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Abstract
Purpose - The output of academic literature has increased significantly due to digital technology, 
presenting researchers with a challenge across every discipline, including materials science, as it 
is impossible to manually read and extract knowledge from millions of published literature. The 
research reported in this paper addresses this challenge by exploring knowledge extraction in 
materials science, as applied to digital scholarship. An overriding goal is to help inform readers 
about the status of knowledge extraction in materials science.
Design/methodology/approach – A two-part analysis was conducted, comparing knowledge 
extraction methods applied to materials science scholarship, across a sample of 22 articles; 
followed by a comparison of HIVE-4-MAT, an ontology-based knowledge extraction and 
MatScholar, a named entity recognition (NER) application. The paper covers contextual 
background, and a review of three tiers of knowledge extraction (ontology-based, NER, and 
relation extraction), followed by the research goals and approach. The discussion considers current 
knowledge extraction challenges in materials science.
Findings - The results indicate three key needs for researchers to consider for advancing 
knowledge extraction: 1) materials science-focused corpora, 2) for researchers to define the scope 
of the research being pursued, and 3) understand the trade-offs among different knowledge 
extraction methods. The paper also points to future materials science research potential with 
relation to extraction and increased availability of ontologies.
Originality - There are very few studies examining knowledge extraction in materials science. 
This work makes an important contribution to this underexplored research area.

Keywords: Information science, Ontology, Knowledge, Digital scholarship, Materials science, 
Knowledge extraction
Article classification: Research paper

1. Introduction
Scientific output has accelerated at an exponential pace due to digital technology. This trend is 
particularly noticeable through the significant growth in digital scholarly publications across every 
discipline (Khabsa and Giles, 2014; Ponte et al, 2017; Taubert and Weingart, 2017). The increase 
in digitally accessible scholarship is exciting, although this growth presents researchers with a 
daunting challenge as they seek to grapple with and benefit from the expanding corpus of 
information. This growing challenge is particularly prevalent in materials science (Mysore et al., 
2017; Weston et al., 2019), where researchers seek to discover new recipes for improving materials 
performance.

To further explain the problem, digital scholarly publications, as a form of scholarly big 
data (Tuarob et al., 2016), generally describe the research design (method, sample, and treatment), 
report finding, and state conclusions. Specific to the case of materials science, results buried in a 
digital publication may help a researcher predict a material’s performance for future work. For 
example, published results may report that “a specific recipe of magnesium, copper, and yttrium 
(Mg-Cu-Y), followed by heating and cooling these combined alloys at a designated temperature, 
results in a certain grade of metallic glass”. The common approach for extracting this knowledge 
from digital text is extremely time-consuming. At a high level, a researcher needs to identify, 
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locate, and access relevant scholarly resources, such as peer reviewed journal publications, 
conferences papers, or patent documents, from the ever-expanding body of digital scholarship. 
Next, the researcher needs to read and manually extract key knowledge. Weston et al. (2019) 
emphasized that it is impossible for a researcher to read and extract knowledge contained in the 
vast, expanding store of published research, and referred to this problem as a bottleneck in 
materials discovery. This challenge underscores the need to explore machine driven approaches 
for extracting expert knowledge recorded in published research.

The research presented in this paper is motivated by both the need and the opportunity to 
advance knowledge extraction techniques for materials science scholarly resources. 
Interconnected to this goal is the need for researchers to understand levels of knowledge extraction, 
as well as the strengths, limitations, and potential application of these varied approaches for 
materials science. The research presented here aims to also contribute to this encompassing need. 
Specifically, the paper reports on a two-part comparative analysis: (1) an examination of 
knowledge extraction methods applied to scholarly materials science and reported on in journals, 
and (2) a comparison of ontology-based knowledge extraction and named entity recognition (NER), 
which are two of the most frequently applied knowledge extraction approaches across domains; 
both have high potential in helping to accelerate materials knowledge extraction. This work 
integrates with the larger goal of the NSF’s Harnessing the Data Revolution (HDR) initiative, 
“Accelerating the discovery of electronic materials through human-computer active search” 
(www.nsf.gov/cise/harnessingdata/), where researchers across multiple disciplines are 
collaborating to harness knowledge buried in unstructured scholarly big data to assist with 
materials discovery.

The remainder of this paper is organized as follows. Section 2 defines materials science 
and provides an overview of the status of computational knowledge extraction in materials science. 
Then the paper presents a more in-depth examination of three tiers of knowledge extraction, 
followed by the research goals, approach, results, and a discussion. The paper wraps up a 
conclusion highlighting key findings as well as future directions.

2. Materials science and the status of computational knowledge extraction
Materials have a profound impact on our everyday lives. Consider the metals and plastics that 
comprise smartphones or medical implants, such as an artificial heart valve or pacemaker, both of 
which can both save and extend a human life. The history of materials science is founded in 
meeting society’s needs for tools, drawing from metallurgy and mineralogy. Today, the discipline 
is defined as an interdisciplinary field, bringing together chemistry, engineering, and physics. 
Materials science researchers are particularly concerned with the performance of materials and 
study the relation between the structure, processing, and properties of materials. Materials science 
researchers are motivated by the overarching goal to discover and design materials with higher 
performance at lower cost than existing materials (Bao, 2017; Ding, 2014).

Computational approaches, including machine learning, in materials science have had 
impactful results for both inorganic (Ren et al., 2018) and organic materials design (Segler et al., 
2018). The increase in computational approaches is motivated by the exponential growth in big 
data. Another motivating factor is the launch of the Materials Genome Initiative (MGI), with a 
mission to advance the materials science data infrastructure for computational design. Additionally, 
there is research supporting successful computationally designed materials in fields such as 
catalysis and thermoelectric (Kim et al., 2017a?). However, more comprehensive data is still 
needed for high-throughput computational materials design.

Page 2 of 17The Electronic Library

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The Electronic Library

Knowledge extraction is one research area that connects to infrastructure needs, and 
researchers have also explored the use of word representation and sequence-to-sequence learning 
with neural networks. For example, researchers have explored different computational methods 
for extracting a synthesis procedure (Mysore et al., 2017); and results indicate that the performance 
of features from word embeddings can be even higher than features manually created by humans. 
To pave a way for further knowledge extraction approaches with deep learning, Tshitoyan et al. 
(2019) introduced their word embeddings generated the Word2Vec algorithm and trained on 3.3 
million scientific abstracts of inorganic studies published between 1922 and 2018. Another 
example is Weston et al.’s (2019) recurrent neural network supporting the extraction of important 
information, such as synthesis methods, characterization methods, and material properties. Their 
work, MatScholar (https://matscholar.com), is a web interface that allows accurate knowledge 
retrieval. The model was built on Word2Vec word representation combined with a manually 
annotated dataset consisting of 800 abstracts.

Overall, although knowledge extraction in materials science is a recent development, 
research in this area shows promising results in materials design (Huang and Cole, 2020; Ren et 
al., 2018). Furthermore, these successes indicate there is likely a significant potential for 
computational approaches, including knowledge extraction, to advance materials discovery. The 
next section includes a review of three knowledge extraction approaches to contextualize the 
present work.

3. Knowledge extraction from textual data
Knowledge extraction, broadly speaking, involves the use of natural language processing (NLP) 
techniques to extract and correctly contextualize data or information, so that knowledge can be 
inferred. Three key knowledge extraction approaches include: 1) automatic indexing using 
ontological knowledge structures, 2) named entity recognition, and 3) relation extraction. These 
three approaches are reviewed below.

3.1 Ontology-based knowledge extraction
One of the simplistic forms of knowledge extraction is automatic indexing, which can include the 
application of a knowledge structure, such as an ontology. The process involves automatic 
indexing to extract key terms from a document; followed by matching these initial results to terms 
encoded with a selected knowledge structure, such as an ontology. Ontologies vary in their topical 
coverage by both breadth and depth, and they are considered valuable as they support semantic 
standardization and interoperability. Additionally, formalized ontologies encoded in the web 
ontology language (OWL) can support deductive reasoning and decision making.

Ontologies can be used to assist in automatic indexing. The process generally involves 
basic IR approaches, such as inverse document frequency (tf-idf), to determine the significance of 
a term or phrase in a document, and significant terms are mapped to a knowledge structure, such 
as an ontology, with similarity measures. Ontology-supported entity extraction has been popular 
in bioinformatics. One example of this is the well-known software MetaMap (Aronson, 2001), 
which maps keywords to ontologies, such as the National Library of Medicine’s Unified Medical 
Language System (UMLS); a recent study using MetaMap shows that the majority of disease terms 
can still be correctly mapped (Senarath et al., 2020). Important to note for the purpose of the 
research presented in this paper, the advances noted above provide a model for other disciplines, 
such as materials science, where there is increased interest in ontologies. The HIVE-4-MAT 
prototype (https://hive4mat.cci.drexel.edu), explained further below, supports ontology-based 
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extraction and serves as a baseline tool for understanding additional knowledge extraction models, 
including approaches that support deep learning.

3.2 Named entity recognition
Named entity extraction (NER) is a more involved form of knowledge extraction, compared to the 
ontology-based approach. The term “named entity” first appeared in the sixth Message 
Understanding Conference (MUC-6) (Grishman and Sundheim 1996), where researchers gathered 
to share results on extracting structured information (entities) from unstructured text data. The 
focus was on entities involved detecting people’s names, organizations, and geographical locations 
in text documents. In general, the term named entity in NLP refers to words that belong to 
designated semantic types, such as the organization mentioned above, and the task of NER is to 
recognize mentions of those rigid designators from text belongings.

Since the mid-1990s, early NER studies have mainly focused on extracting generic 
information from journal articles. Common datasets, including MUC-6 (Grishman and Sundheim, 
1996), MUC-7 (Chinchor, 1998), CoNLL03 (Sang and De Meulder, 2003), ACE (Doddington et 
al., 2004), were widely used to test existing NER techniques. Later on, not restricted to generic 
semantic types, the interest in NER expanded to various domains, such as biology (Kim et al., 
2003) and medicine (Doğan et al., 2014; Li et al., 2016). Weston et al. (2019) created an annotated 
dataset for inorganic materials which contains 800 manually annotated paper abstracts.

Named entity recognition is an important component of information extraction research, as 
well as an aspect of knowledge extraction. NER has a key role in a variety of applications, such as 
text summarization (Aone et al., 1999), information retrieval (Petkova and Croft, 2007), question-
answering systems (Mollá et al., 2006), and knowledge base construction (Etzioni et al., 2005). 
As researchers seek to grapple with the massive volume of data, NER can also help in discovering 
new knowledge.

3.3 Relation extraction
A third area of knowledge extraction is relation extraction (RE). Similar to classic entities (person 
or organization name, place, and so forth), relation types are also an important component of 
human knowledge. Relational facts frequently appear in text along with their corresponding 
entities, forming a triple. As an example, the “University of Pennsylvania is located at Philadelphia” 
indicates the fact (University of Pennsylvania, organization-location, Philadelphia). Similarly, the 
fact (Tim Cook, person-title, CEO) can be inferred from the sentence “Tim Cook is the CEO of 
Apple, Inc”. By extracting relational facts from unstructured texts, many applications, such as 
question-answering systems (Bordes et al., 2014) and knowledge base construction (Wang et al., 
2014), are benefited; in a domain-specific area, relation extraction is widely used in drug discovery 
studies (Sang et al., 2018) to find drug-drug interactions (Liu et al., 2016; Quan et al., 2016), 
adverse drug events (Li et al., 2017), and protein-protein interactions (Hua and Quan, 2016).

The study of entity relation has gained researchers’ attention since the 1990s. The most 
effective approaches have progressed from pattern recognition based on local syntax (Huffman, 
1995), to feature-based approaches (Kambhatla, 2004), and most recently to deep learning (Jia et 
al., 2019; Miwa and Bansal, 2016). Advances in deep learning neural networks have been 
successful in extracting relations in various domains and have become state-of-the-art (Han et al., 
2020). However, with the exception of a few studies (e.g., Court and Cole, 2018; Huang and Cole, 
2020), relation extraction research in materials discovery is still quite limited.
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The methods reviewed above, and the growing amount of digital scholarship in materials 
science help to motivate and shape the goals and objective of this research, presented in the next 
section.

4. Research goals and objectives
The overriding goal of this study is to gain a better understanding of the emerging research area of 
knowledge extraction in materials science. The research conducted is motivated by this goal and 
the need to address both the challenge and opportunity presented by growing amounts of scholarly 
big data.

Research objectives guiding this study are:
● Objective 1: To determine the status of knowledge extraction as applied to scholarly big 

data for materials science.
○ To address this objective, the researchers will identify the frequent and most 

effective knowledge extraction methods used in materials science, as well as 
current challenges.

● Objective 2: To compare two of the most frequently used knowledge extraction methods.

The work reported on here may also assist researchers in selecting appropriate knowledge 
extraction methods and inform future exploration and potential research directions.

5. Methodology
In order to address the above goals and objectives, a two-part comparative analysis was performed. 
The researchers first compared knowledge extraction methods reported in materials science 
literature. Then, they assessed the outputs of the following two knowledge extraction approaches: 
ontology-based knowledge extraction and named entity recognition (NER). Comparative analyses 
are useful for gaining insight into strengths and limitations of different approaches. The research 
design and procedures for this work is reported in the next section.

6. Research design and procedures
6.1 Knowledge extraction methods reported in materials literature
Part one of the study involved two steps. First, the researchers selected published journal articles 
reporting on knowledge extraction methods in materials science, and, second, they analysed the 
outcomes of the method. The journal article selection was based on chain-referral sampling, 
starting with the key article of Weston et al. (2019), and supplemented by conducting a keyword 
search for “knowledge extraction” in Google Scholar. Articles selected needed to satisfy two 
criteria: (1) it was required to report on the application of knowledge extraction methods 
specifically to scholarly big data in materials science and (2) it must appear in a key journal, such 
as Nature, Physical Review Materials, or ACS Central Science.

Although knowledge extraction has been around since the 1990s, the topic is still quite 
innovative in materials science, with articles appearing only within the last ten years. The selected 
sample reflected this status, and included 22 articles, published between 2017 and 2020. The 
sample allowed the researchers to gather data on the following three aspects of knowledge 
extraction as applied to materials science scholarly big data:

● The materials science themes, or subdomains, in which the knowledge extraction methods 
are being applied.

● The most frequently used knowledge extraction methods.
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● The knowledge extraction approach that produced the best results.

As part of the data gathering task, the researchers also identified what seem to be current 
challenges and needs of materials researchers.

6.2 Knowledge extraction outcomes of the two main approaches
For this part of the study, the researchers focused on two of the main knowledge extraction 
approaches used across all domains. The following two applications were selected for comparison, 
given that they focus on materials science: 1) HIVE-4-MAT, which supports ontology-based 
knowledge extraction and 2) MatScholar, which supports NER-based knowledge extraction.

HIVE-4-MAT: HIVE uses the RAKE (rapid automatic keyword extraction) algorithm 
(Rose et al., 2010) for text processing, after which candidate keywords are mapped to ontologies. 
HIVE-4-MAT builds off the HIVE system incorporated into the DataNet Federation Consortium’s 
iRODS system (Conway et al., 2013).

For the assessment, 60 abstracts were drawn from MatScholar and they were processed 
through the HIVE-4-MAT system using the following four ontologies for knowledge extraction: 
1) BioAssay Ontology, 2) Library of Congress Subject Headings (LCSH), 3) Smart Appliances 
REFerence ontology (SAREF), and 4) US Geological Survey (USGS) terminology. The sample 
of 60 abstracts was sufficient for two reasons: (1) the keyword selection algorithm in HIVE-4-
MAT is rule-based, which only uses the current input data (in the present case, the individual 
abstract) to make a decision, so sample size has limited impact on the performance; and (2) the 
empirical results from a pilot study reported on at the Joint Conference on Digital Libraries (Zhao 
et al., 2020) also showed no significant difference in performance based on ten abstracts, when 
compared to 60 abstracts. Knowledge extraction results were evaluated by information science and 
materials science experts using a three-tier scale of relevant (R), partially relevant (PR), and non-
relevant (NR).

MatScholar: MatScholar is a web-accessible application that applies NER techniques to 
support knowledge extraction. The NER model uses the RNN-LSTM (recurrent neural network-
long short term memory) structure. RNN-LSTM is a classic type of neural network that is widely 
applied in NLP tasks. MATScholar’s NER algorithm is supported by a training set of 800 hand-
annotated abstracts and uses colour and codes to identify seven entity classes: 1) inorganic material 
(MAT), 2) symmetry phase label (SPL), 3) sample descriptor (DSC), 4) material property (PRO), 
5) material application (APL), 6) synthesis method (SMT), and 7) characterization method (CMT). 
A general assessment was conducted by processing sample abstracts provided in the system, 
through the NER feature in MatScholar.

7. Results
The results of the two-part comparative analysis are presented below. First, the researchers report 
on the assessment of existing methods reported in the materials science literature, followed by the 
assessment of the following two knowledge extraction approaches: ontology-based knowledge 
extraction and named entity recognition (NER).

7.1 Part I: Knowledge extraction methods reported in the materials science literature
Methods researchers are using: Knowledge extraction specifically targeting materials discovery, 
instead of overlapping fields like Chemistry or Biomedicine, is clearly an emerging field, with 
materials science-focused articles first appearing in 2017. As shown in Figure 1, of the 22 
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publications, 14 reported extraction structured materials knowledge from scholarly publications. 
Half of these 14 articles focus on how to extract needed entities; three studies covered both entity 
and relation extraction; two of them discussed how materials-related knowledge should be 
structured; the remaining two studies pointed out that more annotated corpora are needed to further 
advance knowledge extraction from the materials science literature.

Figure 1. Distribution of reported knowledge extraction methods

Results verify that knowledge extraction has been effective across various topics (Figure 
2). Results also confirm that different knowledge extraction methods support different goals. For 
example, entity extraction methods show high potential in synthesis design: six out of seven studies 
that involve entity extraction are on this topic. By extracting entities related to synthesis parameters 
and synthesis outcomes, the researchers were able to build a larger dataset to train machine learning 
models for synthesis outcome prediction (Kim et al., 2017).

Figure 2. Topics distribution of knowledge extraction studies in materials science
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Research applying relation extraction methods appears to have very different goals. One 
goal of relation extraction studies is database auto-generation. Materials science researchers 
commonly deal with quaternary, even quinary or more, relationships between materials and its 
corresponding properties. Two studies used relation extraction to auto-build databases for specific 
materials. Huang and Cole (2020) applied relation extraction methods to link battery materials 
with its five corresponding properties, such as conductivity and voltage. Similarly, Court and Cole 
(2018) presented their auto-generated database for magnetic materials, which also extracts 
materials and properties from large amounts of publications. This approach differs from manual 
database generation. Additionally, auto-generated databases usually have much larger data volume, 
which greatly helps in the computational materials design process.

Effective techniques to extract knowledge from texts: Results show a wide and varied 
use of pattern matching, external knowledge sources, and machine learning, with techniques 
combined at times. Based on the present analysis, the vocabulary needs of materials science are 
very specialized. For example, results showed that some properties and material names have 
unique patterns. Given this observation, many studies use techniques, such as regular expression, 
text matching to a self-defined vocabulary list, or databases, to identify/validate their candidate 
extracted terms. In addition to the above, results show that word representation is another way 
researchers extract key information from text, which is applied to accurate knowledge retrieval 
(Weston et al., 2019) and similar materials search (Kim et al., 2017).

7.2 Knowledge extraction assessment and comparison of the two main approaches
In this section, the researchers report their assessment and comparison of knowledge extraction 
approaches supported by HIVE-4-MAT and MatScholar.

7.2.1 HIVE-4-MAT assessment
The HIVE assessment, processing the 60 abstracts resulted in 987 extracted terms, of which 392 
terms are evaluated as “Relevant”, 261 are marked as “Partially Relevant” and the rest 334 terms 
are evaluated as “Not Relevant” (Figure 3).

Figure 3. Relevance evaluation of terms extracted by HIVE-4-MAT
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Figure 4. Relevant terms are in the upper portion and Partially Relevant in the lower

As shown in Figure 4, the upper portion of the figure and the lower portion show frequent 
terms that are marked as “R” and “PR”, respectively. Since it is hard to determine whether a term 
is fully or partially relevant in specific abstracts, it can be observed that some terms appear in both 
categories. This way the “Relevant” and “Partially Relevant” categories were combined while 
measuring the percentage of relevant terms among all of the extracted terms. The results of the 
manual evaluation are summarized in Table I.

Table I. Results of manual evaluation of extracted terms
Evaluation results of HIVE-4-MAT
Sample size (number of abstracts) 60
Number of extracted terms 987
Relevant terms 392
Partially Relevant terms 261
Not Relevant terms 334
Average terms extracted per abstract (range) 16.45 (5-30)
Percentage relevancy 66.16%

As shown in the Table I, 66.16 percent of the extracted terms are relevant, meaning that 
they accurately represent the abstract’s content. The Not Relevant terms (e.g. terms extracted by 
the application but not relevant to the input abstracts) were also examined in Table II.

Table II. Analysis for Not Relevant (NR) terms
Failure analysis of false-positive extractions
Error type Original text Term extracted
1. Extracted term is too 
broad

The deposition behaviour and physical 
properties of the films were investigated for 
use as an electrode in a metal-insulator-
metal capacitor in future generation 
dynamic random access memory devices.

Investigation
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2. Wrong terms identified The Ru think films had a negligible oxygen 
content.

Contentment

Among all terms marked as “Not Relevant”, most of them fall into two types: (1) the 
extracted terms are too broad to reflect the main idea of input abstracts; and (2) the HIVE-4-MAT 
identifies word roots, partial term matches for bound terms, and homographs. As shown in Table 
II, HIVE-4-MAT maps “content” to “contentment”. This challenge is a result of stemming. While 
using ontologies to extract keywords from text documents, it is possible that an input term is 
mapped to homonyms (identical terms with the same spelling but with a different meaning).

7.2.2 Comparative analysis between ontology-based and NER-based extraction
To further analyse two different approaches, the sample abstract (Cho et al., 2002) described in 
Figure 5 was used as an input document to demonstrate different outputs from HIVE-4-MAT and 
MatScholar.

Figure 5. Sample abstract

By mapping the sample abstract data to LCSH ontology, HIVE-4-MAT obtained the 
extraction output shown in Figure 6. All extracted terms are displayed at the left side of the output; 
by clicking on the terms at left, its corresponding information in the ontology will be listed at the 
right side. In Figure 6, taking the term “Dielectrics” as an example, the application is supposed to 
show its definition, broader concepts, narrower concepts, and related concepts at the right side. 
Based on the information stored in LCSH ontology, the term “Dielectrics” is a type of material 
related to electrical engineering (broader concept), and it is also related to narrower concepts, such 
as “Dielectric devices” and “Dielectric relaxation”, which are bound terms (two words put together 
to form a term and represent a concept). The LCSH ontology does not contain the definition of the 
term “Dielectrics”, so it is not displayed in the output.
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Figure 6. Sample extraction result from HIVE-4-MAT

The output example of HIVE-4-MAT shows that ontology-based knowledge extraction is 
good at providing further knowledge of extracted terms by capturing the full knowledge structure, 
which can help researchers to gain better understanding of the input literature.

Figure 7 shows the output of the same abstract from MatScholar (Weston et al., 2019).
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Figure 7. Sample extraction result from MatScholar

The MatScholar output in Figure 7 shows that their NER approach extracts terms related 
to the seven types (e.g. descriptor, synthesis method, etc.) described in the earlier section.

The HIVE-4-MAT and MatScholar comparison clearly presented four key differences that 
reflect pros and cons (see Table III). (1) Terms in the extraction output: The HIVE-4-MAT 
extraction output terms that are not always in the original input text (in the present case, the 
abstracts). Essentially, if there are terms in ontologies that are similar to input texts, the term will 
appear in the output, regardless of meaning. The case with a false match in meaning is 
demonstrated in the failure analysis above. MatScholar will only highlight exact words in original 
input texts. (2) Semantic type classification: MatScholar’s NER model is designed to classify 
extracted key entities in seven different categories, whereas HIVE-4-MAT’s ontology-based 
knowledge extraction only identifies knowledge terms by text matching, and does not further 
classify the semantic types. (3) Related concepts and knowledge structure: The HIVE-4-MAT 
embedded knowledge structure provides further information, such as concept relationships (e.g. 
broader concept, narrower concept, synonym, related subject, and so forth), and a user can traverse 
this structure and learn. MatScholar does not yet provide such information. (4) Overall model 
differences: While extracting key entities from input texts, HIVE-4-MAT relies on the content of 
its ontologies, whereas MatScholar relies on word representation and a deep learning model.

The reasons for the differences are addressed below in the second part of the discussion.

Table III. Comparison of different knowledge extraction approaches
Pros Cons

Ontology-based extraction  Provides further 
knowledge of extracted 
terms by ontology 
structure

 Large dataset for training 
model is not required

 Extraction performance 
heavily relies on the 
quality of ontologies

 Provides less detailed 
extraction result

Named entity recognition  Provides more accurate 
extraction result

 Does not rely on external 
knowledge source as 
ontologies

 Requires large dataset for 
training model – some 
corpus has over billions 
of tokens

8. Discussion
The comparative analysis presented above gives insight into knowledge extraction methods used 
in materials scholarly data, as well as the difference of two widely-applied approaches. By 
conducting this research, the researchers hope their work can inspire more efforts to advance the 
knowledge extraction studies for materials scholarly data.

What are the current challenges? Part one of comparative results reveal two key 
challenges: (1) The absence of sufficient materials science-focused annotated/unannotated corpus 
necessary for training neural networks for knowledge extraction; (2) Limited examples of how 
knowledge should be structured in order to facilitate reproducibility and machine-readability. 
Knowledge extraction research using deep neural networks has achieved great success in many 
domains, particularly biomedicine (Li et al., 2017), given the availability of large, shared annotated 
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corpora. Training a neural network model requires millions of text documents, and a significant 
amount of time for annotation and fine tuning, and likely the limited availability of such resources 
is tied to the newness of this topic in materials science.

Materials science can learn from bioinformatics, which has a rich network of well-
established ontologies supported by general agreements on the structure of knowledge. Ontologies 
covering materials science topics and reflecting key relationships are extremely limited. 
Researchers need to carefully identify and agree on the information that should be extracted and 
how to link related knowledge together, before starting the extraction process.

The second part of the present comparative analysis confirms the above findings. 
Ontology-based extraction, which is a straightforward rule-based approach, being used over 
decades, provides a general classified view without requiring a machine learning process and its 
performance is not affected by data size, whereas MatScholar’s NER model using deep learning 
provides results with higher granularity and accuracy. As already stated, the availability of 
materials-based ontologies is currently limited and remains under-explored, and this very likely 
impacted HIVE-4-MAT’s performance. In other words, more ontologies specific to the materials 
science domain would likely improve the results. Moreover, the quality of ontology can directly 
impact the performance and output of ontology-based extraction. Overall, there is a need for further 
work on materials science ontologies to assist with knowledge extraction.

These results prompt the question: Should we only use one knowledge extraction approach 
instead of another? Overall, the answer really depends on the circumstance of the study.

The effectiveness of rule-based approaches actually make a lot of sense in materials science. 
Because of the domain specificity of materials science, important information, such as chemical 
formulae, composites, synthesis methods, and material’s names, usually have strong writing 
patterns or can be mapped to researcher-defined vocabulary lists (Court and Cole, 2018; Huang 
and Cole, 2020; Kim et al., 2017). In this case, using techniques such as text matching (e.g. 
vocabulary matching, suffix matching) and regular expression can achieve high accuracy scores 
without requiring a large dataset and training process. However, rule-based approaches are not 
able to perform more sophisticated extraction, such as finding materials occurring under similar 
semantic context, which can be performed by approaches involving word embeddings.

As a recently appeared method, word embeddings have also been proven to be effective 
for materials knowledge extraction (Kim et al., 2017b; Kim et al., 2017c; Weston et al., 2019). 
Although some studies have suggested that word embeddings could help further advance the 
accuracy of knowledge extraction (Kim et al., 2019), however, a large materials-specified corpus 
is required for training a word vector space. Furthermore, a deep learning model using word 
embeddings as features should be trained on annotated datasets for both NER and relation 
extraction tasks – data annotation for domain-specific tasks can be both computationally expensive 
and time prohibitive.

9. Conclusion
This study assessed the existing knowledge extraction methods in materials science, specifically 
applied to scholarly data. The research involved a two-part comparative analysis.

The conclusion highlights several important factors for researchers to consider when pursuing 
knowledge extraction in materials science. Research needs to consider the following:

● The corpus/data availability: Data size is a key factor that determines the performance 
of deep learning models. If there are sufficient volumes of corpus and annotated dataset 
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available, building a deep learning model to perform NER and even, and with a greater 
understanding of knowledge structures, RE may even be promising.

● The scope of the research being pursued: If the task is simply to extract entities that have 
a strong pattern and no further analysis is needed, then running rule-based approaches are 
both effective and can save a lot of time.

● Trade-offs among methods: There is a trade-off between the two examined approaches: 
NER-based extraction can extract more detailed terms but need extra training time, 
ontology-based extraction requires less preparation time and provides fairly acceptable 
output. If researchers seek higher accuracy with more details and can bear the longer 
preparation time, then recent NER techniques may be preferred; although as more materials 
science ontologies are produced, results from ontology-based extraction are likely to 
improve. Finally, if the dataset is small and researchers prefer high-level keywords, then 
the ontology-based approach is more ideal.

Overall, the results indicate that researchers should pick knowledge extraction methods based 
on their research goal and data availability. The results also suggest that ontologies can be helpful 
for knowledge discovery; although there is a need for more materials science-focused ontologies.

In terms of future research, this paper provides insight to more use of relation extraction in 
future materials science research. This can help with the creation of ontologies and support 
knowledge graph construction, leveraging digital scholarly literature. In conclusion, linking new 
materials science experiments and historical knowledge has high potential to accelerate the 
discovery of new materials.
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