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ABSTRACT

We introduce a new framework for computing approximate maxi-

mum weight matchings. Our primary focus is on the fully dynamic

setting, where there is a large gap between the guarantees of the best

known algorithms for computing weighted and unweighted match-

ings. Indeed, almost all current weighted matching algorithms that

reduce to the unweighted problem lose a factor of two in the ap-

proximation ratio. In contrast, in other sublinear models such as the

distributed and streaming models, recent work has largely closed

this weighted/unweighted gap.

For bipartite graphs, we almost completely settle the gap with a

general reduction that converts any algorithm for α-approximate

unweighted matching to an algorithm for (1 − ε)α-approximate

weighted matching, while only increasing the update time by an

O(logn) factor for constant ε . We also show that our framework

leads to significant improvements for non-bipartite graphs, though

not in the form of a universal reduction. In particular, we give two

algorithms for weighted non-bipartite matching:

(i) A randomized (Las Vegas) fully dynamic algorithm thatmaintains

a (1/2 − ε)-approximate maximum weight matching in worst-case

update timeOε (polylogn)with high probability against an adaptive
adversary. Our bounds are essentially the same as those of the

unweighted algorithm of Wajc [STOC 2020].

(ii) A deterministic fully dynamic algorithm that maintains a (2/3−

ε)-approximate maximum weight matching in amortized update

time Õε (m
1/4). Our bounds are essentially the same as those of the

unweighted algorithm of Bernstein and Stein [SODA 2016].

A key feature of our framework is that it uses existing algorithms for

unweighted matching as black-boxes. As a result, our framework is

simple and versatile. Moreover, our framework easily translates to

other models, and we use it to derive new results for the weighted

matching problem in streaming and communication complexity

models.
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1 INTRODUCTION

Computing a maximum matching is a fundamental problem in

graph algorithms that has many applications. In the unweighted

version, known as the maximum cardinality matching problem,

the goal is to find a matching with the largest number of edges. In

the weighted version, each edge e has a positive real weightw(e),
and the goal is to find a matching maximizing the sum of its edge

weights. This paper primarily focuses on the fully dynamic model,

where the algorithm must maintain a matching in a graph that

undergoes edge insertions and deletions. The goal is to minimize

the update time, i.e., the time to process a single edge-change to

the graph. For exact matching, there is a conditional lower bound

of Ω(m1/2) update time [1, 24, 30], and thus, most research on dy-

namic matching focuses on maintaining an approximate maximum

matching.

There is a vast literature on approximate fully dynamic matching

in unweighted graphs. The state-of-the-art covers a large range

of different trade-offs between update times and approximation

ratios, as well as secondary features such as whether the algorithm

is amortized/worst-case or deterministic/randomized. Progress on

weighted matching lags far behind.

A general reduction of Stubbs and Williams [32] shows how to

convert any α-approximate algorithm for unweighted matching

into a (1/2 − ε)α-approximate algorithm for weighted matching

with nearly the same update time. Almost every state-of-the-art

algorithm for weighted matching comes from applying this reduc-

tion to existing unweighted algorithms. As far as we know, the

only exception is an algorithm of Gupta and Peng [23] with an

O(
√
m) update time and a (1 − ε)-approximation ratio, which can

be extended to weighted graphs with essentially the same bounds.

Except for Gupta and Peng’s result, all algorithms for weighted
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graphs have twice as large an approximation error as those for un-

weighted graphs. This gap is especially significant in the dynamic

matching setting, where approximation errors for unweighted algo-

rithms are typically small constants. Moreover, a 1/2-approximation

is considered a fundamental barrier for matching, and one cannot

use the Stubbs-Williams framework [32] to surmount this barrier

in weighted graphs.

By contrast, in related models such as streaming or distributed

algorithms, there are several recent algorithms for weighted match-

ing that match the best known results for unweighted matching.

Closing the weighted/unweighted gap in dynamic matching re-

mains a fundamental open problem, posed explicitly by Stubbs and

Williams [32] and Wajc [33].

1.1 Our Contribution

For all the results below, let R be the ratio between the heaviest

edge weight ever present in the graph and the lightest such edge

weight.

Bipartite graphs. In bipartite graphs, we effectively close the gap be-

tween weighted and unweighted graphs by showing a black-box re-

duction from dynamic weighted matching to dynamic unweighted

matching.

Result 1 (See Theorem 3.1). Let ε > 0 be some fixed constant. If there

is a fully dynamic algorithm Au that maintains an α-approximate

maximum cardinality matching with update time Tu , then there is a

fully dynamic algorithm Aw that maintains a (1 − ε)α -approximate

maximumweightmatching with update timeOε (Tu · logR). IfAu is

deterministic, worst-case, and/or works against an adaptive adversary,

then the same is true of Aw .

Our reduction immediately impliesmany new algorithms forweighted

matching, obtaining essentially the same bounds as those for un-

weighted matching. The black-box nature of our reduction also

makes it highly relevant for future work. We highlight three results

in particular:

(1) One of the biggest successes of dynamic unweighted match-

ing is (1/2 − ε)-approximate algorithms with polylog(n) update
time. For example, Bhattacharya, Henzinger, Nanongkai [15]

gave an algorithm that is amortized and deterministic, and

Wajc [33] gave an algorithm that is worst-case and randomized

(and works against adaptive adversaries). Our reduction ex-

tends both of these results to weighted graphs. Previously, the

analogous results for weighted graphs had an approximation

ratio of (1/4−ε). (There are also various unweighted results that
achieve a strict 1/2-approximation [6, 31] or constant update

time [12, 31]; our reduction cannot extend these to weighted

graphs due to the additional (1− ε) factor in the approximation

error and the log(R) factor in the update time.)

(2) Bernstein and Stein [10] gave a deterministic algorithm to main-

tain a (2/3−ε)-approximate maximumweight matching in an un-

weighted bipartite graph with worst-case update time O(m1/4).

Our reduction implies essentially the bounds for weighted

graphs. Previously, the analogous result for weighted graphs

had an approximation ratio of (1/3 − ε).

(3) Behnezhad, Łącki, and Mirrokni [7] and Wajc [33] both showed

algorithms that achieve a better-than-1/2 approximation with

arbitrarily small polynomial update time. Formally, for any

fixed δ > 0, there is an algorithm that maintains a (1/2 + Ω(1))-
approximate maximum cardinality matching with update time

O(nδ ). Our reduction leads to the first such results for weighted

matching, though unlike the unweighted algorithm of [7], our

extension is limited to bipartite graphs. (The algorithm of [7]

actually has update time O(∆δ ), where ∆ is the maximum de-

gree; it is easy to check that our reduction preserves ∆ up to a

constant and therefore has the same guarantee.)

Non-bipartite graphs. Our techniques also lead to a general frame-

work for dynamic weighted matching in non-bipartite graphs,

though it is not a universal reduction like Result 1. In particular,

the first two highlighted items above apply to non-bipartite graphs

as well.

Result 2 (See Theorem 5.11). For any fixed ε > 0, there exists a fully

dynamic algorithm that maintains a (1/2− ε)-approximate maximum

weight matching in update timeOε (log
5(n) log(R)). The algorithm is

worst-case, randomized (Las Vegas), and works against an adaptive

adversary.

Result 3 (See Theorem 5.12). For any fixed ε > 0, there exists a fully

dynamic algorithm that maintains a (2/3− ε)-approximate maximum

weight matching in update time Oε (m
1/4

log(R)). The algorithm is

deterministic and amortized.

Our two results each use an algorithm for unweighted matching

as a black box: Result 2 uses the algorithm of Wajc [33], while

Result 3 uses the algorithm of Bernstein and Stein [11]. Both results

essentially match the guarantees of these unweighted algorithms.

Previous weighted algorithms had twice as high an approximation

error.

Additional factors in the update time. All of our guarantees match

those of the corresponding unweighted algorithms almost exactly.

There are twominor caveats. Firstly, the update time is multiplied by

O(log(R)), which isO(log(n)) as long as weights are polynomial inn.
We can use the black box of Stubbs and Williams [32] to reduce the

dependence on R to log log(R); see Appendix A for details. Secondly,

our algorithms have a significantly worse dependence on ε : the

update time is multiplied by (1/ε)O (
1/ε)

. This term is still O(1) for
any fixed ε .

1.2 Techniques

Bipartite graphs. Our bipartite result, Result 1, is technically simple;

our main contribution here is showing how to combine ideas from

disparate parts of the matching literature.

We first observe that a bucketing scheme of Gupta and Peng [23],

while not presented as such, implies a black-box reduction from

general weights to integer weights in the range [1,(1/ε)O (
1/ε)

]. We

then show that in bipartite graphs, a technique called graph un-

folding by Kao, Lam, Sung and Ting [25] allows us to efficiently

transform a graph with small weights into an unweighted graph

ϕ(G) such that size of the maximum cardinality matching of ϕ(G)
is equal to the weight of the maximum weight matching in G. We
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can then use any unweighted matching algorithm Au as a black-

box to compute a matchingMu in ϕ(G). Finally, we show that the

matchingMu of ϕ(G) can be refolded into a low-degree subgraph

R(Mu ) ofG that contains a high-weight matching; we maintain the

maximum weight matching of R(Mu ) using a simple algorithm for

low-degree graphs.

Non-bipartite graphs. Our main technical contribution is for non-

bipartite graphs. We rely on the same tools above, but the challenge

is that in non-bipartite graphs, refolding a matching in ϕ(G) might

incur an extra 2/3-factor loss in the approximation ratio; this er-

ror is analogous to the integrality gap of non-bipartite graphs. To

avoid this loss, we observe that several existing algorithms for

unweighted graphs do not just compute a matching, but rather

compute a subgraph H with properties that guarantee that H con-

tains a large matching. The algorithm of Wajc [33] maintains a

subgraph called a kernel (introduced in [14]), while the algorithm

of Bernstein and Stein [10, 11] maintains a subgraph called an

edge-degree-constrained subgraph (EDCS).

The key to our non-bipartite results are two new structural theo-

rems that show that kernels and EDCS are refolding-approximate,

which, loosely speaking, means that they continue to contain a

large matching even after refolding. This means that they can be

used in our new unfolding/refolding framework without incurring

additional error. Our proofs of these structural theorems use the

probabilistic method to effectively reduce the non-bipartite case to

the bipartite one.

One advantage of our framework is that it does not require modi-

fying existing unweighted algorithms; we simply run those algo-

rithms as black-boxes in the unfolded graph ϕ(G) and show that

the properties of these algorithms are preserved. As a result, our

framework is simple and versatile.

1.3 Application to Other Models

None of the ingredients in our framework are specific to the dy-

namic model; graph unfolding was previously used only in the

regular static setting [25], and our new theorems about refolding-

approximate subgraphs are general structural claims. Our focus in

this paper is on dynamic algorithms because, prior to our work, the

dynamic setting had the most significant gap between the weighted

and unweighted approximation ratios.

Indeed, our framework translates seamlessly to other models, and

we use it to achieve new results for weighted matching in the

streaming and communication complexity models. All of our re-

sults have essentially the same bounds as the state-of-the-art for

unweighted matching; see Section 6 for details. We note that Gam-

lath, Kale, Mitrovic, and Svennson [21] also showed a reduction

from weighted to unweighted matching in the streaming models.

Their reduction has the advantage of applying more directly to

non-bipartite graphs, but it is significantly more complex and thus

works in a narrower range of settings. Most relevant to this paper,

their reduction cannot be applied in the dynamic setting, and in the

streaming setting, their reduction increases the number of passes

by a large constant, whereas ours preserves the number of passes

exactly.

2 PRELIMINARIES

Let G = (V , E,w) be a graph with edge weight functionw : E → R.
We use n = |V | to denote the number of vertices of G andm = |E |
the number of edges. For any U ⊆ V , we denote by NG (U ) the set
of neighbors of vertices in U in G, and by EG (U ) the set of edges
incident onU . For any v ∈ V , let degG (v) denote the degree of the
vertexv inG . For any positive integer x , we define [x] = {1, . . . , x}.

Our results have an exponential dependence on 1/ε . Throughout

the paper, we will use γε := (4/ε) ⌈
4/ε⌉

, a large constant that we incur

in update time through our reductions; see Appendix C for details.

To simplify notation, we will use Oε (·) to supress the dependence

on ε (and therefore γε ).

Dynamic graphs. In the fully dynamic setting, the input is aweighted

graph G = (V , E,w) subject to a sequence of updates, where each
update either inserts an edge into or deletes an edge from G. The
goal is to maintain a large matching in G while minimizing the

update time, i.e., the time to process an update.

We use R := maxe ∈E w(e)/mine ∈E w(e) to be the ratio between

the largest edge weight ever contained in G and the smallest edge

weight ever contained in G. In this paper, all the algorithms we

obtain have update times that depend on log(R). The dependence
can be reduced to log log(R) via a black-box reduction of Stubbs

and Williams [32]; see Appendix A for more details. We use ∆ to

denote the maximum degree ever attained by G.

Given a dynamic matching algorithm A, we say that A has worst-

case recourse σ if every adversarial update causes A to make at

mostσ most changes to thematching.We define amortized recourse

analogously.

In addition to the update time and recourse, a dynamic algorithm

may have several other features of interest, such as whether it

works against an adaptive adversary, whether it is amortized or

worst-case, and whether it is deterministic or randomized. We refer

to these as the algorithm’s secondary features.

Matchings. AmatchingM is a subset of edges, no two ofwhich share

an endpoint. Amaximum cardinality matching inG is a matching of

maximum possible size; we denote this maximum size by mcm(G).
For graphs G with weighted edges, a maximum weight matching

is a matching maximum the sum of its edge weights; we denote

this maximum weight by mwm(G). For α ∈ (0, 1], a matching M
is said to be an α-approximate maximum cardinality matching if

|M | ≥ α ·mcm(G) and an α -approximate maximum weight matching

ifw(M) ≥ α · mwm(G).

In our results, we use a deterministic algorithm that maintains a

(1 − ε)-approximate maximum weight matching in a low-degree

graph. The algorithm is a trivial extension of an existing unweighted

algorithm of Gupta and Peng [23]; see Appendix B for formal proof.

Theorem 2.1 ([23]). Let G be a dynamic weighted graph, with

weights in range [W ]. For ε ∈ (0, 1), there exists a fully dynamic de-

terministic algorithm that maintains a (1−ε)-approximate maximum

weight matching in G with worst-case update time O(∆W 2/ε2).
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Probabilistic tools. We will use the following standard variant of

the Chernoff bound.

Proposition 2.2 (Chernoff bound). Let Z1, . . . ,Zn be negatively

correlated random variables such that Zi ∈ [0, 1] for all i ∈ [n], and
let Z =

∑n
i=1 Zi . If E [Z ] ≤ λ, then for any δ > 0,

Pr (|Z − E [Z ]| ≥ δ · λ) ≤ 2 · exp

(
−δ2λ/3

)
.

We also need the following version of the Lovász Local Lemma

(LLL).

Proposition 2.3 (Lovász Local Lemma). Letp ∈ (0, 1) and letd ≥ 1.

Suppose E1, . . . , Et are t events such that Pr (Ei ) ≤ p for all i ∈ [t]
and each Ei is mutually independent of all Ej except (at most) d other

events Ej . If p · (d + 1) < 1/e , then Pr

(⋂n
i=1 Ei

)
> 0.

3 A NEW REDUCTION TO UNWEIGHTED
MATCHINGS IN BIPARTITE GRAPHS

The main theorem of this section is the following formalization

of Result 1, which leverages a black-box reduction from weighted

bipartite matching to unweighted bipartite matching. Recall that

γε = (4/ε)
⌈4/ε⌉

; for any fixed ε , we have γε = O(1).

Theorem 3.1. Let G be a weighted bipartite graph and let ε > 0. If

there is an algorithm Au that maintains an α-approximate maxi-

mum cardinality matching in a dynamic unweighted bipartite graph

G with update timeTu (n,m,α), and ifAu has recourse σu (n,m,α) =
O(Tu (n,m,α)), then there exists an algorithm Aw that maintains a

(1 − ε)α -approximate maximum weight matching in weighted bipar-

tite graphs with update timeOε (Tu (γεn,γεm,α) · log(R)), where R is

the ratio between the heaviest edge weight ever present in the graph

and the lightest such edge weight. Further, the secondary features of

Aw are same as those of Au .

Remark 3.2. Theorem 3.1 requires the unweighted algorithm Au
that we plug in to satisfy σu = O(Tu ). This assumption automatically

holds when one defines the dynamic matching problem in the most

natural way: If a dynamic matching algorithm is required to maintain

an explicit list of the edges in the maintained matching, then it will

need to spend O(1) per change to the matching, and thus will have

σu = O(Tu ).

An algorithm has σu > Tu only if the output matching is stored

implicity. As far as we know, the only dynamic matching algorithm

in the literature with σu > Tu is the maximal matching algorithm

of Bernstein, Forster, and Henzinger [9]. Their algorithm maintains

several different matchings along with a pointer to a matching that is

guaranteed to be correct at the current time. An update may change

the pointer in their algorithm from one solution to another. As a result,

a single update might require only O(1) update time, and yet cause

the algorithm to point to a matching with a completely different set

of edges. Our Result 1 can be easily modified to convert unweighted

algorithms of this form as well.

3.1 Previous Work

Graph unfolding. We start by describing the reduction fromweighted

to unweighted bipartite matchings through a transformation called

graph unfolding due to Kao et al. [25]. Although our focus in this

section is bipartite graphs, we note that graph unfolding can be

applied to non-bipartite graphs as well, which we will consider in

Section 4.

Definition 3.3. Let G = (V , E,w) be a graph with non-negative

integral edge weights. The unfolded graph ϕ(G) is an unweighted

graph defined as follows. For each node u ∈ V (G), there are βu copies

of u in ϕ(G), denoted by u1, . . . ,uβu , where βu = maxe ∋u w(e).
Corresponding to each edge e = uv in G, there arew(e) edges{
uivw (e)−i+1

}
i ∈[w (e)]

in ϕ(G).

Observe that unfolding a subgraph K ⊆ G produces a subgraph

ϕ(K) ⊆ ϕ(G); in particular, unfolding a (weighted) matching M
of G produces an (unweighted) matching ϕ(M) of ϕ(G). The key
property of graph unfolding in bipartite graphs is the following:

Theorem 3.4 ([25]). If G is a weighted bipartite graph, then

mwm(G) = mcm(ϕ(G)).

The assumption that G is bipartite in Theorem 3.4 is necessary; if

the graph is not bipartite, mcm(ϕ(G)) could be up to 1.5 times larger

than mwm(G), exhibited by a triangle with all edges of weight 2.

Nonetheless, we will later see that one can sensibly apply graph

unfolding to nonbipartite graphs.

We will often want to “reverse” the operation of unfolding to obtain

a subgraph back in G, an operation we call graph refolding.

Definition 3.5. Let G be a weighted graph and let H ⊆ ϕ(G). The
refolded graph R(H ) of H has vertex set V and edges E(R(H )) ={
uv ∈ G : uivw (uv)−i+1 ∈ H for some i ∈ [w(uv)]

}
.

Observation 3.6. Let G be a weighted bipartite graph. If M is

an α-approximate maximum cardinality matching of ϕ(G), then
mwm(R(M)) ≥ α · mwm(G).

Proof. Since R(M) is bipartite, by Theorem 3.4, mwm(R(M)) =
mcm(ϕ(R(M))). Observing that thatM ⊆ ϕ(R(M)), we further have
mcm(ϕ(R(M))) ≥ |M |. Finally, sinceM is α-approximate in ϕ(G), it
follows that |M | ≥ α · mcm(ϕ(G)) = α · mwm(G), where we have
used Theorem 3.4 again to justify the last equality.

The reduction of Gupta and Peng. We now state a reduction of Gupta

and Peng [23] that allows us to effectively assume the maximum

weight of the input graph is a large constant. In their paper, Gupta

and Peng do not emphasize that their reduction can be used as

a black box; indeed, they only apply their reduction to a specific

weighted matching algorithm. But without changing their argu-

ment, their techniques apply to any weighted matching algorithm,

giving the following theorem. See the appendix for more details.

Theorem3.7 ([23]). LetG be a weighted graph and let ε ∈ (0, 1/2). If
there is an algorithmA that maintains an α -approximate maximum

weight matching in a graph whose weights belong to [W ] with update
time T (n,m,α,W ), then there is an algorithm A ′ that maintains a

(1 − ε)α-approximate maximum weight matching in G in update

timeOε (T (n,m,α,γε ) · log(R)). Moreover,A has the same secondary

features as A ′.
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3.2 A New Reduction to Unweighted Matching
via Graph Unfolding

We now state the core of our reduction. Let Au be a dynamic al-

gorithm for maintaining an α-approximate maximum cardinality

matching in update time Tu (n,m,α), and let Ab be the dynamic

algorithm formaintaining amaximumweightmatching in bounded-

degree weighted graphs implied by Theorem 2.1. We now give our

algorithm A ′w that, using Au and Ab as black boxes, maintains

a (1 − ε)α-approximate maximum weight matching in a dynamic

weighted graph G whose weights are all in the set [W ]. Our reduc-
tion will incur a large dependence onW which we reduce later

using Theorem 3.7.

ALGORITHM 1: BipartiteReduction
Result: Maintain a (1 − ε)α-approximate maximum weight

matching in a bipartite graph with weights [W ].
Input: An insertion or deletion of edge uv .

1 Insert (delete) edges uivw (uv)−i into (from) ϕ(G) for

i ∈ [w(uv)].

2 Use Au to maintain a matchingMu of ϕ(G).

3 Update R(Mu ) by tracking updates toMu .

4 Use Ab to maintain a weighted matchingM of R(Mu ).

Lemma 3.8. The matching M maintained by A ′w is a (1 − ε)α-
approximate maximum weight matching.

Proof. By the guarantees of Au , the matching Mu of ϕ(G) is
α-approximate. Observation 3.6 states that mwm(R(Mu )) ≥ α ·
mwm(G). Finally, Ab maintains a weighted matchingM such that

w(M) ≥ (1 − ε) · mwm(R(Mu )) ≥ (1 − ε)α · mwm(G).

Lemma 3.9. The update time of Algorithm 1 is

O(W 4 ·Tu (nW ,mW ,α)/ε
2).

Proof. First observe that for every edge uv that is updated in G,
at mostW edges are updated in ϕ(G). By the update time of Au ,

it takesW ·Tu (nW ,mW ,α) total time to maintain Mu after these

W updates to ϕ(G). Clearly the number of changes to Mu cannot

be more than the total update time, and thus there are also at most

W ·Tu (nW ,mW ,α) changes toMu .

Each update toMu in turn triggers at most one update to R(Mu ).

Since we use Ab to process updates to R(Mu ) and the maximum

degree of R(Mu ) isW , the update time ofAb per udpate to R(Mu )

is O(W 3/ε2). Thus, by Theorem 2.1, the update time per update to

G is O(W 4 ·Tu (nW ,mW ,α)/ε
2).

To reduce the dependence of A ′w onW , we apply the bucketing

scheme of Gupta and Peng (Theorem 3.7), as illustrated in the

following proof of Theorem 3.1.

Proof of Theorem 3.1. Suppose Tu is the runtime of Au . Then,

the previous two lemmas, Lemma 3.8 and Lemma 3.9, state that

A ′w maintains a (1 − ε)α-approximate maximum weight match-

ing in a weighted graph G in O(W 4 · Tu (nW ,mW ,α)/ε
2) update

time. Applying Theorem 3.7 to A ′w with T (n,m,α,W ) = O(W 4 ·

Tu (nW ,mW ,α)/ε
2), we obtain an algorithm Aw that maintains a

(1 − 2ε)α-approximate maximum weight matching in update time

Oε (Tu (γεn,γεm,α) · log(R)).

All the subroutines we use—folding, refolding, Ab , and the black

box of Theorem 3.7— are worst-case and deterministic. Thus, the

secondary features of Au carry over to Aw .

4 NON-BIPARTITE GRAPHS AND
REFOLDING-APPROXIMATE SUBGRAPHS

As noted in the previous section, unfolding a non-bipartite graphG
poses additional issues. Since a matching in ϕ(G) is akin to a frac-

tional matching inG , the unfolded graphϕ(G)may have a matching

up to 1.5 times larger than the maximum weight matching inG . At
the same time, a maximum cardinality matching in ϕ(G)may refold

into a graph that does not contain a maximum weight matching of

G. In other words, both Theorem 3.4 and Observation 3.6 are false

when G is not bipartite.

4.1 A New Reduction for Weighted Matchings
in General Graphs

In this section, we show that if a subgraph H of ϕ(G) has suffi-

cient structure, then R(H ) may still contain a good matching. This

motivates the following definition.

Definition 4.1. Let G be a weighted graph. A subgraph H of ϕ(G)
is α-refolding-approximate if

mwm(R(H )) ≥ α · mwm(G).

In Section 5, we will show that certain natural subgraphs H have

the property that, even in non-bipartite graphs, they incur only

a (1 − ε)-factor-loss in approximation after refolding, rather than

the generic 2/3-factor. For example, we will show that if H is a

kernel of ϕ(G) (defined in Section 5), then H contains a (1/2 − ε)-
approximate maximum cardinality matching in ϕ(G) and is also

(1/2 − ε)-refolding-approximate. The existence of such graphs is

itself not a priori obvious and is one of the key contributions of this

paper.

We leave these structural theorems for the next subsection. Here,

we formalize why maintaining a matching in a weighted graph

can be reduced to maintaining a refolding-approximate subgraph

of an unweighted graph. We maintain such subgraphs by running

existing unweighted algorithms as black-boxes on the unfolded

graph ϕ(G). Note that a single update to a graphG with weights in

[W ] can cause up toW updates toϕ(G); each of these updates might

then cause the unweighted algorithm on ϕ(G) to make multiple

updates toH , the α-refolding-approximate subgraph. To bound this

cascade of updates, we introduce the following definitions.

Definition 4.2. Let A be an algorithm that maintains a subgraph

H of an unweighted graph G. We say that A has update ratio r if
any update to G results in at most r changes to H . We say that is has

amortized update ratio r if for any large enough sequence S of edge

changes (insertions or deletions) to G, the algorithm makes at most

r |S | edge changes to H .
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Definition 4.3. LetG be any weighted graph. LetA be an algorithm

that maintains a subgraph H of ϕ(G). We say that A has unfolded

update ratio r if any update to G results in at most r changes to H .

We define unfolded amortized update ratio analogously.

We now state our main theorem, which converts any algorithm

that maintains an α-refolding-approximate subgraph of ϕ(G) into
one that maintains α(1 − ε)-approximate matching of G.

Theorem 4.4. Let G be a graph on n vertices and m edges with

weights in [W ], and let ε > 0. If there is an algorithm Bu that

maintains an α-refolding-approximate subgraph H of ϕ(G) over up-
dates to G with update time Tu (n,m,α,W ) (per update to G), re-
course σu (n,m,α,W ) = O(Tu (n,m,α,W )), and unfolded update ra-
tio Cu (n,m,α,W ), then there is an algorithm Bw that maintains a

(1 − ε)α-approximate maximum weight matching in G with update

time

Oε ((Tu + ∆HCu )(γεn,γεm,α,γε ) · log(R)).

Further, the secondary features of Bu extend over to Bw as well. (For

Bw to be worst-case, both update time and unfolded update ratio of

Bu must be worst-case.)

Towards proving Theorem 4.4, we describe an algorithm B′w that,

given as input a dynamic graphG with weights in [W ], uses Bu and

Ab as a subroutine and maintains a (1−ε)α-approximate maximum

weight matching at all times. The update time has a polynomial

dependence onW , which we later convert into a large constant

using the reduction of Gupta and Peng (Theorem 3.7).

ALGORITHM 2: NonBipartiteReduction
Result: Maintain a (1 − ε)α-approximate maximum weight

matching in a (possibly non-bipartite) graph with

weights [W ].
Input: An insertion or deletion of edge uv .

1 Insert (delete) edges uivw (uv)−i+1 into (from) ϕ(G) for

i ∈ [w(uv)].

2 Use Bu to maintain an α-refolding-approximate subgraph H

of ϕ(G).

3 Update R(H ) by tracking updates to H .

4 Use Ab to maintain a weighted matchingM of R(H ).

Lemma 4.5. ThematchingM maintained byB′w is a (1−ε)α -approximate

maximum weight matching of G.

Proof. By Definition 4.1, the subgraph R(H ) maintained with the

help of Bu contains an α-approximate maximum weight matching.

Thus, running Ab on R(H ) finds a matchingM such thatw(M) ≥
(1 − ε) · mwm(R(H )) ≥ (1 − ε)α · mwm(G).

Lemma 4.6. The update time of Algorithm 2 is O(Tu (n,m,α,W ) +
W 3∆H ·Cu (n,m,α,W )/ε

2).

Proof. The proof is similar to the proof of Lemma 3.9, except now

we use the update ratio to bound the number of changes to R(H ).

After an update uv in G, it takes O(Tu (n,m,α,W )) time to main-

tain H . Since Cu (n,m,α,W ) is the unfolded update ratio, the num-

ber of changes triggered in H due to an update in G is at most

Cu (n,m,α,W ). Note that each update in H can cause at most one

update in R(H ). Additionally, the maximum degree of R(H ) is at
mostW ·∆H . So the total time taken by Algorithm 2 in response to a

single update toG isO(Tu (n,m,α,W )+W
3∆H ·Cu (n,m,α,W )/ε

2).

Proof of Theorem 4.4. The two previous lemmas, Lemma 4.5 and

Lemma 4.6, state that B′w maintains a (1 − ε)α-approximate maxi-

mum weight matching in

O(Tu (n,m,α,W ) +W
3∆H ·Cu (n,m,α,W )/ε

2)

update time. Applying Theorem 3.7 to B′w , we obtain an algorithm

Bw that maintains a (1−2ε)α-approximate maximumweight match-

ing in update time Oε ((Tu + ∆H ·Cu )(n,m,α,γε ) · log(R)).

All the subroutines we use—folding, refolding, Ab , and the black

box of Theorem 3.7—are worst-case and deterministic. Thus, the

secondary features of Au carry over to Aw .

5 KERNELS AND EDCS ARE REFOLDING
APPROXIMATE SUBGRAPHS

In this section, we prove that two existing matching sparsifiers

for unweighted graphs—kernels and edge-degree-constrained sub-

graphs (EDCS)—are refolding approximate.

5.1 Existing Work in Unweighted Graphs

We first review existing work on the two sparsifiers and their prop-

erties in unweighted graphs.

Kernels. The first matching sparsifier we consider is the kernel,

introduced in [14].

Definition 5.1. A subgraph H of an unweighted graphG is a (d, ε)-
kernel if the following two properties hold:

(1) for every vertex v ∈ G we have deg(v) ≤ d , and

(2) for every edge uv ∈ G \ H we have max{deg(u), deg(v)} ≥
(1 − ε)d .

Arar, Chechik, Cohen, Stein and Wajc [3] proved that every (d, ε)-

kernel contains a

(
1−ε

2(1+1/d )

)
-approximate maximum cardinality

matching. In bipartite graphs, following their proof exactly and

using that bipartite graphs are ∆-edge-colorable—where ∆ is the

maximum degree of the graph—gives the following simpler (inde-

pendent of d) approximation ratio.

Theorem 5.2 ([3]). Let G be an unweighted bipartite graph, let

d ∈ N, and let ε > 0. If H is a (d, ε)-kernel of G, then mcm(H ) ≥
1−ε
2
· mcm(G).

Recently, Wajc [33] showed that kernels can be maintained in

polylog(n) update time against adaptive adversaries. More precisely,

he proved the following theorem.

Theorem 5.3 ([33]). Let G be an unweighted graph and let ε ∈
(0, 1/2). For d = Θ(logn ·poly(1/ε)), there is a randomized (Las Vegas)

algorithm that maintains a (d, ε)-kernel of G in worst-case update

timeO((log4n +d logn) · poly(1/ε)) with high probability against an

adaptive adversary.
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Edge-degree-constrained subgraphs (EDCS). Another matching spar-

sifier used in dynamic graph algorithms is the edge-degree-constrained

subgraph (EDCS), introduced in [10].

Definition 5.4. A subgraph H of an unweighted graphG is a (d, ε)-
EDCS if the following two properties hold:

(1) for every edge uv ∈ E(H ) we have deg(u) + deg(v) ≤ d , and

(2) for every edge uv ∈ E(G) \ E(H ) we have deg(u) + deg(v) ≥
(1 − ε)d .

The EDCS strikes a different trade-off from the kernel: it obtains a

(2/3 − ε)-approximate maximum cardinality matching and can be

maintained inO(m1/4/ε5/2) update time. The approximation ratio of

the EDCS in bipartite graphs was established in [10]. Later, it was

shown by the same authors [11] that the EDCS obtains the same

(2/3 − ε) approximation ratio in general graphs. A simpler proof

with improved parameters was presented in [5].

Theorem 5.5 ([5, 10]). Let G be an unweighted bipartite graph, let

ε < 1/2, and let d ≥ 16/ε . If H is a (d, ε)-EDCS of G, then mcm(H ) ≥
(2/3 − 4ε)mcm(G).

The following theorem, proved in [11], says that, with the appro-

priate choice of d , an EDCS can be maintained in the fully dynamic

setting in update time sublinear in the number of vertices.

Theorem 5.6 ([11]). Let G be an unweighted graph. For d ≥ 36/ε ,
there is a deterministic algorithm that maintains a (d, ε)-EDCS of G
inO(
√
m/(ε2d)) amortized update time withO(1/ε) amortized update

ratio. (Note that this Theorem can be applied with d a function ofm

such as d =m1/4
; this was done in the algorithm of [11] and we apply

their algorithm as a black box.)

5.2 Kernels Are Refolding-Approximate

We now show that kernels are nearly 1/2-refolding approximate—

see Theorem 5.9 for the precise statement. Our proof relies an

the existence of a partition of vertices of G that (1) preserves the

maximum weight matching and (2) roughly halves the degrees of

all vertices in the unfolded graph ϕ(G). The existence of such a

partition was established for unweighted graphs in [5]; here we

generalize their proof.

Lemma 5.7. LetG be a weighted graph with maximum weightW , let

δ ∈ (0, 1/2), and let d ≥ 36δ−2 log(W /δ ). For any subgraphH of ϕ(G)
with maximum degree at most d , there exists a bipartite subgraph G̃
of G such that, setting H̃ := H ∩ ϕ(G̃),

(1) mcm(ϕ(G̃)) = mwm(G), and

(2)

��� degH̃ (v)−degH (v)
2

��� ≤ δd for all vertices v ∈ V (H ).

Proof. The proof is based on the probabilistic method. Fix a max-

imum weight matching M∗ in G. We produce a random bipartite

subgraph G̃ = (L ∪ R, Ẽ) of G as follows. For each edge matched by

M∗, we randomly and choose one endpoint to be in L and then put

the other endpoint in R, independent of all other choices. For every
vertex unmatched byM∗, we place it in L with probability 1/2 and

in R with probability 1/2, again independent of all other choices.

The edges Ẽ of G̃ are precisely those edges with one endpoint in L
and one endpoint in R.

The bipartite subgraph G̃ induces a corresponding bipartite sub-

graph ϕ(G̃) in the unfolded space. Since M∗ ⊆ G̃ by construc-

tion and since G̃ is bipartite, mwm(G) = w(M∗) = mwm(G̃) =
mcm(ϕ(G̃)), as desired. (The last inequality follows from Theorem

3.4, since G̃ is bipartite.)

Now let H be any subgraph of ϕ(G) whose maximum degree is

at most d . It suffices to show that with nonzero probability, H̃ :=

H ∩ ϕ(G̃) satisfies the second condition. For each vertex v ∈ ϕ(G),

let Ev be the “bad” event that

��� degH̃ (v)−degH (v)
2

��� > δd , and let

Xv := degH̃ (v). Notice that we can write Xv as the sum of indepen-

dent indicators; each edge uw ∈ M∗ ∩ H [v ∪ NH (v)] contributes 1
to Xv and every neighbor u not matched to a vertex in v ∪ NH (v)
contributes 1 if it is not assigned to the same side of the bipar-

tition as v . Thus, Xv is the sum of independent Bernoullis, and

further, E [Xv ] =
degH (v)+1

2
ifv is unmatched byM∗ and otherwise

E [Xv ] =
degH (v)

2
. Thus the bad event Ev simply occurs when Xv

is not sufficiently concentrated around its mean.

As Xv is the sum of independent Bernoullis, we may bound its

deviation with a standard Chernoff bound, and thus,

Pr(Ev ) = Pr

( ��
degH̃ (v) − degH (v)

��
2

≥ δd

)
≤ Pr(|Xv − E [Xv ] | ≥ δd/2)

≤ 2 exp(−δ 2d/12)

≤ 2 exp(−3 log(W/δ ))

≤ 2 exp(−3 log(dW ))

= 2(dW )−3.

We now want to apply the Lovász Local Lemma, and so we must

argue that Ev is independent of all but relatively few other events.

Let ui ,w j ∈ H . If u andw (vertices inG) are not within two hops of

each other inG , then Eu i and Ew j are independent by construction

ofϕ(G̃). Thus, each Ev is independent of all but at most (dW )2 other
bad events, and since 2(dW )−3 · ((dW )2+1) ≤ 1/e , the Lovász Local

Lemma states that

⋂
v ∈ϕ(G) Ev occurs with nonzero probability.

Observation 5.8. Let G be a weighted bipartite graph. If H is a

subgraph of ϕ(G), then H ⊆ ϕ(R(H )). It follows that mcm(H ) ≤
mcm(ϕ(R(H ))) = mwm(R(H )), where Theorem 3.4 justifies the last

equality.

Theorem 5.9. Let G be a (possibly non-bipartite) graph with edge

weights in [W ] and let d ≥ 4 · 36ε−2 log(2W/ε). If H is a (d, ε)-kernel
of ϕ(G), then H is (1/2 − 3ε/2)-refolding-approximate.

Proof. Let G̃ be the bipartite subgraph of G from Lemma 5.7, and

let H̃ = H ∩ ϕ(G̃). Note that H̃ is bipartite since ϕ(G̃) is bipartite.
Observe that mwm(R(H̃ )) ≤ mwm(R(H )) because R(H̃ ) ⊆ R(H ).
We now show that H̃ has a large matching by showing that it is a

kernel of ϕ(G̃).
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Suppose v ∈ V (H ). By taking δ = ε/2 and applying Lemma 5.7, we

have

degH̃ (v) ≤ degH (v)/2 + δd ≤ (1 + ε)d/2.

Now suppose uv ∈ ϕ(G̃) \ H̃ . Since uv < H̃ but u and v are on

opposite sides of the bipartition, the edge uv ∈ G \H . Because H is

a (d, ε)-kernel, one of its endpoints has degree at least (1 − ε)d in

H ; we may assume w.l.o.g that v is that endpoint. Again applying

Lemma 5.7 we have that in H̃ :

degH̃ (v) ≥ degH (v)/2 − δd ≥ (1 − 2ε)d/2 ≥ (1 − 3ε)(1 + ε)d/2.

Thus, H̃ is a ((1 + ε)d/2, 3ε)-kernel of ϕ(G̃).

Putting everything together,

mwm(R(H )) ≥ mwm(R(H̃ )) (since R(H̃ ) ⊆ R(H ))

≥ mcm(H̃ ) (by Observation 5.8)

≥
1 − 3ε

2

· mcm(ϕ(G̃)) (by Theorem 5.2)

=
1 − 3ε

2

· mwm(G).

5.3 EDCS Are Refolding-Approximate

Theorem5.10. LetG be a (possibly non-bipartite) graphwith weights

in [W ] and let d ≥ 16 ·36ε−2 log(4W /ε). IfH is a (d, ε)-EDCS of ϕ(G),
then H is (2/3 − 12ε)-refolding-approximate.

Proof. Let G̃ be the bipartite subgraph ofG from Lemma 5.7, and let

H̃ = H ∩ ϕ(G̃). Observe that mwm(R(H̃ )) ≤ mwm(R(H )) because
R(H̃ ) ⊆ R(H ). We now show that H̃ has a large matching by

showing that it is an EDCS of ϕ(G̃).

Suppose uv ∈ H̃ . By Lemma 10, taking δ = ε/4, we have

degH̃ (uv) ≤ degH (uv)/2 + 2δd ≤ (1 + ε)d/2.

Now suppose uv ∈ ϕ(G̃) \ H̃ . Since uv ∈ ϕ(G) \ H and H is a

(d, ε)-EDCS, we have

degH̃ (uv) ≥ degH (uv)/2 − 2δd ≥ (1 − 2ε)d/2.

Finally, since (1 − 2ε) ≥ (1 − 3ε)(1 + ε), it follows that H̃ is a

((1 + ε)d/2, 3ε)-EDCS of G̃.

Putting everything together,

mwm(R(H )) ≥ mwm(R(H̃ )) (since R(H̃ ) ⊆ R(H ))

≥ mcm(H̃ ) (by Observation 5.8)

≥ (2/3 − 12ε)mcm(ϕ(G̃)) (by Theorem 5.5)

= (2/3 − 12ε)mwm(G).

5.4 Results on Dynamic Weighted Matching in
General Graphs

Since kernels and EDCS are refolding-approximate, we can can

apply Theorem 4.4 to obtain algorithms for weighted non-bipartite

graphs. More precisely, we have the following two theorems.

Theorem 5.11. Let G be a (possibly non-bipartite) weighted graph

and let ε > 0. There is randomized (Las Vegas) algorithm that main-

tains a (1/2 − ε)-approximate maximum weight matching with high

probability and against an adaptive adversary in worst-case update

time Oε (log
5(n) log(R)).

Proof. Choosing d = Θ(log(n) · poly(1/ε)), we can compute a

(d, ε)-kernel H of ϕ(G) using the algorithm of Theorem 5.3 in

Tu = O(log4(W · n) · poly(1/ε)) worst-case update time. By The-

orem 5.9, H is (1/2 − ε)-refolding-approximate. Since each update

in G leads to at mostW updates in ϕ(G), and since the number of

updates toH is bounded byTu , we haveCu =W ·Tu . Applying The-
orem 4.4, there is an algorithm to maintain a (1/2 − ε)-approximate

maximum weight matching of G in Oε (log
5(n) log(R)) worst-case

update time that works against an adaptive adversary with high

probability.

Theorem 5.12. Let G be a dynamic weighted (not necessarily bi-

partite) graph and let ε > 0. There is deterministic algorithm that

maintains a (2/3 − ε)-approximate maximum weight matching with

amortized update time Oε (m
1/4

log(R)).

Proof. Choosing d = 16 · 36ε−2 log(4W /ε) ·m1/4
, we can compute

an EDCS H of ϕ(G) with update time O((m ·W )1/4) and amortized

update ratio O(1/ε) by Theorem 5.6. However, these update times

and update ratios are with respect to updates in ϕ(G). As discussed
before, each update in G triggers at mostW updates in ϕ(G). So
the update time and the amortized refolding update ratio for H

are O((m ·W )1/4 ·W ) and O(W /ε), respectively. Applying Theo-

rem 4.4 with Tu = O((m ·W )1/4 ·W ) and Cu = O(W /ε), and from

Theorem 5.10, we have an algorithm that maintains a (2/3 − 2ε)-

refolding-approximate subgraph with update time Oε (m
1/4

log(R)).

6 FURTHER APPLICATIONS

The framework introduced in this paper is applicable beyond the

dynamic setting. Indeed, the tools we use are quite general and

easily translate to a wide variety of models. In this section, we

demonstrate how to use our framework to obtain new results for

weightedmatching in the semi-streamingmodel and in the one-way

two-player communication complexity model.

6.1 Previous Work: Revisiting Gupta and
Peng’s Reduction

One of the basic tools of our framework was the bucketing scheme

of Gupta and Peng [23] (see Theorem 3.7), which allowed us to

effectively reduce edge weights to a large constant. Although they

described this scheme in the context of a particular algorithm for

dynamic graphs, it is in fact extremely general and can be applied

to almost any model. In this subsection, we state the consequences

of this reduction to different models of interest; see Appendix C for

the proofs of these theorems.

Theorem 6.1. If there is a p-pass semi-streaming algorithm Aw to

compute an α-approximate maximum weight matching in a graph

whose edge weights are in [W ] and that uses space S(n,m,W ,α),
then there is an p-pass semi-streaming algorithm A ′w to compute

a (1 − ε)α-approximate maximum weight matching with weights

in R+ using space Oε (S(n,m,γε ,α) log(n)). Further, if Aw works for
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vertex-order edge arrivals or random-order edge arrivals, then so does

A ′w .

Theorem 6.2. If there exists a one-way communication complexity

protocol for the maximum weight matching problem in a graph with

edge weights in [W ] using C(n,m,W ,α) bits of communication, then

there exists a protocol to compute a (1 − ε)α -approximate maximum

weight matching with weights in R+ using Oε (C(n,m,γε ,α) log(n))
bits of communication.

6.2 Semi-Streaming in Bipartite Graphs

Model definition. In the semi-streaming model, the goal is to solve a

problem over a stream of the input graph’s edges while only using

Õ(n) space. The main focus is typically on one-pass algorithms,

which are only permitted to read the stream of edges once. For

many problems, including computing maximum weight matchings,

strong barriers are known for one-pass algorithms [22, 26] and so

p-pass algorithms for p > 1 have also received much attention [2,

18, 19, 28, 29].

The semi-streaming model is doubly worst-case in the sense that

algorithms should work both for any input graph and any per-

mutation of the graph’s edges. In many instances, requiring that

the algorithm works against an adversarially-ordered stream is

unnecessarily restrictive. One standard relaxation is to assume that

the edges arrive in random order. For bipartite graphs, another

relaxation is to assume a vertex arrival order, where each vertex

on a fixed side of the bipartition arrives with all its incident edges.

In other words, the edges are streamed to the algorithm from the

adjacency list of one side of the bipartition.

Our results. As in the dynamic graph setting, we can use our frame-

work to show that any semi-streaming algorithm for approximate

unweighted matching can be converted to one for approximate

weighted matching with exactly the same number of passes and

essentially the same space and approximation guarantees. The high-

level approach is identical to the dynamic setting:We first use graph

unfolding to compute a maximum weight matching in a bipartite

graph whose weights are in [W ], and then we apply Theorem 6.1 to

reduce the dependence onW . In particular, we have the following

theorem.

Theorem6.3. LetG be a weighted bipartite graph and let ε ∈ (0, 1/2).
If there exists a p-pass semi-streaming algorithm Au to compute an

α-approximate maximum cardinality matching using Su (n,m,α)
space, then there exists a p-pass semi-streaming algorithm Aw to

compute an (1 − ε)α -approximate maximum weight matching using

Oε (Su (γεn,γεm,α) log(n)) space. Further, if Au works for vertex-

order arrivals, then so does Aw .

Remark 6.4. We note that although the bucketing scheme of Gupta

and Peng can also be used for random edge arrivals (Theorem 6.1),

our reduction in Theorem 6.3 cannot. The reason is that even if edges

arrive in a random order in G, the order will not be random in the

unfolded graph ϕ(G). See the conclusion section for a more detailed

discussion.

Proof (Theorem 6.3). Let Au be the unweighted matching algo-

rithm that uses space Su (n,m,α). We describe how to compute an

α-approximate maximum weight matching in a graph whose edge

weights are in [W ] using Au . On the arrival of edge uv , we stream

the corresponding edges {uivw (uv)−i+1}i ∈[w (uv)] of ϕ(G) to Au .

At the end of the stream, Au reports an α-approximate maximum

weight matching Mϕ in ϕ(G) using Su (nW ,mW ,α) space. By Ob-

servation 3.6, the graph R(Mϕ )—which we can easily recover from

Mϕ—contains an α-approximate maximum weight matching ofG.
Since we can compute the maximum weight matching of G offline,

this completes the reduction.

Notice that to preserve vertex-order, we cannot just stream the

unfolded edges as is suggested above. However, by storing all the

edges incident to a single vertex in G in memory for the duration

of that vertex’s arrival, we can produce the corresponding vertex-

order stream in ϕ(G).

Thus, using Au , we have obtained an algorithm to compute a

maximum weight matching in a graph with edge weights in [W ].
To finish the proof, we apply Theorem 6.1.

Applications of our results. Theorem 6.3 has several consequences

for computingmaximumweight matchings in the streaming setting:

(1) It is a major open question as to whether there exists a one-

pass semi-streaming algorithm to compute a better-than-1/2-

approximation to the maximum cardinality matching problem.

Our theorem shows that any such algorithm would also break

the 1/2-approximation barrier for weighted bipartite graphs.

(2) For vertex arrivals, one can compute significantly better than

a 1/2-approximation. A seminal result of Karp, Vazirani, and

Vazirani [27] showed how to compute a (1−1/e)-approximation

in vertex-ordered streams with randomization (indeed, their

algorithm was designed for the more restrictive online setting).

More recently, Goel, Khanna, and Kapralov [22] gave a deter-

ministic single-pass algorithm for vertex-ordered streams with

the same approximation guarantee. Kapralov [26] then showed

these algorithms are tight: no one-pass algorithm can obtain a

better-than-(1 − 1/e)-approximation using Õ(n) space. Utilizing
our reduction, we effectively settle the problem of weighted

matchings in vertex-ordered streams: our algorithm computes

a a (1 − 1/e − ε)-approximation in Õ(n) space. To the best of

our knowlege, no previous algorithm obtained a better-than-1/2-

approximation in the vertex-arrival setting with edge weights.

(3) There are several semi-streaming algorithms for unweighted

graphs that go beyond the 1/2-approximation barrier by using 2

or 3 passes instead of a single pass [19, 28, 29]. Our Theorem 6.3

yields algorithms for weighted bipartite graphs with essentially

the same bounds. As far as we know, these are the first such

results for weighted graphs.

6.3 One-Way Communication Complexity in
Non-Bipartite Graphs

Model definition. In the one-way two-player communication com-

plexity model, Alice and Bob each have some portion of the input,

and the goal is to compute some function of the entire input. Alice

can talk to Bob, but Bob cannot talk back to Alice; all communica-

tion flows in one direction. Understanding problems in the one-way

two-player model is often seen as a first step to understanding them
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in more difficult models such as the streaming model, and thus this

communication complexity model has received a lot of recent at-

tention.

For the maximum weight matching problem in the one-way two-

party model, Alice receives a weighted graph GA = (V , EA), Bob
receives a weighted graphGB = (V , EB ), and their goal is for Bob to
compute an approximate maximum weight matching of the graph

G = (V , EA ∪ EB ).

Previous work. The one-way communication complexity of max-

imum matchings was first studied by [22], who gave a one-way

protocol for bipartite graphs that achieved a 2/3-approximation us-

ingO(n logn) bits of communication. Further, they showed that any

one-way protocol computing a (2/3 + δ )-approximation for δ > 0

requires n1+Ω(1/log logn) bits of communication, showing that there

is a sharp threshold at approximation factor 2/3. In [5], the upper

bound of [22] was extended to non-bipartite graphs, though the

approximation factor obatined is 2/3 − ε instead of strictly 2/3.

Within the proof of their upper bound, [5] establishes the following

structural result, which we will need here (see Lemma 12 in that

paper).

Lemma 6.5 ([5]). Let G be an unweighted graph and let GA and GB
be a partition ofG into two subgraphs. Further, letM be a matching of

GA ∪GB , let ε > 0, and let d ≥ 64ε−2 log(1/ε). If H is a (d, ε/2)-EDCS
of GA, then H ∪GB contains a (d, ε)-EDCS ofM ∪GB .

Our results. We show that the one-way communication complexity

of the weighted matching problem is essentially the same as the

one-way communication complexity of unweighted matching, pro-

vided that the ratio of the maximum and minimum edge weight is

bounded by a polynomial in n. More precisely, we have the follow-

ing theorem.

Theorem 6.6. LetG be a weighted graph and let ε ∈ (0, 1/2). There is
a one-way communication protocol to compute a (2/3−ε)-approximate

maximum weight matching using Oε (n log
2(n)) bits of communica-

tion.

Proof. We describe a simple protocol to compute an approximate

maximum weight matching for graphs whose edge weights lie in

[W ]. Let d = 16 · 36ε−2 log(4W/ε).

The protocol is as follows. Alice unfolds her input graph, computes

a (d, ε/2)-EDCS HA and sends HA to Bob. Bob unfolds his input

graph and adds HA to ϕ(GB ) to obtain a subgraph K of ϕ(G). Bob
then computes R(K) (he knows the original weights from, e.g., the

labels of the vertices in ϕ(G)) and computes a maximum weight

matching in R(K).

Since Alice sends Bob O(nWd) edges of a graph on at most nW
vertices, the protocol usesO(nW log(nW )ε−2 log(W/ε)) bits of com-

munication. We now prove correctness of the protocol. Let M∗

be a maximum weight matching of G. By Lemma 6.5, the graph K
contains a (d, ε)-EDCSH of ϕ(M∗)∪ϕ(GB ) = ϕ(M∗∪GB ). By Theo-

rem 5.10, the refolded graphR(H ) contains a (2/3−12ε)-approximate

maximum weight matching of the graph M∗ ∪ GB . Thus, since

K ⊇ H , we have

mwm(R(K)) ≥ mwm(R(H ))

≥ (2/3 − 12ε)mwm(M∗ ∪GB )

= (2/3 − 12ε)mwm(G).

To complete the proof, we re-parameterize ε and apply Theorem 6.2.

7 CONCLUSION AND OPEN PROBLEMS

In this paper, we developed a new framework for weighted match-

ing that allows us to use existing unweighted algorithms without

modification. In bipartite graphs, this framework effectively settles

the weighted/unweighted gap for approximate matching, because

it allows us to convert any algorithm for unweighted matching

into one for weighted matching, while only occurring an additional

(1 − ε) loss in the approximation ratio. In non-bipartite graphs,

our framework does not lead to a universal transformation. Still,

we show that combining the framework with our new structural

properties of certain subgraphs leads to several new algorithms

that essentially match the best-known unweighted algorithms. Our

framework can be applied to many models, though we focused

on dynamic algorithms where the weighted/unweighted gap was

largest.

There are several natural open problems that arise from our results.

(1) Reducing the dependence on ε . Because we rely on the buck-
eting scheme of Gupta and Peng [23], our framework introduces

a much larger dependence on ε than the corresponding un-

weighted algorithms: the update time is multiplied by (1/ε)O (
1/ε)

.

Is it possible to reduce this factor to poly(1/ε)?

(2) Non-bipartite graphs. Is there a universal reduction that con-

verts any dynamic algorithm for unweighted matching in non-

bipartite graphs into one for weightedmatching in non-bipartite

graphs? That is, can our Result 1 be extended to non-bipartite

graphs? It is not hard to check that our framework already does

so if we allow an additional 2/3 loss in the approximation ratio.

Can this loss be made only 1 − ε?
(3) Other models. As discussed in Section 6, our framework can

be applied to many models, not just dynamic algorithms. A

general open problem is thus what other models can benefit

from our framework.

We highlight one model in particular: computing a matching

in one pass of semi-streaming when edges arrive in a random or-

der. There is extensive literature on this problem in unweighted

graphs [4, 8, 20, 28, 29], but the state-of-the-art for weighted

graphs lags far behind [21]. We would like to apply our frame-

work to close this weighted/unweighted gap, but even in bipar-

tite graphs, there is a subtle issue: our framework runs existing

unweighted algorithms in the unfolded graph ϕ(G), and even

if edges arrive in a random order in G, they do not arrive in a

random order in ϕ(G). We suspect this issue can be resolved

because the correlation between edges in ϕ(G) seems relatively

small.

We think it is also likely that the current state-of-the-art

algorithm for unweighted graphs by Bernstein [8] can be ex-

tended to weighted graphs even in non-bipartite graphs. The

reason is that Bernstein’s algorithm maintains an EDCS, which

we showed in this paper is refolding-approximate. There are
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two issues to resolve: the first is the general issue above about

the randomness of edge arrivals in the unfolded graph, and

the second is that Bernstein’s algorithm only maintains a re-

laxed version of an EDCS; one would have to show this relaxed

version is still refolding-approximate.
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A HANDLING SUPERPOLYNOMIAL
WEIGHTS

As long as the weights of the input graph are polynomial in n, the
additional logR factor in our update time is O(logn). But if R is

very large, then we can additionally use the following reduction of

Stubbs and Williams [32].

Theorem A.1 ([32]). Let A be a dynamic algorithm that main-

tains an α-approximate maximum weight matching with update

time T (n,m,α,W ) over a graph whose edge weights come from [W ].
For every constant ε > 0, we can convert A into an algorithm that

maintains an (1 + ε)α -approximate maximum weight matching with

update time T (n,m,α,n2ε−2) log2n + logn · log logR + log logW .

Further, the new algorithm has the same secondary guarantees as

the algorithm A.

Using this reduction with our framework gives, for example, a

way to convert an algorithm for unweighted bipartite graphs with

update time Tu into one for weighted bipartite graphs with update

timeO(Tu log
3n+logn·log logR+log logW ). Analagous statements

can be made for our other reduction.

B THE BOUNDED-DEGREE DYNAMIC
MATCHING ALGORITHM Ab

In this section we describe an algorithm that meets the descrip-

tion of Theorem 2.1. We need the following linear-time (1 − ε)-
approximation algorithm of [17].

Lemma B.1 ([17]). Let ε ∈ (0, 1). A (1 − ε)-approximate maximum

weight matching in a weighted graph can be computed (statically) in

O(m/ε) time.

Proof of Theorem 2.1. We give an algorithm with an amortized

update time of O(∆ ·W 2/ε2). The algorithm works in phases. At the

beginning of a phase, the algorithm computes a (1 − ε/2)-maximum

weightmatchingM inO(m/ε) time using the algorithm of LemmaB.1.

Each phase continues for ε |M |/2W updates. This phase length en-

sures that throughout each phase, the total weight ofM can reduce

by at most εw (M )/2, and thusM remains a (1− ε)-approximate max-

imum weight matching at all times. The amortized update time is

O(mW/ε2 |M |).

We finish the proof by showing that
m
|M | = O(∆W ). LetM

∗
be the

maximum weight matching of G and consider |M∗ |. Notice that
every edge of G is adjacent to some edge in M∗, or elseM∗ would
not be maximum. Thus,

m ≤ 2∆|M∗ |

≤ 2∆w(M∗)

≤ 2∆(1 + ε)w(M)

≤ 2∆(1 + ε)W |M |.

Substituting this upper bound on m/|M | gives an amortized bound

of O(∆W 2/ε2). The update time can be deamortized in a standard

fashion by staggering the work.

C THE REDUCTION OF GUPTA AND PENG

Here we describe the bucketing scheme of Gupta and Peng [23].

Loosely speaking, Gupta and Peng show how to reduce the maxi-

mum weight matching problem in arbitrarily weighted graphs to

the maximum weight matching problem in graphs where weights

belong to [W ], whereW is an integer depending only on the ac-

curacy parameter ε . Although Gupta and Peng only describe their

scheme in the context of a specific dynamic matching result, their

idea is in fact extremely versatile: it yields a black-box reduction

not only for dynamic matching (our Theorem 3.7), but also for

streaming (our Theorem 6.1) and communication complexity (our

Theorem 6.2). For more details, see Section 4 of [23].

We now turn to the details of the bucketing scheme and its structural

guarantees. Let G = (V , E,w) be a weighted graph, let ε ∈ (0, 1/2],

and let β = ⌈1/ε⌉. For each i ∈ [β], we define graphs G(i) are de-
fined as follows. First partition the edges of the graph geometrically

according to their weights: an edge e with w(e) ∈ [ε−b , ε−(b+1))

lies in bucket b. The graph G(i) is then obtained by deleting all

edges in each bucket b such that b ≡ i (mod β). Notice that this

deletion procedure naturally defines levels in each G(i), where
the ℓth level is comprised of the edges that lie in the buckets

{d · β + i + 1, . . . , (d + 1) · β + i − 1}. We denote the edges at level

ℓ of E(i) as E
(i)
ℓ
. More tersely, we have the following definitions.

Definition C.1. For i ∈ [β] and ℓ ≥ 0, let

E
(i)
ℓ

:= {e ∈ E : (1/ε)i+ℓ ·β+1 ≤ w(e) < (1/ε)i+ℓ ·(β+1)}.

Let E(i) :=
⋃

ℓ E
(i)
ℓ

and let G(i) := (V , E(i),w).

Notice that for each level ℓ of G(i), there is at least a (1/ε)1/ε -factor
gap between the largest weight in level ℓ and the smallest weight

in level ℓ + 1. The analysis of Gupta and Peng provides a proof for

Lemma C.2 below, which uses Algorithm 3.

ALGORITHM 3: GreedyCombine
Input: A list of matchingsM1,M2, . . . ,Mk .

Output: A matchingM .

for i ← 1 to k do
for e ∈ Mi do

if M ∪ e is a matching then
M ← M ∪ e

end
end

end
return M

Lemma C.2 ([23]). The following hold:
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(1) There is some i ∈ [β] such that mwm(G(i)) ≥ (1 − ε)mwm(G).

(2) Let i ∈ [β] and, for each level ℓ, let M
(i)
ℓ

be an α-approximate

maximum weight matching of E
(i)
ℓ
. Also, let L be the largest

non-empty level of E(i). The matching

M := GreedyCombine

(
M
(i)
L ,M

(i)
L−1, . . . ,M

(i)
0

)
satisfiesw(M) ≥ (1 − 3ε)α · mwm(G(i)).

Proof. The following simple averaging argument establishes that

some G(i) contains a good matching. Let F (i) = E \ E(i) be the

set of edges missing from G(i) and let M∗ be a maximum weight

matching of G. Observe that {F (i)}i ∈β is a partition E, there is

some j ∈ [β] such that w(M∗ ∩ F (j)) ≤ w (M∗)/β ≤ εw(M∗). Thus,

w(M∗ ∩ E(j)) ≥ (1 − ε)w(M∗).

We now show that α-approximate maximum weight matchings

from each level can be greedily combined via Algorithm 3 to pro-

duce a (1 − 3ε)α-approximate maximum weight matching of G(i).

Let H =
⋃

ℓ M
(i)
ℓ
. Clearly w(H ) ≥ α · mwm(G(i)) since, level-by-

level, H gets at least an α fraction of the weight as the maximum

weight matching of G(i). Now we show that (1 + 3ε)w(M) ≥ w(H ).
We charge the weight of each edge e ∈ H to some adjacent edge in

f ∈ M ; if e ∈ M , then we charge the weight of e to itself. Let Φ(e)
be the total amount charged to the edge e . Since each edge e ∈ M
of level ℓ is charged to once by itself and at most twice from every

other level less than ℓ, we have

Φ(e) ≤ w(e) + 2
ℓ−1∑
j=0
(1/ε)i+jβ

= w(e) + 2(1/ε)i ·
(1/ε)ℓβ − 1

(1/ε)β − 1

≤ w(e) + 2(1/ε)i ·
(1/ε)ℓβ

3/4 · (1/ε)β

< w(e) + 3(1/ε)i+(ℓ−1)β

≤ w(e) + 3ε ·w(e)

= (1 + 3ε)w(e).

Hence,w(H ) = Φ(M) ≤ (1 + 3ε)w(M).

Since the ratio between weights within a level is at most (1/ε)β , we

may assume by a standard rescaling and rounding argument that

the edges weights are integers in {1, 2, . . . ,
⌈
(1/ε)β+1

⌉
}. Thus, the

previous lemma says that, provided that we can compute approxi-

mate maximummatchings whose edges belong to [W ] and provided
that we can combine the matchings efficiently à laGreedyCombine,

we can compute a (1−4ε)-approximate maximum weight matching.

We now sketch the proof of the reduction in each model we apply

it to.

Theorem3.7 ([23]). LetG be a weighted graph and let ε ∈ (0, 1/2). If
there is an algorithmA that maintains an α -approximate maximum

weight matching in a graph whose weights belong to [W ] with update
time T (n,m,α,W ), then there is an algorithm A ′ that maintains a

(1 − ε)α-approximate maximum weight matching in G in update

timeOε (T (n,m,α,γε ) · log(R)). Moreover,A has the same secondary

features as A ′.

Observe that approximatemaximumweight matchings can bemain-

tained in each level using algorithm A. The only challenge then

is to maintain the greedily combined matchings for each level set.

See [23] for the details and proof.

Proof of Theorem 6.1. In the streaming setting, we run the in-

stance of the matching algorithm for each level ofG(i) for all i ∈ [β].

Let γε = (1/ε)
1/ε
. As we observed in the discussion above, we can

assume that at each level, the edges have weights that are inte-

gers in {1, 2, · · · , ⌈γε ⌉}, each instance of the algorithm takes space

S(n,m,γε ,α). Additionally, we observe that the total number of

levels in each G(i) are
logβ R
β due to the property that there is a

(1/ε)
1/ε
-factor gap between the heaviest edge level d and the lightest

edge in level d+1. Finally, we run our algorithm over β manyG(i)’s,
and at the end of the stream all these matchings can be greedily

combined. This gives us a space bound of Oε (S(n,m,γε ,α) logR).

To improve the logR factor to logn, we drop light edges when a

very heavy edge is encountered. More specifically, at all times we

maintainWmax, the weight of the heaviest edge. When an edge

that has weight greater thanWmax is encountered, we updateWmax

and all edges with weight less than δ = ε ·Wmax

n2
are dropped. Since

w(mwm(G)) ≥Wmax, and the total weight of the dropped edges is

at most ε ·Wmax, the graph still contains a (1 − ε) approximation to

mwm(G). Additionally, when we drop these light edges, we don’t

modify the partition of E(i) into different levels. Note that while it is

no longer true that the edges of G(i) at level d have scaled weights

between (1/ε)i+d ·β+1 and (1/ε)i+(d+1)·β , this property is not essen-

tial to ensure guarantees of Lemma C.2. Certain crucial properties of

G(i) still hold, namely:

{
F (i)

}
i ∈[β ]

partitions the undeleted edges of

G and withinG(i), there is a (1/ε)1/ε -factor gap between the heaviest

edge of level d , and the lightest edge of d + 1. These are sufficient to

ensure the guarantees of Lemma C.2. Moreover, due to the second

property, we are able to ensure that the number of levels in G(i)

are at most

logβ n
β many. This is because the ratio betweenWmax

and the lowest weight edge in the graph is at most n2/ε . This gives

us the desired space bound.

Proof of Theorem 6.2. The proof for this case is identical to The-

orem 6.1. Alice performs the reduction stated in Lemma C.2 on

her part of the input (V , EA). She runs a version of the original

protocol on each of the levels of G(i). Additionally, she can throw

out edges that are lighter than
ε ·Wmax

n2
since the total weight of these

edges is at most ε ·Wmax. She sends the messages corresponding

to each version of the protocol to Bob. This message has size at

mostOε (C(n,n,γε ,α) logn). Due to the correctness of the protocol,

Bob is able to compute an α(1 − ε)-approximation to the maxi-

mum matching in each level of G(i) for all i ∈ [β]. Bob then runs

Algorithm 3 to get a (1 −O(ε))-mwm(G).
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D EFFICIENTLY MAINTAINING INTEGRAL
MATCHINGS AND KERNELS

A recent result due to Wajc [33] gives a new dynamic matching

sparsification algorithm—an algorithm for computing a sparse sub-

graph that preserves the matching size approximately and can be

maintained efficiently. He uses the scheme to design an algorithm

that maintains a kernel of G. We use his algorithm as a black box.

Wajc’s description of the algorithm uses slightly different organiza-

tion/notation than we do, and so for convenience, we outline how

it works in this section.

We first restate the formal result, which stems from Lemma 4.6 of

[33] and the discussion of the running time in section 4.2.1 of the

same paper.

Theorem 5.3 ([33]). Let G be an unweighted graph and let ε ∈
(0, 1/2). For d = Θ(logn ·poly(1/ε)), there is a randomized (Las Vegas)

algorithm that maintains a (d, ε)-kernel of G in worst-case update

timeO((log4n +d logn) · poly(1/ε)) with high probability against an

adaptive adversary.

We first describeWajc’s algorithm and then summarize how it gives

a proof of Theorem 5.3.

Wajc’s sparsification scheme. The algorithm S creates a sparsifier

as follows: it takes as input a fractional matching ®x = (x1, . . . , xm ),

then it creates O(logn/ε2) graphs G(i), where G(i) only consists of

edges ej such that x j ∈ ((1 + ε)
−i , (1 + ε)−i+1] (not to be confused

with the graphs in Appendix C). The algorithm then proceeds to

compute a proper edge coloring χi of each graph G(i). Finally, it
samples a set of colors Si from χi and includes in H all the edges

of G(i) that are colored using the pallette Si .

Proof sketch of Theorem 5.3. A key observation of [33] is that,

if their sparsification algorithm is given as input a specific type

of fractional matching, called a (δ ,d)-approximately maximal frac-

tional matching ®x for a sufficiently large d , and if the edges in the

support of ®x are sampled with the right probabilities depending on a

parameter ε , and d , then the outputH is in fact a (d(1+O(ε)),O(δ )+
O(ε))-kernel with high probability. We define the notion of an ap-

proximately maximal fractional matching, first introduced by [3].

Definition D.1. A fractional matching ®x is a (δ ,d)-approximately

maximal if every edge e ∈ E has fractional value xe >
1

d , or it has

one end point v with

∑
e ′∋v xe ′ ≥ 1 − δ , with all edges e ′ incident on

this v having value xe ′ ≤
1

d .

Theorem D.2. Let δ ≥ 0, ε > 0, and d ≥
(1+ε )2 logn
(1−δ )ε2 . If ®x is a (δ ,d)-

approximately maximal fractional matching, then the subgraph H
output by the sparsification algorithm of [33] when run on ®x with

ε and d is a (d(1 +O(ε)),O(δ ) +O(ε))-kernel with high probability.

Further, since |E(H )| = Õ(µ(G)) and the kernel can be sampled in

Õ(µ(G)) time, it can be maintained against an adaptive adversary in

Õ(1) time with high probability.

We state briefly why the above theorem is correct. Note that the

sparsification algorithm of [33] samples a fixed number of edges

from G. Essentially, for every e ∈ G,

min{1, xe · d}

(1 + ε)2
≤ Pr (e ∈ H ) ≤ min{1, xe · d} · (1 + ε) (1)

Further, for e , e ′, the random variables 1{e ∈H } and 1{e ′∈H } are
negatively associated (intuitively, because the algorithm samples

a fixed number of edges from G). The bound (1) immediately tells

us that E
[
degH (v)

]
≤ (1 + ε)d for any vertex v . Since degH (v)

is a sum of negatively associated 0-1 random variables, we may

apply a Chernoff bound to obtain degH (v) ≤ d(1 +O(ε)) with high

probability. We are left with proving that H satisfies the second

property of kernels with high probability. For any edge e < H ,

we know that Pr (e ∈ H ) < 1. For such an edge e , we can deduce

that xe <
1

d . Since ®x is a (δ ,d)-approximately maximal fractional

matching, there is an endpointv of e such that
∑
e ′∋v xe ′ ≥ 1−δ . So,

E
[
degH (v)

]
≥

d (1−δ )
(1+ε )2 . A Chernoff bound shows that degH (v) ≥

d (1−δ )
(1+O (ε )) ≥ d(1 − δ )(1 −O(ε)) with high probability.

To understand why the kernel can be sampled in Õ(µ(G)) time, note

that the sparsification algorithm of [33] edge-colors the graph on

the support of ®x . It achieves this via a deterministic algorithm with

a worst-case update time of O(logn) (see [13]). Then, it samples

Õε (1) color classes. Each of these color classes form a matching,

so H can be sampled in Õε (µ(G)) time. The update time and the

adaptive adversary guarantee follow from the stability property of

matching. At a high level, we can wait for ε · µ(G) updates before
recomputing the kernel since after εµ(G) updates, the matching in

the support of kernel is still a (1 −O(ε))-matching (even against an

adaptive adversary). This already gives an amortized update time

of Õε (1), and the update-time can be deamortized by spreading the

work across the ε · µ(G) updates.

The (1/2 − ε)-fractional matching maintained by the deterministic

algorithm of [16] in poly(logn, 1/ε) worst case update time was

proved by [3] to be a (O(ε),d)-approximately maximal matching

for some d large enough to satisfy the conditions of Theorem D.2.

To summarize, after each update, the algorithm after each update,

computes a fractional matching ®x using the algorithm of [16]. To

then find the kernel, it computes a coloring of the support of ®x
using the algorithm of [13]. Then it performs the sampling pro-

cess described above, and the graph sampled is a kernel with high

probability. Since the procedures of [13, 16] and the sampling pro-

cedure of [33] take time poly(logn, 1/ε), the overall runtime of the

algorithm is poly(logn, 1/ε).
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