
Facilitating Parallel Fuzzing with
Mutually-exclusive Task Distribution

Yifan Wang1∗, Yuchen Zhang1∗, Chenbin Pang2†, Peng Li3, Nikolaos
Triandopoulos1, and Jun Xu1

1 Stevens Institute of Technology
2 Nanjing University

3 ByteDance

Abstract. Fuzz testing, or fuzzing, has become one of the de facto
standard techniques for bug finding in the software industry. In general,
fuzzing provides various inputs to the target program with the goal of
discovering un-handled exceptions and crashes. In business sectors where
the time budget is limited, software vendors often launch many fuzzing
instances in parallel as a common means of increasing code coverage.
However, most of the popular fuzzing tools — in their parallel mode —
naively run multiple instances concurrently, without elaborate distribu-
tion of workload. This can lead different instances to explore overlapped
code regions, eventually reducing the benefits of concurrency. In this pa-
per, we propose a general model to describe parallel fuzzing. This model
distributes mutually-exclusive but similarly-weighted tasks to different
instances, facilitating concurrency and also fairness across instances. Fol-
lowing this model, we develop a solution, called AFL-EDGE, to improve
the parallel mode of AFL, considering a round of mutations to a unique
seed as a task and adopting edge coverage to define the uniqueness of a
seed. We have implemented AFL-EDGE on top of AFL and evaluated
the implementation with AFL on 9 widely used benchmark programs.
It shows that AFL-EDGE can benefit the edge coverage of AFL. In a
24-hour test, the increase of edge coverage brought by AFL-EDGE to
AFL ranges from 9.5% to 10.2%, depending on the number of instances.
As a side benefit, we discovered 14 previously unknown bugs.

Keywords: Software Testing · Parallel Fuzzing · Performance.

1 Introduction

Thanks to its direct and easy application to production-grade software without
human aids, fuzzing is gaining tremendous popularity for security testing. In
today’s business sectors, software systems are having shorter testing cycles [34],
and therefore, the efficiency of code coverage becomes a critically desired prop-
erty of fuzzing.

∗These authors contributed equally.
†This work was done while Pang was a Visiting Scholar at Stevens Institute of

Technology.



2 Yifan Wang et al.

To escalate code coverage efficiency, there are two orthogonal strategies,
one improving algorithms of fuzzing tools and one launching many fuzzing in-
stances in parallel. The research community has intensively investigated the first
strategy. Efforts along this line have revolutionized fuzzing from being program-
structure-agnostic and black-box [2, 5, 28] to be program-structure-aware and
grey-box/white-box [52, 37, 16, 49, 40], which significantly improved fuzzing
efficiency by overcoming common barriers of code coverage.

However, the second strategy has been less studied and insufficiently devel-
oped. Existing fuzzing tools (e.g., [37, 8]) primarily follow American Fuzzy Lop
(AFL) [52] to implement their parallel mode. Technically speaking, they run
multiple identical instances in parallel. Depending on the implementation, dif-
ferent instances may either share the same group of seed inputs (or seeds) [8, 37]
or use separate groups of seed inputs but make periodical exchanges [52]. This
type of parallel fuzzing, due to lack of synchronizations, leads different instances
to run overlapped tasks, impeding the effectiveness of concurrency.

In this paper, we focus on unveiling the limitations of the parallel mode in ex-
isting fuzzing tools and presenting new solutions to overcome those limitations.
We start with an empirical study of the parallel mode in AFL. By tracing the
exploration of all instances across the fuzzing process, we discover that different
instances are indeed running overlapped tasks despite many tasks remain unac-
complished (§ 2.2). We further demonstrate that this type of task overlapping
can lead to reduced efficiency of code coverage.

Motivated and inspired by our empirical study, we propose a general model
to describe parallel fuzzing. At the high level, the model enforces three desired
properties. First, it distributes mutually-exclusive tasks to different instances,
preventing the occurrence of overlaps. Second, it ensures every single task to be
covered by at least one instance. This avoids the loss of fuzzing tasks and the
code covered by those tasks. Finally, it assigns to each instance tasks with a
similar amount of workload. Otherwise, some instances will be overloaded while
the other instances are under-loaded, which can eventually degrade concurrency.

Guided by the model above, we develop a solution, called AFL-EDGE,
towards facilitating the parallel mode in AFL. Our solution defines a task is to
run a round of mutations to a unique seed and considers the control-flow edges
(or edges) covered by a seed to determine its uniqueness. During the course of
fuzzing, AFL-EDGE periodically distributes seeds that carry non-overlapped
and similarly-weighted tasks to different instances, meeting the properties of our
model. AFL-EDGE also enforces that all the unique seeds will cover the same
set of edges as the original seeds. We envision that, in this way, AFL-EDGE
can properly preserve the fuzzing capacity of AFL.

We have implemented AFL-EDGE on top of AFL, and we have evaluated
AFL-EDGE with AFL using 9 widely adopted benchmark programs. Our eval-
uation shows that AFL-EDGE can significantly reduce the overlaps and hence,
benefit the code coverage. Depending on the number of instances we launch, we
can averagely reduce 57.1% - 60.3% of the overlaps and bring a 9.5% - 10.2%
increase in code coverage with AFL. Our evaluation also demonstrates that,



Facilitating Parallel Fuzzing with Mutually-exclusive Task Distribution 3

compared to the state-of-the-art solutions of improving parallel fuzzing [22, 39],
our solution not only brings higher improvement to efficiency of edge coverage
but also better preserves the capacity of the fuzzing tools. As a side benefit,
AFL-EDGE triggers over 6K unique crashes, corresponding to 14 new bugs.

Our main contributions are as follows.

– We present a general model to describe parallel fuzzing.

– We develop a solution to improve the parallel mode in AFL, following the
guidance of our model.

– We have implemented our solution on top of AFL, which can seamlessly run
with other fuzzing tools that also use AFL. Source code of our implementa-
tion will be made publicly available upon publication.

– We evaluated our solution with AFL on 9 widely used benchmark programs.
It shows that our solution can effectively reduce the overlaps and increase
the code coverage of AFL.

2 Background and Motivation

2.1 Grey-box Fuzzing and Parallel Mode

Target Program

Feedback Scheduling

Mutation

Seed QueueNew Seeds

New Inputs

⓵

⓶

⓷
⓸
⓸

⓹

Fig. 1: A general model of grey-box
fuzzing.

In this research, we target grey-box
fuzzing [25], the most popular cate-
gory of fuzzing. Grey-box fuzzing gen-
erally follows the feedback-scheduling-
mutation model presented in Fig. 1.
This FSM model represents an iter-
ative process, starting with a queue
of seed inputs, or seeds, that are typ-
ically generated from certain known
test cases. In a round of fuzzing, the
scheduling picks a seed and feeds it to the mutation process for deriving new
inputs to test the target program, expecting to trigger un-handled crashes or
exceptions. Both the scheduling and mutation processes are based on feedback
(e.g., crashes and code coverage) obtained from the program executions on the
previously generated inputs. The fuzzer also collects feedback to decide whether
an input under test should be added to the seed queue.

To improve the efficiency of code coverage, many grey-box fuzzing tools [52,
37, 8] provide a parallel mode to run multiple instances concurrently. Their par-
allel mode mostly follows AFL. They start identically-configured instances and
run them in parallel. Depending on the implementation, different instances may
either share the same seed queue [37] or carry separate seed queues but period-
ically exchange seeds [52]. In the latter case, each instance borrows from other
instances all the seeds that bring new code coverage. While intuition suggests
that more fine-grained synchronizations can benefit the effectiveness of the above
parallel fuzzing, none of the existing tools carry such synchronizations.



4 Yifan Wang et al.

6h 12h 18h 24h

Time (hours)

60

70

80

90

100

R
at

e 
(%

)
mutation rate
overlap rate

6h 12h 18h 24h

Time (hours)

40

50

60

70

80

90

100

R
at

e 
(%

)

mutation rate
overlap rate

6h 12h 18h 24h

Time (hours)

20

40

60

80

100

R
at

e 
(%

)

mutation rate
overlap rate

6h 12h 18h 24h

Time (hours)
70

75

80

85

90

95

R
at

e 
(%

)

mutation rate
overlap rate

(a) objdump (b) readelf (c) libxml (d) nm-new

Fig. 2: Results of measuring overlapped mutations: “mutation rate” - the portion
of seeds mutated by at least one instance; “overlap rate” - the portion of seeds
mutated by more than one instance.

2.2 Motivating Study

Sharing seeds across instances is an intentional design of AFL [51]. The goal
is that “hard-to-hit but interesting test cases” can be used by all instances
to guide their work. However, intuition suggests that such a design can lead
different instances to mutate the same seeds, which may eventually reduce the
effectiveness of concurrency. To validate this intuition and thus, motivate our
research, we perform an empirical study based on AFL.

In our study, we run AFL on four popular benchmark programs (Objdump,
Readelf, Libxml, Nm-new) with 2 parallel instances for 24 hours. We trace
the mutation process to understand which seeds are mutated by which instances.
We repeat the tests five times and report the average results in Fig. 2. As shown
by the results, different instances are indeed mutating overlapped seeds despite
many seeds are never mutated, in particular when the fuzzing time is limited.
Consider the results after 6 hours as an example. On average, nearly 20% of the
seeds are never mutated. However, over 42% of the seeds receive multiple rounds
of mutations. When we increase the fuzzing time, we observe even higher rates
of overlaps but still a group of non-mutated seeds.

Although we observe overlaps among mutated seeds and the overlaps indeed
delay the mutations to all seeds, they may not necessarily impede the efficiency
of code coverage. This is because AFL’s mutation involves random operations. In
this regard, running multiple rounds of mutations to the same seed — especially
when the seed has higher potential — may produce code coverage comparable
to applying the mutations to different seeds. To verify this possibility, we run
another experiment. Specifically, we randomly collect 1,000 seeds produced in
the above test of each program and equally split the seeds into group A and group
B. First, we run AFL to mutate group A for multiple rounds and we calculate the
increase of code coverage after each round of mutations, where we use control
flow edges as the metric of code coverage and we consider the edges covered by
the original 1,000 seeds as the baseline. Then, we repeat the experiment but
replace the same X% of group A with un-mutated seeds from group B in each
round. For example, when we set X to 10, we run the original group A in the first
round but in every following round, we replace a fixed subset of 50 seeds with
other non-muted ones from group B. Such an experiment enables us to simulate
fuzzing scenarios where a different extent of overlapped mutations happen.



Facilitating Parallel Fuzzing with Mutually-exclusive Task Distribution 5

100% 90% 80% 70%
Overlapping Rate

25

30

35

40

45

50

55

60

Ed
ge

 C
ov

er
ag

e 
In

cr
ea

se
 (%

) round 2
round 3
round 4

100% 90% 80% 70%
Overlapping Rate

80

100

120

140

160

180

200

Ed
ge

 C
ov

er
ag

e 
In

cr
ea

se
 (%

) round 2
round 3
round 4

100% 90% 80% 70%
Overlapping Rate

10

15

20

25

30

35

40

Ed
ge

 C
ov

er
ag

e 
In

cr
ea

se
 (%

) round 2
round 3
round 4

100% 90% 80% 70%
Overlapping Rate

15

20

25

30

35

40

45

Ed
ge

 C
ov

er
ag

e 
In

cr
ea

se
 (%

) round 2
round 3
round 4

(a) objdump (b) readelf (c) libxml (d) tiff2ps

Fig. 3: Impacts of overlapped mutations to edge coverage. The baseline of “Edge
Coverage Increase” is the edges covered by the original 1,000 seeds; “Overlapping
Rate” indicates the portion of overlapped seeds between two consecutive rounds
of mutations. Results from the first round are omitted since the first round is
identical under different settings, i.e., mutating the initial 500 seeds. Please note
that the x-axis decreases from left to right.

Fig. 3 presents the results of the above experiment under different settings.
With all the four programs, we observe a trend that fewer overlaps among the
mutated seeds lead to a higher increase of code coverage. This empirically demon-
strates that running AFL’s mutations on different seeds can cover more edges
than running the mutations on the same seeds. We believe such results align
with AFL’s design: AFL distributes mutation energies in a round according to
the potential of a seed (based on metrics such as number of edges covered by
the seed) and assigns more mutation cycles to seeds with higher potential, which
eventually helps allocate sufficient mutations in a single round to exhaust the
edges that can be derived from a seed.

To sum up, our empirical study shows that the parallel mode of AFL (and
likely, many other fuzzing tools) can indeed bring overlaps, which further im-
pedes the efficiency of code coverage. It is, therefore, necessary to investigate
and develop better solutions of parallel fuzzing.

3 A General Model of Parallel Fuzzing

In this section, we propose a model to describe parallel fuzzing. The model is
inclusive of the parallel mode in existing fuzzing tools and we envision it is
general enough to apply to other solutions of parallel fuzzing.

Formally, a parallel fuzzing system consists of n instances {F1, F2, ..., Fn}.
These instances together work on a set of m tasks {T1, T2, ..., Tm}, with the ith

instance distributed to focus on a subset of tasks {Ti1, Ti2, ..., Timi} (mi ≤ m).
Depending on the definition of tasks, {T1, T2, ..., Tm} can require different
amounts of workload to be completed, notated as {W1, W2, ..., Wm}. To improve
the efficiency of parallel fuzzing, the system would desire to meet the following
three properties.

• (P1) Different instances should work on disjoint subsets of tasks. This is to
avoid overlaps and increase the extent of concurrency. Formally, given any
two instances Fi and Fj (i 6= j), the fuzzing system needs to ensure:

{Ti1, Ti2, ..., Timi
} ∩ {Tj1, Tj2, ..., Tjmj

} = ∅ (1)



6 Yifan Wang et al.

• (P2) All the instances together should cover all the tasks. Formally, that
means:

n⋃
i=1

{Ti1, Ti2, ..., Timi
} = {T1, T2, ..., Tm} (2)

Otherwise, the pursuit of parallel fuzzing can cause the loss of certain tasks
and, essentially, miss the code that can be covered by those tasks.

• (P3) Different tasks should be assigned with a similar workload. Formally,
the fuzzing system should maintain the following relation between any two
instances Fi and Fj (i 6= j):

mi∑
n=1

Win ≈
mj∑
n=1

Wjn (3)

Otherwise, certain instances can receive under-loaded tasks and end with
plenty of idle cycles, which in principle also harms concurrency.

While the above model is general, it overlooks the fact that different tasks can
bring different benefits, in particular code coverage [9]. To this end, Equation 1
should be amended to allow overlaps of tasks that carry higher returns such that
these tasks have a higher chance to be picked and completed. To incorporate this
consideration, we find that it is not mandatory to modify our model. Instead, we
can replicate high-return tasks and consider their replicas as unique ones. This
will achieve similar effects as allowing overlaps of those tasks.

4 Applications of Our Model

4.1 Existing Solutions

1 2 3
5

Seed-1: 1->2->5
Seed-2: 1->2->3->2->5

Fig. 4: An example of two seeds that
cover overlapped sets of edges. The up-
per part presents the CFG; the lower
part shows the two seeds.

In the literature, two solutions of im-
proving parallel fuzzing, P-FUZZ [39]
and PAFL [22], fit into our model.
Both P-FUZZ and PAFL consider
a fuzzing task is to run a round of
mutations to a unique seed and they
distribute a similar amount of unique
seeds to each instance. However, the
two solutions take two opposite prin-
ciples to define the uniqueness of a
seed. P-FUZZ aims for conservative-
ness. It follows AFL and considers a
seed that brings new code coverage at
its birth to be unique. Such a principle
preserves all seeds produced by AFL
but can leave behind many overlaps.
Consider Fig. 4, where Seed-1 is born before Seed-2, as an example. P-FUZZ
will consider both seeds unique and mutate both seeds. However, Seed-2 covers



Facilitating Parallel Fuzzing with Mutually-exclusive Task Distribution 7

Fuzzer 1

Seed Queue

Fuzzer 2

Seed Queue

…

Seed Queue

Fuzzer n

Seed Queue Distributor

Pull Seeds

Assign Seeds

Fig. 5: Workflow of our solution to optimize parallel fuzzing.

all the edges of Seed-1 and thus, they actually overlap based on AFL’s defini-
tion. Moreover, mutating Seed-2 can likely produce the same code coverage as
mutating both seeds, further illustrating the overlap.

In contrast, PAFL aims for effectiveness. It considers a seed unique only
when the seed covers certain less-frequently visited edges. In this way, PAFL
can massively reduce overlaps. However, it does not guarantee that the unique
seeds can cover all the code covered by the original seeds. As such, it can skip
certain code regions and lose the opportunities to cover code that can be derived
from those code regions.

4.2 Our Solution

In this paper, we propose a new solution following our model. Similar to P-
FUZZ and PAFL, we consider a fuzzing task is to run a round of mutations
to a unique seed. However, as we will explain shortly, we adopt a strategy that
achieves an effectiveness-and-conservativeness balance to define the uniqueness
of a seed. Our solution follows the workflow in Fig. 5 to periodically distribute
the tasks. In each round of task distribution, we pull seeds from all instances,
partition them into un-overlapped while similarly-weighted sub-sets, and finally
assign them back to each instance. In the rest of this section, we describe the
design details and explain how they meet P1 - P3.
Defining fuzzing tasks. In our solution, we consider the entire set of tasks are
to mutate seeds that cover all the (control flow) edges reached by the original
seeds. In this way, we approximate the fuzzing goals of AFL and largely preserve
the fuzzing space of AFL (i.e., produce similar effects as mutating every seed). To
determine the uniqueness of a seed, we consider the edges and their hit counts4

covered by the seed as criteria. But different from P-FUZZ, we consider a seed
is unique only if the seed covers one or more edges that other seeds do not cover.
This principle avoids the overlaps that P-FUZZ may incur. Referring back to
the example in Fig. 4, when Seed-1 and Seed-2 both exist at the moment of
task distribution, we will consider Seed-1 non-unique since Seed-2 encapsulates
all the edges of Seed-1. In the following, we describe how to pick unique seeds
while running task distribution.

4A hit count in each of the following ranges is mapped to a unique value: [1], [2],

[3], [4, 7], [8, 15], [16, 31], [32, 127], [128, ∞)



8 Yifan Wang et al.

Algorithm 1: Task distribution

Input : Seed sets from all instances D = {~S1, ~S2, ..., ~Sn}
Output : Seeds distributed to different instances D′ = {~S′

1, ~S
′
2, ..., ~S

′
n}

1 Initialize D′: ~S′
1 = ∅, ~S′

2 = ∅,... ~S′
n = ∅

2 for each ~Si ∈ D do

3 Obtain edges covered by seeds in ~Si, notated as ~Ei;
/* hit counts of edges are considered */

4 end

5 ~E =
⋂n

i=1
~Ei;

6 Organize ~E into a control flow graph CFG;
/* different hit counts of the same edge are represented as

different edges */

7 Copy CFG as CFG′ and topologically sort CFG′;
8 for the deepest leaf node Li in CFG′ do
9 k = random(1, n);

10 Pick a seed s from ~Sk which covers Li, maximizes |edge(s)
⋂

edge(CFG′)|,
and has the minimal age;

11 Add s to ~S′
k;

12 Remove edge(s) from CFG′;

13 end

14 for each ~Si ∈ D do

15 for each s ∈ ~Si do

16 if edge(s)− edge(CFG) 6= ∅ and edge(s)− edge(~S′
i) 6= ∅ then

17 Add s to ~S′
i;

18 end

19 end

20 end
21 return D′;

Distributing fuzzing tasks. In each round of task distribution, we pull all the
seeds from each instance and re-run them with dynamic tracing. We gather the
edges covered by each instance, notated as ~Ei for the ith instance. We then com-
pute the intersections among the edges from all instances (i.e.,

⋂n
i=1

~Ei), and we

notate the intersections as ~E. By intuition, we can then randomly, evenly parti-
tion ~E into multiple sub-sets, assign each sub-set to a unique instance, and then
pick seeds that visit those assigned edges for the instance to mutate. Such an
idea, however, has a major problem. When we pick a seed to cover a particular
edge, we will concurrently cover many other edges, which may essentially bring
overlaps back. Consider the Fig. 6 as an example. By random distribution, we
may sequentially pick Seed-2, Seed-3, and Seed-4, and distribute them to dif-
ferent instances. According to our definition, this would create an edge-overlap
between Seed-2 and Seed-3 + Seed-4, not satisfying our definition of unique-
ness.



Facilitating Parallel Fuzzing with Mutually-exclusive Task Distribution 9

0

1 2

3 4 5

7 8 96

Seed-1: 0->1->3->6
Seed-2: 0->2->4->8
Seed-3: 0->2->4->7
Seed-4: 0->1->4->8
Seed-5: 0->2->5->8
Seed-6: 0->2->5->9

(a) Control flow graph (b) AFL seeds (time order)

Instance 1:
Seed-1: 0->1->3->6
Seed-4: 0->1->4->8
Seed-6: 0->2->5->9

Instance 2:
Seed-3: 0->2->4->7
Seed-5: 0->2->5->8

(c) Seed distribution

Fig. 6: An example of edge-coverage-based task distribution between 2 instances.
The left part shows the CFG aggregated by the overlapped edges. The middle
part show the seeds produced by AFL, sorted in time order. The right part
presents the task distribution results.

In this work, we design a greedy algorithm, shown in Algorithm 1, to pro-
vide edge-coverage-based task distribution. We aggregate the edges in ~E into a
topologically sorted control flow graph, notated as CFG (line 1-6). We then
recursively process the leaf edges on CFG (i.e., edges that end with leaf nodes
on CFG). For the leaf edge with the largest depth, we randomly pick a fuzzing
instance and elaborately pick a seed s from that instance to cover the leaf edge
(line 9-10). To be specific, we select the seed that covers the maximal number
of edges remaining on the CFG. If multiple seeds satisfy this condition, we pick
the youngest one. We distribute s to the fuzzing instance where s comes from
(line 11) and remove all edges covered by s from CFG (line 12). We repeat this
process until all edges on the CFG are removed. After that, we preserve the
seeds that visit edges in ¬ ~E (line 14-20). To better illustrate our distribution
algorithm, we present an example in Fig. 6, showing both the fuzzing progress
and the distribution results. It is worth noting that when we pick a seed for
leaf node 4→8, we favor Seed-4 over Seed-2 because Seed-4 is more recently
derived. This prevents the pick of Seed-2 and avoids the overlap we mentioned
before.

The above algorithm involves multiple heuristics, which strive for fewer over-
laps and better efficiency. First, we prefer seeds that cover more non-distributed
edges (line 10). The motivation is to quickly consume the distribution space and
thus, minimize the number of required seeds and reduce the potential of over-
laps. Second, we favor newer seeds. The rationale is that seeds newly generated
have a higher chance to cover new edges than the older seeds. Thus, they have a
lower chance of bringing in overlaps. Third, we prioritize edges that have larger
depths on the control flow graph. This is to reduce the search space when pick-
ing seeds, exploiting the observation that deeper edges are typically reached by
fewer seeds.



10 Yifan Wang et al.

Despite our greedy algorithm may not perfectly meet P1 - P3, it represents the
best effort. First, we distribute disjoint sub-sets of overlapped edges to different
instances. We further incorporate a set of heuristics to avoid overlaps when
we pick seeds. As we will demonstrate in § 6, this combined effort can indeed
effectively reduce overlaps (way more than P-FUZZ). Second, every edge (in
~E or ¬ ~E) is distributed to at least one instance. This preserves all the fuzzing
tasks according to our definition, satisfying P2. Finally, we evenly distribute the
non-overlapped edges in a random manner. This aids each instance to receive
approximately equivalent workloads and, therefore, facilities the fulfillment of
P3.

Scheduling task distribution. Our design needs to periodically re-run the
task distribution. However, a low frequency of re-distribution may not timely
avoid the accumulated overlaps while a high frequency can lead to a waste of
computation cycles since fuzzing may not have produced many overlaps. In our
design, we adjust the scheduling of task distribution based on the increase of
edge coverage. We start the first round of distribution after the first hour, and
we re-run it once the new edge coverage exceeds 10%.

5 Implementation

We have implemented our solution, called AFL-EDGE, on top of AFL (2.52b)
and LLVM with around 100 lines of C code, 400 lines of C++ code, 300 lines
of shell scrips, and 200 lines of Python code. All code will be released upon
publication.

5.1 Collecting Edge Coverage.

The task distribution of AFL-EDGE needs code coverage information of exist-
ing seeds. To support the need, we implement an LLVM pass to instrument the
target program. Following a seed, the instrumented code will sequentially record
each edge and output the final list at the end. To avoid collisions, we assign each
basic block a unique 64-bit ID and concatenate the IDs of two connected basic
blocks to represent the edge between them.

5.2 Distributing Fuzzing Tasks.

AFL-EDGE requires to distribute seeds across fuzzing instances. To avoid in-
truding on the normal fuzzing process, we implement the task distributor as a
standalone component. It follows the algorithm in § 4.2 to determine the seeds
that are assigned to each instance and saves the seeds in a file. Following the
metadata organization of AFL, the seed file is added to the corresponding in-
stance’s working directory.



Facilitating Parallel Fuzzing with Mutually-exclusive Task Distribution 11

Table 1: Benchmark programs and evaluation settings. In the column of Seeds,
AFL means we reuse the test-cases from AFL and built-in means that we reuse
the test cases from the program.

Programs Settings

Name Version Driver Source Seeds Options

libpcap 1.10.0 tcpdump [41] AFL -r @@
libtiff 4.0.10 tiff2ps [19] AFL @@
libtiff 4.0.10 tiff2pdf [19] AFL @@
binutils 2.32 objdump [15] AFL -d @@
binutils 2.32 readelf [15] AFL -a @@
binutils 2.32 nm-new [15] AFL -a @@
libxml2 2.9.7 xmllint [26] AFL @@
nasm 2.14.2 nasm [3] built-in -e @@
ffmpeg 4.1.1 ffmpeg [6] built-in -i @@

5.3 Confining Fuzzing Tasks.

Our design requires an instance to only mutate the sub-group of assigned seeds.
Technically, we customize AFL to read the list of seeds assigned by the distribu-
tor and maintain them in a allow-list. When AFL schedules seeds for mutations,
we only pick candidates on the allow-list. Such an implementation avoids intro-
ducing extra inconsistency to the fuzzing process. Considering that our distrib-
utor iteratively updates the seed list, the customized AFL periodically checks
the seed file and updates the allow-list accordingly.

6 Evaluation

In this section, we evaluate AFL-EDGE, centering around three questions.

• (Q1) Can AFL-EDGE reduce the overlaps among fuzzing instances?

• (Q2) Can AFL-EDGE improve the efficiency of code coverage?

• (Q3) Can AFL-EDGE preserve the fuzzing capacity of AFL?

6.1 Experimental Setup

Benchmarks. To answer the above questions, we prepare a group of 9 real-
world benchmark programs. Details about the programs are presented in Ta-
ble 1. All these programs have been intensively tested in both industry [43] and
academia [40, 49, 32]. In addition, they carry diversities in both functionality
and complexity.
Baselines. We run AFL as the baseline of our evaluation. To compare AFL-
EDGE with the existing solutions, we also run P-FUZZ [39] and PAFL [22]
on top of AFL. Because the implementations of P-FUZZ and PAFL are not



12 Yifan Wang et al.

publicly available, we re-implemented the two solutions following the algorithms
presented in their publications [39, 22].
Configurations. Specific configurations of the fuzzing process (e.g., seeds and
program options) are listed in Table 1. To understand the impacts of the num-
ber of instances, we run each fuzzing setting respectively with 2, 4, and 8 AFL
secondary instances. We do not run a primary instance because it involves deter-
ministic mutations which bring disadvantages to vanilla AFL. For consistency,
we conduct all the experiments on Amazon EC2 instances (Intel Xeon E5 Broad-
well 96 cores, 186GB RAM, and Ubuntu 18.04 LTS), and we sequentially run
all the tests to avoid interference. Each test is run for 24 hours. To minimize
the effect of randomness in fuzzing, we repeat each test 5 times and report the
average results.

6.2 Analysis of Results

In Table 2, we present the results with AFL at the end of 24 hours. We elaborate
on the results as follows, seeking answers to Q1 - Q3.
Effectiveness of overlap reduction. The direct goal of AFL-EDGE is to
reduce the overlaps among instances. To measure this goal, we consider the
number of seeds that are disabled from each instance as the metric. As shown
in Table 2 (the column for overlap reduction rate), AFL-EDGE can effectively
reduce the potential overlaps in the parallel mode of AFL. To be specific, AFL-
EDGE can prevent 60.0%, 60.3%, and 57.1% of the seeds from being repeatedly
mutated when we respectively run 2, 4, and 8 parallel instances.

In comparison to existing solutions, AFL-EDGE reduces more overlaps than
P-FUZZ but fewer than PAFL. Such results well comply with the designs of
the three tools. P-FUZZ preserves all the seeds produced by AFL while PAFL
aggressively skip seeds. In contrast, AFL-EDGE keeps seeds necessary to cover
all the edges, pursuing a trade-off between conservativeness and effectiveness.
As we will show later, while AFL-EDGE’s strategy reduces fewer seeds in com-
parison to PAFL, it does not necessarily hurt code coverage and it can better
preserve the fuzzing capacity (or more precisely, AFL-EDGE can cover more
code that AFL covers).
Improvements to code coverage efficiency. To understand whether the
overlap reduction by AFL-EDGE can indeed benefit code coverage, we measure
the number of edges covered in the tests. In Table 2 (the column of edge coverage
increase), we present the increase of edge coverage brought by AFL-EDGE to
AFL at the end of a 24-hour test.

In summary, AFL-EDGE can consistently improve the efficiency of edge cov-
erage of AFL, regardless of the benchmark and the number of instances. Specif-
ically, AFL-EDGE increases the edge coverage by 10.0%, 10.2%, and 9.5%,
respectively with 2, 4, and 8 instances. Another key observation is that the ben-
efits brought by AFL-EDGE often decrease with the number of instances. We
believe the reason is that the fuzzers can get closer to saturation when more par-
allel instances are running. Therefore, the gap between AFL and AFL-EDGE
shrinks at the end.



Facilitating Parallel Fuzzing with Mutually-exclusive Task Distribution 13

Table 2: Statistical results of our evaluation with AFL in 24 hours. In the table,
“overlap reduction (%)” means the average percentage of seeds that the corre-
sponding solution cuts from each instance; “edge-cov increase (%)” stands for
the increase of code coverage that the corresponding solution brings to AFL;
p-value demonstrates the statistical significance of the increase of code coverage
(the smaller, the better); and “edge-cov overlap rate (%)” shows how much of
the code covered by AFL is also covered by the corresponding solution.

Prog. Tool Statistical evaluation results with 2, 4, and 8 instances (AFL).
overlap reduction (%) edge-cov increase (%) p-value edge-cov overlap (%)

objdump
pafl 60.6 80.8 89.5 1.9 0.0 0.3 0.32 0.72 0.10 95.5 94.9 95.8
p-fuzz 46.7 53.5 62.5 5.1 2.3 3.0 0.07 0.03 0.00 96.8 96.3 97.9
afl-edge 63.7 63.2 62.4 7.6 7.3 3.1 0.00 0.04 0.03 97.5 98.3 98.5

readelf
pafl 81.2 86.8 88.4 5.6 -3.2 -3.6 0.03 0.19 0.12 92.5 92.1 93.0
p-fuzz 46.8 43.8 45.4 7.2 3.8 6.0 0.04 0.01 0.00 99.0 98.5 98.0
afl-edge 45.9 43.8 42.5 12.2 7.0 8.4 0.05 0.02 0.00 97.5 97.2 97.7

tiff2pdf
pafl 64.1 79.7 81.2 3.4 0.4 5.0 0.00 0.05 0.29 97.0 91.3 93.8
p-fuzz 42.2 60.1 64.1 5.5 6.3 8.5 0.01 0.04 0.04 98.5 97.0 97.9
afl-edge 62.4 59.5 58.5 9.0 5.6 11.2 0.00 0.02 0.00 98.5 95.9 99.1

nm-new
pafl 46.2 52.6 55.9 4.0 4.8 0.2 0.10 0.07 0.19 96.6 96.2 97.5
p-fuzz 43.6 55.6 60.2 4.5 7.1 3.8 0.00 0.03 0.00 97.6 98.1 98.1
afl-edge 59.9 58.5 60.1 6.8 6.6 3.6 0.03 0.08 0.00 96.3 96.8 98.5

nasm
pafl 64.2 82.7 54.7 5.5 14.6 2.4 0.05 0.01 0.06 99.8 99.3 99.8
p-fuzz 10.0 11.0 8.2 8.9 9.2 8.1 0.00 0.00 0.00 99.0 98.3 94.3
afl-edge 67.9 68.3 66.8 13.9 22.6 7.6 0.00 0.00 0.00 99.2 99.3 99.2

tiff2ps
pafl 57.1 81.9 89.2 7.8 15.0 8.7 0.03 0.02 0.02 82.3 89.9 96.6
p-fuzz 44.0 60.7 66.4 7.5 12.3 9.5 0.00 0.00 0.00 97.1 97.5 98.0
afl-edge 53.4 58.5 52.8 10.4 13.5 7.2 0.00 0.00 0.00 96.9 96.5 97.2

tcpdump
pafl 66.4 80.3 84.4 8.2 10.6 7.7 0.19 0.03 0.06 84.7 86.6 88.5
p-fuzz 45.6 63.6 80.7 2.8 7.2 6.1 0.05 0.03 0.04 85.7 88.3 91.5
afl-edge 48.3 48.6 42.9 4.4 9.9 11.9 0.05 0.03 0.00 87.6 89.5 92.8

libxml2
pafl 61.8 91.5 82.2 7.3 43.7 7.0 0.00 0.01 0.06 87.2 81.7 88.3
p-fuzz 41.0 48.5 51.8 5.1 11.7 21.3 0.00 0.01 0.00 97.9 89.3 97.6
afl-edge 68.9 69.2 65.6 7.5 7.6 29.1 0.00 0.04 0.00 98.6 93.3 98.2

ffmpeg
pafl 94.5 90.7 91.4 17.9 23.4 4.1 0.04 0.01 0.38 86.8 85.2 87.0
p-fuzz 41.6 62.5 63.4 22.6 20.1 6.1 0.03 0.05 0.00 91.2 90.2 98.3
afl-edge 69.7 73.5 62.3 18.3 11.6 3.3 0.01 0.04 0.00 89.9 90.1 97.3

Ave.
pafl 66.2 80.8 79.7 6.9 12.1 3.5 – – – 91.4 90.8 93.4
p-fuzz 40.2 45.1 49.5 7.7 8.9 8.0 – – – 95.9 94.8 96.9
afl-edge 60.0 60.3 57.1 10.0 10.2 9.5 – – – 95.8 95.2 97.6

To further verify that the improvements by AFL-EDGE are statistically
significant, we perform Mann Whitney U-test [27] on the five rounds of runs [18].
The p-values of the hypothesis test are presented in Table 2 (the column of p-
value). In nearly all the cases, the p-values are smaller than 0.05, supporting
that the improvements brought by AFL-EDGE are significant from a statistical
perspective.

Finally, AFL-EDGE presents better overall performance than both P-FUZZ
and PAFL. When applied to AFL, AFL-EDGE increases the edge coverage by
9.5% - 10.2%, outperforming P-FUZZ and PAFL in most of the cases. On the
one hand, AFL-EDGE reduces more overlaps than P-FUZZ and thus, produces
higher code coverage efficiency. On the other hand, PAFL in principle reduces
more overlaps than AFL-EDGE, which indeed leads to higher edge coverage
than AFL-EDGE in several cases (e.g., running AFL on TIFF2PS with 4 or



14 Yifan Wang et al.

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96100104108112116120

Time (hours)
90

91

92

93

94

95

96

97

98

99

100

O
ve

rla
pp

in
g 

R
at

e 
(%

)

P-FUZZ
AFL-EDGE

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96100104108112116120

Time (hours)
90

91

92

93

94

95

96

97

98

99

100

O
ve

rla
pp

in
g 

R
at

e 
(%

)

P-FUZZ
AFL-EDGE

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96100104108112116120

Time (hours)
90

91

92

93

94

95

96

97

98

99

100

O
ve

rla
pp

in
g 

R
at

e 
(%

)

P-FUZZ
AFL-EDGE

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96100104108112116120

Time (hours)
90

91

92

93

94

95

96

97

98

99

100

O
ve

rla
pp

in
g 

R
at

e 
(%

)

P-FUZZ
AFL-EDGE

(a) objdump (b) readelf (c) libxml (d) tiff2pdf

Fig. 7: Overlap of code coverage between AFL-EDGE/P-FUZZ and AFL in
the 120-hour tests.

8 instances). However, in many other cases, PAFL can accidentally block valu-
able seeds and become unable to cover the related edges, eventually resulting
in a lower edge coverage. This can be further supported by that PAFL even
produces lower edge coverage than AFL in certain cases (e.g., running AFL on
READELF with 4 or 8 instances).

Effectiveness of preserving fuzzing capacity. As discussed in § 4, AFL-
EDGE can skip certain seeds produced by AFL. This may alter the fuzzing
behaviors and, more concerningly, hurt the fuzzing capacity (i.e., missing edges
that can be covered by vanilla AFL). To understand the impacts of AFL-EDGE
to the fuzzing capacity, we perform another analysis where we examine whether
AFL-EDGE and AFL are exploring different edges. Technically, we measure
how many of the edges covered by AFL are also covered by AFL-EDGE. We
show the results in Table 2 (the column of edge overlap rate). In summary, AFL-
EDGE can prevalently cover more than 95% of the edges that are covered by
AFL. Considering the existence of randomness, we believe such results strongly
support that AFL-EDGE largely preserves the behaviors of the vanilla tools
and does not significantly affect the fuzzing capacity.

In comparison to existing solutions (see Table 2), AFL-EDGE can preserve
as much edge coverage as P-FUZZ. This further proves that AFL-EDGE well
maintains the fuzzing space since P-FUZZ does not skip seeds and thus, its
results represent the best efforts. Further, AFL-EDGE outperforms PAFL in
covering the edges reached by AFL (96.2% v.s. 91.8%). This is because AFL-
EDGE keeps seeds to cover all the original code to avoid losing fuzzing capacity
while PAFL more aggressively skips seeds.

To validate the above observations in longer-term fuzzing, we extend the
tests of AFL-EDGE to 120 hours. We also run this test with P-FUZZ as a
comparison. As shown in Fig. 7, AFL-EDGE consistently preserves the edges
covered by AFL across the 120 hours, producing results comparable to P-FUZZ.
We note that in certain cases, AFL-EDGE even slightly outperforms P-FUZZ.
This is mostly because AFL-EDGE has a higher efficiency of edge coverage
than P-FUZZ and therefore, reaches more edges that AFL covers.

Impacts of frequency of task distribution. Recall that AFL-EDGE needs
to periodically distribute tasks (§ 4). Our hypothesis is that the frequency of
distribution can affect the effectiveness of our solution and we dynamically adjust
this frequency based on the growth of edges. To validate our hypothesis and



Facilitating Parallel Fuzzing with Mutually-exclusive Task Distribution 15

Table 3: Impacts of frequency of our task distribution.

Prog. Setting
Number of Edges Covered in 24h
once / 1h once / 2h once / 4h dynamic

objdump afl-edge 33422 33828 33370 34402

readelf afl-edge 50932 53036 51927 53839

demonstrate the utility of our dynamic approach, we perform another experiment
where we run one round of distribution per 1 hour, 2 hours, and 4 hours. In
Table 3, we present the results. It shows that the frequency of distribution truly
makes a difference and our dynamic adjustment indeed outperforms solutions
with a fixed frequency.

Table 4: Comparison of seed distillation algorithms. The numbers show the
amount of seeds picked by different algorithms.

Prog.
Number of seeds picked after distillation
Unweighted Weight-Time Weight-Size(cmin) Ours

objdump 601 803 599 596

readelf 939 980 938 683

tcpdump 765 849 756 592

xml 689 862 686 434

nasm 490 724 492 452

nm 541 701 788 778

tiff2pdf 785 920 778 778

tiff2ps 822 916 817 802

ffmpeg 593 742 589 581

Effectiveness of seed distribution. In our algorithm of task distribution
algorithm (Algorithm 1), the core idea is to pick a subset of seeds that cover the
original edges, commonly known as seed distillation. Past efforts have developed
several other seed distillation algorithms, including AFL-CMIN [50] (notated as
Size-Weighted) and its variants (including [1], notated as Unweighted ; [33, 45],
notated as Time-Weighted). Details of the algorithms are as follows.

– Unweighted Algorithm This algorithm always picks a seed whose edges
overlap with the non-covered edges the most. It repeats until all edges are
covered.

– Time-Weighted This algorithm iterates each non-covered edge and picks
the seed with the shortest execution time to cover the edge, repeating this
process until all edges are covered.



16 Yifan Wang et al.

Table 5: Unique crashes / bugs discovered in our tests.

Prog.
AFL PAFL P-FUZZ AFL-EDGE Bug Types

Crash Bug Crash Bug Crash Bug Crash Bug ---

ffmpeg 12 1 72 1 54 1 672 1 heap overflow

tiff2pdf 0 0 10 1 2 1 99 1 failed allocation

tiff2ps 0 0 0 0 126 1 260 3 heap overflow

nasm 631 2 1872 6 1,430 6 5,765 9
memory leaks

stack overflow

Total 643 3 1954 8 1612 9 6792 14 —

– Size-Weighted (AFL-CMIN) This algorithm iterates each non-covered
edge and picks the seed with the smallest size to cover the edge, repeating
this process until all edges are covered.

We conduct an experiment to compare our algorithm with the existing algo-
rithms: we run these algorithms on 1,000 random seeds from each of our bench-
mark programs and count the number of picked seeds. As shown in Table 4, our
algorithm reduces more seeds than all the existing algorithms in every bench-
mark program, demonstrating better effectiveness. Note that we skipped some
other algorithms (e.g., [17]) as they cannot ensure all original edges (or hit counts
of edges) are preserved.

6.3 Evaluation of Bug Finding

In the course of evaluation, the fuzzing tools also trigger many crashes. We triage
these crashes with AddressSanitizer [36] and then perform a manual analysis to
understand the root causes. As shown in Table 5, AFL-EDGE triggers 6,792
unique crashes and 14 previously unknown bugs, outperforming both P-FUZZ
and PAFL. Moreover, all the bugs detected by AFL and P-FUZZ are also
detected by AFL-EDGE.

We also extended the evaluation of bug finding with the LAVA vulnerability
benchmark [12]. However, we omitted the reporting of the results. Basically,
our tests with AFL only trigger 1 LAVA bug, regardless of the parallel fuzzing
solutions. The major reason is that all LAVA bugs require a four-byte unit in the
input to match a random integer value, which is hard to be satisfied by AFL’s
mutations.

7 Related Works

7.1 Improvements to Algorithms of Grey-box Fuzzing.

Past research has brought three categories of algorithmic improvements to grey-
box fuzzing. The first category explores new kinds of feedback to facilitate seed
scheduling and mutation. AFL [52] considers code branches covered in a round of



Facilitating Parallel Fuzzing with Mutually-exclusive Task Distribution 17

execution as feedback, which is further refined by Steelix [21], CollAFL [13], and
PTrix [10] with more fine-grained, control-flow related information. TaintScope [44],
Vuzzer [32], GREYONE [14], REDQUEEN [4], and Angora [8] use taint analysis
to identify data flows that can affect code coverage.

The second category of research investigates how to use the above types of
feedback to improve code coverage. FairFuzz [20], GREYONE [14], and Pro-
Fuzzer [48] rely on the feedback to mutate the existing inputs and derive new
ones that have a higher probability of reaching new code. AFLFast [7], Dig-
Fuzz [53], and MOPT [23] consider the feedback as guidance to schedule inputs
for mutation and prioritizes those with higher potentials of leading to new code.

The last category aims at improving mutations to remove common barriers
that prevent fuzzers from reaching more code. Majundar et al. [24] introduce the
idea of hybrid fuzzing, which runs concolic execution to solve complex conditions
that are difficult for pure fuzzing to satisfy. The idea was followed and improved
by many other works [30, 40, 53, 49]. TFuzz transforms target programs to
bypass complex conditions and forces the execution to reach new code. It then
uses a validator to reproduce the inputs that meet the conditions in the original
program. Angora [8] assumes a black-box function at each condition and uses
gradient descent to find satisfying inputs, which is later improved by NEUZZ [38].

Differing from the above works, our research aims to improve the efficiency
of the parallel mode of fuzzing, an orthogonal strategy to facilitate the efficiency
of code coverage.

7.2 Improvements to Execution Speed of Fuzzing.

Beyond algorithmic improvements, other research aims to improve the efficiency
of fuzzing by accelerating the fuzzing execution. PTrix [10], Honggfuzz [42], and
kAFL [35] use Intel PT [31] to efficiently collect control flow data from the target
program. UnTracer [29], instead of tracing every round of execution, instruments
the target programs such that the tracing only starts when new code is reached.
RetroWrite [11] proposes static binary rewriting to trace code coverage in binary
code without heavy dynamic instrumentation.

7.3 Improvements to Parallel Fuzzing.

There are two lines of efforts towards better parallel fuzzing in the literature.
Xu et al. [46] design new primitives to mitigate the contention in the file system
and extend the scalability of the fork system call. These new primitives speed
up the execution of the target programs when many instances are running in
parallel. This line of efforts facilitates parallel fuzzing from a system perspective,
which is orthogonal to our approach. Following the other line, P-FUZZ [39],
PAFL [22] and Ye et al. [47] propose to distribute fuzzing tasks to different
instances to avoid overlaps. We omit the details of P-FUZZ and PAFL since
they have been discussed in § 4 and evaluated in § 6. The idea of [47] is to assign
seeds that cover less-visited branches to different instances and further confine
the mutations to focus on those branches. In comparison to AFL-EDGE, such



18 Yifan Wang et al.

an idea may skip the exploration of certain code regions and hurt the related
fuzzing space. Further, this idea is essentially a variant of PAFL, and thus, we
do not compare it with AFL-EDGE in our evaluation.

8 Discussion

In this section, we discuss some of the limitations in our work and the potential
future directions.

8.1 Threats to Validity.

The validity of our research faces three threats. First, our research is motivated
by the intuition that overlapped mutations can reduce the efficiency of code cov-
erage. Whether such an intuition is correct or not threatens the foundation of
our research. To mitigate this threat, as presented in § 2, we provide empirical
evidence to support the fidelity of our intuition through empirical experiments
with real-world programs. Second, AFL-EDGE skips seeds during task distri-
bution, which by theory may reduce the fuzzing space. To validate this threat,
we perform extensive experiments to show that AFL-EDGE largely preserves
the edge coverage of AFL and thus, avoids hurting the fuzzing space (see § 6.2).
Finally, AFL-EDGE and AFL may detect different bugs and AFL-EDGE may
miss the bugs detected by AFL. While we provide no theoretical proofs, our em-
pirical evaluation with both real-world programs and standard benchmarks, as
shown in § 6.3, argues against such a threat.

8.2 More fine-grained Task Distributions are Needed.

AFL-EDGE considers a round of mutations to a seed as an individual task.
This represents a coarse-grained definition of fuzzing tasks, which can still result
in over-laps. For example, we cannot avoid overlapped mutations by different
instances to different seeds. For further improvements, an example idea is to
adopt more fine-grained definitions of tasks (e.g., defining fuzzing tasks based
on mutations [47]).

8.3 Workloads Need to be Considered.

AFL-EDGE does not explicitly consider the workloads of different tasks. In-
stead, it relies on random distribution, expecting to achieve probabilistic equiv-
alent workload assignment. This strategy can be further improved by estimating
the workload attached to a seed. For instance, we can do such an estimation
based on the size of the seed and the execution complexity of the seed (follow-
ing the idea of AFL-CMIN [50] and QSYM [49]). We may also customize the
estimation based on how the fuzzing tools determine the mutation cycles.



Facilitating Parallel Fuzzing with Mutually-exclusive Task Distribution 19

9 Conclusion

This paper focuses on the problem of parallel fuzzing. It presents a study to
understand the limitations of the parallel mode in the existing grey-box fuzzing
tools. Motivated by the study, we propose a general model to describe parallel
fuzzing. This model distributes mutually-exclusive yet similarly-weighted tasks
to different instances, facilitating concurrency and also fairness across instances.
Guided by our model, we present a novel solution to improve the parallel mode
in AFL. During fuzzing, our solution periodically distributes seeds that carry
non-overlapped and similarly-weighted tasks to different instances, maximally
meeting the requirements of our model. We have implemented our solution on top
of AFL and we have evaluated our implementation with AFL on 9 widely used
benchmark programs. Our evaluation shows that our solution can significantly
reduce the overlaps and hence, accelerate the code coverage.

Acknowledgments

We would like to thank the anonymous reviewers for their feedback. This project
was supported by NSF (Grant #: CNS-2031377). Any opinions, findings, and
conclusions or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding agency.



20 Yifan Wang et al.

References

[1] Abdelnur, H., State, R., Lucangeli, O.J., Festor, O.: Spectral fuzzing: Evaluation & feedback.
[Research Report] RR-7193,NRIA. (2010)

[2] Aitel, D.: An introduction to spike, the fuzzer creation kit. Proceedings of the Black Hat USA
0(0), 0–0 (2002)

[3] Anvin, H.P., Gorcunov, C., Chang Seok Bae, J.K., Kotler, F.B.: Nasm source code. https:
//repo.or.cz/w/nasm.git (7 1996)

[4] Aschermann, C., Schumilo, S., Blazytko, T., Gawlik, R., Holz, T.: Redqueen: Fuzzing with
input-to-state correspondence. In: Proceedings of the 2019 Network and Distributed System
Security Symposium. vol. 19, pp. 1–15. NDSS, Universitätsstraße 150, 44801 Bochum, Germany
(2019)

[5] Beizer, B.: Black-box testing: techniques for functional testing of software and systems. John
Wiley & Sons, Inc., Hoboken, NJ, USA (1995)

[6] Bellard, F.: Ffmpeg source code. https://ffmpeg.org/releases/ffmpeg-4.1.tar.bz2
[7] Böhme, M., Pham, V.T., Roychoudhury, A.: Coverage-based greybox fuzzing as markov chain.

In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Se-
curity. pp. 1032–1043. ACM, google (2016)

[8] Chen, P., Chen, H.: Angora: Efficient fuzzing by principled search. In: Proceedings of the 2018
IEEE Symposium on Security and Privacy. pp. 711–725. IEEE, Symposium on Security and
Privacy, 1 Shields Ave, Davis, CA 95616 (2018)

[9] Chen, Y., Li, P., Xu, J., Guo, S., Zhou, R., Zhang, Y., Lu, L.: Savior: Towards bug-driven hybrid
testing. In: Proceedings of the 2020 IEEE Symposium on Security and Privacy. pp. 1–14. IEEE,
Symposium on Security and Privacy, San Francisco, CA, USA (2020)

[10] Chen, Y., Mu, D., Xu, J., Sun, Z., Shen, W., Xing, X., Lu, L., Mao, B.: Ptrix: Efficient hardware-
assisted fuzzing for cots binary. In: Proceedings of the 2019 ACM on Asia Conference on Com-
puter and Communications Security. pp. 633–645. ACM, AsiaCCS, Auckland, New Zealand
(2019)

[11] Dinesh, S.: RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization.
Ph.D. thesis, figshare (2019)

[12] Dolan-Gavitt, B., Hulin, P., Kirda, E., Leek, T., Mambretti, A., Robertson, W., Ulrich, F.,
Whelan, R.: Lava: Large-scale automated vulnerability addition. In: Proceedings of the 2016
IEEE Symposium on Security and Privacy. pp. 110–121. IEEE (2016)

[13] Gan, S., Zhang, C., Qin, X., Tu, X., Li, K., Pei, Z., Chen, Z.: Collafl: Path sensitive fuzzing.
In: Proceedings of the 2018 IEEE Symposium on Security and Privacy. pp. 660–677. No. 6,
Symposium on Security and Privacy, San Francisco, CA,USA (5 2018)

[14] Gan, S., Zhang, C., Chen, P., Zhao, B., Qin, X., Wu, D., Chen, Z.: GREYONE: Data flow
sensitive fuzzing. In: Proceedings of the 29th USENIX Security Symposium. pp. 1–18. USENIX
Association, Boston, MA (Aug 2020), https://www.usenix.org/conference/usenixsecurity20/
presentation/gan

[15] GNU: Index of /gnu/binutils. https://ftp.gnu.org/gnu/binutils/ (10 2019)
[16] Godefroid, P., Levin, M.Y., Molnar, D.: Sage: whitebox fuzzing for security testing. Communi-

cations of the ACM 55(3), 40–44 (2012)
[17] Hayes, L., Gunadi, H., Herrera, A., Milford, J., Magrath, S., Sebastian, M., Norrish,

M., Hosking, A.L.: Moonlight: Effective fuzzing with near-optimal corpus distillation.
arXiv:1905.13055v1 (2019)

[18] Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M.: Evaluating fuzz testing. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security. pp. 2123–2138.
ACM, CCS, Toronto, ON, Canada (2018)

[19] Leffler, S.: Libtiff source code. https://download.osgeo.org/libtiff/ (11 2019)
[20] Lemieux, C., Sen, K.: Fairfuzz: A targeted mutation strategy for increasing greybox fuzz test-

ing coverage. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. pp. 475–485. ase, Montpellier, France (2018)

[21] Li, Y., Chen, B., Chandramohan, M., Lin, S.W., Liu, Y., Tiu, A.: Steelix: program-state based
binary fuzzing. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. pp. 627–637. ACM, fse, PADERBORN, GERMANY (2017)

[22] Liang, J., Jiang, Y., Chen, Y., Wang, M., Zhou, C., Sun, J.: Pafl: extend fuzzing optimizations
of single mode to industrial parallel mode. In: Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. pp. 809–814 (2018)

[23] Lyu, C., Ji, S., Zhang, C., Li, Y., Lee, W.H., Song, Y., Beyah, R.: Mopt: Optimized mutation
scheduling for fuzzers. In: Proceedings of the 28th USENIX Security Symposium. pp. 1949–1966.
USENIX, Santa Clara, CA, USA (2019)

[24] Majumdar, R., Sen, K.: Hybrid concolic testing. In: Software Engineering, 2007. ICSE 2007.
29th International Conference on. pp. 416–426. IEEE, ICSE, Minneapolis, MN,USA (2007)

[25] Manès, V.J.M., Han, H., Han, C., Cha, S.K., Egele, M., Schwartz, E.J., Woo, M.: The art, sci-
ence, and engineering of fuzzing: A survey. IEEE Transactions on Software Engineering PP(21),
21 (2019)

https://repo.or.cz/w/nasm.git
https://repo.or.cz/w/nasm.git
https://ffmpeg.org/releases/ffmpeg-4.1.tar.bz2
https://www.usenix.org/conference/usenixsecurity20/presentation/gan
https://www.usenix.org/conference/usenixsecurity20/presentation/gan
https://ftp.gnu.org/gnu/binutils/
https://download.osgeo.org/libtiff/


Facilitating Parallel Fuzzing with Mutually-exclusive Task Distribution 21

[26] Matt Sergeant, Christian Glahn, P.P.: Libxml2 source code. http://xmlsoft.org/libxml2/
libxml2-git-snapshot.tar.gz (9 1999)

[27] McKnight, P.E., Najab, J.: Mann-whitney u test. The Corsini encyclopedia of psychology 3,
960–961 (2010)

[28] Myers, G.J., Sandler, C., Badgett, T.: The art of software testing. John Wiley & Sons, Hobo-
ken,NJ,USA (2011)

[29] Nagy, S., Hicks, M.: Full-speed fuzzing: Reducing fuzzing overhead through coverage-guided
tracing. In: Proceedings of the 2019 IEEE Symposium on Security and Privacy. pp. 787–802.
IEEE, Symposium on Security and Privacy, SAN FRANCISCO, CA,USA (2019)

[30] Pak, B.S.: Hybrid fuzz testing: Discovering software bugs via fuzzing and symbolic execution.
School of Computer Science Carnegie Mellon University 0, 1–9 (2012)

[31] R., J.: Intel processor trace. https://software.intel.com/en-us/blogs/2013/09/18/
processor-tracing (2013)

[32] Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: Vuzzer: Application-aware
evolutionary fuzzing. In: Proceedings of the Network and Distributed System Security Sympo-
sium. pp. 1–14. NDSS, San Diego, California, USA (2017)

[33] Rebert, A., Cha, S.K., Avgerinos, T., Foote, J., Warren, D., Grieco, G., Brumley, D.: Opti-
mizing seed selection for fuzzing. In: Proceedings of the 23rd USENIX Conference on Security
Symposium. pp. 861–875. USENIX Association (2014)

[34] Scale, F.: Top 10 software testing trends. https://fullscale.io/top-10-software-testing-trends/
(2 2019)

[35] Schumilo, S., Aschermann, C., Gawlik, R., Schinzel, S., Holz, T.: kafl: Hardware-assisted feed-
back fuzzing for OS kernels. In: Proceedings of the 26th USENIX Conference on Security Sym-
posium. pp. 167–182. USENIX Association, Vancouver, BC, Canada (2017)

[36] Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: Addresssanitizer: A fast address san-
ity checker. In: Proceedings of the 2012 USENIX Conference on Annual Technical Conference.
pp. 28–28. USENIX Association, Bellevue, WA, USA (2012)

[37] Serebryany, K.: libfuzzer–a library for coverage-guided fuzz testing. LLVM project 0(0), 1–1
(2015)

[38] She, D., Pei, K., Epstein, D., Yang, J., Ray, B., Jana, S.: Neuzz: Efficient fuzzing with neural
program smoothing. In: Proceedings of the 2019 IEEE Symposium on Security and Privacy. pp.
1–15. IEEE, Symposium on Security and Privacy, San Francisco, CA, USA (2018)

[39] Song, C., Zhou, X., Yin, Q., He, X., Zhang, H., Lu, K.: P-fuzz: a parallel grey-box fuzzing
framework. Applied Sciences 9(23), 5100 (2019)

[40] Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshitaishvili, Y.,
Kruegel, C., Vigna, G.: Driller: Augmenting fuzzing through selective symbolic execution. In:
In Proceedings of the 2016 Network and Distributed System Security Symposium. vol. 16, pp.
1–16. NDSS, San Diego, California, USA (2016)

[41] Steve McCanne, Craig Leres, V.J.: Tcpdump source code. http://www.tcpdump.org/release/
(October 2019)

[42] Swiecki, R.: Honggfuzz. http://honggfuzz.com (2015)
[43] Teams, T.G.: Oss-fuzz - continuous fuzzing for open source software. https://github.com/

google/oss-fuzz (2015)
[44] Wang, T., Wei, T., Gu, G., Zou, W.: Taintscope: A checksum-aware directed fuzzing tool for

automatic software vulnerability detection. In: Proceedings of the 2010 IEEE Symposium on-
Security and Privacy. pp. 497–512. IEEE, Oakland, CA, United States (2010)

[45] Woo, M., Cha, S.K., Gottlieb, S., Brumley, D.: Scheduling black-box mutational fuzzing. In:
Processings of the Computer and Communications Security ’13. Association for Computing
Machinery, New York, NY, USA (2013)

[46] Xu, W., Kashyap, S., Min, C., Kim, T.: Designing new operating primitives to improve fuzzing
performance. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security. pp. 2313–2328. Association for Computing Machinery, New York,,NY,
United States (2017)

[47] Ye, J., Zhang, B., Li, R., Feng, C., Tang, C.: Program state sensitive parallel fuzzing for real
world software. IEEE Access 7, 42557–42564 (2019)

[48] You, W., Wang, X., Ma, S., Huang, J., Zhang, X., Wang, X., Liang, B.: Profuzzer: On-the-fly
input type probing for better zero-day vulnerability discovery. In: Proceedings of the 2019 IEEE
Symposium on Security and Privacy. IEEE, IEEE, San Fransisco, CA, US (2019)

[49] Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: QSYM : A practical concolic execution engine
tailored for hybrid fuzzing. In: Proceedings of the 27th USENIX Conference on Security Sym-
posium. pp. 745–761. USENIX Association, Baltimore, MD, USA (2018)

[50] Zalewski, M.: afl-cmin. https://github.com/mirrorer/afl/blob/master/afl-cmin (11 2013)
[51] Zalewski, M., Google: Tips for parallel fuzzing. https://github.com/mirrorer/afl/blob/master/

docs/parallel fuzzing.txt (11 2013)
[52] Zalewski, M.: Afl technical details. http://lcamtuf.coredump.cx/afl/technical details.txt (2013)
[53] Zhao, L., Duan, Y., Yin, H., Xuan, J.: Send hardest problems my way: Probabilistic path

prioritization for hybrid fuzzing. In: Proceedings of the 2019 Network and Distributed System
Security Symposium. p. 15. NDSS Symposium, San Diego, California (2019)

http://xmlsoft.org/libxml2/libxml2-git-snapshot.tar.gz
http://xmlsoft.org/libxml2/libxml2-git-snapshot.tar.gz
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://fullscale.io/top-10-software-testing-trends/
http://www.tcpdump.org/release/
http://honggfuzz.com
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/mirrorer/afl/blob/master/afl-cmin
https://github.com/mirrorer/afl/blob/master/docs/parallel_fuzzing.txt
https://github.com/mirrorer/afl/blob/master/docs/parallel_fuzzing.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

