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Abstract— Soft robot modeling tends to prioritize soft robot
dynamics in order to recover how they might behave. Soft robot
design tends to focus on how to use compliant elements with
actuation to effect certain canonical movement profiles. For
soft robot locomotors, these profiles should lead to locomotion.
Naturally, there is a gap between the emphasis of computational
modeling and the needs of locomotion design. This paper
proposes to consider modeling and computation efforts directed
more toward understanding soft robot-world interactions with
locomotion in mind. With a SMA-actuated inchworm as the soft
robot to model and control, the framework is a combination of
shape identification and geometric modeling that culminates in
control equations of motion. When applied to the task of gait-
based locomotion, the equations operate in a low dimensional
shape-based gait space. Simulated and experimentally applied
gaits for an inchworm model showed qualitatively similar
outcomes, while the measured net displacement per gait cycle
coincided within 9%. This result advances the idea that a
shape-centric approach to soft robot modeling for control and
locomotion may provide predictive locomotive models.

I. INTRODUCTION

Soft materials in robots have several material properties of
interest - they can store and release energy, absorb impacts,
and increase the compliance and range of possible shape
profiles using minimal actuators. This versatility of soft
structures is visible in locomotion of worms and caterpillars,
or in manipulation of octopus arms and elephant trunks.
Soft robots achieve internal actuation using pneumatic,
shape memory alloy (SMA), dielectric elastomer (DEA), and
motor-tendon actuators. This coupling of passive compliance
and internal actuation facilitates them to achieve shapes
difficult to capture using rigid articulated schemes. However,
these design elements create challenges in the control of
highly deformable continuum soft robots due to difficulties
modeling the robot and the robot-environment interaction.
Broadly, soft robots are modeled using one of the three
approaches - continuum modeling, constructing reduced or-
der lumped parameter models, or discretizing continuum
shapes. Continuum approaches consider the soft material
and actuator properties to construct piece-wise continuous
curvature models [1], [2], cosserat rod theory [3]–[5] models
or three-dimensional finite element methods (FEM) [6]–[10].
Multiple approaches including large linear deformation mod-
els, Fast-FEM algorithms, and strain-parameterization have
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been applied to circumvent their high computation cost [11].
The reduced order models construct a spring-mass-damper
equivalent of a soft robot [12]–[14], or model inchworm-like
robots using three-link mechanisms [15], [16]. Alternatively,
discretization of soft robot shapes has also been explored to
construct model-free control methods [17], [18].

This paper focuses on a particular experimental elongated-
body limbless soft robot. Actuators embedded in this mo-
bile robot are configured to accomplish inchworm-like lo-
comotive gaits. These gaits lie in the class of rectilinear
gaits, which have been thoroughly explored using rigid-body
articulated robots that employ either prismatic or revolute
actuation mechanisms [19]–[23]. An attractive gait synthesis
approach describes these articulated gait implementations as
approximations of continuum body shapes [15], [24]–[26].
Gait shapes are modeled as continuous body curves to which
the articulated body may then fit. For inchworm-like motion,
some manner of differential friction or ideal anchoring is
presumed in order to permit productive displacement.

Soft robot implementations of inchworm-like gaits attempt
to exploit their compliant bodies to achieve movement. Using
fewer actuators, these robots exhibit shape profiles that
require rigid articulated equivalents to have many degrees
of freedom. Dynamical modeling approaches for these soft
robots have been predominantly FEM-based, choosing to
focus on shape deformations occurring as a result of internal
stresses and actuation forces applied to the body. The em-
phasis neglects body-environment interactions that lead to
locomotion as a consequence of cyclic body shape changes.
Alternative strategies, particularly targeted to elongated body
mechanisms, employ cosserat rod theory [27], [28]; body-
environment interactions, here, take the form of motion
constraints at particular points along the elongated robot
body to model locomotion. While a subset of inchworm-
like robots employing static anchoring mechanisms may be
modeled in this manner, body-environment frictional forcing
is the more appropriate mechanism to model locomotion for
many soft robot designs.

Collectively, these approaches focus on generalizability to
a wide scope of deformable continuum robots. Advantages
associated with specialization to particular robot anchorings,
such as lower dimensional shape space representations and
tractability for gait synthesis, are less emphasized. Models
characterizing soft robot manipulators, however, illustrate the
benefit to employing model parameterizations specialized
to the underlying actuator configuration of a robot [2].
Motion of the end-effector frame is effectively captured as
a function of the robot’s shape parameters; these, in turn,
may then be expressed with respect to the underlying robot
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actuation scheme. For locomotion and control, models that
express locomotive outcomes as a function of the robot’s
prescribed shape trajectories, especially in frictional environ-
ments, would result in similarly useful group motion models.
For inchworm-inspired soft robots exploiting differential
friction, capturing its effects on the robot body frame will
allow for meaningful prediction and control synthesis.

Contribution. We derive gait-based equations of motion
for an elongated-body, soft robot whose 2-SMA actuator
configuration permits it to accomplish inchworm-like motion.
A shape-centric modeling framework [26], [29], previously
applied to articulated snake-like robots, is re-purposed and
specialized, here, to model the rigid motion of the body
frame for this soft robot. By design, the model focuses on
robot group (locomotive) dynamics, as a function of the
underlying shape changes that drive it. Specialization to
a particular robot’s actuator scheme facilitates locomotive
predictions -in frictional environments- corresponding to
prescribed input actuator signals.

The shape profile of the robot is first modeled by the su-
perposition of two time-varying body curves, whose structure
is inspired by the beta probability density function (PDF).
Each curve is a basis function corresponding to actuation by
a particular robot SMA. Mapping the shape profile into the
plane of locomotion yields quantities necessary to model the
body frame dynamics of the robot. Incorporating a body-
ground friction model then yields a shape-centric model of
the inchworm soft robot capturing its locomotive behavior
as a function of prescribed shape trajectories. The original
infinite-dimensional shape space of the robot drops to a finite
dimensional subspace naturally restricted to the achievable
shapes associated to the robot’s actuation, which is connected
to the rigid body mechanics of the robot’s frame. Qualitative
comparison of experimentally measured trajectories to those
predicted by the shape-centric model serve as validation.

II. INCHWORM-LIKE SOFT ROBOT

A. Morphology Design and Mechatronics

Fabrication of a multi-material, SMA-actuated inchworm
soft robot with bidirectional locomotion ability poses chal-
lenges relating to morphology design (shape change and
frictional manipulation) and mechatronics (integration of
multi-material components) [30], [31].

Morphology Design. Broadly speaking, locomotion is
achieved by optimizing forces at different parts of the robot
body [32]. This can be achieved using multiple strategies,
chiefly by manipulating frictional interactions or the shape
of the robot body (thereby altering its center of mass and
moment of inertia). Our robot has Differential Friction Mech-
anisms (DFMs) located at each end that change the frictional
interaction with the locomotion surface based on the contact
region. This friction manipulation is conceptually equivalent
to a Coulomb friction model where the friction is initially
high (static) and then becomes low after a certain amount
of bending (dynamic). The DFM, Fig. 1, comprises distinct
materials, one with low and the other with high friction

coefficients, µlow and µhigh, respectively. The coefficient of
friction of the DFM µDFM changes with robot shape when
the angle ψ between the tangent at the end and the surface
exceeds the critical contact angle ψ∗ dependent on design
parameters H (height to center of DFM’s defining circle)
and h (cavity height), as illustrated in Fig. 1(a).

µDFM =

{
µlow ψ ≤ ψ∗
µhigh ψ > ψ∗

, ψ∗ = cos−1

(
H

h

)
For a given body length, the robot’s workspace (shape

change) is determined by the body cavity characteristics and
placement of the SMA actuators, as shown in Fig. 1. The
cavity height h, width w and number m are geometrically

related to each other as w =
2h

m
sin−1

(σmin

2R

)
, where R

is the maximum desired bending curvature beyond which
the robot experiences high stiffness. Additionally, the cavity
design optimizes stiffness to enable shape change for the
given actuation and body relaxation upon deactivation to
allow the SMA coils to extend back the their natural states.
For the experimental robot, m = 12 cavities of width
w = 3.3 mm and height h = 3 mm are uniformly placed
with H = 5 mm. The rectangular shape of the cavities
satisfies stiffness design requirements for the SMA actuators.
Actuator placement is determined by (a) required airflow for
actuator cooling, and (b) required overlap to ensure a smooth
robot shape.

Mechatronics. The inchworm soft robot is fabricated by
casting curable rubber silicone (Smooth-on FAST Dragon
SkinTM 10) in a 3D-printed mold with removable pi-

Fig. 1: Inchworm soft robot components. (a) Differential
Friction Mechanisms (DFMs) located at the two ends allow
the robot to change its coefficient of friction as a function of
the shape. (b) Two overlapping SMA are embedded inside
the soft body with cavities. (c) The cavities control bending
stiffness and maximum bending curvature, and facilitate
cooling of the actuators upon deactivation.
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Fig. 2: Left: Depiction of the shape representation as a height function over the ground plane, where two basis curves fL and
fR define the impact of left and right side actuation. All geometry is relative to the left foot reference frame, the minimum
inter-feet length σmin (both sides maximally actuated) and the maximum inter-feet length σmax (both sides not actuated).
Under actuation by the left side AL, the right foot will be at σ + λL. Under an added actuation by the right side AR, the
right foot will come closer to σ + λL − λR. The right side depicts images taken of an inchworm robot with maximal left,
right, and left+right actuation, plus the comparable shape in the beta distribution shape space.

fL(σ; a, δ) =

{
h(σ; a, 0), σ ∈ [0, σmin]

0, σ ∈ (σmin, σmin + δ]
and fR(σ; a, δ) =

{
0, σ ∈ [0, δ]

h(−σ; a, δ), σ ∈ (δ, σmin + δ]
. (1)

ano wire to create channels for the SMA actuators
(BioMetal R©Helix BMX 150) and ultra-flexible wires (Jag-
SUPERFLEXTM) that do not hinder the robot’s locomotion
ability. The low-friction DFM-element is printed using East-
man AmphoraTM AM3300 3D polymer that is adhered at
the ends of the body using mechanical locking and chemical
adhesion (Smooth-on Sil-PoxyTM silicone adhesive). The
actuators are controlled using a Seeeduino XIAO microcon-
troller and an H-Bridge with 8V power supply, and LEDs
are incorporated to synchronize with the visual tracking
feedback. The SMA coil actuators compress due to joule
heating and effect bending of the robot body. The SMA
returns to the natural extended state as it naturally cools due
to heat dissipation with help of the elastic energy of the
bend. Fabrication is time and cost-efficient (about 4.5 hrs)
and allows for a wide range of soft (e.g. silicone or foam)
and rigid materials for the DFM-element.

III. INCHWORM GAIT

The design of the soft robot is meant to elicit a specific
shape response known to result in locomotion, with the actu-
ators explicitly controlling the shape. This section describes
how the resulting shape space is modeled for the inchworm
robot when placed on a flat surface. Fig. 2 contains images
of an inchworm robot under actuation. For flat ground, the
shape profile can be described by a height function defined
over the left to right foot line on the ground plane.

With the aim of obtaining a low-dimensional shape model,
we determined that a good basis function for representing the
effect of actuation was the beta distribution. The equation for
the beta distribution is

h(σ; a, α, β, σmin) = a ·

(
σ

σmin

)α−1 (
1− σ

σmin

)β−1

D(α, β)
, (2)

where the denominator is,

D(α, β) = Γ(α)Γ(β) /Γ(α+ β). (3)

Γ(·) is the Gamma function, σ denotes distance along the
abscissa defined by the left-right foot line, and σmin denotes
the minimum length along the abscissa over which the
beta function may be raised from the ‘ground level’. The
constants α, β, σmin, and σmax are determined by material
and geometric properties of the robot established by the
fabrication process. The constants (α, β) describe the shape
of the basis functions, while σmin and σmax determine the
support. The constant σmax = L, is the length of the
inchworm. The constant σmin is the foot distance under
maximum actuation by both SMAs. We define two basis
functions, one for each foot, such that the actuation space
A ∈ R2 scales their amplitudes.

The presumed manufacturing process of the robot is such
that SMA activation will not contract nor lengthen the robot
under actuation. Rather, the bottom side cavities promote
bending of the robot during activation. Under this assump-
tion, any valid actuation profile will lead to feet separation
distances in [σmin, σmax]. The fixed length of the inchworm
acts as a constraint on the shape that results from actuation
by A.

A. Recovering Shape from Actuation

The length constraints define the shape parameters λ,
which specify the support of the robot’s curve parameter
σ. Actuation under A will result in an inter-feet length of
σmin + ∆λ where ∆λ = λL−λR as depicted in Fig. 2. The
shape space basis functions fL and fR are given in (1), and
use the inchworm adapted beta distribution

h(σ; a, δ) = a ·

(
(σ−δ)
σmin

)α−1 (
1−

(
(σ−δ)
σmin

))β−1

D(α, β)
,

624



AL

∆
λ

(c
m

)

AR

∆λ = 0

∆λ = L− σmin

Fig. 3: Right foot offset parameter ∆λ(A) using a polyno-
mial fit. The RMSE is 0.0054 cm2. Parameters α = 2.0, β =
2.3, σmin = 6.636 cm; these values will apply to all figures
and results presented.

where the α, β, and σmin terms are fixed constants. The right
SMA basis function fR(σ;AR, δ) is the beta distribution
flipped left-right and shifted horizontally by δ. The main
challenge is to compute λ = (λL, λR) ∈ R2 from A ∈ R2.

Recovery of λ is a two-step process starting with the left
foot since it is the origin of the body frame. First, let only
the left SMA be activated leading to a raised segment whose
functional form is fL(σ;λL). The robot length is

Arclen(fL;A) =

∫ σmin

σ=0

√
1 +

(
∂

∂σ
fL(σ;AL, 0)

)2

dσ. (4)

Then, λL = root`(Arclen(fL;A, 0) + ` − L) for ` ∈
[0, L− σmin] solves for the right foot location for the given
actuation. In the absence of actuation by AR, λL measures
how much beyond the minimum σmin the domain of the
curve parameter should be defined to give the fixed robot
length L (under the assumption that this portion has ground
contact). In the case of right SMA actuation, the robot length
is now

Arclen(f ;A, λ(`)) =

∫ σmin+∆λ

σ=0

√
1 +

(
∂

∂σ
f(σ;A)

)2

dσ, (5)

for a specific ` such that λ(`) = (λL, `). Activation
of the right SMA reduces the domain of σ by λR =
root`(Arclen(f ;A, λ(`)) − L) for ` ∈ [0, L − σmin − λL].
Once computed, the domain of support for the shape curve
parameter σ is [0, σmin + ∆λ] = [0, σmin + λL − λR].

To avoid repeatedly computing these values when inte-
grating the dynamics of a given soft robot, we pre-compute
them over the domain of actuation for some fixed gridding in
A, then fit the resulting output values to a thin-plate spline.
Since the difference ∆λ is the important variable, we regress
over its value. Fig. 3 depicts the regression surface of ∆λ
for an inchworm model. The actual inchworm shape is:

f(σ;A) = fL(σ;AL,∆λ(A)) + fR(σ;AR,∆λ(A)). (6)

B. Inchworm Gaits

An inchworm gait is a cyclic path in the actuation space,
which should lead to movement of the inchworm. The typical
gait will start at zero actuation A = (0, 0) then maximal

actuation of one side A = (ā, 0), maximal actuation of
the second side A = (ā, ā), relaxation of the first side
A = (0, ā), and conclude with relaxation of the second side
A = (0, 0). While specific waypoints were given in this
description, there is freedom to choose the form, phasing,
and duration of these actuation amplitudes. Reversing the
cycle ordering moves the robot in the opposite direction.
The structure of the cycle should respect the constraints
associated with SMA thermo-mechanical properties and be
slow enough to keep the robot shape movement near quasi-
static equilibrium. For example, fast bang-bang actuation
is not recommended since it can lead to ballistic motion.
Modeling, here, will presume the shape profile (6) remains
quasi-statically mechanically stable; evolution of this shape
over time drives the (planar) group dynamics of the robot,
derived in Section IV.

IV. LOCOMOTIVE DYNAMICS

We model the inchworm robot as a mechanical system
with symmetry, in the plane of locomotion, whose pose is
captured by a shape component, A ∈M = R2, and a group
component, g ∈ SE(2). Combined, the two components
define a principal bundle. ξb = g−1ġ and p denote body
velocity and momentum, respectively. The idea is to establish
locomotion dynamics on the group sub-state as influenced
by the shape kinematics (e.g. shape sub-state). We presume,
here, that the shape is fully controlled and can be modeled
based on the previous sections. The reduced Lagrange-
d’Alembert dynamics for the shape + group are [33]: Ȧ

ġ
ṗ

 =


u

g
(

Ωb −Aloc(A)Ȧ
)

ad∗(Ωb−Aloc(A)Ȧ)p+ Fb(A, p, Ȧ)

 , (7)

where u is the shape space control signal, Ωb is the vertical
body velocity, p = Ilock(A)Ωb is the vertical body momen-
tum and Ilock(·) is the locked inertia tensor, andAloc(A)·Ȧ is
the local principle connection. Fb is the net external wrench
acting on the body frame from robot-world interactions.

The connection form splits the body velocity ξb into
horizontal and vertical components,

ξb = Ωb −Aloc(A)Ȧ. = I−1
lock(A)−Aloc(A)Ȧ. (8)

The horizontal component, −Aloc(A)Ȧ, describes the free
space motion of the body due to shape changes in the
locomotion plane. The vertical component Ωb is driven by
external forcing. Lastly, the dual adjoint operation for the
planar, generalized momentum p in (7) captures Coriolis
effects in the system,

ad∗ξbp =

 0 ξbω 0
−ξbω 0 0
ξby −ξbx 0

 px
py
pω

 . (9)

In the the context of straight line motion, it outputs the zero
vector.

These equations will be specialized, in this section, to
model the locomotive dynamics of the inchworm soft robot.

625



Though the equations may be somewhat complex for the
study at hand, we are familiar with them and can quickly
derive equations of motion for systems that evolve along a
line only. Future work aims to add lateral curvature into the
gait shape to induce turning, whereby non-trivial Coriolis
effects will then have to be considered. Starting with these
equations permits extension to richer locomotion scenarios.

1) Locked Inertia Tensor: The locked inertia term, for the
inchworm gait shape (in the x-y locomotion plane) is

Ilock =

∫ σmin+∆λ

0

[
1 Jd(σ)

−dT (σ)J dT (σ)d(σ)

]
· ρ(σ) dσ

=

∫ σmin+∆λ

0

 1
0
σ

0 σ σ2

 · ρ(σ) dσ .

where ρ(σ) is the mass density function (described next),

J =

[
0 −1
1 0

]
, and d(σ) =

[
0
σ

]
∈ E(2).

A. Connection Form

Deriving the connection form for the inchworm is more
complex than for the snake [23]. Here, we use a center of
mass (CoM) trick for deriving it. By design, the inchworm
is capable of traveling in a single direction, along the
locomotion plane x-axis; we restrict our attention to its CoM
projection along this axis CoMx. In a free-space context, the
CoM must remain static (w.r.t. the spatial frame) and the
body frame must instead move such that the CoM (computed
w.r.t. the body frame) remains static w.r.t. the spatial frame
under changes in shape. In other words,

Aloc(A) = −∇CoMx(A). (10)

Below, we derive CoMx and regress its form as a surface fit,
from which a numerical estimate of CoMx follows.

1) Density Profile: Computing CoMx requires the soft
robot density profile. The density profile in the locomotion
plane is

ρ(σ) = ρ0

√
1 +

(
∂

∂σ
f(σ;A)

)2

, (11)

for σ ∈ [0, σmin + ∆λ]. It assumes uniform material density
along the length of the robot, which is roughly correct given
the inchworm’s symmetric and patterned structure.

2) Center of Mass: The center of mass projection CoMx

of the inchworm in the x-axis of the locomotion plane is
computed numerically. Given the actuation state A ∈ R2, its
associated ∆λ, and the density profile along this length (11),
calculation of the center of mass over a grid gives the seed
values for polynomial regression. The surface fit (closely)
approximates CoMx with respect to A (see Fig. 4, left) based
on values used in Fig. 3 and ρ0 = 4.8 g/cm.

The gradient of the CoMx surface fit characterizes motion
of CoMx in the local body frame (rigidly attached to the left
foot), with respect to differential changes in the actuation
parameter A. This gradient vector field∇CoMx(A) is plotted
in Fig. 4. It simultaneously characterizes the free-space ve-
locity of the body frame under arbitrary gait shape changes.
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Fig. 4: Left: Polynomial surface fit for CoMx(A); RMSE is
0.0006 cm2. Right: Computed CoMx gradient vector field.
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Fig. 5: Body-ground contact segments are defined by the
zero crossings of f(σ;A)−fGND. f(σ;A) is depicted by the
brown curve. Red and green lines illustrate contact segments
with friction coefficients µhigh and µlow, respectively.

Because CoMx must remain stationary (w.r.t. a spatial frame)
in free-space scenarios, the body frame must instead move,
hence (10).

B. Friction Modeling

The net wrench Fb acting on the body frame, in (7), is
integrated from external forcing acting along the continuous
gait shape (in the x-y locomotion plane). External forcing,
here, takes the form of frictional forces resulting from
interactions between body and ground. These will then be
integrated to compute Fb acting at the body frame; numerical
integration of (7) then yields follow-on locomotive trajecto-
ries induced by each frictional forcing model. Importantly,
since the shape space trajectory A(t) is known from the gait,
only the (g, p) subspace is integrated.

1) Body-ground Contact: Body-ground contact segments
are defined to be segments of the body that have not been
raised above the ground height threshold fGND. With respect
to the gait shape arc length parameter σ, they are

C = {σ : σ ∈ [0, σmin + ∆λ] ∧ f(σ;A) ≤ fGND} . (12)

Root-finding operations compute the ground height threshold
crossings (i.e. the start and end points of ground contact
segments), as illustrated in Fig. 5. We additionally impose
a minimum body-ground contact segment length c̄min. The
root finding operation may return contact segment lengths
that shrink below c̄min. The minimum length correction
serves to guarantee that the two feet of the robot have non-
trivial contact length. When corrected to the minimum, the
friction profile will be associated to the low friction design.
Otherwise, the high friction model is presumed to hold.
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Fig. 6: (a) Experimental setup includes a tethered SMA
inchworm robot with seven visual markers for tracking.
LEDs are included for signal synchronization between the
microcontroller and video. (b) The two SMAs are actuated
with a phase shift between them using an asymmetric trape-
zoid control signal to satisfy the assumption of quasi-static
locomotion.

2) Viscous Friction Model: For simplicity, we will use a
viscous friction model and leave other models to a future
derivation. When computing viscous frictional forces acting
on each body segment in ground contact, all body positions
residing within the same contact segment are characterized
by the same (local) velocity, relative to the body frame,

vb(σ) =

{
˙(∆λ) σ ∈ Cright, right contact segment

0 σ ∈ Cleft, left contact segment
(13)

Note that ˙(∆λ) can be computed using the gradient of the
regressed function much like was done with the connection
form. Under linear motion, the velocities of body contact
regions in the world frame are

v(σ) = ξbx + vb(σ) for σ ∈ C{left,right}. (14)

The net frictional wrench acting at the body frame is

Fbx =
∑

i∈{left,right}

(∫
σ∈Ci

f i(σ) · dσ
)
, (15)

where frictional forcing acting at each location σ on a contact
segment Ci is

f i(σ) = −µ
(
ξbx + vb(σ)

)
, i ∈ {left, right} . (16)

The friction profile to use, µlow or µhigh, depends on shape.
Both friction values are assumed constant over the gait; the
model implicitly assumes isotropic body-ground frictional
effects.
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Fig. 7: (a) Calibration of the shape function uses the 3
images to measure (λL, λR, σmin) then estimate the (α, β)
parameters of the Gamma function. Green dots depict tracked
marker positions while dashed green depicts the estimated
inchworm shape, f(σ;AL, AR). (b) As the SMA inchworm
moves, the actuation parameters A ∈ R2 are estimated using
least squares fit on (6). The red and blue waveforms depict
the estimated signals, AL(t) and AR(t), respectively.

V. EXPERIMENT

This section describes locomotion experiments on a fab-
ricated inchworm robot, with a periodic gait applied to the
SMA actuators. It also simulates the effect of a similar gait
signal applied to an inchworm modeled by the equations
described in earlier sections. The model parameters from the
actual inchworm are used in simulation. The gait signals and
the resulting locomotion profile of the rigid body frame in
the x direction are plotted for both cases. Comparison is
made between the two.

A. Actual SMA Inchworm

The experimental setup, shown in Fig. 6, consists of a
camera located parallel to the locomotion plane and the
soft robot with seven visual markers. Given the thermal
activation of SMAs, in most natural environments, they
require more time to deactivate (relax) than to activate.
To ensure symmetric actuation-deactivation while satisfying
the quasi-static motion assumption, SMAs are controlled
using an asymmetric trapezoidal signal with a phase shift
between them. For a given time period, this periodic signal
implements ramp activation with step deactivation with a
predetermined rise time.

For model calibration, static parameters λL, λR, and σmin

are respectively measured from the three still images shown
in Fig. 7(a) in the following order: (i) AL fully activated,
AR inactive, (ii) AL and AR both fully activated, and (iii)
AL inactive, AR fully activated, . The robot body length
σmax = L is measured using the still image of the robot
where AL and AR are both inactive . Thereafter, the Gamma
function parameters (α, β) are obtained using a least-squares
fit. For the given robot with λL = 79.9 mm, λR = 86.1
mm, σmin = 66.3 mm, L = 89 mm, the calibration results
in α = 2, β = 2.3. The time-varying actuation parameters
A ∈ R2 are then estimated using a least- squares fit of the
visual markers for each frame, illustrated in Fig. 7(b). Please
see also the accompanying video.
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Fig. 8: Left: The estimated actuation A (left y-axis) follows an almost symmetric trapezoidal pattern. Experimentally, the
discrepancy between the rise and fall results from non-linearities in the joule heating and natural cooling of the SMAs.
The input current (right y-axis) is normalized for the microcontroller PWM value. Right: The trapezoidal activation results
in positive displacement of the left foot frame until the left SMA current is shut off. Thereafter, the frame regresses. It
experiences approx. 13.2% body length displacement per gait.
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Fig. 9: Left: An idealized actuation gait cycle A based on the experimental gait signal traces is applied to the simulated
inchworm. Right: The displacement of the left foot frame vs time. The displacement is 12.0% body lengths per gait. The
simulated movement is qualitatively similar to the experimentally observed movement.

Results: For the actuation time, rise time, phase shift
and time period of 4 sec, 2 sec, 2 sec and 12 sec, respectively,
Fig. 8 illustrates the resulting estimates of AL, AR, which
follow the desired symmetric trapezoidal actuation pattern.
The actuation and deactivation of the estimated actuation
profiles correlate to the input current signals IL, IR. The
non-linearity of the actuation estimates can be attributed to
the non-linearity related to heating and cooling of SMAs. The
SMA inchworm experiences a mean displacement of 11.74
mm (13.2% of the body length) per gait cycle with a standard
deviation of 1.18 mm, shown in Fig. 8. The locomotion
pattern where the left foot moves in the positive direction
for the duration of the actuation time (4 seconds) followed
by slight movement in the negative direction thereafter is
consistent with the subsequently obtained simulation results,
illustrated in Fig. 9.

B. Simulated Inchworm

A simulation of the inchworm under viscous friction with
differential coefficients µhigh = 40 and µlow = 10 was
performed for a symmetric trapezoidal gait profile with a
maximum actuation value of ā = 0.75. The simulated gait
was designed to follow a piece-wise linear and constant
version of the estimated shape actuation signals A. It varies
somewhat from the true estimated gait, which has some

nonlinear response in the last part of the gait. Fig. 9(a)
depicts both the periodic actuation signals A(t) and Fig. 9(b)
shows the resulting movement of the body frame at the left
foot. Over a single gait, the displacement was 10 mm, which
is 12.0% of a body length. The experimental and simulated
left foot traces are qualitatively similar and have nearly the
same displacement per gait. While the derived simulation
equations involved several simplifications or approximations
regarding the evolution of the shape space, to first order the
gross response has been captured.

VI. CONCLUSION

Though advantageous for certain robot applications, the
continuum and compliant properties of soft materials come
with challenges related to robot and actuator modeling.
Locomotion arises from body-environment interaction forces
induced by changes in the robot’s shape. For soft robots with
distributed mass and actuation, the body and the actuators
have non-trivial coupled dynamics. Under a periodic gait,
however, the time-varying response of the soft robot may
be modeled in a low-dimensional shape space. Under a
known periodic shape profile, the rigid body equations for
the soft robot follow naturally. External body-environment
interaction forces can be modeled within the rigid body
dynamics.
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For an inchworm soft robot, this paper proposes a beta
distribution to describe the shape during the gait, where the
shape parameters are calibrated and correlate to the actuation
signal. This approach considers “prior knowledge” of the
robot workspace (shape changing ability) and a focus on
locomotion to reduce the dimensions to two shape parameters
A ∈ R2 that directly correlate to the actuator signals (SMA
input current I ∈ R2). The calibration process models
robot-specific complexities, including material properties,
actuator-body interactions, and inter-actuator coupling. The
locomotion dynamics model the frictional interactions as
an external wrench acting on the body. We simulate the
locomotion dynamics using viscous friction and a trapezoidal
actuation profile. The actuation and displacement of the
robot feet qualitatively match with the experimental results;
exact reproduction of physical outcomes will be limited by
parameter value uncertainty, particularly that surrounding
robot-environment friction coefficients and switching criteria.
The experiments reinforce that the shape-centric approach
provides ‘modeling adaptability’ to accommodate for design
imprecisions, actuator nonlinearities and frictional interac-
tions of physically adaptable soft robots.

In the future, this shape-space modeling approach will
facilitate learning of the robot-actuator dynamics (shape
parameters) and robot-environment interactions (frictional
wrench). Future work aims to jointly modify the SMA cur-
rent and the gait cycle so that they may more closely match,
as well as to explore other friction models. Furthermore, we
would like to explore variations in the gait cycle signals to
identify the optimal locomotive gait from simulation to see
if it matches the experimentally discovered optimal gait.
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