A Framework for Dynamic Matching in Weighted Graphs

Aaron Bernstein”
bernstei@gmail.com
Rutgers University
New Brunswick, NJ, USA

ABSTRACT

We introduce a new framework for computing approximate maxi-
mum weight matchings. Our primary focus is on the fully dynamic
setting, where there is a large gap between the guarantees of the best
known algorithms for computing weighted and unweighted match-
ings. Indeed, almost all current weighted matching algorithms that
reduce to the unweighted problem lose a factor of two in the ap-
proximation ratio. In contrast, in other sublinear models such as the
distributed and streaming models, recent work has largely closed
this weighted/unweighted gap.

For bipartite graphs, we almost completely settle the gap with a
general reduction that converts any algorithm for a-approximate
unweighted matching to an algorithm for (1 — ¢)a-approximate
weighted matching, while only increasing the update time by an
O(log n) factor for constant . We also show that our framework
leads to significant improvements for non-bipartite graphs, though
not in the form of a universal reduction. In particular, we give two
algorithms for weighted non-bipartite matching:

(i) A randomized (Las Vegas) fully dynamic algorithm that maintains
a (1/2 — ¢)-approximate maximum weight matching in worst-case
update time O, (polylog n) with high probability against an adaptive
adversary. Our bounds are essentially the same as those of the
unweighted algorithm of Wajc [STOC 2020].

(ii) A deterministic fully dynamic algorithm that maintains a (2/3 —
¢£)-approximate maximum weight matching in amortized update
time ég(ml/ 4). Our bounds are essentially the same as those of the
unweighted algorithm of Bernstein and Stein [SODA 2016].

A key feature of our framework is that it uses existing algorithms for
unweighted matching as black-boxes. As a result, our framework is
simple and versatile. Moreover, our framework easily translates to
other models, and we use it to derive new results for the weighted
matching problem in streaming and communication complexity
models.

*This work was done while funded by NSF CAREER Grant 1942010.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC °21, June 21-25, 2021, Virtual, Italy

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8053-9/21/06...$15.00
https://doi.org/10.1145/3406325.3451113

Aditi Dudeja
aditi.dudeja@rutgers.edu
Rutgers University
New Brunswick, NJ, USA

Zachary Langley
zach.langley@rutgers.edu
Rutgers University
New Brunswick, NJ, USA

CCS CONCEPTS

+ Theory of computation — Dynamic graph algorithms; Spar-
sification and spanners.

KEYWORDS

Dynamic Algorithms, Dynamic Matching, Matching Sparsifiers,
Weighted Matching, Adaptive Adversary

ACM Reference Format:

Aaron Bernstein, Aditi Dudeja, and Zachary Langley. 2021. A Framework for
Dynamic Matching in Weighted Graphs. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing (STOC ’21), June 21-25,
2021, Virtual, Italy. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3406325.3451113

1 INTRODUCTION

Computing a maximum matching is a fundamental problem in
graph algorithms that has many applications. In the unweighted
version, known as the maximum cardinality matching problem,
the goal is to find a matching with the largest number of edges. In
the weighted version, each edge e has a positive real weight w(e),
and the goal is to find a matching maximizing the sum of its edge
weights. This paper primarily focuses on the fully dynamic model,
where the algorithm must maintain a matching in a graph that
undergoes edge insertions and deletions. The goal is to minimize
the update time, i.e., the time to process a single edge-change to
the graph. For exact matching, there is a conditional lower bound
of Q(ml/z) update time [1, 24, 30], and thus, most research on dy-
namic matching focuses on maintaining an approximate maximum
matching.

There is a vast literature on approximate fully dynamic matching
in unweighted graphs. The state-of-the-art covers a large range
of different trade-offs between update times and approximation
ratios, as well as secondary features such as whether the algorithm
is amortized/worst-case or deterministic/randomized. Progress on
weighted matching lags far behind.

A general reduction of Stubbs and Williams [32] shows how to
convert any a-approximate algorithm for unweighted matching
into a (1/2 — ¢)a-approximate algorithm for weighted matching
with nearly the same update time. Almost every state-of-the-art
algorithm for weighted matching comes from applying this reduc-
tion to existing unweighted algorithms. As far as we know, the
only exception is an algorithm of Gupta and Peng [23] with an
O(¥/m) update time and a (1 — ¢)-approximation ratio, which can
be extended to weighted graphs with essentially the same bounds.
Except for Gupta and Peng’s result, all algorithms for weighted

https://doi.org/10.1145/3406325.3451113
https://doi.org/10.1145/3406325.3451113
https://doi.org/10.1145/3406325.3451113

STOC ’21, June 21-25, 2021, Virtual, Italy

graphs have twice as large an approximation error as those for un-
weighted graphs. This gap is especially significant in the dynamic
matching setting, where approximation errors for unweighted algo-
rithms are typically small constants. Moreover, a 1/2-approximation
is considered a fundamental barrier for matching, and one cannot
use the Stubbs-Williams framework [32] to surmount this barrier
in weighted graphs.

By contrast, in related models such as streaming or distributed
algorithms, there are several recent algorithms for weighted match-
ing that match the best known results for unweighted matching.
Closing the weighted/unweighted gap in dynamic matching re-
mains a fundamental open problem, posed explicitly by Stubbs and
Williams [32] and Wajc [33].

1.1 Our Contribution

For all the results below, let R be the ratio between the heaviest
edge weight ever present in the graph and the lightest such edge
weight.

Bipartite graphs. In bipartite graphs, we effectively close the gap be-
tween weighted and unweighted graphs by showing a black-box re-
duction from dynamic weighted matching to dynamic unweighted
matching.

Result 1 (See Theorem 3.1). Lete > 0 be some fixed constant. If there
is a fully dynamic algorithm A, that maintains an a-approximate
maximum cardinality matching with update time T,,, then there is a
fully dynamic algorithm A, that maintains a (1 — ¢)a-approximate
maximum weight matching with update time O(T, -log R). If Ay, is
deterministic, worst-case, and/or works against an adaptive adversary,
then the same is true of A,y .

Our reduction immediately implies many new algorithms for weighted
matching, obtaining essentially the same bounds as those for un-
weighted matching. The black-box nature of our reduction also
makes it highly relevant for future work. We highlight three results
in particular:

(1) One of the biggest successes of dynamic unweighted match-
ing is (1/2 — ¢)-approximate algorithms with polylog(n) update
time. For example, Bhattacharya, Henzinger, Nanongkai [15]
gave an algorithm that is amortized and deterministic, and
Wajc [33] gave an algorithm that is worst-case and randomized
(and works against adaptive adversaries). Our reduction ex-
tends both of these results to weighted graphs. Previously, the
analogous results for weighted graphs had an approximation
ratio of (1/4—¢). (There are also various unweighted results that
achieve a strict 1/2-approximation [6, 31] or constant update
time [12, 31]; our reduction cannot extend these to weighted
graphs due to the additional (1 — ¢) factor in the approximation
error and the log(R) factor in the update time.)

Bernstein and Stein [10] gave a deterministic algorithm to main-
tain a (2/3—¢)-approximate maximum weight matching in an un-

—
)
~

weighted bipartite graph with worst-case update time o(m').
Our reduction implies essentially the bounds for weighted
graphs. Previously, the analogous result for weighted graphs
had an approximation ratio of (1/3 — ¢).

Aaron Bernstein, Aditi Dudeja, and Zachary Langley

(3) Behnezhad, Lacki, and Mirrokni [7] and Wajc [33] both showed
algorithms that achieve a better-than-1/2 approximation with
arbitrarily small polynomial update time. Formally, for any
fixed § > 0, there is an algorithm that maintains a (1/2 + Q(1))-
approximate maximum cardinality matching with update time
O(n5). Our reduction leads to the first such results for weighted
matching, though unlike the unweighted algorithm of [7], our
extension is limited to bipartite graphs. (The algorithm of 7]
actually has update time O(A%), where A is the maximum de-
gree; it is easy to check that our reduction preserves A up to a
constant and therefore has the same guarantee.)

Non-bipartite graphs. Our techniques also lead to a general frame-
work for dynamic weighted matching in non-bipartite graphs,
though it is not a universal reduction like Result 1. In particular,
the first two highlighted items above apply to non-bipartite graphs
as well.

Result 2 (See Theorem 5.11). For any fixed ¢ > 0, there exists a fully
dynamic algorithm that maintains a (1/2 — €)-approximate maximum
weight matching in update time O, (log®(n) log(R)). The algorithm is
worst-case, randomized (Las Vegas), and works against an adaptive
adversary.

Result 3 (See Theorem 5.12). For any fixed ¢ > 0, there exists a fully
dynamic algorithm that maintains a (2/3 — ¢)-approximate maximum
weight matching in update time O(m'*log(R)). The algorithm is
deterministic and amortized.

Our two results each use an algorithm for unweighted matching
as a black box: Result 2 uses the algorithm of Wajc [33], while
Result 3 uses the algorithm of Bernstein and Stein [11]. Both results
essentially match the guarantees of these unweighted algorithms.
Previous weighted algorithms had twice as high an approximation
error.

Additional factors in the update time. All of our guarantees match
those of the corresponding unweighted algorithms almost exactly.
There are two minor caveats. Firstly, the update time is multiplied by
O(log(R)), which is O(log(n)) as long as weights are polynomial in n.
We can use the black box of Stubbs and Williams [32] to reduce the
dependence on R to log log(R); see Appendix A for details. Secondly,
our algorithms have a significantly worse dependence on ¢: the
update time is multiplied by (1/£)O(/)_This term is still O(1) for
any fixed e.

1.2 Techniques

Bipartite graphs. Our bipartite result, Result 1, is technically simple;
our main contribution here is showing how to combine ideas from
disparate parts of the matching literature.

We first observe that a bucketing scheme of Gupta and Peng [23],
while not presented as such, implies a black-box reduction from
general weights to integer weights in the range [1,(1/£)°(/9)]. We
then show that in bipartite graphs, a technique called graph un-
folding by Kao, Lam, Sung and Ting [25] allows us to efficiently
transform a graph with small weights into an unweighted graph
¢(G) such that size of the maximum cardinality matching of $(G)
is equal to the weight of the maximum weight matching in G. We

A Framework for Dynamic Matching in Weighted Graphs

can then use any unweighted matching algorithm A, as a black-
box to compute a matching M, in ¢(G). Finally, we show that the
matching My, of #(G) can be refolded into a low-degree subgraph
R(My) of G that contains a high-weight matching; we maintain the
maximum weight matching of R(M,,) using a simple algorithm for
low-degree graphs.

Non-bipartite graphs. Our main technical contribution is for non-
bipartite graphs. We rely on the same tools above, but the challenge
is that in non-bipartite graphs, refolding a matching in ¢(G) might
incur an extra 2/3-factor loss in the approximation ratio; this er-
ror is analogous to the integrality gap of non-bipartite graphs. To
avoid this loss, we observe that several existing algorithms for
unweighted graphs do not just compute a matching, but rather
compute a subgraph H with properties that guarantee that H con-
tains a large matching. The algorithm of Wajc [33] maintains a
subgraph called a kernel (introduced in [14]), while the algorithm
of Bernstein and Stein [10, 11] maintains a subgraph called an
edge-degree-constrained subgraph (EDCS).

The key to our non-bipartite results are two new structural theo-
rems that show that kernels and EDCS are refolding-approximate,
which, loosely speaking, means that they continue to contain a
large matching even after refolding. This means that they can be
used in our new unfolding/refolding framework without incurring
additional error. Our proofs of these structural theorems use the
probabilistic method to effectively reduce the non-bipartite case to
the bipartite one.

One advantage of our framework is that it does not require modi-
fying existing unweighted algorithms; we simply run those algo-
rithms as black-boxes in the unfolded graph ¢(G) and show that
the properties of these algorithms are preserved. As a result, our
framework is simple and versatile.

1.3 Application to Other Models

None of the ingredients in our framework are specific to the dy-
namic model; graph unfolding was previously used only in the
regular static setting [25], and our new theorems about refolding-
approximate subgraphs are general structural claims. Our focus in
this paper is on dynamic algorithms because, prior to our work, the
dynamic setting had the most significant gap between the weighted
and unweighted approximation ratios.

Indeed, our framework translates seamlessly to other models, and
we use it to achieve new results for weighted matching in the
streaming and communication complexity models. All of our re-
sults have essentially the same bounds as the state-of-the-art for
unweighted matching; see Section 6 for details. We note that Gam-
lath, Kale, Mitrovic, and Svennson [21] also showed a reduction
from weighted to unweighted matching in the streaming models.
Their reduction has the advantage of applying more directly to
non-bipartite graphs, but it is significantly more complex and thus
works in a narrower range of settings. Most relevant to this paper,
their reduction cannot be applied in the dynamic setting, and in the
streaming setting, their reduction increases the number of passes
by a large constant, whereas ours preserves the number of passes
exactly.

STOC °21, June 21-25, 2021, Virtual, Italy

2 PRELIMINARIES

Let G = (V, E, w) be a graph with edge weight function w : E — R.
We use n = |V| to denote the number of vertices of G and m = |E|
the number of edges. For any U C V, we denote by Ng(U) the set
of neighbors of vertices in U in G, and by Eg(U) the set of edges
incident on U. For any v € V, let deg;(v) denote the degree of the
vertex v in G. For any positive integer x, we define [x] = {1,...,x}.

Our results have an exponential dependence on 1/e. Throughout
the paper, we will use y, := (4/¢) el a large constant that we incur
in update time through our reductions; see Appendix C for details.
To simplify notation, we will use O,(-) to supress the dependence
on ¢ (and therefore y;).

Dynamic graphs. In the fully dynamic setting, the input is a weighted
graph G = (V, E, w) subject to a sequence of updates, where each
update either inserts an edge into or deletes an edge from G. The
goal is to maintain a large matching in G while minimizing the
update time, i.e., the time to process an update.

We use R := max.cg w(e)/mingcg w(e) to be the ratio between
the largest edge weight ever contained in G and the smallest edge
weight ever contained in G. In this paper, all the algorithms we
obtain have update times that depend on log(R). The dependence
can be reduced to loglog(R) via a black-box reduction of Stubbs
and Williams [32]; see Appendix A for more details. We use A to
denote the maximum degree ever attained by G.

Given a dynamic matching algorithm A, we say that A has worst-
case recourse o if every adversarial update causes A to make at
most ¢ most changes to the matching. We define amortized recourse
analogously.

In addition to the update time and recourse, a dynamic algorithm
may have several other features of interest, such as whether it
works against an adaptive adversary, whether it is amortized or
worst-case, and whether it is deterministic or randomized. We refer
to these as the algorithm’s secondary features.

Matchings. A matching M is a subset of edges, no two of which share
an endpoint. A maximum cardinality matching in G is a matching of
maximum possible size; we denote this maximum size by mcm(G).
For graphs G with weighted edges, a maximum weight matching
is a matching maximum the sum of its edge weights; we denote
this maximum weight by mwM(G). For a € (0, 1], a matching M
is said to be an a-approximate maximum cardinality matching if
M| = a-mcM(G) and an a-approximate maximum weight matching
if w(M) > a - MwM(G).

In our results, we use a deterministic algorithm that maintains a
(1 — ¢)-approximate maximum weight matching in a low-degree
graph. The algorithm is a trivial extension of an existing unweighted
algorithm of Gupta and Peng [23]; see Appendix B for formal proof.

Theorem 2.1 ([23]). Let G be a dynamic weighted graph, with
weights in range [W]. For ¢ € (0, 1), there exists a fully dynamic de-
terministic algorithm that maintains a (1— ¢)-approximate maximum
weight matching in G with worst-case update time O(AW? /%),

STOC ’21, June 21-25, 2021, Virtual, Italy

Probabilistic tools. We will use the following standard variant of
the Chernoff bound.

Proposition 2.2 (Chernoff bound). Let Zi,...,Z, be negatively
correlated random variables such that Z; € [0, 1] for alli € [n], and
letZ =31 | Zi. IfL[Z] < A, then for any § > 0,

Pr(Z-E[Z]|28-0) <2 exp (—521/3) .

We also need the following version of the Lovasz Local Lemma
(LLL).

Proposition 2.3 (Lovasz Local Lemma). Letp € (0,1) and letd > 1.
Suppose &1, ..., E; aret events such that Pr(E;) < p for alli € [t]
and each &; is mutually independent of all E; except (at most) d other

events &j. If p - (d + 1) < 1/e, then Pr (ﬂ?zl 8_,) > 0.

3 A NEW REDUCTION TO UNWEIGHTED
MATCHINGS IN BIPARTITE GRAPHS

The main theorem of this section is the following formalization
of Result 1, which leverages a black-box reduction from weighted
bipartite matching to unweighted bipartite matching. Recall that
Ye = (4/e) /21, for any fixed ¢, we have y, = O(1).

Theorem 3.1. Let G be a weighted bipartite graph and let ¢ > 0. If
there is an algorithm Ay that maintains an a-approximate maxi-
mum cardinality matching in a dynamic unweighted bipartite graph
G with update time T,,(n, m, @), and if Ay, has recourse oy, (n, m, a) =
O(Ty(n, m, @)), then there exists an algorithm A,, that maintains a
(1 — e)a-approximate maximum weight matching in weighted bipar-
tite graphs with update time Og(Ty(yen, yem, @) - log(R)), where R is
the ratio between the heaviest edge weight ever present in the graph
and the lightest such edge weight. Further, the secondary features of
A,y are same as those of Ay,.

Remark 3.2. Theorem 3.1 requires the unweighted algorithm Ay
that we plug in to satisfy o, = O(Ty,). This assumption automatically
holds when one defines the dynamic matching problem in the most
natural way: If a dynamic matching algorithm is required to maintain
an explicit list of the edges in the maintained matching, then it will
need to spend O(1) per change to the matching, and thus will have
ou = O(Ty).

An algorithm has oy, > Ty only if the output matching is stored
implicity. As far as we know, the only dynamic matching algorithm
in the literature with o, > T,, is the maximal matching algorithm
of Bernstein, Forster, and Henzinger [9]. Their algorithm maintains
several different matchings along with a pointer to a matching that is
guaranteed to be correct at the current time. An update may change
the pointer in their algorithm from one solution to another. As a result,
a single update might require only O(1) update time, and yet cause
the algorithm to point to a matching with a completely different set
of edges. Our Result 1 can be easily modified to convert unweighted
algorithms of this form as well.

3.1 Previous Work

Graph unfolding. We start by describing the reduction from weighted
to unweighted bipartite matchings through a transformation called

Aaron Bernstein, Aditi Dudeja, and Zachary Langley

graph unfolding due to Kao et al. [25]. Although our focus in this
section is bipartite graphs, we note that graph unfolding can be
applied to non-bipartite graphs as well, which we will consider in
Section 4.

Definition 3.3. Let G = (V,E, w) be a graph with non-negative
integral edge weights. The unfolded graph ¢(G) is an unweighted
graph defined as follows. For each node u € V(G), there are 5, copies
of u in ¢(G), denoted by ul, ..., uﬂ”, where i, = maxesy w(e).
Corresponding to each edge e = uv in G, there are w(e) edges

i, w(e)—-i+l i
{u ot }ie[w(e)] in $(G).
Observe that unfolding a subgraph K C G produces a subgraph
#(K) € ¢(G); in particular, unfolding a (weighted) matching M
of G produces an (unweighted) matching ¢(M) of ¢(G). The key
property of graph unfolding in bipartite graphs is the following:

Theorem 3.4 ([25]). IfG is a weighted bipartite graph, then
MwWM(G) = McM(¢H(G)).

The assumption that G is bipartite in Theorem 3.4 is necessary; if
the graph is not bipartite, McM(¢(G)) could be up to 1.5 times larger
than MmwM(G), exhibited by a triangle with all edges of weight 2.
Nonetheless, we will later see that one can sensibly apply graph
unfolding to nonbipartite graphs.

We will often want to “reverse” the operation of unfolding to obtain
a subgraph back in G, an operation we call graph refolding.

Definition 3.5. Let G be a weighted graph and let H C $(G). The
refolded graph R(H) of H has vertex set V and edges E(R(H)) =

{uv € G:ulowwv)-itl ¢ H for some i € [w(uv)]}.

Observation 3.6. Let G be a weighted bipartite graph. If M is
an a-approximate maximum cardinality matching of ¢(G), then
MWM(R(M)) > a - MwM(G).

ProoF. Since R(M) is bipartite, by Theorem 3.4, MwMm(R(M)) =
McM(¢p(R(M))). Observing that that M C $(R(M)), we further have
McM(p(R(M))) > |M|. Finally, since M is a-approximate in ¢(G), it
follows that |M| > a - McM(¢(G)) = a - MwM(G), where we have
used Theorem 3.4 again to justify the last equality.]

The reduction of Gupta and Peng. We now state a reduction of Gupta
and Peng [23] that allows us to effectively assume the maximum
weight of the input graph is a large constant. In their paper, Gupta
and Peng do not emphasize that their reduction can be used as
a black box; indeed, they only apply their reduction to a specific
weighted matching algorithm. But without changing their argu-
ment, their techniques apply to any weighted matching algorithm,
giving the following theorem. See the appendix for more details.

Theorem 3.7 ([23]). LetG be a weighted graph and let ¢ € (0,1/2).If
there is an algorithm A that maintains an a-approximate maximum
weight matching in a graph whose weights belong to [W] with update
time T(n, m, &, W), then there is an algorithm A’ that maintains a
(1 — e)a-approximate maximum weight matching in G in update
time Og(T(n, m, a, y,) - log(R)). Moreover, A has the same secondary
features as A’.

A Framework for Dynamic Matching in Weighted Graphs

3.2 A New Reduction to Unweighted Matching
via Graph Unfolding

We now state the core of our reduction. Let A, be a dynamic al-
gorithm for maintaining an a-approximate maximum cardinality
matching in update time Ty, (n, m, a), and let Ay, be the dynamic
algorithm for maintaining a maximum weight matching in bounded-
degree weighted graphs implied by Theorem 2.1. We now give our
algorithm A;, that, using A, and A}, as black boxes, maintains
a (1 — ¢)a-approximate maximum weight matching in a dynamic
weighted graph G whose weights are all in the set [W]. Our reduc-
tion will incur a large dependence on W which we reduce later
using Theorem 3.7.

ALGORITHM 1: BIPARTITEREDUCTION
Result: Maintain a (1 — ¢)a-approximate maximum weight
matching in a bipartite graph with weights [W].
Input: An insertion or deletion of edge uv.
1 Insert (delete) edges uloWW0)~ into (from) #(G) for
i € [w(uv)].
2 Use Ay to maintain a matching M, of ¢(G).
3 Update R(M,,) by tracking updates to M.
4 Use Ay, to maintain a weighted matching M of R(M,,).

LEmMA 3.8. The matching M maintained by A, is a (1 — &)a-
approximate maximum weight matching.

Proor. By the guarantees of Ay, the matching M,, of ¢(G) is
a-approximate. Observation 3.6 states that MwM(R(My)) > « -
MwM(G). Finally, A}, maintains a weighted matching M such that

w(M) > (1—¢) - MwM(R(My)) > (1 - e)a - mwMm(G). |
LEmMA 3.9. The update time of Algorithm 1 is
OW* - T,(nW, mW, a)/€?).

Proor. First observe that for every edge uv that is updated in G,
at most W edges are updated in ¢(G). By the update time of A,
it takes W - T,,(nW, mW, @) total time to maintain M,, after these
W updates to ¢(G). Clearly the number of changes to M,;, cannot
be more than the total update time, and thus there are also at most
W - T,(nW, mW, a) changes to My,.

Each update to My, in turn triggers at most one update to R(My,).
Since we use Ay, to process updates to R(M,,) and the maximum
degree of R(M,,) is W, the update time of A}, per udpate to R(M,,)
is O(W3/¢?). Thus, by Theorem 2.1, the update time per update to
Gis OW* - T,(nW,mW, a)/¢%). |

To reduce the dependence of A, on W, we apply the bucketing
scheme of Gupta and Peng (Theorem 3.7), as illustrated in the
following proof of Theorem 3.1.

Proor oF THEOREM 3.1. Suppose Ty, is the runtime of A,,. Then,
the previous two lemmas, Lemma 3.8 and Lemma 3.9, state that
A;, maintains a (1 — ¢)a-approximate maximum weight match-
ing in a weighted graph G in O(W* - T,,(nW, mW, &)/?) update

STOC °21, June 21-25, 2021, Virtual, Italy

time. Applying Theorem 3.7 to A/, with T(n, m,a, W) = O(W* -
T,(nW, mW, a)/&?), we obtain an algorithm A,, that maintains a
(1 — 2¢)a-approximate maximum weight matching in update time
Oe(Tu(yen, yem, @) - log(R)).

All the subroutines we use—folding, refolding, Ay, and the black
box of Theorem 3.7— are worst-case and deterministic. Thus, the
secondary features of A, carry over to A,,. |

4 NON-BIPARTITE GRAPHS AND
REFOLDING-APPROXIMATE SUBGRAPHS

As noted in the previous section, unfolding a non-bipartite graph G
poses additional issues. Since a matching in ¢(G) is akin to a frac-
tional matching in G, the unfolded graph ¢(G) may have a matching
up to 1.5 times larger than the maximum weight matching in G. At
the same time, a maximum cardinality matching in ¢(G) may refold
into a graph that does not contain a maximum weight matching of
G. In other words, both Theorem 3.4 and Observation 3.6 are false
when G is not bipartite.

4.1 A New Reduction for Weighted Matchings
in General Graphs

In this section, we show that if a subgraph H of ¢(G) has suffi-
cient structure, then R(H) may still contain a good matching. This
motivates the following definition.

Definition 4.1. Let G be a weighted graph. A subgraph H of $(G)
is a-refolding-approximate if

MWM(R(H)) = a - MwM(G).

In Section 5, we will show that certain natural subgraphs H have
the property that, even in non-bipartite graphs, they incur only
a (1 — ¢)-factor-loss in approximation after refolding, rather than
the generic 2/3-factor. For example, we will show that if H is a
kernel of #(G) (defined in Section 5), then H contains a (1/2 — ¢)-
approximate maximum cardinality matching in ¢(G) and is also
(1/2 — ¢)-refolding-approximate. The existence of such graphs is
itself not a priori obvious and is one of the key contributions of this
paper.

We leave these structural theorems for the next subsection. Here,
we formalize why maintaining a matching in a weighted graph
can be reduced to maintaining a refolding-approximate subgraph
of an unweighted graph. We maintain such subgraphs by running
existing unweighted algorithms as black-boxes on the unfolded
graph ¢(G). Note that a single update to a graph G with weights in
[W] can cause up to W updates to ¢(G); each of these updates might
then cause the unweighted algorithm on ¢(G) to make multiple
updates to H, the a-refolding-approximate subgraph. To bound this
cascade of updates, we introduce the following definitions.

Definition 4.2. Let A be an algorithm that maintains a subgraph
H of an unweighted graph G. We say that A has update ratio r if
any update to G results in at most r changes to H. We say that is has
amortized update ratio r if for any large enough sequence S of edge
changes (insertions or deletions) to G, the algorithm makes at most
r|S| edge changes to H.

STOC ’21, June 21-25, 2021, Virtual, Italy

Definition 4.3. Let G be any weighted graph. Let A be an algorithm
that maintains a subgraph H of ¢(G). We say that A has unfolded
update ratio r if any update to G results in at most r changes to H.
We define unfolded amortized update ratio analogously.

We now state our main theorem, which converts any algorithm
that maintains an a-refolding-approximate subgraph of ¢(G) into
one that maintains a(1 — ¢)-approximate matching of G.

Theorem 4.4. Let G be a graph on n vertices and m edges with
weights in [W], and let ¢ > 0. If there is an algorithm B, that
maintains an a-refolding-approximate subgraph H of $(G) over up-
dates to G with update time Ty, (n, m, ¢, W) (per update to G), re-
course oy, (n, m, a, W) = O(Ty(n, m, a, W)), and unfolded update ra-
tio Cy(n, m, a, W), then there is an algorithm B,, that maintains a
(1 - e)a-approximate maximum weight matching in G with update
time
Oc((Tu + AaCu)(yen, yem, a, ye) - log(R)).

Further, the secondary features of By, extend over to B,, as well. (For
B,y to be worst-case, both update time and unfolded update ratio of
B, must be worst-case.)

Towards proving Theorem 4.4, we describe an algorithm 83, that,
given as input a dynamic graph G with weights in [W], uses 8,, and
A}, as a subroutine and maintains a (1—¢)a-approximate maximum
weight matching at all times. The update time has a polynomial
dependence on W, which we later convert into a large constant
using the reduction of Gupta and Peng (Theorem 3.7).

ALGORITHM 2: NONBIPARTITEREDUCTION
Result: Maintain a (1 — ¢)a-approximate maximum weight
matching in a (possibly non-bipartite) graph with
weights [W].
Input: An insertion or deletion of edge uv.
1 Insert (delete) edges uloWWO)=i+1 jnes (from) ¢(G) for
i € [w(uv)].
2 Use B, to maintain an a-refolding-approximate subgraph H
of ¢(G).
3 Update R(H) by tracking updates to H.
4 Use Ay, to maintain a weighted matching M of R(H).

LEMMA 4.5. The matching M maintained by 8B, is a (1—¢)a-approximate

maximum weight matching of G.

ProoF. By Definition 4.1, the subgraph R(H) maintained with the
help of B, contains an a-approximate maximum weight matching.
Thus, running A on R(H) finds a matching M such that w(M) >
(1-¢)-MmwM(R(H)) = (1 -¢e)a-mwMm(G). |

LEMMA 4.6. The update time of Algorithm 2 is O(Ty,(n, m, o, W) +
W3Ag - Cy(n,m, a, W)/e?).

Proor. The proof is similar to the proof of Lemma 3.9, except now
we use the update ratio to bound the number of changes to R(H).

After an update uv in G, it takes O(Ty(n, m, «, W)) time to main-
tain H. Since Cy(n, m, a, W) is the unfolded update ratio, the num-
ber of changes triggered in H due to an update in G is at most

Aaron Bernstein, Aditi Dudeja, and Zachary Langley

Cyu(n, m, a, W). Note that each update in H can cause at most one
update in R(H). Additionally, the maximum degree of R(H) is at
most W-Ag. So the total time taken by Algorithm 2 in response to a
single update to G is O(Ty,(n, m, @, W) + W3Ag - Cy(n, m, a, W)/€?).

Proor oF THEOREM 4.4. The two previous lemmas, Lemma 4.5 and
Lemma 4.6, state that 8], maintains a (1 — ¢)a-approximate maxi-
mum weight matching in

O(Tu(n,m, @, W) + W3Ag - Cu(n, m, o, W)/ %)

update time. Applying Theorem 3.7 to 8B, we obtain an algorithm
B,, that maintains a (1—-2¢)a-approximate maximum weight match-
ing in update time O,((T, + Ag - Cy)(n, m, &, y¢) - log(R)).

All the subroutines we use—folding, refolding, Ay, and the black
box of Theorem 3.7—are worst-case and deterministic. Thus, the
secondary features of Ay, carry over to A,,. |

5 KERNELS AND EDCS ARE REFOLDING
APPROXIMATE SUBGRAPHS

In this section, we prove that two existing matching sparsifiers
for unweighted graphs—kernels and edge-degree-constrained sub-
graphs (EDCS)—are refolding approximate.

5.1 Existing Work in Unweighted Graphs

We first review existing work on the two sparsifiers and their prop-
erties in unweighted graphs.

Kernels. The first matching sparsifier we consider is the kernel,
introduced in [14].

Definition 5.1. A subgraph H of an unweighted graph G is a (d, ¢)-
kernel if the following two properties hold:

(1) for every vertex v € G we have deg(v) < d, and

(2) for every edge uv € G\ H we have max{deg(u), deg(v)} >
(1-¢)d.

Arar, Chechik, Cohen, Stein and Wajc [3] proved that every (d, ¢)-
kernel contains a (m)—approximate maximum cardinality
matching. In bipartite graphs, following their proof exactly and
using that bipartite graphs are A-edge-colorable—where A is the

maximum degree of the graph—gives the following simpler (inde-
pendent of d) approximation ratio.

Theorem 5.2 ([3]). Let G be an unweighted bipartite graph, let
d € N, and let ¢ > 0. IfH is a (d, ¢)-kernel of G, then MmcM(H) >
I_Tf - McM(G).

Recently, Wajc [33] showed that kernels can be maintained in
polylog(n) update time against adaptive adversaries. More precisely,
he proved the following theorem.

Theorem 5.3 ([33]). Let G be an unweighted graph and let ¢ €
(0,1/2). Ford = ©(log n - poly(1/e)), there is a randomized (Las Vegas)
algorithm that maintains a (d, €)-kernel of G in worst-case update
time O((log*n + d log n) - poly(1/)) with high probability against an
adaptive adversary.

A Framework for Dynamic Matching in Weighted Graphs

Edge-degree-constrained subgraphs (EDCS). Another matching spar-
sifier used in dynamic graph algorithms is the edge-degree-constrained
subgraph (EDCS), introduced in [10].

Definition 5.4. A subgraph H of an unweighted graph G is a (d, ¢)-
EDCS if the following two properties hold:

(1) for every edge uv € E(H) we have deg(u) + deg(v) < d, and

(2) for every edge uv € E(G) \ E(H) we have deg(u) + deg(v) >
(1-¢)d.

The EDCS strikes a different trade-off from the kernel: it obtains a
(2/3 — ¢)-approximate maximum cardinality matching and can be
maintained in O(m"/*/¢*/2) update time. The approximation ratio of
the EDCS in bipartite graphs was established in [10]. Later, it was
shown by the same authors [11] that the EDCS obtains the same
(2/3 — ¢) approximation ratio in general graphs. A simpler proof
with improved parameters was presented in [5].

Theorem 5.5 ([5, 10]). Let G be an unweighted bipartite graph, let
e < 1/2,andletd > 16/¢. IfH is a (d, €)-EDCS of G, then McM(H) >
(2/3 — 4e)mem(G).

The following theorem, proved in [11], says that, with the appro-
priate choice of d, an EDCS can be maintained in the fully dynamic
setting in update time sublinear in the number of vertices.

Theorem 5.6 ([11]). Let G be an unweighted graph. Ford > 36/¢,
there is a deterministic algorithm that maintains a (d, €)-EDCS of G
in O(v\m/(e2d)) amortized update time with O(1/¢) amortized update
ratio. (Note that this Theorem can be applied with d a function of m
such asd = m"/*; this was done in the algorithm of [11] and we apply
their algorithm as a black box.)

5.2 Kernels Are Refolding-Approximate

We now show that kernels are nearly 1/2-refolding approximate—
see Theorem 5.9 for the precise statement. Our proof relies an
the existence of a partition of vertices of G that (1) preserves the
maximum weight matching and (2) roughly halves the degrees of
all vertices in the unfolded graph ¢(G). The existence of such a
partition was established for unweighted graphs in [5]; here we
generalize their proof.

LEMMA 5.7. Let G be a weighted graph with maximum weight W, let
8 € (0,1/2), and letd > 3652 log(W /8). For any subgraph H of $(G)
with maximum degree at most d, there exists a bipartite subgraph G
of G such that, setting H := H N ¢(G),

(1) mcm(¢(G)) = mwm(G), and

2) w < &d for all vertices v € V(H).

Proor. The proof is based on the probabilistic method. Fix a max-
imum weight matching M* in G. We produce a random bipartite
subgraph G = (L U R, E) of G as follows. For each edge matched by
M*, we randomly and choose one endpoint to be in L and then put
the other endpoint in R, independent of all other choices. For every
vertex unmatched by M*, we place it in L with probability 1/2 and
in R with probability 1/2, again independent of all other choices.

STOC °21, June 21-25, 2021, Virtual, Italy

The edges E of G are precisely those edges with one endpoint in L
and one endpoint in R.

The bipartite subgraph G induces a corresponding bipartite sub-
graph ¢(G) in the unfolded space. Since M* C G by construc-
tion and since G is bipartite, MwMm(G) = w(M*) = Mmwm(G) =
McM(¢(G)), as desired. (The last inequality follows from Theorem
3.4, since G is bipartite.)

Now let H be any subgraph of ¢(G) whose maximum degree is
at most d. It suffices to show that with nonzero probability, H :=
H N ¢(G) satisfies the second condition. For each vertex v € ¢(G),
let &, be the “bad” event that w| > &d, and let

v 7 >

Xy = degp;(v). Notice that we can write X, as the sum of indepen-
dent indicators; each edge uw € M* N H[v U Ng(v)] contributes 1
to X, and every neighbor u not matched to a vertex in v U Ng(v)
contributes 1 if it is not assigned to the same side of the bipar-
tition as v. Thus, X, is the sum of independent Bernoullis, and

further, E [X,] = (hg”T(v)H if v is unmatched by M* and otherwise

E[Xy] = degTH(v), Thus the bad event &, simply occurs when X,
is not sufficiently concentrated around its mean.

As X, is the sum of independent Bernoullis, we may bound its

deviation with a standard Chernoff bound, and thus,

[degy; (0) — degry(@)] _
2

< Pr(|Xo - E[Xo]| 2 44/2)

< 2exp(—6d/12)

< 2exp(—3log(W/s))

< 2exp(—3log(dW))

=2(dw)73.

d

Pr(Ey) =Pr

We now want to apply the Lovasz Local Lemma, and so we must
argue that &, is independent of all but relatively few other events.
Let u’,w/ € H.If u and w (vertices in G) are not within two hops of
each other in G, then &,,; and &, are independent by construction
of $(G). Thus, each &, is independent of all but at most (dW)? other
bad events, and since 2(dW)™3 - ((dW)? +1) < 1/e, the Lovasz Local

Lemma states that [, ¢g(G) So occurs with nonzero probability.

Observation 5.8. Let G be a weighted bipartite graph. If H is a
subgraph of ¢(G), then H C H(R(H)). It follows that mcMm(H) <
McM(P(R(H))) = MwM(R(H)), where Theorem 3.4 justifies the last
equality.

Theorem 5.9. Let G be a (possibly non-bipartite) graph with edge
weights in [W] and letd > 4 - 36¢72 log(2W/e). IfH is a (d, €)-kernel
of 9(G), then H is (1/2 — 3¢/2)-refolding-approximate.

ProoF. Let G be the bipartite subgraph of G from Lemma 5.7, and
let H = H N ¢(G). Note that H is bipartite since ¢(G) is bipartite.
Observe that MwM(R(H)) < mwM(R(H)) because R(H) C R(H).
We now show that H has a large matching by showing that it is a
kernel of ¢(G).

STOC ’21, June 21-25, 2021, Virtual, Italy

Suppose v € V(H). By taking § = ¢/2 and applying Lemma 5.7, we
have
degp(v) < degy(v)/2 +6d < (1 +&)d/2.

Now suppose uv € $(G) \ H. Since uv ¢ H but u and v are on
opposite sides of the bipartition, the edge uv € G \ H. Because H is
a (d, £)-kernel, one of its endpoints has degree at least (1 — ¢€)d in
H; we may assume w.l.o.g that v is that endpoint. Again applying
Lemma 5.7 we have that in H:

degy(v) > degy(v)/2 —6d > (1 —2¢)d/2 > (1 —3¢e)(1 + £)d/2.
Thus, H is a (1 + €)d/2, 3¢)-kernel of ¢(G).
Putting everything together,

MwM(R(H)) > mwMm(R(H)) (since R(H) € R(H))

> mcm(H) (by Observation 5.8)
1-3 ~

> Tg - McM(¢9(G)) (by Theorem 5.2)
1-3¢

= -mwMm(G). |

5.3 EDCS Are Refolding-Approximate

Theorem 5.10. LetG be a (possibly non-bipartite) graph with weights
in[W] and letd > 16-36e72log(4W /¢). IfH is a (d, €)-EDCS of $(G),
then H is (2/3 — 12¢)-refolding-approximate.

PRrOOF. Let G be the bipartite subgraph of G from Lemma 5.7, and let
H = H N ¢(G). Observe that mwM(R(H)) < mwMm(R(H)) because
R(H) C R(H). We now show that H has a large matching by
showing that it is an EDCS of ¢(G).

Suppose uv € H. By Lemma 10, taking § = /4, we have
deg;(uv) < degp(uv)/2 +25d < (1 + £)d/2.

Now suppose uv € $(G) \ H. Since uv € ¢(G) \ H and H is a
(d, €)-EDCS, we have

deg;(uv) > degy(uv)/2 — 25d > (1 - 2e)d/2.

Finally, since (1 — 2¢) > (1 — 3¢)(1 + &), it follows that H is a
((1+¢e)d/2,3¢)-EDCS of G.

Putting everything together,
MwWM(R(H)) > MwM(R(H))
> mcM(H)
> (2/3 — 12¢e)meM(¢(G))
= (2/3 - 12e)mwM(G). |}

(since R(H) € R(H))
(by Observation 5.8)
(by Theorem 5.5)

5.4 Results on Dynamic Weighted Matching in
General Graphs

Since kernels and EDCS are refolding-approximate, we can can
apply Theorem 4.4 to obtain algorithms for weighted non-bipartite
graphs. More precisely, we have the following two theorems.

Theorem 5.11. Let G be a (possibly non-bipartite) weighted graph
and let ¢ > 0. There is randomized (Las Vegas) algorithm that main-
tains a (1/2 — €)-approximate maximum weight matching with high

Aaron Bernstein, Aditi Dudeja, and Zachary Langley

probability and against an adaptive adversary in worst-case update
time O¢(log®(n) log(R)).

Proor. Choosing d = O(log(n) - poly(1/¢)), we can compute a
(d, ¢)-kernel H of ¢(G) using the algorithm of Theorem 5.3 in
T, = O(log*(W - n) - poly(1/)) worst-case update time. By The-
orem 5.9, H is (1/2 — ¢)-refolding-approximate. Since each update
in G leads to at most W updates in ¢(G), and since the number of
updates to H is bounded by Ty, we have C,, = W -T,,. Applying The-
orem 4.4, there is an algorithm to maintain a (1/2 — ¢)-approximate
maximum weight matching of G in O, (log®(n) log(R)) worst-case
update time that works against an adaptive adversary with high
probability. |}

Theorem 5.12. Let G be a dynamic weighted (not necessarily bi-
partite) graph and let ¢ > 0. There is deterministic algorithm that
maintains a (2/3 — €)-approximate maximum weight matching with
amortized update time O, (m'* log(R)).

PrOOF. Choosing d = 16 - 36c2log(4W /¢) - m"/*, we can compute
an EDCS H of ¢(G) with update time O((m - W)"1) and amortized
update ratio O(1/e) by Theorem 5.6. However, these update times
and update ratios are with respect to updates in ¢(G). As discussed
before, each update in G triggers at most W updates in ¢(G). So
the update time and the amortized refolding update ratio for H
are O((m - W)'* - W) and O(W /¢), respectively. Applying Theo-
rem 4.4 with T,, = O((m - W)l/4 -W)and C, = O(W/e¢), and from
Theorem 5.10, we have an algorithm that maintains a (2/3 — 2¢)-
refolding-approximate subgraph with update time O, (m'* log(R)).

6 FURTHER APPLICATIONS

The framework introduced in this paper is applicable beyond the
dynamic setting. Indeed, the tools we use are quite general and
easily translate to a wide variety of models. In this section, we
demonstrate how to use our framework to obtain new results for
weighted matching in the semi-streaming model and in the one-way
two-player communication complexity model.

6.1 Previous Work: Revisiting Gupta and
Peng’s Reduction

One of the basic tools of our framework was the bucketing scheme
of Gupta and Peng [23] (see Theorem 3.7), which allowed us to
effectively reduce edge weights to a large constant. Although they
described this scheme in the context of a particular algorithm for
dynamic graphs, it is in fact extremely general and can be applied
to almost any model. In this subsection, we state the consequences
of this reduction to different models of interest; see Appendix C for
the proofs of these theorems.

Theorem 6.1. If there is a p-pass semi-streaming algorithm A,, to
compute an a-approximate maximum weight matching in a graph
whose edge weights are in [W] and that uses space S(n,m, W, a),
then there is an p-pass semi-streaming algorithm A, to compute
a (1 — e)a-approximate maximum weight matching with weights
in R* using space O(S(n, m, ye, a) log(n)). Further, if A,, works for

A Framework for Dynamic Matching in Weighted Graphs

vertex-order edge arrivals or random-order edge arrivals, then so does
’
A

Theorem 6.2. If there exists a one-way communication complexity
protocol for the maximum weight matching problem in a graph with
edge weights in [W] using C(n, m, W, a) bits of communication, then
there exists a protocol to compute a (1 — €)a-approximate maximum
weight matching with weights in R* using O.(C(n, m,y., @) log(n))
bits of communication.

6.2 Semi-Streaming in Bipartite Graphs

Model definition. In the semi-streaming model, the goal is to solve a
problem over a stream of the input graph’s edges while only using
O(n) space. The main focus is typically on one-pass algorithms,
which are only permitted to read the stream of edges once. For
many problems, including computing maximum weight matchings,
strong barriers are known for one-pass algorithms [22, 26] and so
p-pass algorithms for p > 1 have also received much attention [2,
18, 19, 28, 29].

The semi-streaming model is doubly worst-case in the sense that
algorithms should work both for any input graph and any per-
mutation of the graph’s edges. In many instances, requiring that
the algorithm works against an adversarially-ordered stream is
unnecessarily restrictive. One standard relaxation is to assume that
the edges arrive in random order. For bipartite graphs, another
relaxation is to assume a vertex arrival order, where each vertex
on a fixed side of the bipartition arrives with all its incident edges.
In other words, the edges are streamed to the algorithm from the
adjacency list of one side of the bipartition.

Our results. As in the dynamic graph setting, we can use our frame-
work to show that any semi-streaming algorithm for approximate
unweighted matching can be converted to one for approximate
weighted matching with exactly the same number of passes and
essentially the same space and approximation guarantees. The high-
level approach is identical to the dynamic setting: We first use graph
unfolding to compute a maximum weight matching in a bipartite
graph whose weights are in [W], and then we apply Theorem 6.1 to
reduce the dependence on W. In particular, we have the following
theorem.

Theorem 6.3. Let G be a weighted bipartite graph and let e € (0, 1/2).
If there exists a p-pass semi-streaming algorithm A, to compute an
a-approximate maximum cardinality matching using S, (n, m, a)
space, then there exists a p-pass semi-streaming algorithm A, to
compute an (1 — €)a-approximate maximum weight matching using
O¢(Su(yen, yem, a)log(n)) space. Further, if A, works for vertex-
order arrivals, then so does A,,.

Remark 6.4. We note that although the bucketing scheme of Gupta
and Peng can also be used for random edge arrivals (Theorem 6.1),
our reduction in Theorem 6.3 cannot. The reason is that even if edges
arrive in a random order in G, the order will not be random in the
unfolded graph ¢(G). See the conclusion section for a more detailed
discussion.

ProoF (THEOREM 6.3). Let Ay, be the unweighted matching algo-
rithm that uses space Sy, (n, m, &). We describe how to compute an

STOC °21, June 21-25, 2021, Virtual, Italy

a-approximate maximum weight matching in a graph whose edge
weights are in [W] using A,,. On the arrival of edge uv, we stream
the corresponding edges {uivw(”v)’i”}ielw(uvn of ¢(G) to A,.
At the end of the stream, A, reports an a-approximate maximum
weight matching My in ¢(G) using Sy, (nW, mW, &) space. By Ob-
servation 3.6, the graph R(M4)—which we can easily recover from
Mgy —contains an q-approximate maximum weight matching of G.
Since we can compute the maximum weight matching of G offline,
this completes the reduction.

Notice that to preserve vertex-order, we cannot just stream the
unfolded edges as is suggested above. However, by storing all the
edges incident to a single vertex in G in memory for the duration
of that vertex’s arrival, we can produce the corresponding vertex-
order stream in ¢(G).

Thus, using A, we have obtained an algorithm to compute a
maximum weight matching in a graph with edge weights in [W].
To finish the proof, we apply Theorem 6.1. |

Applications of our results. Theorem 6.3 has several consequences
for computing maximum weight matchings in the streaming setting:

(1) It is a major open question as to whether there exists a one-
pass semi-streaming algorithm to compute a better-than-1/2-
approximation to the maximum cardinality matching problem.
Our theorem shows that any such algorithm would also break
the /2-approximation barrier for weighted bipartite graphs.

(2) For vertex arrivals, one can compute significantly better than
a 1/2-approximation. A seminal result of Karp, Vazirani, and
Vazirani [27] showed how to compute a (1 —1/e)-approximation
in vertex-ordered streams with randomization (indeed, their
algorithm was designed for the more restrictive online setting).
More recently, Goel, Khanna, and Kapralov [22] gave a deter-
ministic single-pass algorithm for vertex-ordered streams with
the same approximation guarantee. Kapralov [26] then showed
these algorithms are tight: no one-pass algorithm can obtain a
better-than-(1 — 1/e)-approximation using O(n) space. Utilizing
our reduction, we effectively settle the problem of weighted
matchings in vertex-ordered streams: our algorithm computes
aa (1 — 1/e — ¢)-approximation in O(n) space. To the best of
our knowlege, no previous algorithm obtained a better-than-1/2-
approximation in the vertex-arrival setting with edge weights.

(3) There are several semi-streaming algorithms for unweighted
graphs that go beyond the 1/2-approximation barrier by using 2
or 3 passes instead of a single pass [19, 28, 29]. Our Theorem 6.3
yields algorithms for weighted bipartite graphs with essentially
the same bounds. As far as we know, these are the first such
results for weighted graphs.

6.3 One-Way Communication Complexity in
Non-Bipartite Graphs

Model definition. In the one-way two-player communication com-
plexity model, Alice and Bob each have some portion of the input,
and the goal is to compute some function of the entire input. Alice
can talk to Bob, but Bob cannot talk back to Alice; all communica-
tion flows in one direction. Understanding problems in the one-way
two-player model is often seen as a first step to understanding them

STOC ’21, June 21-25, 2021, Virtual, Italy

in more difficult models such as the streaming model, and thus this
communication complexity model has received a lot of recent at-
tention.

For the maximum weight matching problem in the one-way two-
party model, Alice receives a weighted graph G4 = (V, E4), Bob
receives a weighted graph Gg = (V, Ep), and their goal is for Bob to
compute an approximate maximum weight matching of the graph
G=(V,E4UEp).

Previous work. The one-way communication complexity of max-
imum matchings was first studied by [22], who gave a one-way
protocol for bipartite graphs that achieved a 2/3-approximation us-
ing O(nlog n) bits of communication. Further, they showed that any
one-way protocol computing a (2/3 + §)-approximation for § > 0
requires n'*2(1/10g10g 1) pits of communication, showing that there
is a sharp threshold at approximation factor 2/3. In 5], the upper
bound of [22] was extended to non-bipartite graphs, though the
approximation factor obatined is 2/3 — ¢ instead of strictly 2/3.

Within the proof of their upper bound, [5] establishes the following
structural result, which we will need here (see Lemma 12 in that

paper).

LEmMA 6.5 ([5]). Let G be an unweighted graph and let G4 and Gp
be a partition of G into two subgraphs. Further, let M be a matching of
GaUGg, lete > 0, and letd > 64e~2log(1/e). IfH is a (d, ¢/2)-EDCS
0f Ga, then HU Gp contains a (d, €)-EDCS of M U Gp.

Our results. We show that the one-way communication complexity
of the weighted matching problem is essentially the same as the
one-way communication complexity of unweighted matching, pro-
vided that the ratio of the maximum and minimum edge weight is
bounded by a polynomial in n. More precisely, we have the follow-
ing theorem.

Theorem 6.6. Let G be a weighted graph and let ¢ € (0,1/2). There is
a one-way communication protocol to compute a (2/3—¢)-approximate
maximum weight matching using O¢(nlog?(n)) bits of communica-
tion.

Proor. We describe a simple protocol to compute an approximate
maximum weight matching for graphs whose edge weights lie in
[W]. Let d = 16 - 36e72 log(4W/e).

The protocol is as follows. Alice unfolds her input graph, computes
a (d, ¢/2)-EDCS H4 and sends Hy4 to Bob. Bob unfolds his input
graph and adds Hy to ¢(Gp) to obtain a subgraph K of ¢(G). Bob
then computes R(K) (he knows the original weights from, e.g., the
labels of the vertices in ¢(G)) and computes a maximum weight
matching in R(K).

Since Alice sends Bob O(nWd) edges of a graph on at most nW
vertices, the protocol uses O(nW log(nW)e =2 log(W/e)) bits of com-
munication. We now prove correctness of the protocol. Let M*
be a maximum weight matching of G. By Lemma 6.5, the graph K
contains a (d, €)-EDCS H of ¢(M*)U@(Gp) = $(M* UGp). By Theo-
rem 5.10, the refolded graph R(H) contains a (2/3—12¢)-approximate
maximum weight matching of the graph M* U Gp. Thus, since
K D H, we have

MwM(R(K)) > mwM(R(H))

Aaron Bernstein, Aditi Dudeja, and Zachary Langley

> (2/3 — 12e)mwm(M* U Gp)
= (2/3 — 12e)mwMm(G).

To complete the proof, we re-parameterize ¢ and apply Theorem 6.2.

7 CONCLUSION AND OPEN PROBLEMS

In this paper, we developed a new framework for weighted match-
ing that allows us to use existing unweighted algorithms without
modification. In bipartite graphs, this framework effectively settles
the weighted/unweighted gap for approximate matching, because
it allows us to convert any algorithm for unweighted matching
into one for weighted matching, while only occurring an additional
(1 — ¢) loss in the approximation ratio. In non-bipartite graphs,
our framework does not lead to a universal transformation. Still,
we show that combining the framework with our new structural
properties of certain subgraphs leads to several new algorithms
that essentially match the best-known unweighted algorithms. Our
framework can be applied to many models, though we focused
on dynamic algorithms where the weighted/unweighted gap was
largest.

There are several natural open problems that arise from our results.

(1) Reducing the dependence on ¢. Because we rely on the buck-
eting scheme of Gupta and Peng [23], our framework introduces
a much larger dependence on ¢ than the corresponding un-
weighted algorithms: the update time is multiplied by (1/ £)O0/e),
Is it possible to reduce this factor to poly(1/e)?

(2) Non-bipartite graphs. Is there a universal reduction that con-
verts any dynamic algorithm for unweighted matching in non-
bipartite graphs into one for weighted matching in non-bipartite
graphs? That is, can our Result 1 be extended to non-bipartite
graphs? It is not hard to check that our framework already does
so if we allow an additional 2/3 loss in the approximation ratio.
Can this loss be made only 1 — £?

(3) Other models. As discussed in Section 6, our framework can
be applied to many models, not just dynamic algorithms. A
general open problem is thus what other models can benefit
from our framework.

We highlight one model in particular: computing a matching
in one pass of semi-streaming when edges arrive in a random or-
der. There is extensive literature on this problem in unweighted
graphs [4, 8, 20, 28, 29], but the state-of-the-art for weighted
graphs lags far behind [21]. We would like to apply our frame-
work to close this weighted/unweighted gap, but even in bipar-
tite graphs, there is a subtle issue: our framework runs existing
unweighted algorithms in the unfolded graph ¢(G), and even
if edges arrive in a random order in G, they do not arrive in a
random order in ¢(G). We suspect this issue can be resolved
because the correlation between edges in ¢(G) seems relatively
small.

We think it is also likely that the current state-of-the-art
algorithm for unweighted graphs by Bernstein [8] can be ex-
tended to weighted graphs even in non-bipartite graphs. The
reason is that Bernstein’s algorithm maintains an EDCS, which
we showed in this paper is refolding-approximate. There are

A Framework for Dynamic Matching in Weighted Graphs

two issues to resolve: the first is the general issue above about
the randomness of edge arrivals in the unfolded graph, and
the second is that Bernstein’s algorithm only maintains a re-
laxed version of an EDCS; one would have to show this relaxed
version is still refolding-approximate.

ACKNOWLEDGEMENTS

We would like to thank Sayan Bhattacharya and David Wajc for
very helpful discussions.

A HANDLING SUPERPOLYNOMIAL
WEIGHTS

As long as the weights of the input graph are polynomial in n, the
additional log R factor in our update time is O(logn). But if R is
very large, then we can additionally use the following reduction of
Stubbs and Williams [32].

Theorem A.1 ([32]). Let A be a dynamic algorithm that main-
tains an a-approximate maximum weight matching with update
time T(n, m, &, W) over a graph whose edge weights come from [W].
For every constant € > 0, we can convert A into an algorithm that
maintains an (1 + €)a-approximate maximum weight matching with
update time T(n, m, a, n?c~2)log®n + logn - loglog R + loglog W.
Further, the new algorithm has the same secondary guarantees as
the algorithm A.

Using this reduction with our framework gives, for example, a
way to convert an algorithm for unweighted bipartite graphs with
update time Ty, into one for weighted bipartite graphs with update
time O(Ty, log>n+log n-loglog R+log log W). Analagous statements
can be made for our other reduction.

B THE BOUNDED-DEGREE DYNAMIC
MATCHING ALGORITHM A,

In this section we describe an algorithm that meets the descrip-
tion of Theorem 2.1. We need the following linear-time (1 — ¢)-
approximation algorithm of [17].

LEmMA B.1 ([17]). Lete € (0,1). A (1 — ¢)-approximate maximum
weight matching in a weighted graph can be computed (statically) in
O(m/¢) time.

ProOF oF THEOREM 2.1. We give an algorithm with an amortized
update time of O(A-W?/¢?). The algorithm works in phases. At the
beginning of a phase, the algorithm computes a (1 — £/2)-maximum

weight matching M in O(m/¢) time using the algorithm of Lemma B.1.

Each phase continues for ¢IM|/2w updates. This phase length en-
sures that throughout each phase, the total weight of M can reduce
by at most ew(M)/2, and thus M remains a (1 — ¢)-approximate max-
imum weight matching at all times. The amortized update time is
O(mW/e?|M]).

We finish the proof by showing that ﬁ = O(AW). Let M* be the
maximum weight matching of G and consider |M*|. Notice that
every edge of G is adjacent to some edge in M*, or else M* would
not be maximum. Thus,

m < 2A|M¥|

STOC °21, June 21-25, 2021, Virtual, Italy

< 2Aw(M™)
< 2A(1 + e)w(M)
< 2A(1 + o) WM.

Substituting this upper bound on m/|M| gives an amortized bound
of O(AW?/¢2). The update time can be deamortized in a standard
fashion by staggering the work. JJ

C THE REDUCTION OF GUPTA AND PENG

Here we describe the bucketing scheme of Gupta and Peng [23].
Loosely speaking, Gupta and Peng show how to reduce the maxi-
mum weight matching problem in arbitrarily weighted graphs to
the maximum weight matching problem in graphs where weights
belong to [W], where W is an integer depending only on the ac-
curacy parameter ¢. Although Gupta and Peng only describe their
scheme in the context of a specific dynamic matching result, their
idea is in fact extremely versatile: it yields a black-box reduction
not only for dynamic matching (our Theorem 3.7), but also for
streaming (our Theorem 6.1) and communication complexity (our
Theorem 6.2). For more details, see Section 4 of [23].

We now turn to the details of the bucketing scheme and its structural
guarantees. Let G = (V, E, w) be a weighted graph, let ¢ € (0,1/2],
and let f = [1/¢]. For each i € [f], we define graphs G are de-
fined as follows. First partition the edges of the graph geometrically
according to their weights: an edge e with w(e) € [e7b, e~ (b+1)
lies in bucket b. The graph G is then obtained by deleting all
edges in each bucket b such that b = i (mod f). Notice that this
deletion procedure naturally defines levels in each G\, where
the (th level is comprised of the edges that lie in the buckets
{d-p+i+1,...,(d+1)-f+i—1}. We denote the edges at level

¢ of ED as Ei,i). More tersely, we have the following definitions.
Definition C.1. Fori € [f] and{ > 0, let

E(fi) =f{ecE: (1/e)i+f»ﬁ+1 < w(e) < (l/f)i+£-(ﬁ+1)}.
Let B := U, EY and let GO = (V,ED, w).
Notice that for each level £ of G, there is at least a (1/5)1/‘-fact0r
gap between the largest weight in level £ and the smallest weight

in level £ + 1. The analysis of Gupta and Peng provides a proof for
Lemma C.2 below, which uses Algorithm 3.

ALGORITHM 3: GREEDYCOMBINE
Input: A list of matchings M, My, ..., M.
Output: A matching M.
fori < 1tok do
for e € M; do

if M U e is a matching then
| M«—MUe

end

end
end
return M

LemMA C.2 ([23]). The following hold:

STOC ’21, June 21-25, 2021, Virtual, Italy

(1) There is some i € [f] such that MWM(G(i)) > (1 - e)mwMm(G).
(2) Leti € [p] and, for each level £, let Méi) be an a-approximate

maximum weight matching ofEE,i). Also, let L be the largest
non-empty level of EV). The matching

— (1) 3 4(0) (1)
M := GREEDYCOMBINE (ML ’ML—I’ .. .,MO)

satisfies w(M) > (1 — 3¢)a - mwm(GD).

Proor. The following simple averaging argument establishes that
some G) contains a good matching. Let F®O = E\ E® be the
set of edges missing from G and let M* be a maximum weight
matching of G. Observe that {F(i)}ieﬁ is a partition E, there is
some j € [B] such that w(M* N FU)) < w(M*)/g < ew(M*). Thus,
w(M* NED) > (1 - e)w(M*).

We now show that a-approximate maximum weight matchings
from each level can be greedily combined via Algorithm 3 to pro-
duce a (1 — 3¢)a-approximate maximum weight matching of G,
Let H = Uy M;i). Clearly w(H) > « - mwM(G®D) since, level-by-
level, H gets at least an « fraction of the weight as the maximum
weight matching of G, Now we show that (1 + 3&)w(M) > w(H).
We charge the weight of each edge e € H to some adjacent edge in
f € M;ife € M, then we charge the weight of e to itself. Let ®(e)
be the total amount charged to the edge e. Since each edge e € M
of level ¢ is charged to once by itself and at most twice from every
other level less than ¢, we have

-1
Ble) < w(e) +2) (1/e)IF
j=0

J
_ i (/o) -1
= w(e) +2(1/e)" - (l/é‘)T_l
i (o)
< w(e) + 2(1/6) . W

< w(e) +3(1/e) T E-VF
< w(e) + 3¢ - w(e)
= (1+3&)w(e).

Hence, w(H) = ®(M) < (1 +3e)w(M). |}

Since the ratio between weights within a level is at most (1/)P, we
may assume by a standard rescaling and rounding argument that
the edges weights are integers in {1, 2, .. ., {(1/5)ﬁ+1]}. Thus, the
previous lemma says that, provided that we can compute approxi-
mate maximum matchings whose edges belong to [W] and provided
that we can combine the matchings efficiently a la GREEDYCOMBINE,
we can compute a (1 —4¢)-approximate maximum weight matching.
We now sketch the proof of the reduction in each model we apply
it to.

Theorem 3.7 ([23]). Let G be a weighted graph andlete € (0,1/2).If
there is an algorithm A that maintains an a-approximate maximum
weight matching in a graph whose weights belong to [W] with update
time T(n, m, &, W), then there is an algorithm A’ that maintains a
(1 — e)a-approximate maximum weight matching in G in update

Aaron Bernstein, Aditi Dudeja, and Zachary Langley

time O.(T(n,m, a,y,) - log(R)). Moreover, A has the same secondary
features as A’.

Observe that approximate maximum weight matchings can be main-
tained in each level using algorithm (A. The only challenge then
is to maintain the greedily combined matchings for each level set.
See [23] for the details and proof.

Proor oF THEOREM 6.1. In the streaming setting, we run the in-
stance of the matching algorithm for each level of G() for all i € [f].
Lety, = (1/¢)"¢. As we observed in the discussion above, we can
assume that at each level, the edges have weights that are inte-
gersin {1,2,---, [y:]}, each instance of the algorithm takes space
S(n, m, ye,). Additionally, we observe that the total number of

. 1 R
levels in each G1) are Dgﬂﬁ

due to the property that there is a

(1/&)/¢-factor gap between the heaviest edge level d and the lightest
edge in level d + 1. Finally, we run our algorithm over many GWs,
and at the end of the stream all these matchings can be greedily
combined. This gives us a space bound of O.(S(n, m, y,) log R).

To improve the log R factor to log n, we drop light edges when a
very heavy edge is encountered. More specifically, at all times we
maintain Wy, the weight of the heaviest edge. When an edge
that has weight greater than Winax is encountered, we update Winax
and all edges with weight less than § = E'%m*‘" are dropped. Since
w(MWM(G)) > Wiay, and the total weight of the dropped edges is
at most ¢ - Wiax, the graph still contains a (1 — ¢) approximation to
MwM(G). Additionally, when we drop these light edges, we don’t
modify the partition of E() into different levels. Note that while it is

no longer true that the edges of G at level d have scaled weights
between (l/g)"*'d‘ﬁ+1 and (l/g)i+(d+1)'ﬁ, this property is not essen-
tial to ensure guarantees of Lemma C.2. Certain crucial properties of

G still hold, namely: {F (i)} partitions the undeleted edges of

i€[p]

G and within G, there is a (Y g)l/ ¢-factor gap between the heaviest
edge of level d, and the lightest edge of d + 1. These are sufficient to
ensure the guarantees of Lemma C.2. Moreover, due to the second
property, we are able to ensure that the number of levels in G

logszn
are at most g[f,;

many. This is because the ratio between Wipax

and the lowest weight edge in the graph is at most n°/¢. This gives
us the desired space bound. ||

PrOOF OF THEOREM 6.2. The proof for this case is identical to The-
orem 6.1. Alice performs the reduction stated in Lemma C.2 on
her part of the input (V, E4). She runs a version of the original
protocol on each of the levels of G, Additionally, she can throw
out edges that are lighter than 8“2]2'“3" since the total weight of these
edges is at most ¢ - Winax. She sends the messages corresponding
to each version of the protocol to Bob. This message has size at
most O,(C(n, n, y,, @) log n). Due to the correctness of the protocol,
Bob is able to compute an a(1 — ¢)-approximation to the maxi-
mum matching in each level of GW foralli e [B]- Bob then runs
Algorithm 3 to get a (1 — O(¢))-mwm(G). |}

A Framework for Dynamic Matching in Weighted Graphs

D EFFICIENTLY MAINTAINING INTEGRAL
MATCHINGS AND KERNELS

A recent result due to Wajc [33] gives a new dynamic matching
sparsification algorithm—an algorithm for computing a sparse sub-
graph that preserves the matching size approximately and can be
maintained efficiently. He uses the scheme to design an algorithm
that maintains a kernel of G. We use his algorithm as a black box.
Wajc’s description of the algorithm uses slightly different organiza-
tion/notation than we do, and so for convenience, we outline how
it works in this section.

We first restate the formal result, which stems from Lemma 4.6 of
[33] and the discussion of the running time in section 4.2.1 of the
same paper.

Theorem 5.3 ([33]). Let G be an unweighted graph and let ¢ €
(0, 1/2). Ford = ©(log n - poly(1/¢)), there is a randomized (Las Vegas)
algorithm that maintains a (d, €)-kernel of G in worst-case update
time O((log*n + dlog n) - poly(1/¢)) with high probability against an
adaptive adversary.

We first describe Wajc’s algorithm and then summarize how it gives
a proof of Theorem 5.3.

Wajc’s sparsification scheme. The algorithm S creates a sparsifier
as follows: it takes as input a fractional matching X = (x1, . . ., xp,),
then it creates O(log n/e?) graphs G, where G1) only consists of
edges ej such that x; € ((1+ &)L (1 + ¢)7H*1] (not to be confused
with the graphs in Appendix C). The algorithm then proceeds to
compute a proper edge coloring y; of each graph G, Finally, it
samples a set of colors S; from y; and includes in H all the edges
of G) that are colored using the pallette S;.

PROOF SKETCH OF THEOREM 5.3. A key observation of [33] is that,
if their sparsification algorithm is given as input a specific type
of fractional matching, called a (8, d)-approximately maximal frac-
tional matching ¥ for a sufficiently large d, and if the edges in the
support of X are sampled with the right probabilities depending on a
parameter ¢, and d, then the output H is in fact a (d(1+O(¢)), O(5) +
O(¢))-kernel with high probability. We define the notion of an ap-
proximately maximal fractional matching, first introduced by [3].

Definition D.1. A fractional matching X is a (5, d)-approximately
maximal if every edge e € E has fractional value x, > é, or it has
one end point v with Y, o154, Xer = 1 — 8, with all edges e’ incident on
this v having value x¢r < %

Theorem D.2. Let§ >0, > 0,andd > %. Ifx isa (8, d)-
approximately maximal fractional matching, then the subgraph H
output by the sparsification algorithm of [33] when run on X with
e andd is a (d(1+ O(¢)), O(8) + O(¢))-kernel with high probability.
Further, since |[E(H)| = é(y(G)) and the kernel can be sampled in
O(u(G)) time, it can be maintained against an adaptive adversary in

O(1) time with high probability.

We state briefly why the above theorem is correct. Note that the
sparsification algorithm of [33] samples a fixed number of edges

STOC °21, June 21-25, 2021, Virtual, Italy

from G. Essentially, for every e € G,
min{1, xe - d}

1+ <Pr(e€ H) <min{l,x. -d}-(1+¢) (1)

Further, for e # ¢’, the random variables 1 (o cfry and 1o/ epy) are
negatively associated (intuitively, because the algorithm samples
a fixed number of edges from G). The bound (1) immediately tells
us that E [degH(U)] < (1 + ¢)d for any vertex v. Since degy(v)
is a sum of negatively associated 0-1 random variables, we may
apply a Chernoff bound to obtain degy(v) < d(1 + O(e)) with high
probability. We are left with proving that H satisfies the second
property of kernels with high probability. For any edge e ¢ H,
we know that Pr (e € H) < 1. For such an edge e, we can deduce
that x, < % Since X is a (6, d)-approximately maximal fractional
matching, there is an endpoint v of e such that)’ . 5, Xer = 1-9. So,

E [degy(v)] > ‘g:')? A Chernoff bound shows that degy(v) >

A8 > d(1 - 8)(1 - O(e) with high probability.

To understand why the kernel can be sampled in O(u(G)) time, note
that the sparsification algorithm of [33] edge-colors the graph on
the support of ¥. It achieves this via a deterministic algorithm with
a worst-case update time of O(logn) (see [13]). Then, it samples
0,(1) color classes. Each of these color classes form a matching,
so H can be sampled in ég(y(G)) time. The update time and the
adaptive adversary guarantee follow from the stability property of
matching. At a high level, we can wait for ¢ - (G) updates before
recomputing the kernel since after £1:(G) updates, the matching in
the support of kernel is still a (1 — O(¢))-matching (even against an
adaptive adversary). This already gives an amortized update time
of O, (1), and the update-time can be deamortized by spreading the
work across the ¢ - u(G) updates.

The (1/2 — ¢)-fractional matching maintained by the deterministic
algorithm of [16] in poly(logn, 1/¢) worst case update time was
proved by [3] to be a (O(e), d)-approximately maximal matching
for some d large enough to satisfy the conditions of Theorem D.2.

To summarize, after each update, the algorithm after each update,
computes a fractional matching ¥ using the algorithm of [16]. To
then find the kernel, it computes a coloring of the support of X
using the algorithm of [13]. Then it performs the sampling pro-
cess described above, and the graph sampled is a kernel with high
probability. Since the procedures of [13, 16] and the sampling pro-
cedure of [33] take time poly(log n, 1/¢), the overall runtime of the
algorithm is poly(log n, 1/¢). |

REFERENCES

[1] Amir Abboud and Virginia Vassilevska Williams. 2014. Popular conjectures
imply strong lower bounds for dynamic problems. In Proc. 55st Annual Symp. on
Foundations of Comput. Sci. (FOCS). IEEE Computer Society, 434-443.

[2] Kook Jin Ahn and Sudipto Guha. 2011. Linear programming in the semi-streaming
model with application to the maximum matching problem. In Proc. 38th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP) (Lecture
Notes in Comput. Sci.), Vol. 6756. 526-538. https://doi.org/10.1007/978-3-642-
22012-8_42

[3] Moab Arar, Shiri Chechik, Sarel Cohen, Clifford Stein, and David Wajc. 2018.
Dynamic matching: Reducing integral algorithms to approximately-maximal frac-
tional algorithms. In Proc. 45th International Colloquium on Automata, Languages,
and Programming (ICALP), Vol. 107. Art. No. 7, 16.

[4] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni,
and CIliff Stein. 2019. Coresets meet EDCS: algorithms for matching and vertex

https://doi.org/10.1007/978-3-642-22012-8_42
https://doi.org/10.1007/978-3-642-22012-8_42

STOC 21, June 21-25, 2021, Virtual, Italy

(5

[

l6

=

[10]

[11]

[12]

(13

[14]

[15]

[17]

[18

cover on massive graphs. In Proc. 30th Ann. ACM-SIAM Symp. Discrete Algorithms
(SODA). 1616-1635.

Sepehr Assadi and Aaron Bernstein. 2019. Towards a unified theory of sparsifica-
tion for matching problems. In Proc. 2nd Symposium on Simplicity in Algorithms
(SOSA), Vol. 69. Art. No. 11, 20.

Surender Baswana, Manoj Gupta, and Sandeep Sen. 2018. Fully dynamic maximal
matching in O(log n) update time (corrected version). SIAM J. Comput. 47, 3
(2018), 617-650.

Soheil Behnezhad, Jakub Lkacki, and Vahab Mirrokni. 2020. Fully dynamic
matching: Beating 2-approximation in A® update time. In Proc. 31th Annual
ACM-SIAM Symp. Discrete Algorithms (SODA). 2492-2508.

Aaron Bernstein. 2020. Improved bounds for matching in random-order streams.
In Proc. 47th International Colloquium on Automata, Languages, and Programming
(ICALP), Vol. 168. 12:1-12:13. https://doi.org/10.4230/LIPIcs ICALP.2020.12
Aaron Bernstein, Sebastian Forster, and Monika Henzinger. 2019. A Deamor-
tization Approach for Dynamic Spanner and Dynamic Maximal Matching. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, Timothy M. Chan (Ed.).
SIAM, 1899-1918. https://doi.org/10.1137/1.9781611975482.115

Aaron Bernstein and Cliff Stein. 2015. Fully dynamic matching in bipartite graphs.
In Proc. 42nd International Colloguium on Automata, Languages, and Programming
(ICALP), Vol. 9134. 167-179. https://doi.org/10.1007/978-3-662-47672-7_14
Aaron Bernstein and Cliff Stein. 2016. Faster fully dynamic matchings with small
approximation ratios. In Proc. 27th Annual ACM-SIAM Sym. on Discrete Algorithms
(SODA). ACM, New York, 692-711. https://doi.org/10.1137/1.9781611974331.ch50
Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. 2020. De-
terministic dynamic matching in O(1) update time. Algorithmica 82, 4 (2020),
1057-1080.

Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon
Nanongkai. 2018. Dynamic algorithms for graph coloring. In Proc. 29th Annual
ACM-SIAM Symp. Discrete Algorithms (SODA). 1-20.

Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. 2018. Deter-
ministic fully dynamic data structures for vertex cover and matching. SIAM 7.
Comput. 47, 3 (2018), 859-887. https://doi.org/10.1137/140998925

Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2016. New
deterministic approximation algorithms for fully dynamic matching. In Proc.
48th Annual ACM-SIGACT Symp. on Theory of Comput., (STOC). 398-411. https:
//doi.org/10.1145/2897518.2897568

Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2017. Fully dy-
namic approximate maximum matching and minimum vertex cover in O(log3 n)
worst case update time. In Proc. 28th Annual ACM-SIAM Symp. on Discrete Algo-
rithms (SODA). 470-489. https://doi.org/10.1137/1.9781611974782.30

Ran Duan and Seth Pettie. 2014. Linear-time approximation for maximum weight
matching. . ACM 61, 1 (2014), Art. 1, 23. https://doi.org/10.1145/2529989
Sebastian Eggert, Lasse Kliemann, and Anand Srivastav. 2009. Bipartite graph
matchings in the semi-streaming model (extended abstract). In Proc. 17th Annual

Aaron Bernstein, Aditi Dudeja, and Zachary Langley

European Symp. Algorithms (ESA °09), Vol. 5757. 492-503. https://doi.org/10.
1007/978-3-642-04128-0_44

Hossein Esfandiari, MohammadTaghi Hajiaghayi, and Morteza Monemizadeh.
2016. Finding large matchings in semi-streaming. In IEEE International Conference
on Data Mining Workshops (ICDM ’16). IEEE Computer Society, 608—614.
Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A.
Rossi. 2020. Approximate maximum matching in random streams. In Proc. 31th
Ann. ACM-SIAM Symp. Discrete Algorithms (SODA). 1773-1785.

Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. 2019.
Weighted matchings via unweighted augmentations. In Proc. ACM Symp. on
Principles of Distributed Computing, (PODC). 491-500.

Ashish Goel, Michael Kapralov, and Sanjeev Khanna. 2012. On the communication
and streaming complexity of maximum bipartite matching. In Proc. 23rd Annual
ACM-SIAM Symp. on Discrete Algorithms (SODA). 468-485.

Manoj Gupta and Richard Peng. 2013. Fully dynamic (1 + ¢)-approximate
matchings. In Proc. 54th Annual Symp. Foundations Comput. Sci. (FOCS). 548-557.
https://doi.org/10.1109/FOCS.2013.65

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. 2015. Unifying and strengthening hardness for dynamic problems
via the online matrix-vector multiplication conjecture. In Proc. 47th Annual ACM
on Symp. on Theory of Comput., (STOC). 21-30.

Ming-Yang Kao, Tak-Wah Lam, Wing-Kin Sung, and Hing-Fung Ting. 2001. A de-
composition theorem for maximum weight bipartite matchings. SIAM J. Comput.
31, 1(2001), 18-26. https://doi.org/10.1137/S0097539799361208

Michael Kapralov. 2013. Better bounds for matchings in the streaming model. In
Proc. 24th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA). 1679-1697.
Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. 1990. An optimal
algorithm for on-line bipartite matching. In Proc. 22nd Annual ACM Symp. on

Theory of Comput. (STOC). 352-358.
Christian Konrad. 2018. A simple augmentation method for matchings with

applications to streaming algorithms. In Proc. 43rd International Symp. on Math-
ematical Foundations of Comput. Sci., (MFCS), Vol. 117. 74:1-74:16. https:
//doi.org/10.4230/LIPIcs. MFCS.2018.74

Christian Konrad, Frédéric Magniez, and Claire Mathieu. 2012. Maximum
matching in semi-streaming with few passes. In Approximation, Randomiza-
tion, and Combinatorial Optimization (APPROX/RANDOM), Vol. 7408. 231-242.
https://doi.org/10.1007/978-3-642-32512-0_20

Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 2016. Higher lower bounds from
the 3SUM conjecture. In Proc. of the 27th Annual ACM-SIAM Symp. on Discrete
Algorithms, (SODA). 1272-1287.

Shay Solomon. 2016. Fully dynamic maximal matching in constant update time.
In Proc. 57th Annual Symp. on Foundations of Comput. Sci., (FOCS). 325-334.
Daniel Stubbs and Virginia Vassilevska Williams. 2017. Metatheorems for dy-
namic weighted matching. In Proc. 8th Innovations in Theoretical Computer Science,
(ITCS), Vol. 67. 58:1-58:14. https://doi.org/10.4230/LIPIcs.ITCS.2017.58

David Wajc. 2020. Rounding dynamic matchings against an adaptive adversary.
In Proc. 52nd Annual ACM-SIGACT Symp. Theory Comput. (STOC). 194-207.

https://doi.org/10.4230/LIPIcs.ICALP.2020.12
https://doi.org/10.1137/1.9781611975482.115
https://doi.org/10.1007/978-3-662-47672-7_14
https://doi.org/10.1137/1.9781611974331.ch50
https://doi.org/10.1137/140998925
https://doi.org/10.1145/2897518.2897568
https://doi.org/10.1145/2897518.2897568
https://doi.org/10.1137/1.9781611974782.30
https://doi.org/10.1145/2529989
https://doi.org/10.1007/978-3-642-04128-0_44
https://doi.org/10.1007/978-3-642-04128-0_44
https://doi.org/10.1109/FOCS.2013.65
https://doi.org/10.1137/S0097539799361208
https://doi.org/10.4230/LIPIcs.MFCS.2018.74
https://doi.org/10.4230/LIPIcs.MFCS.2018.74
https://doi.org/10.1007/978-3-642-32512-0_20
https://doi.org/10.4230/LIPIcs.ITCS.2017.58

	Abstract
	1 INTRODUCTION
	1.1 Our Contribution
	1.2 Techniques
	1.3 Application to Other Models

	2 PRELIMINARIES
	3 A NEW REDUCTION TO UNWEIGHTED MATCHINGS IN BIPARTITE GRAPHS
	3.1 Previous Work
	3.2 A New Reduction to Unweighted Matching via Graph Unfolding

	4 NON-BIPARTITE GRAPHS AND REFOLDING-APPROXIMATE SUBGRAPHS
	4.1 A New Reduction for Weighted Matchings in General Graphs

	5 KERNELS AND EDCS ARE REFOLDING APPROXIMATE SUBGRAPHS
	5.1 Existing Work in Unweighted Graphs
	5.2 Kernels Are Refolding-Approximate
	5.3 EDCS Are Refolding-Approximate
	5.4 Results on Dynamic Weighted Matching in General Graphs

	6 FURTHER APPLICATIONS
	6.1 Previous Work: Revisiting Gupta and Peng's Reduction
	6.2 Semi-Streaming in Bipartite Graphs
	6.3 One-Way Communication Complexity in Non-Bipartite Graphs

	7 CONCLUSION AND OPEN PROBLEMS
	A HANDLING SUPERPOLYNOMIAL WEIGHTS
	B THE BOUNDED-DEGREE DYNAMIC MATCHING ALGORITHM Ab
	C THE REDUCTION OF GUPTA AND PENG
	D EFFICIENTLY MAINTAINING INTEGRAL MATCHINGS AND KERNELS
	REFERENCES

