

50 100 150 200
TimeLine (seconds)

3

4

5

6

7

8

9

10

Re
co

ve
ry

 T
im

e
(s

ec
on

ds
)

2s-heartbeat-interval
5s-heartbeat-interval

Figure 11: Recovery from Failures: x-axis is the timeline; Camera
failures are marked with an “x” along the timeline. y-axis is the
recovery time. The graphs show the recovery time for all affected
cameras to get the topology update from the topology server.

camera work together to reconfigure a camera’s MDCS and
communication channels on the fly. To study the healing
time, i.e., the time during which there could be a surge in
false negatives,10 we conduct a simulation-based study. We
simulate 37 cameras deployed around the campus and kill
10 randomly chosen cameras successively to measure the
time that it takes for all affected cameras to get the correct
topology update. Figure 11 shows the results for two settings
of the heartbeat message interval, 5 seconds and 2 seconds.
Heartbeat interval determines how quickly the camera topol-
ogy server can detect the camera failure. So a low heartbeat
interval leads to fast failure recovery and less variance in
the recovery time (the red line in Figure 11). From Figure 11,
we also see that Coral-Pie takes at most twice the heartbeat
interval to recover from camera failures.
5.5 Scalability
Coral-Pie is scalable by design. Scaling up the size of the
camera network would make Coral-Pie perform even better
for several reasons. Consider cameras at every intersection.
In this case, given that the MDCS for any camera accounts
for the moving direction of a vehicle, the size of MDCS will
just be 1, so there will not be any redundant entries in the
candidate pools of any of the cameras.
Figure 12(a) shows the average MDCS size as a function of
the size of the camera network. Firstly, we notice that no
matter how many cameras are deployed, the MDCS size is
always finite, which justifies our claim in Section 3.2 that
the communication cost in Coral-Pie is bounded. Secondly,
with an increasing number of cameras, the average size of
MDCS drops, which means that each camera needs to for-
ward the detection events to potentially fewer downstream
cameras. So, increasing the number of cameras reduces the

10 For e.g., when a vehicle is leaving from an upstream healthy camera of
the failed camera during the healing time, the system notifies the old MDCS
for the healthy camera that includes the failed camera, potentially resulting
in missing a part of the space-time trajectory.

11

410

Middleware ’20, December 7–11, 2020, Delft, Netherlands Zhuangdi Xu, Harshil S Shah, and Umakishore Ramachandran

0 5 10 15 20 25 30 35
Number of Cameras Deployed

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

siz
e

of
 M

DC
S

(a)

5 4 3 2
Number of Cameras Deployed

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge

0.00%

28.57%

50.00%

60.00%

(b)
Figure 12: (a) Shows the average size of MDCS for the cameras
with an increasing size of camera network. This result generated
through simulation, wherein we incrementally deploy 37 cameras
(in random order) to the campus network and measure the size
of MDCS for each camera. (b) Shows the percentage of redundant
events in candidate pool of Camera 5 with a decreasing number of
active cameras. This result was generated by successively deacti-
vating Cameras 4, 3, 2 in the campus camera network which was
our experimental platform consisting of 5 live cameras.

camera recall precision 𝐹2-score
1 1 0.89 0.98
2 1 0.93 0.99
3 0.95 0.71 0.89
4 1 0.85 0.97
5 1 0.83 0.96

Table 2: Event Detection Accuracy: The accuracy numbers (“1” is
a perfect score) are based on the collection of 2000 frames from
each campus camera simultaneously, which is roughly 2-minute of
video recording for each camera. “Recall” relates to false negatives;
“precision”’ relates to false positives; 𝐹2-score is a composite score
that favors minimizing false negatives.

communication burden on each camera. Further, the num-
ber of redundant events in a camera’s candidate pool also
drops, which makes the computation on each camera more
effective. So in Coral-Pie, with the camera network scaling
up, the workload on each camera will decrease, which bodes
well for the scalability of the system. On the other hand,
when the density of the camera decreases, the size of MDCS
potentially increases for each camera. In Figure 12(a), when
only 10 cameras are deployed, the average MDCS size is
roughly 2.5. Given that in reality, a vehicle will reach exactly
one downstream camera, the additional 1.5 informing mes-
sages become redundant entries in the downstream cameras’
candidate pool. To see the effect of decreasing the density of
cameras in a real-world deployment, we successively deac-
tivate Cameras 4, 3, 2 in the campus camera network. As a
consequence, in Figure 12(b), we can see that the percentage
of redundant entries in Camera 5’ candidate pool increases
from 0% to 60%. The ultimate impact of such redundant en-
tries is a potential increase in the false positives of the vehicle
re-identification algorithm that may not be 100% robust.
5.6 Application Level Evaluation
As detailed in Section 4, the proof of concept end-to-end
system uses off-the-shelf models for the computer vision

techniques and comparison metrics (such as MobileNetSSD
V2 COCO, Sort tracker, adaptive color histogram, and Bhat-
tacharyya distance). False positives and false negatives are
useful application-level indicators for evaluating the good-
ness of an end-to-end system for space-time vehicle tracking.
More specifically, we adopt F2-score [38] to evaluate the
accuracy of the vehicle trajectory generated by Coral-Pie,
which emphasizes reducing false negatives [36]. The ratio-
nale is that for surveillance video query tasks, minimizing
false negatives is more crucial than false positives [5, 36].
Table 2 shows that Coral-Pie’s vehicle identification pipeline
achieves very high accuracy (recall, i.e., false negatives; pre-
cision, i.e., false positives; and 𝐹2-score). Furthermore, four
of the five cameras do not have any false negatives (a “recall”
score of 1, i.e., no missing vehicle detection events).
On the other hand, for Vehicle Re-identification, Coral-Pie
achieves an overall 0.71 𝐹2-score, an indication that there are
more false positives and false negatives in the generation
of the space-time trajectories. This result is attributable to
the off-the-shelf algorithms used for signature extraction
(in Feature Extraction) and distance function (in Vehicle Re-
identification), indicating that the end-to-end system could
benefit from more sophisticated vision techniques from do-
main experts. This is where the “pluggable” nature of the
end-to-end system design becomes valuable.
In spite of the overall 0.71 𝐹2-score, during our experiments,
it was observed that vertices have at most 2 redundant outgo-
ing edges (i.e., false positives), implying that fairly minimal
further effort (e.g., by security personnel) is needed to further
prune the trajectories.
It should be emphasized that this application level evaluation
is just to show that even with off-the-shelf vision algorithms
the end-to-end system we have built provides acceptable
results for generating space-time trajectories for vehicles.

6 Discussion
Despite the fact that we used STVT as an exemplar driver
application to develop the distributed architecture and im-
plementation of Coral-Pie, there are several artifacts that are
re-usable for other large-scale camera network applications.
Firstly, the distributed architecture described in Section 3 is
general and suitable for Geo-distributed camera applications,
with Cloud responsible for the membership management,
Device with a dedicated pipeline for real-time camera pro-
cessing and Edge for stream storage. This architecture offers
a good balance across cost (i.e., resources for computation,
network, and storage), performance, manageability, and scal-
ability. Secondly, the combo “the communication component
and the camera topology server” in Coral-Pie can be directly
used by other camera applications that require horizontal
coordination between cameras. Since the topology is repre-
sented as a graph, the camera topology can be extended to
support more advanced topology search as needed. Thirdly,

12

411

Coral-Pie: A Geo-Distributed Edge-compute Solution for Space-Time Vehicle Tracking Middleware ’20, December 7–11, 2020, Delft, Netherlands

the vehicle identification pipeline construction using a com-
bination of detection and tracking in Section 4.1.2 is general
for many camera applications that require real-time object
detection and tracking on limited-resource devices. Finally,
lessons from our implementation experiences (e.g, avoiding
serialization overhead) on using limited capability platforms
such as RPi for camera processing would be of value to other
similar endeavors.
We recognize that privacy is a major concern for smart cam-
era systems. However, privacy concerns are out of the scope
of this paper.

7 Related Work
VDBMS (abbrev., video data base management system) such
as LightDB [13], VStore [40] and Optasia [22] allow queries
on archived videos. However, they are analyzing the videos
at query time, which implies a longer latency to acquire the
trajectory of the suspicious vehicle compared to Coral-Pie
where the trajectory is created on the fly. Furthermore, it will
be more challenging for VDBMS to answer the queries for
multiple vehicles simultaneously. VDBMS usually requires
significant computation and storage resources to facilitate
query processing (since they store the same video chunk in
different formats optimized for different query types [40]),
which makes them inherently Cloud-based solutions. In ad-
dition, streaming a large-scale camera network to the Cloud
is not practical. Finally, today’s VDBMS assumes that each
video is independent [13]. Without high-level support, it
is not easy (if not impossible) to achieve vehicle tracking
across multiple camera streams in those systems as they
stand today.
More recently, video analysis frameworks have emerged
(such as Noscope [20], Focus [15] and Videoedge [16]) that
feature processing at ingestion time, similar to Coral-Pie.
While these frameworks focus on the partition of the video
analysis tasks and the placement of these tasks across Edge
and Cloud, they lack the support for the persistence of the
video data and results, and the coordination between cameras
which is essential for tracking vehicles across cameras.
iLAND [32] proposes a middleware architecture targeting
reconfiguration for real-time systems. Using a video surveil-
lance application as a driver, iLAND demonstrates how ker-
nels of such applications (e.g., video compression) can be
delivered as a service (with different implementations) for
reconfiguration. The focus of Coral-Pie, namely, horizontal
coordination for a camera network and its real-time man-
agement, is not addressed by iLAND.
Though the focus of our work is on the systems side, it is im-
portant to be abreast of the strides being made in computer
vision for incorporation into our end-to-end solution. In this
sense, our adaptation of off-the-shelf vision algorithms is
largely inspired by Tang’s work [30] which won the NVIDIA
AI City Challenge 2018. Their work shows very high ac-
curacy, but some of their expensive DCNN models cannot

work properly on limited resource computational platforms.
STTR [41] shows the possibility of tracking all vehicles at
the edge over time mathematically. However, their work
does not involve any real video analytics implementation.
Space-Time Vehicle Tracking [42] emulates the Edge com-
puting platform using virtual machines from the Cloud. For
every camera, they assign a 4-core, 16GB virtual machine
as its computation resources, while RPis used in Coral-Pie
have only 1GB memory and are much more affordable. On
the other hand, they found the network bandwidth limita-
tion and extra administrator cost of processing live camera
streams during their Cloud emulation, which motivates our
work. Kestrel [25] is a multi-camera vehicle tracking sys-
tem for both static cameras and cameras on mobile devices,
where mobile cameras handle the ambiguity of vehicle tra-
jectory constructed from static cameras. However, it is not
a real-time system for tracking all vehicles and it processes
all the static camera streams in the Cloud, which creates a
network burden for large-scale camera systems.

8 Conclusion
We present an end-to-end distributed system, Coral-Pie, for
automatically generating the space-time tracks for all vehi-
cles all the time using a geo-distributed camera network. The
system architecture is scalable by design, and extensible via
pluggable computer vision modules. Elements of the architec-
ture include continuous processing of every frame on each
camera for vehicle identification, vehicle re-identification,
efficient inter-camera communication protocol to aid re-
identification, frame storage and trajectory storage, and cam-
era topology server for self-healing the camera network.
Guided by timing of the sub-tasks in the continuous pro-
cessing, we present an efficient latency conscious pipelined
implementation of the continuous processing on low-cost
dedicated computational resources associated with each cam-
era. The implementation of the distributed architecture spans
the cloud-edge-device continuum to accomplish a scalable
and cost-effective placement of the application components.
We conduct controlled experiments of the prototype system
using live streams from five campus cameras and simulations
to benchmark the system and showcase the key attributes of
the design including efficient communication, fault tolerance,
and scalability. We also show using off-the-shelf computer
vision algorithms that we can get acceptable results at the
application level in terms of false positives and false nega-
tives.

Acknowledgments
This work was funded in part by NSF Awards NSF-CPS-
1446801 and NSF-CNS-1909346 and a grant from Microsoft
Corp. We would also like to thank our shepherd Paulo Fer-
reira whose insightful comments and guidance helped us to
improve our paper.

13

412

Middleware ’20, December 7–11, 2020, Delft, Netherlands Zhuangdi Xu, Harshil S Shah, and Umakishore Ramachandran

References
[1] Alasdair Allan. 2019. Benchmarking Edge Computing — Comparing

Google, Intel, and NVIDIA accelerator hardware. Retrieved May, 2019
from https://medium.com/@aallan/benchmarking-edge-computing-
ce3f13942245

[2] Majed Alwateer, Seng W Loke, and Wenny Rahayu. 2018. Drone
services: An investigation via prototyping and simulation. In 2018
IEEE 4th World Forum on Internet of Things (WF-IoT). IEEE, 367–370.

[3] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodík, Krishna Chin-
talapudi, Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha.
2017. Real-time video analytics: The killer app for edge computing.
computer 50, 10 (2017), 58–67.

[4] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft.
2016. Simple online and realtime tracking. In 2016 IEEE International
Conference on Image Processing (ICIP). 3464–3468. https://doi.org/10.
1109/ICIP.2016.7533003

[5] David C. Blair. 1979. Information Retrieval, 2nd ed. C.J. Van Rijsbergen.
London: Butterworths; 1979: 208 pp. Price: $32.50. Journal of the
American Society for Information Science 30, 6 (1979), 374–375. https:
//doi.org/10.1002/asi.4630300621

[6] Geoff Boeing. 2017. OSMnx: New methods for acquiring, construct-
ing, analyzing, and visualizing complex street networks. Computers,
Environment and Urban Systems 65 (2017), 126–139.

[7] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. 2014.
Fog computing: A platform for internet of things and analytics. In Big
data and internet of things: A roadmap for smart environments. Springer,
169–186.

[8] J-K Chang, Seungteak Ryoo, and Heuiseok Lim. 2013. Real-time vehicle
tracking mechanism with license plate recognition from road images.
The Journal of Supercomputing 65, 1 (2013), 353–364.

[9] Elvia. 2019. IP Camera Bandwidth Calculation. Retrieved Apr, 2019
from https://reolink.com/ip-camera-bandwidth-calculation/

[10] RASPBERRY PI FOUNDATION. 2019. Raspberry Pi 4. Retrieved
June, 2019 from https://www.raspberrypi.org/products/raspberry-pi-
4-model-b/

[11] Google. 2019. Models built for the Edge TPU. Retrieved Oct, 2019 from
https://coral.withgoogle.com/models/

[12] Google. 2019. USB Accelerator. Retrieved Oct, 2019 from https://coral.
withgoogle.com/products/accelerator

[13] Brandon Haynes, Amrita Mazumdar, Armin Alaghi, Magdalena Bal-
azinska, Luis Ceze, and Alvin Cheung. 2018. Lightdb: A dbms for
virtual reality video. Proceedings of the VLDB Endowment 11, 10 (2018),
1192–1205.

[14] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. 2014.
High-speed tracking with kernelized correlation filters. IEEE transac-
tions on pattern analysis and machine intelligence 37, 3 (2014), 583–596.

[15] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram
Venkataraman, Paramvir Bahl, Matthai Philipose, Phillip B Gibbons,
and Onur Mutlu. 2018. Focus: Querying large video datasets with low
latency and low cost. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 269–286.

[16] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana
Golubchik, Minlan Yu, Paramvir Bahl, and Matthai Philipose. 2018.
Videoedge: Processing camera streams using hierarchical clusters. In
2018 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 115–131.

[17] Intel. 2018. Intel Neural Compute Stick 2 (Intel NCS2). Retrieved Nov,
2018 from https://software.intel.com/content/www/us/en/develop/
hardware/neural-compute-stick.html

[18] JanusGraph Authors. 2019. JanusGraph. Retrieved Oct, 2019 from
https://janusgraph.org/

[19] Dave Johnson. 2017. Create a Lightweight Raspberry Pi System with
Raspbian Lite. Retrieved Feb, 2018 from https://thisdavej.com/create-
a-lightweight-raspberry-pi-system-with-raspbian-lite/

[20] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei
Zaharia. 2017. Noscope: optimizing neural network queries over video
at scale. Proceedings of the VLDB Endowment 10, 11 (2017), 1586–1597.

[21] Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong
Shi. 2019. Edge computing for autonomous driving: Opportunities and
challenges. Proc. IEEE 107, 8 (2019), 1697–1716.

[22] Yao Lu, Aakanksha Chowdhery, and Srikanth Kandula. 2016. Op-
tasia: A relational platform for efficient large-scale video analytics.
In Proceedings of the Seventh ACM Symposium on Cloud Computing.
57–70.

[23] James C Miller, Matthew L Smith, and Michael E McCauley. 1998.
CREW FATIGUE AND PERFORMANCE ON US COAST GUARD CUT-
TERS. Technical Report.

[24] NVIDIA. 2019. JETSON NANO Bringing the Power of Modern AI to
Millions of Devices. Retrieved June, 2019 from https://www.nvidia.com/
en-us/autonomous-machines/embedded-systems/jetson-nano/

[25] Hang Qiu, Xiaochen Liu, Swati Rallapalli, Archith J Bency, Kevin Chan,
Rahul Urgaonkar, BS Manjunath, and Ramesh Govindan. 2018. Kestrel:
Video analytics for augmented multi-camera vehicle tracking. In 2018
IEEE/ACM Third International Conference on Internet-of-Things Design
and Implementation (IoTDI). IEEE, 48–59.

[26] U. Ramachandran, H. Gupta, A. Hall, E. Saurez, and Z. Xu. 2019. Elevat-
ing the Edge to Be a Peer of the Cloud. In 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD). 17–24.

[27] Joseph Redmon and Ali Farhadi. 2016. YOLO9000: Better, Faster,
Stronger. arXiv preprint arXiv:1612.08242 (2016).

[28] Mahadev Satyanarayanan. 2017. Edge computing for situational aware-
ness. In 2017 IEEE International Symposium on Local and Metropolitan
Area Networks (LANMAN). IEEE, 1–6.

[29] Mahadev Satyanarayanan. 2017. The emergence of edge computing.
Computer 50, 1 (2017), 30–39.

[30] Zheng Tang, Gaoang Wang, Hao Xiao, Aotian Zheng, and Jenq-Neng
Hwang. 2018. Single-camera and inter-camera vehicle tracking and
3D speed estimation based on fusion of visual and semantic features.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. 108–115.

[31] Ying-li Tian, Lisa Brown, ArunHampapur, Max Lu, Andrew Senior, and
Chiao-fe Shu. 2008. IBM smart surveillance system (S3): event based
video surveillance system with an open and extensible framework.
Machine Vision and Applications 19, 5-6 (2008), 315–327.

[32] Marisol García Valls, Iago Rodríguez López, and Laura Fernández Villar.
2012. iLAND: An enhanced middleware for real-time reconfiguration
of service oriented distributed real-time systems. IEEE Transactions on
Industrial Informatics 9, 1 (2012), 228–236.

[33] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. 2011. The
NumPy array: a structure for efficient numerical computation. Com-
puting in Science & Engineering 13, 2 (2011), 22.

[34] Junjue Wang, Ziqiang Feng, Zhuo Chen, Shilpa George, Mihir Bala,
Padmanabhan Pillai, Shao-Wen Yang, and Mahadev Satyanarayanan.
2018. Bandwidth-efficient live video analytics for drones via edge
computing. In 2018 IEEE/ACM Symposium on Edge Computing (SEC).
IEEE, 159–173.

[35] Jianyu Wang, Jianli Pan, and Flavio Esposito. 2017. Elastic urban
video surveillance system using edge computing. In Proceedings of the
Workshop on Smart Internet of Things. 1–6.

[36] Shibo Wang, Shusen Yang, and Cong Zhao. 2020. SurveilEdge: Real-
time Video Query based on Collaborative Cloud-Edge Deep Learning.

[37] Wikipedia contributors. 2019. Bhattacharyya distance — Wikipedia,
The Free Encyclopedia. Retrieved Oct, 2019 from https://en.wikipedia.
org/w/index.php?title=Bhattacharyya_distance&oldid=918888046

[38] Wikipedia contributors. 2019. F1 score — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=F1_score&oldid=
928547822. [Online; accessed 12-January-2020].

14

413

https://medium.com/@aallan/benchmarking-edge-computing-ce3f13942245
https://medium.com/@aallan/benchmarking-edge-computing-ce3f13942245
https://doi.org/10.1109/ICIP.2016.7533003
https://doi.org/10.1109/ICIP.2016.7533003
https://doi.org/10.1002/asi.4630300621
https://doi.org/10.1002/asi.4630300621
https://reolink.com/ip-camera-bandwidth-calculation/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://coral.withgoogle.com/models/
https://coral.withgoogle.com/products/accelerator
https://coral.withgoogle.com/products/accelerator
https://software.intel.com/content/www/us/en/develop/hardware/neural-compute-stick.html
https://software.intel.com/content/www/us/en/develop/hardware/neural-compute-stick.html
https://janusgraph.org/
https://thisdavej.com/create-a-lightweight-raspberry-pi-system-with-raspbian-lite/
https://thisdavej.com/create-a-lightweight-raspberry-pi-system-with-raspbian-lite/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://en.wikipedia.org/w/index.php?title=Bhattacharyya_distance&oldid=918888046
https://en.wikipedia.org/w/index.php?title=Bhattacharyya_distance&oldid=918888046
https://en.wikipedia.org/w/index.php?title=F1_score&oldid=928547822
https://en.wikipedia.org/w/index.php?title=F1_score&oldid=928547822

Coral-Pie: A Geo-Distributed Edge-compute Solution for Space-Time Vehicle Tracking Middleware ’20, December 7–11, 2020, Delft, Netherlands

[39] Nicolai Wojke and Alex Bewley. 2018. Deep Cosine Metric Learn-
ing for Person Re-identification. In 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV). IEEE, 748–756. https:
//doi.org/10.1109/WACV.2018.00087

[40] Tiantu Xu, Luis Materon Botelho, and Felix Xiaozhu Lin. 2019. Vs-
tore: A data store for analytics on large videos. In Proceedings of the
Fourteenth EuroSys Conference 2019. 1–17.

[41] Zhuangdi Xu, Harshit Gupta, and Umakishore Ramachandran. 2018.
Sttr: A system for tracking all vehicles all the time at the edge of the
network. In Proceedings of the 12th ACM International Conference on
Distributed and Event-based Systems. ACM, 124–135.

[42] Zhuangdi Xu, Sayan Sinha, ShahHarshil S, and Umakishore Ramachan-
dran. 2019. Space-Time Vehicle Tracking at the Edge of the Network.
In Proceedings of the 2019 Workshop on Hot Topics in Video Analytics
and Intelligent Edges. ACM, 15–20.

[43] Linjie Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. 2015. A
large-scale car dataset for fine-grained categorization and verification.
In Proceedings of the IEEE conference on computer vision and pattern
recognition. 3973–3981.

[44] Quan Yuan, Haibo Zhou, Jinglin Li, Zhihan Liu, Fangchun Yang, and
Xuemin Sherman Shen. 2018. Toward efficient content delivery for
automated driving services: An edge computing solution. IEEE Network
32, 1 (2018), 80–86.

15

414

https://doi.org/10.1109/WACV.2018.00087
https://doi.org/10.1109/WACV.2018.00087

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Scope of the Paper

	3 Distributed System Architecture
	3.1 Placement of the Application Components
	3.2 Communication Between Cameras
	3.3 Camera Topology Management

	4 Implementation
	4.1 Continuous Processing on Each Frame
	4.2 Trajectory Storage and Frame Storage
	4.3 Camera Topology Server

	5 Performance Evaluation
	5.1 Prototype System
	5.2 Microbenchmarks
	5.3 Effectiveness of Communication Protocol
	5.4 Fault Tolerance
	5.5 Scalability
	5.6 Application Level Evaluation

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

