Article

The three major axes of terrestrial ecosystem

function

https://doi.org/10.1038/s41586-021-03939-9

Received: 30 October 2019

Accepted: 20 August 2021

Published online: 22 September 2021

Open access

M Check for updates

Mirco Migliavacca'?**, Talie Musavi', Miguel D. Mahecha'?**#, Jacob A. Nelson',

Jiirgen Knauer®%®, Dennis D. Baldocchi®, Oscar Perez-Priego’, Rune Christiansen®,

Jonas Peters®, Karen Anderson®, Michael Bahn', T. Andrew Black", Peter D. Blanken®,
Damien Bonal®®, Nina Buchmann', Silvia Caldararu', Arnaud Carrara®, Nuno Carvalhais"'®,
Alessandro Cescatti”, Jiquan Chen'®, Jamie Cleverly?°, Edoardo Cremonese?,

Ankur R. Desai??, Tarek S. El-Madany', Martha M. Farella?®, Marcos Fernandez-Martinez?*,
Gianluca Filippa®, Matthias Forkel?”®, Marta Galvagno?, Ulisse Gomarasca',

Christopher M. Gough?®, Mathias Géckede', Andreas Ibrom?, Hiroki Ikawa?®,

Ivan A. Janssens?*, Martin Jung', Jens Kattge'?, Trevor F. Keenan®?°, Alexander Knoh(3%%',

Hideki Kobayashi®?, Guido Kraemer®*, Beverly E. Law**, Michael J. Liddell**, Xuanlong Ma®¢,
Ivan Mammarella®, David Martini', Craig Macfarlane®, Giorgio Matteucci®®,

Leonardo Montagnani‘®*, Daniel E. Pabon-Moreno', Cinzia Panigada®?, Dario Papale*®,

Elise Pendall**, Josep Penuelas**“¢, Richard P. Phillips*’, Peter B. Reich***¢*°, Micol Rossini*?,
Eyal Rotenberg®, Russell L. Scott®, Clement Stahl*?, Ulrich Weber', Georg Wohlfahrt'°,
Sebastian Wolf'%, lan J. Wright*4%3, Dan Yakir®®, Sénke Zaehle' & Markus Reichstein"?%4*

The leaf economics spectrum®?and the global spectrum of plant forms and functions?
revealed fundamental axes of variation in plant traits, which represent different
ecological strategies that are shaped by the evolutionary development of plant

species®. Ecosystem functions depend on environmental conditions and the traits of
species that comprise the ecological communities*. However, the axes of variation of
ecosystem functions are largely unknown, which limits our understanding of how
ecosystems respond as a whole to anthropogenic drivers, climate and environmental
variability**. Here we derive a set of ecosystem functions® from a dataset of surface
gas exchange measurements across major terrestrial biomes. We find that most of the
variability within ecosystem functions (71.8%) is captured by three key axes. The first
axis reflects maximum ecosystem productivity and is mostly explained by vegetation

structure. The second axis reflects ecosystem water-use strategies and is jointly
explained by variation in vegetation height and climate. The third axis, which
represents ecosystem carbon-use efficiency, features a gradient related to aridity, and
is explained primarily by variation in vegetation structure. We show that two
state-of-the-artland surface models reproduce the first and most important axis of
ecosystem functions. However, the models tend to simulate more strongly correlated
functions than those observed, which limits their ability to accurately predict the full
range of responses to environmental changes in carbon, water and energy cyclingin
terrestrial ecosystems”®,

Terrestrial ecosystems provide multiple functions (for example,
resource use and potential uptake of carbon dioxide, among others)
and ecosystem services onwhichsociety depends’. Tounderstand and
predict the response mechanisms of ecosystems as awhole to climatic
and other environmental changes, it is crucial to establish how many
and which functions need to be measured to obtainagood representa-
tion of overall ecosystem functioning. So far, the key functional axes
that control the behaviour of terrestrial ecosystems have not yet been
quantified®. This canbe achieved by identifying associations between
a comprehensive set of ecosystem functions measured consistently
across major terrestrial biomes and a range of climatic conditions.

Here, weidentify and quantity the major axes of terrestrial ecosystem
functions and sources of variation along these axes. First, we charac-
terize multiple ecosystem functions across major terrestrial biomes.
Second, we identify the mostimportant axes of variation of ecosystem
functions using an exploratory analysis similar to that used for the
global spectrum of plant forms and functions®. Third, we analyse which
variables drive the variation along these axes, from a suite of climatic
variables, and the structuraland chemical properties of the vegetation.
Fourth, we analyse the extent to which two state-of-the-art land surface
models (models that simulate the states and exchange of matter and
energy between the Earth’s surface and the atmosphere) reproduce
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Fig.1|Key dimensions of multivariate space of terrestrial ecosystem
functions. a, Biplotresulting from the PCA. Different colours of the points
representdifferent plant functional types (PFTs): CSH (closed shrublands); DBF
(deciduous broadleaved forest); DNF (deciduous needleleaf forests); EBF
(evergreenbroadleaved forest); ENF (evergreen needleleaf forest);

GRA (grasslands); MF (mixed forest); OSH (open shrublands); SAV (savannah);

the key axes of ecosystem functions. Understanding and quantifying
the main axes of variation of the multi-dimensional space of ecosystem
functions, their drivers and the degree to which land surface models
areableto correctly represent the axesisacrucial prerequisite for pre-
dicting which terrestrial functions are the most vulnerable to climate
and environmental changes.

We use carbon dioxide (CO,), water vapour (H,0), and energy flux
data from 203 sites (1,484 site years) from FLUXNET datasets®'°.
These sites cover awide variety of climate zones and vegetation types
(Extended Data Figs.1-3, Supplementary Table 1). A previous report®
suggested a series of core ecosystem functional properties that can
be derived from carbon, water and energy flux observations related
to efficiencies or potential rates of key physiological and ecohydro-
logical processes (for example, evapotranspiration, photosynthesis
energy partitioning and so on) that control land surface-atmosphere
interactions. For each site, we calculated a single set of functional
properties (see ‘Calculation of ecosystem functions from FLUXNET’ in
Methods for details on the calculation and definition of abbreviations):
maximum gross CO, uptake at light saturation (GPP,,), maximum
net ecosystem productivity (NEP,,,), maximum evapotranspiration
(ET,..0), evaporative fraction (EF) (thatis, the ratio between latent heat
fluxand available energy, indicative of energy partitioning), EF ampli-
tude (EF,,,), maximum dry canopy surface conductance (Gp.,),
maximum and mean basal ecosystem respiration (Rb,,,, and Rb,
respectively), and apparent carbon-use efficiency (aCUE) (that s, the
remaining fraction of carbon entering the ecosystem). We also com-
puted several metrics of growing season water-use efficiency (WUE)
that account in different ways for physical evaporation and stomatal
regulation effects: underlying WUE (UWUE), stomatal slope at eco-
system scale (G1), and WUE,, a second variant of WUE, but based on
transpiration estimates" (see Methods). We calculated average cli-
mate and soil water availability variables for each site, encompassing
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and WET (wetlands). Bigger points represent the centroid of the distribution
foreach PFT.b, Explained variance for each principal component.c,d, Bar plots
of'the contribution (c) and loading (d) of each ecosystem functional property
(EFP) to each principal component. Orange bars represent the loadings and the
contributions thatare considered significant (Supplementary Information 2).

the following: cumulative soil water availability index (CSWI), mean
annual precipitation (P), mean shortwave incoming radiation (SW,,),
mean air temperature (7,;,), and mean vapour pressure deficit during
the growing season (VPD). In addition, we compiled information on
canopy-scalestructural variables such as foliar nitrogen concentration
(N%), maximum leaf areaindex (LAl,,,), maximum canopy height (H,),
and above-ground biomass (AGB), when available (Methods, Supple-
mentary Table1).

The key axes of the multi-dimensional space of terrestrial ecosys-
tem functions were identified using principal component analysis
(PCA; see Methods). We find that the first three axes of variation (the
principal components; PCs) explain 71.8% of the multi-dimensional
functional space variation (Fig. 1a, b, Supplementary Information 2).
The first axis (PC1) explains 39.3% of the variance and is dominated
by maximum ecosystem productivity properties, as indicated by
the loadings of GPP,,, and NEP,,,, and maximum evapotranspiration
(ET,..,) (Fig.1c, d). Also, Rb contributes with positive loadings to PC1
(Fig.1d), indicating the coupling between productivity and ecosystem
respiration (both autotrophic and heterotrophic)™. The first axis runs
from sites with low productivity and evapotranspiration to sites with
high photosynthesis, high net productivity, and highmaximumevapo-
transpiration; that is, from cold and arid shrublands and wetlands, to
forestsin continental, tropical and temperate climates (Fig.2a,b). The
second axis (PC2) explains 21.4% of the variance and refers to water-use
strategies as shown by the loadings of water-use efficiency metrics
(UWUE, WUE,, and G1), evaporative fraction and maximum surface
conductance (Fig. 1c, d). Plant functional types do not explain clearly
the variability of the second axis, with the exception of the evergreen
and mixed forest, and the wetlands that are at the opposite extremes
oftherange (Fig. 2c). This axis runs (Fig. 2c,d) from temperate forests,
dryand subtropical sites with alow average evaporative fraction (that
is, available energy is mainly dissipated by sensible heat) but higher
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Fig.2|Distribution of plant functional types and climate types along the
principal components (PC1-PC3). a, ¢, e, Plant functional types (PFTs).
b, d, f,Climatetypes. Letters represent statistically significant differences in
the average PCs (Tukey’s HSD test, P < 0.05), such that groups not containing
thesameletter are different. The effect size of the one-way ANOVA (%) is
reported (n=203sites). Inthe box plots the central line represents the mean;

water-use efficiency (Fig. 2d), to sites in cold or tropical climates, as
well as wetlands with a high evaporative fraction (that is, available
energy is used for evapotranspiration), high surface conductance and
low water-use efficiency (Fig. 2c, d). The third axis (PC3) explains 11.1%
ofthe variance and includes key attributes that reflect the carbon-use
efficiency of ecosystems. PC3 is dominated by apparent carbon-use
efficiency (aCUE), basal ecosystem respiration (Rband Rb,,,,) and the
amplitude of EF (EF,,) (Fig.1c,d).Rband aCUE contribute to PC3 with
oppositeloadings, indicating that the PC3 ranges from ssites with high
aCUE and low Rbto sites with low aCUE and high Rb. The third axis runs
from Arcticand boreal sites with low PC valuesto hot and dry climates
(Fig. 2f), potentially indicating theimprint of aridity and temperature
over the efficiency of ecosystems to use the assimilated carbon. We
find no clear relation to plant functional types, with the exception of
deciduous and evergreen forests that are at the extremes of the PC3
range (Fig. 2e).

We analyse the predictive relative importance of five climatic vari-
ables (T, VPD, CSWI, P,and SW,,) and four vegetation structural char-
acteristics (LAl,,,, AGB, H.and N%) on the predictability of the principal
components usingrandom forests (see ‘Predictive variableimportance’
inMethods). We find that the maximum productivity axis (PC1) is largely
explained by vegetation structure (LAl,,,,, AGB, H, and N%) and VPD
(Fig.3a, Extended Data Fig. 4a-e). The water-use strategies axis (PC2) is
mostly explained by maximum canopy height (H,), followed by climate
variables (Fig. 3b, Extended Data Fig. 4i-1). Structural and climate vari-
ables jointly explain the variability of the carbon-use efficiency axis
(PC3). The most important structural predictors of PC3 are AGB and
N%, whereas VPD, T,;, and SW;, are the most important climate drivers
(Fig. 3¢, Extended Data Fig. 4m-q).

The dependencies described above can only be interpreted caus-
ally if the regression models are in fact causal regression models
(see Supplementary Information 3 for a formal definition). In many
situations, this fails to be the case owing to the existence of hidden
confounders; that is, unmeasured variables that influence both the

Climate Type

thelower and upperbox limits correspond to the 25th and 75th percentiles and
the upper (lower) whiskers extend to 1.5 (-1.5) times the interquartile range,
respectively. Coloursindicate different climate types and PFTs (cont,
continental; subtrop, subtropical; temp, temperate; trop, tropical; PFT
definitionsareasinFig.1).

principal components and the covariates (here climate and structural
variables)®. Using an invariance-based analysis (see ‘Invariant causal
regression models and causal variable importance’in Methods), we
find evidence that the full regression model including all the selected
structural and climatic variables might be causal (Supplementary Infor-
mation 3.2.1, Supplementary Fig. 3.3). If thisisindeed the case, we can
make the following statements. When considering groupwise causal
variable importance, we can conclude that vegetation structure is a
stronger causal driver than climate of the spatial (that is, across sites)
variability of the maximum realized productivity axis (PC1) (Supple-
mentary Fig. 3.7),and both are significant (Supplementary Table 3.2).
Consider two contiguous plots of forest experiencing the same climate
conditions, one disturbed and the other not. The undisturbed forest,
whichis likely to be taller, with higher LAl and carbon stocks, would
probably have higher maximum photosynthetic rates and net eco-
system production, which are the most important variables loading
on the first axis. Although, in time, the variability of climate controls
the variability of gross and net CO, uptake and productivity***, which
arevariablesrelated to the maximum productivity axis (PC1), in space
(thatis, across sites) we find only a marginal control in very cold and
radiation-limited sites (Extended Data Fig. 5afor a PC1 map), or for very
warm and high atmospheric aridity (high VPD) conditions (Extended
DataFig. 4d based on predictive variable importance). Both vegeta-
tion structure and climate variables seem to have a joint direct causal
effect on PC2 (Supplementary Fig 3.7). Although vegetation canopy
height is constrained by resource availability’, particularly water, our
results suggest that it acts itself as a control on the water-use strate-
giesaxis (PC2) and thatit has a stronger causal effect on PC2 than each
of the climate variables (Supplementary Fig. 3.6). The importance
of vegetation height for ecosystem water-use strategies is manifold.
First, vegetation height controls the coupling between stomata and
atmosphere by influencing surface roughness and then aerodynamic
resistance”, which modulates leaf-to-air VPD and water use efficiency.
Second, vegetation height reflects variation in water-use efficiency that
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Fig.3|Importance of climate and vegetation properties. a-c, Predictive relativeimportance for PC1(a), PC2 (b) and PC3 (c). Numbersin the circles represent
the percentageincreasein meansquared error (MSE). Yellow circles represent vegetation structural variables; light blue circles represent climate variables.

decreases as a consequence of progressive hydraulic constraints on
stomatal conductance to water vapour and growthin taller vegetation™.
Third, canopy height might reflect stand age and it is influenced by
disturbances. Studies on forest chronosequence show amore conserva-
tive use of water in younger forests, which results in higher water-use
efficiency™. We cannot exclude that our results are indirectly affected
by the gradient fromgrass to forests, but postulate that these effects are
likely to be minimal (Extended Data Fig. 6). Vegetation structurehasa
direct causal effect on the carbon-use efficiency axis (PC3; Supplemen-
tary Fig 3.7). Previous studies show that vegetation structure reflects
climatic constraints but also the successional stage of an ecosystem
after disturbance”. Increasing stand age—which is typically associated
with higher above-ground biomass—is also associated with reduced
forest production efficiency®. The negative partial dependence of PC3
onabove-ground biomass (Extended Data Fig. 4n, based on predictive
variable importance) is likely to be related to higher autotrophic and
heterotrophic respiration rates per unit of CO, taken up by photosyn-
thesis as biomass increases®. The positive dependence of PC3 on N%
(Extended DataFig.4q, based on predictive variable importance) sup-
ports previous findings that carbon-use efficiency might be controlled
by the nutrient status of the vegetation®.

The two representative—yet complementary—land surface models
examined here (OCN and JSBACH) partially reproduce the main axes
ofterrestrial ecosystem functions (Extended DataFig. 7). Thisis shown
when comparing the PCA calculated from FLUXNET data with simu-
lated ecosystem functional properties from 48 site-level runs, mostly
in temperate and boreal sites (Extended Data Fig. 7). The models are
broadly consistent with the FLUXNET observations inthe description
of the potential productivity axis (PC1), but diverge in the descrip-
tion of the water-use strategies (PC2) and the carbon-use efficiency
(PC3) axes. Despite the overall good agreement between observed and
modelled fluxes at a half-hourly timescale (Supplementary Table 4),
we show that, first, models are limited in simulating the relationships
between ecosystem functions (Extended Data Fig. 8); and, second,
models tend to overstate observed correlation strengths among eco-
system functions, as shown by the larger variance explained by the
PClin models compared to observations (Extended Data Fig 7h, i).
As aresult, the ecosystem functional space that can be simulated by
the models, represented by the area shown in Extended Data Fig. 9, is
smaller than thatexpected fromobservations, particularly in the plane
spanned by the PC2 and PC3 (Extended Data Fig. 9d-f). The limited
variability of the model output points to aninsufficient representation
of the actual variability of the vegetation properties by the average
parameterization of plant functional types. Uncertainimplementation
of plant hydraulics and water acquisition or conservation strategies
inland surface models is a key limitation? that explains the observed
discrepancy in PC2. With regard to PC3, one limitation is that models
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lack flexibility in representing the response of respiration rates and
carbon-use efficiency to climate, nutrients, disturbances and substrate
availability (including biomass and stand age)?***.

The identification of the key axes of terrestrial ecosystem function
andtheirrelationships with climate and vegetation structure will help to
supportthe development of the next generation of land surface models
and complement their benchmarking®. By comparing the contribu-
tions of the functions and their loadings to the principal components,
we can assess whether the representations of ecosystem functions in
the models and in the ‘real world’ are coherent, and if not, which key
processes or model formulations need improvement. For example,
we show that vegetation height controls the water-use strategies axis
(PC2), whichis not well reproduced by the land surface models?. This
suggests that future land surface models need toinclude arepresenta-
tion of water-use strategies that explicitly accounts for hydraulic limita-
tions to growth, vegetation stature, vertical and horizontal structures
and microenvironments of the canopy, and arefined parameterization
of stomatal control. Likewise, the inclusion of a flexible representa-
tion of carbon-use efficiency would enable models to reproduce the
third axis of ecosystem functions®*. The comparison of the variances
explained by functional axes and the loadings of the functionsin simu-
lated and observed data will indicate whether simulated ecosystem
functions are appropriately coordinated. The overly tight coupling
of ecosystem functions by modelsindicates alack of flexibility in eco-
system responses to environmental drivers, such as adaptive carbon
and water couplings.

In summary, by analysing a consistent set of ecosystem functions
across major terrestrial biomes and climate zones, we show that three
key axes capture the terrestrial ecosystem functions. The first and
most important axis represents maximum productivity and is driven
primarily by vegetation structure, followed by mean climate. The sec-
ond axisis related to water-use strategies, and is driven by vegetation
height. The third axisis related to ecosystem carbon-use efficiency; it
is controlled by vegetation structure, but shows a gradient related to
aridity. We find that the plant functional type concept does not nec-
essarily capture the variability of ecosystem functions, because the
majority of plant functional types are evenly distributed along the
water-use strategies (PC2) and carbon-use efficiency (PC3) axes. Our
approach allows the overall functioning of terrestrial ecosystems to
be summarized and offers a way towards the development of metrics
of ecosystem multifunctionality’—a measure of ecosystem functions
asawhole, whichis crucial to achieving a comprehensive assessment
of the responses of ecosystems to climate and environmental vari-
ability, as well as biodiversity losses’. The analysis focuses on relatively
few critical functions related to carbon, water and energy cycling of
ecosystems. To attain a fully comprehensive characterization of the
key axes of terrestrial ecosystem functions, more parameters related



to nutrient cycling, seed dispersal and chemical defences—among
others—should beincluded. The concept of the key axes of ecosystem
functions could be used as a backdrop for the development of land
surface models, which might help to improve the predictability of
the terrestrial carbon and water cycle in response to future changing
climatic and environmental conditions.
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Methods

FLUXNET data

The data used in this study belong to the FLUXNET LaThuile’ and
FLUXNET2015 Tier 1 and Tier 2 datasets'®, which make up the global
network of CO,, water vapour and energy flux measurements. We
merged the two FLUXNET releases and retained the FLUXNET2015
(the most recent and with arobust quality check) version of the data
when the site was present in both datasets. Croplands were removed
to avoid the inclusion of sites that are heavily managed in the analysis
(for example, fertilization and irrigation).

The sites used cover a wide variety of climate zones (from tropical
to Mediterranean to Arctic) and vegetation types (wetlands, shrub-
lands, grasslands, savanna, evergreen and deciduous forests). It should
be noted though that tropical forests are underrepresented in the
FLUXNET database (Extended Data Figs. 1, 3).

Sites were excluded in cases in which: (i) data on precipitation or
radiation were not available or completely gap-filled; (ii) the calculation
of functional properties failed because of low availability of measured
data (see ‘Calculation of ecosystem functions from FLUXNET’); and (iii)
fluxes showed clear discontinuities in time series indicating a change
of instrumentation set-up (for example, changes in the height of the
ultrasonic anemometer or gas analyser).

The final number of sites selected was 203 (1,484 site years). The geo-
graphical distributionisshownin Extended DataFig.1, the distribution
in the climate space is shown in Extended Data Fig. 2 and the fraction
of sites for each climate classes is reported in Extended Data Fig. 3.

For eachsite, we downloaded the following variables at half-hourly
temporal resolution: (i) gross primary productivity (GPP, pmol CO,m?s™)
derived from the night-time flux partitioning (GPP_NT_VUT_50 in
FLUXNET 2015 and GPP_fin LaThuile), (ii) net ecosystem exchange
(NEE, pmol CO, m?s™) measurements filtered using annual friction
velocity (u*, ms™) threshold (NEE_VUT_50 in FLUXNET 2015; NEE in
LaThuile); (iii) latent heat (LE, W m™) fluxes, which were converted
to evapotranspiration (ET, mm); (iv) sensible heat (H, W m™) fluxes;
(v) air temperature (T, °C); (vi) vapour pressure deficit (VPD, hPa);
(vii) global shortwave incoming radiation (SW,,, W m™); viii) net radia-
tion (R,, W m™); (ix) ground heat flux (G, W m™); (x) friction velocity
u* (ms™); and (xi) wind speed (u, ms™). For the energy fluxes (H, LE)
we selected the fluxes not corrected for the energy balance closure
to guarantee consistency between the two FLUXNET datasets (in the
LaThuile dataset energy fluxes were not corrected).

The cumulative soil water index (CSWI, mm) was computed as a meas-
ure of water availability according to a previous report?. Half-hourly
values of transpiration estimates (7, mm) were calculated with the
transpiration estimation algorithm (TEA)?. The TEA has been shown
to performwell against both model simulations and independent sap
flow data®.

For 101 sites, ecosystem scale foliar N content (N%, gN 100 g™) was
computed as the community weighted average of foliar N% of the major
species at thesite sampled at the peak of the growing season or gathered
from the literature” 2 Foliar N% for additional sites was derived from
the FLUXNET Biological Ancillary Data Management (BADM) product
and/or provided by site principal investigators (Supplementary Table1,
Extended DataFig.1). It should be noted that this compilation of N% data
might suffer fromuncertainties resulting from the scaling fromleaves to
the eddy covariance footprint, the sampling strategy (including the posi-
tionalongthe vertical canopy profile), the species selection and the tim-
ing of sampling. About 30% of the data comes from a coordinated effort
that minimized these uncertainties®>°, and for the others we collected
N% data that were representative for the eddy covariance footprint®,

Maximum leaf area index (LAl,,,,, m*> m™) and maximum canopy
height (H,, m) were also collected for 153 and 199 sites, respectively,
from theliterature®***, the BADM product, and/or site principal inves-
tigators.

Earth observation retrievals of above-ground biomass (AGB, tons of
drymatter per hectare (t DM ha™)) were extracted from the GlobBiomass
dataset® at its original resolution (grid cell 100 x 100 m) for each site
location. All the grid cellsina300 x 300 m and 500 x 500 m window
around each location were selected to estimate the median and 95th
percentiles of AGB for each site. The median of AGB was selected to avoid
the contribution of potential outliersto the expected value of AGB. The
analysis further explored the contribution of higher percentiles in the
local variation of AGB as previous studies have highlighted the contri-
bution of older and larger trees in uneven stand age plots to ecosystem
functioning®. According to the evaluation against AGB measured at 71
FLUXNET sites (Extended Data Fig. 10), we decided to use the product
with median AGB values extracted from the 500 x 500 m window.

Atotal of 94 sites have all the dataon vegetation structure (N%, LAl,,,
H,, and AGB).

Thelist of sites is reported in Supplementary Table 1along with the
plant functional type (PFT), Koppen-Geiger classification, coordinates,
and when available N%, LAl,,,,, H.and AGB.

In this study we did not make use of satellite information, with the
exception of the AGB data product. Future studies will benefit from
new missions such as the ECOsystem Spaceborne Thermal Radiom-
eter Experiment on Space Station (ECOSTRESS), the fluorescence
explorer (FLEX), hyperspectral, and radar and laser detection and
ranging (LiDAR) missions (for example, Global Ecosystem Dynamics
Investigation (GEDI)), to characterize amultivariate space of structural
and functional properties.

Calculation of ecosystem functions from FLUXNET

Starting from half-hourly data, we calculated at each site asingle value
foreach of the ecosystem functions listed below. For the calculations of
functional properties we used, unless otherwise indicated, good-quality
data: quality flag O (measured data) and 1(good-quality gap-filled data)
in the FLUXNET dataset.

Gross primary productivity at light saturation (GPP,,,)

GPP at light saturation using photosynthetically active radiation as
drivingradiationand 2,000 pmol ms™assaturating light. GPP,, repre-
sents the ecosystem-scale maximum photosynthetic CO, uptake®>°3¢,
The GPP,, was estimated from half-hourly data by fitting the hyperbolic
light response curves with amoving window of 5 days and assigned at
the centre of the moving window>®. For each site the 90th percentile
fromthe GPP, estimates was then extracted.

Maximum net ecosystem productivity (NEP,,,,)

This was computed as the 90th percentile of the half-hourly net ecosys-
tem production (NEP =-NEE) inthe growing season (thatis, when daily
GPPis higher than 30% of the GPP amplitude). This metric represents
the maximum net CO, uptake of the ecosystem.

Basal ecosystem respiration (RbandRb,,,,)

Basal ecosystem respiration at reference temperature of 15 °C was
derived from night-time NEE measurements?. Daily basal ecosystem
respiration (Rb,) was derived by fitting an Arrhenius type equation over
afive-day moving window and by keeping the sensitivity to temperature
parameter (E,) fixed as in the night-time partitioning algorithms?**%, Rb
varies across seasons because it is affected by short-term variationsin
productivity®*, phenology*® and water stress*.. For each site, the mean
ofthe Rb, (Rb) and the 95" percentile (Rb,,,,,) were computed. The cal-
culations were conducted with the REddyProc R package v.1.2.2 (ref.>8).

Apparent carbon-use efficiency (aCUE). The aCUE as defined in this
study is the efficiency of an ecosystem to sequester the carbon assimi-
lated with photosynthesis®. aCUE is an indication of the proportion of
respired carbonwith respect to assimilated carbon within one season.
A previous report® showed that little of the variability in aCUE can be



explained by climate or conventional site characteristics, and sug-
gested an underlying control by plant, faunal and microbial traits, in
addition to site disturbance history. Daily aCUE (aCUE,) is defined as
aCUE,=1-(Rb,/GPP,), where GPP,is daily mean GPP and Rb, is derived
as described above. For each site, aCUE was computed as the median
of aCUE,.

Metrics of water-use efficiency (WUE)

Various metrics of WUE are described below: stomatal slope or slope
coefficient (G1), underlying water-use efficiency (UWUE), and water-use
efficiency based on transpiration (WUE,). The three metrics were used
because they are complementary, as shown in previous studies*,

Stomatal slope or slope coefficient (G1). This is the marginal carbon
costof water to the plant carbon uptake. Glis the key parameter of the
optimal stomatal model derived previously®. Glis inversely related to
leaf-level WUE. At leaf level, Glis calculated using nonlinear regression
and can be interpreted as the slope between stomatal conductance
and net CO, assimilation, normalized for VPD and CO, concentration®.
Apreviousreport*showed the potential of the use of Gl at ecosystem
scale, where stomatal conductance is replaced by surface conductance
(Gy), and net assimilation by GPP. The methodology isimplementedin
thebigleaf R package**. The metric was computed in the following situ-
ations: (i) incoming shortwave radiation (SW,,) greater than200 W m>;
(i) no precipitation event for the last 24 h*, when precipitation data
are available; and (iii) during the growing season: daily GPP > 30% of
its seasonal amplitude**.

Underlying water-use efficiency (UWUE). The underlying WUE was
computed following a previous method*. uWUE is a metric of water-use
efficiency that is negatively correlated to G1 at canopy scale**:

Wt - GPPIVPD.

uWUE was calculated using the same filtering that was applied for the
calculation of G1. The median of the half-hourly retained uWUE values
was computed for each site and used as a functional property.

Water-use efficiency based on transpiration (WUE,). The WUE based
on transpiration (T) was computed to reduce the confounding effect
resulting from soil evaporation™?:

WUEt=GTﬂ,

where Tisthe mean annual transpiration calculated with the transpira-
tion estimation algorithm (TEA) developed by inaprevious study?® and
GPP is the mean annual GPP.

Maximum surface conductance (G,,,.,). Surface conductance (G,) was
computed by inverting the Penman-Monteith equation after calculat-
ing the aerodynamic conductance (G,).

Among the different formulations of G, (m s™) in the literature, we
chose to use here the calculation of the canopy (quasi-laminar) bound-
arylayer conductance to heat transfer, which ranges from empirical to
physically based (for example, ref. ¥’). Other studies***° suggested an
empirical relationship between G,, the horizontal wind speed (u) and
the friction velocity, u*:

1

Ga= ( 4462 *—0.67)
2 22U
u

G, (ms™)is computed by inverting the Penman-Monteith equation:

LEG,y

C=AR.-G-95)+ pC,G,VPD - LE(A +))

where A is the slope of the saturation vapour pressure curve (kPa K™),
pisthe air density (kg m™), C, is the specific heat of the air (J K" kg™),
yis the psychrometric constant (kPaK™), VPD (kPa), R, (Wm™),G(Wm™)
and Sis the sum of all energy storage fluxes (W m™) and set to 0 as not
available in the dataset. When not available, G also was set to O.

G, represents the combined conductance of the vegetation and the
soil towater vapour transfer. To retain the values with a clear physiologi-
calinterpretation, we filtered the dataas we did for the calculation of G1.

For eachsite, the 90th percentile of the half-hourly G, was calculated
andretained as the maximum surface conductance of each site (Gay)-
G, was computed using the bigleaf R package**.

Maximum evapotranspiration in the growing season (ET,,.,). This
metric represents the maximum evapotranspiration computed as the
95th percentile of ET in the growing season and using the dataretained
after the same filtering applied for the G1 calculation.

Evaporative fraction (EF). EF isthe ratio between LE and the available
energy, here calculated as the sum of H + LE (ref.>°). For the calculation
of EF, we used the same filtering strategy as for G1. We first calculat-
ed mean daytime EF. We then computed the EF per site as the growing
season average of daytime EF. We also computed the amplitude of the
EF in the growing season by calculating the interquartile distance of
the distribution of mean daytime EF (EF,,,).

Principal component analysis

APCAwas conducted onthe multivariate space of the ecosystem func-
tions. Each variable (ecosystem functional property, EFP) was stand-
ardized using z-transformation (that is, by subtracting its mean value
and then dividing by its standard deviation). From the PCA results we
extracted the explained variance of each component and the loadings
ofthe EFPs, indicating the contribution of each variable to the compo-
nent. We performed the PCA using the function PCA() implementedin
the R package FactoMineR®'.

We justify using PCA over nonlinear methods because it is an explora-
tory technique that is highly suited to the analysis of the data volume
used in this study, whereas other nonlinear methods applied to such
datawould be over-parameterized. For the same reason, PCA was used
in previous work concerning the global spectrum of leaf and plant
traits, and fluxes'>*,

Totest the significance of dimensionality of the PCA, we used a previ-
ously described methodology*®. We used the R package ade4 (ref.**)
and evaluated the number of significant components of the PCA tobe
retained to minimize bothredundancy and loss of information (Supple-
mentary Information 2). We tested the significance of the PCA loadings
using acombination of the bootstrapped eigenvector method*and a
threshold selected using the number of dimensions*® (Supplementary
Information 2).

Predictive variable importance
Arandom forests (RF) analysis was used to identify the vegetation struc-
ture and climate variables that contribute the most to the variability of
the significant principal components, which were identified with the
PCA analysis (see ‘Principal component analysis’). In the main text we
refer to the results of this analysis as ‘predictive variable importance’
to distinguish this to the ‘causal variable importance’ described below.
The analysis was conducted using the following predictor variables:
asstructural variables, N% (gN100 g™), LAl,,,,, (m, m™), AGB (t DM ha™)
and H, (m); as climatic variables, mean annual precipitation (P, mm),
mean VPD during the growing season (VPD, hPa), mean shortwave
radiation (SW;,, W m~), mean air temperature (T, °C); and the cumu-
lative soil water index (CSWI, -), as indicator of site water availability.
We used partial dependencies of variables to assess the relationship
betweenindividual predictors and the response variable (that s, PC1,
PC2and PC3).
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Theresults fromthe partial dependency analysis can be used to deter-
mine the effects of individual variables on the response, without the
influence of the other variables. The partial dependence function was
calculated using the pdp R package®’.

The partial dependencies were calculated restricted to the values
that lie within the convex hull of their training values to reduce the
risk of interpreting the partial dependence plot outside the range of
the data (extrapolation).

Invariant causal regression models and causal variable
importance

We have quantified the dependence of the principal components onthe
different structural and climatic variables using nonlinear regression.
Such dependencies can only be interpreted causally if the regression
modelsarein fact causal regression models (see Supplementary Infor-
mation 3 for a formal definition), which may not be the case if there
are hidden confounders. To see whether the regression models allow
for a causal interpretation, we use invariant causal prediction®®. This
method investigates whether the regression models are stable with
respect to different patterns of heterogeneity in the data, encoded
by different environments (that is, subsets of the original dataset).
Therationale is that a causal model, describing the full causal mecha-
nism for the response variable, should be invariant with respect to
changesintheenvironmentifthelatter does not directly influence the
response variable™*’. Other non-causal models may be invariant, too,
but a non-invariant model cannot be considered causal.

Howto choose the environmentsis amodelling choice that must sat-
isfy the following criteria. First, it should be possible to assign each data
point to exactly one environment. Second, the environments should
induce heterogeneity in the data, so that, for example, the predictor
variables have different distributions across environments. Third, the
environments must not directly affect the response variable, only via
predictors, although the distribution of the response may still change
between environments. The third criterion can be verified by expert
knowledge and is assumed to hold for our analysis. In addition, if it
is violated, then, usually, no set is invariant®®, which can be detected
from data.

In our analysis, we assigned each data point (that is, each site) to
one of two environments (two subsets of the original dataset): the first
includes forestsitesin North America, Europe or Asia; and the second
includes non-forest and forest ecosystems from South America, Africa
or Oceania, and non-forest ecosystems from North America, Europe
or Asia (see Supplementary Information 3.1.3.1for details). Our choice
satisfies the method’s assumption that the distribution of the predic-
tors is different between the two environments (that is, they induce
heterogeneity in the data; see Supplementary Fig. 3.1). Environments
that are too small or too homogeneous do not provide any evidence
against the full set of covariates being a candidate for the set of causal
predictors. Other choices of environments than the one presented
here yield consistent results (Supplementary Information 3.2.1, Sup-
plementary Fig. 3.4).

For each subset of predictors, we test whether the corresponding
regression model is invariant (yielding the same model fitin each
environment). Although many models were rejected and considered
non-invariant, the full model (with all the nine predictors and used in
the predictive variableimportance analysis) was accepted as invariant,
establishing the full set of covariates asareasonable candidate for the
set of direct causal predictors. We used both RF (randomForest pack-
age in R*°) and generalized additive models, GAM® (mgcv package®
in R) to fit the models. Both methods lead to comparable results but
with abetter average performance of the RF: GAM led to slightly better
results than RF for PC1, whereas for PC2 and PC3 RF showed a much
better model performance (Supplementary Table 3.1, Supplementary
Information 3.2.2). Therefore, in the main text we showed only the
results from the RF (except for PC1).

If,indeed, the considered regression models are causal, this allows us
tomake several statements. First, we can test for the existence of causal
effects by testing for statistical significance of the respective predic-
tors in the fitted models. Second, we can use the response curves of
the fitted model to define a variable importance measure with a causal
interpretation. In the main text we refer to this variableimportance as
‘causal variableimportance’. For details, see Supplementary Informa-
tion3.1.2. More formally, we considered the expected value of the pre-
dicted variables (the principal components) under joint interventions
onallcovariates (AGB, H,, LAl,,,,, N%, T,;,, VPD, SW,,, CSWland P) atonce,
and then, to define the importance, we quantified how this expected
value depends onthe different covariates. We applied the same analysis
togroups of vegetation structural and climate covariates (see ‘Group-
wise variableimportance’in Supplementary Information 3.1.2.3,3.2.3).

The details of the methodology and the results are described in Sup-
plementaryInformation 3, in which we also provide further details on
the choice of environment variable and on the statistical tests that we
use to test for invariance. An overview of the invariance-based meth-
odology is shown in Supplementary Fig. 3.1.

Land surface model runs

We run two widely used land surface models: Orchidee-CN (OCN)
and Jena Scheme for Biosphere Atmosphere Coupling in Hamburg
(JSBACH):

OCN. The dynamic global vegetation model OCN is a model of the
coupled terrestrial carbon and nitrogen cycles®***, derived from the
ORCHIDEE land surface model. It operates at a half-hourly timescale
and simulates diurnal net carbon, heat and water exchanges, as well as
nitrogen trace gas emissions, which jointly affect the daily changes in
leaf areaindex, foliar nitrogen, and vegetation structure and growth.
The main purpose of the modelis to analyse the longer-term (interan-
nual to decadal) implication of nutrient cycling for the modelling of
land-climate interactions®**>. The model can run offline, driven by
observed meteorological parameters, or coupled to the global circu-
lation model.

JSBACH.JSBACH v.3istheland surface model of the MPI Earth System
Model®®*’, The model operates at a half-hourly time step and simulates
thediurnal net exchange of momentum, heat, water and carbon with the
atmosphere. Daily changes in leaf area index and leaf photosynthetic
capacity are derived from a prognostic scheme assuming a PFT-specific
set maximum leafareaindex and aset of climate responses modulating
the seasonal course of leaf area index. Carbon pools are prognostic
allowing for simulating the seasonal course of net land-atmosphere
carbon exchanges.

We selected OCN and JSBACH because they are widely used land
surface models with different structures. JSBACH is a parsimonious
representation of the terrestrial energy, water and carbon exchanges
used tostudy the coupling ofland and atmosphere processesinan Earth
system model®”. OCN has also been derived from the land surface model
ORCHIDEE®®, but it includes a more comprehensive representation
of plant physiology, including a detailed representation of the tight
coupling of the Cand N cycling®. Both models contribute to the annual
global carbon budget of the Global Carbon Project® and have shown
good performance compared to anumber of global benchmarks. OCN
was further usedin several model syntheses focused on the interaction
between changing N deposition and CO, fertilization” 72 Both OCN
and JSBACH can operate at a half-hourly timescale and simulate net
and gross carbon exchanges, water and energy fluxes, and therefore
areideal for the extraction of ecosystem functional properties, as done
with the eddy covariance data.

The models were driven by half-hourly meteorological vari-
ables (shortwave and longwave downward flux, air temperature and



humidity, precipitation, wind speed and atmospheric CO, concentra-
tions) observed at the eddy covariance sites. OCN was furthermore
driven by N deposition fields”. Vegetation type, soil texture and plant
available water were prescribed on the basis of site observations, but no
additional site-specific parameterization was used. Both models were
broughtinto equilibrium with respect to their ecosystem water storage
andbiogeochemical pools by repeatedly looping over the available site
years. We added random noise (mean equal to 0 and standard devia-
tion of 5% of the flux value) to the fluxes simulated by the models to
mimic the random noise of the eddy covariance flux observations.
An additional test conducted without noise addition showed only a
marginal effect on the calculations of the functional properties and
the ecosystem functional space.

We used runs of the JSBACH and OCN model for 48 FLUXNET sites
(Supplementary Table1). The simulated fluxes were evaluated against
the observationto assess the performance of the models at the selected
sites. From the model outputs and from each site we derived the eco-
system functions using the same methodology described above. Then
the PCA analysis was performed on the three datasets (FLUXNET, OCN
andJSBACH) and restricted to the 48 sites used to run the models. We
ranthe models only on the subset of sites for which the information for
the parameterization and high-quality forcing was available. However,
the different ecosystem functions emerge from the model structure
and climatological conditions. Therefore, even with a smaller set of
site we can evaluate whether models reproduce the key dimensions
of terrestrial ecosystem function by comparing the PCA results from
FLUXNET and the model runs.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Data used for this study are the FLUXNET dataset LaThuile (https://
fluxnet.fluxdata.org/data/la-thuile-dataset/) and FLUXNET2015 (https://
fluxnet.fluxdata.org/data/fluxnet2015-dataset/). Biological, ancillary,
disturbance and metadatainformation for the sites were collected from
databases and the literature and are available at the following address
together with the reproducible workflow (https://doi.org/10.5281/
zenodo.5153538). OCN and JSBACH model runs are available in the
reproducible workflow (https://doi.org/10.5281/zenodo0.5153538).

Code availability

The R codes used for this analysis are available at: https://doi.
org/10.5281/zenodo0.5153538. The R codes for the causality analysis
areavailable at: https://doi.org/10.5281/zenodo0.5153534. The TEA algo-
rithmis available at https://doi.org/10.5281/zenod0.3921923.
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and d). Total above-ground biomass observations were gathered from the
BADM dataset downloaded from the AMERIFLUX network and from the
FLUXNET LaThuilerelease. Only datawith the clearindication of the unit of
AGB expressedinindry matter (t DM ha™) were retained for the analysis.
Results show that the median of the 5by S grid cell window (panel c) is the best
extraction method to characterize AGB at the FLUXNET sites, and therefore
retained for further analysis. Adjusted determination coefficient (R?), linear
regression function, and p-value calculated with the F-test are alsoreported.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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El The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[X] A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X| A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

lXI For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection as the dataset were available in online repository.

Data analysis All the analyses were conducted with R 4.0.2 for Mac OS High Slerra 10.13.6. The R packages used for the calculation of the ecosystem
functional properties are
self-developed and already described in the literature and freely available on CRAN and git: REddyProc v1.2.2 (Wutzler et al., 2018, https://
cran.rproject.
org/web/packages/REddyProc/index.html), bigleaf v0.7.1 (https://cran.r-project.org/web/packages/bigleaf/index.html). The R code used for
the statistical analyses uses freely available packages described in the Methods section: FactoMineR v2.4, ade4 v1.7-16, randomForest
v4.6-14, pdp v0.7.0, mgev v1.8-31, factoExtra v1.0.7. The R codes used for this analysis are available at: https://doi.org/10.5281/
zen0do.5153538. The R codes for the causality analysis are available at: https://doi.org/10.5281/zenodo.5153534. The TEA algorithm is
available at https://doi.org/10.5281/zenodo.3921923. The shape files used to create the maps were downloaded from https://github.com/
ngageoint/geopackage-js.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data used for this study are the FLUXNET dataset LaThuile (https://fluxnet.fluxdata.org/data/la-thuile-dataset/) and FLUXNET2015 (https://fluxnet.fluxdata.org/
data/fluxnet2015-dataset/). Biological, Ancillary, Disturbance and Metadata for the sites were collected from databases and literature and available at the following
address together with the reproducible workflow (https://doi.org/10.5281/zenodo.5153538). OCN and JSBACH model runs are available in the reproducible
workflow (https://doi.org/10.5281/zenodo.5153538).
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description The study analyze the key dimensions of terrestrial ecosystem multifunctionality and the main associated drivers. We derive
ecosystem functional properties from a global dataset (203 sites and 1484 site-years) of surface gas exchange measurements across
the major climate zones and biomes (with the exclusion of managed croplands)

Research sample The data used in this study belongs to the FLUXNET La Thuile12 and FLUXNET2015 Tier 1 and Tier 2 dataset15, the global network of
CO2, water and energy flux measurements. The sites used cover a wide variety of climate zones (from tropical to arctic) and
vegetation types (wetlands, shrublands, savannahs, grasslands, evergreen and deciduous forests boreal, temperate and tropical
forests).

The FLUXNET LaThuile is available at: https://fluxnet.fluxdata.org/data/la-thuile-dataset/. FLUXNET2015 is available at https://
fluxnet.fluxdata.org/data/fluxnet2015-dataset/. Biological, Ancillary, Disturbance and Metadata for the sites were collected from
databases and literature and are released in the supplementary information (Supplementary Table 1).

Sampling strategy All the data available were used with the exception of data coming from croplands to avoid the inclusion of managed sites. Sites were
also removed in case the data quality was not enough to fulfill the required criteria described in the Methods section

Data collection Data were recorded using the eddy covariance technique, which is based on a combination of a gas analyzer and ultrasonic
anemometer associated with a meteorological station. FLUXNET is global network of site principle investigators and collaborators and
processed with standardized
procedures.

Timing and spatial scale The dataset used are half-hourly and we selected sites with at least 3 years of data. The start and end of measurements is differen
site by site and depends on the date of installation of the equipment. The sites used cover a wide variety of climate
zones and vegetation types . The total number of sites is 203 for a total of 1484 site years. Each site is representative of a spatial
scale randing from ~200 m for grasslands to ~1 km for forests, depending on the measurements height.

Data exclusions From the original FLUXNET datasets we excluded croplands to avoid the inclusion of sites heavily managed in the analysis (e.g.
fertilization, irrigation, etc). Sites were additionally excluded if data on precipitation or radiation were not available, or if the
calculation of functional properties failed because of low availability of measured data (due to malfunctioning of the systems). This is
described in the Method section.

Reproducibility We did not collect measurements directly but used a widely documented global dataset and literature data. We will also release a
reproducibility work flow for the data processing.

Randomization Permutation and randomization were used to test the number of components to be retained with the Principal Component Analysis
and the significance of the loadings to each component. Permutation and bootstrap was used to assess the statistical significance and

the standard errors of the fittings presented in the analysis.

Blinding Blinding was not needed in this study because we do not have treatments

Did the study involve field work? [ ] Yes X No
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies IZI |:| ChiIP-seq
|:| Eukaryotic cell lines IZI |:| Flow cytometry
|:| Palaeontology and archaeology |Z| |:| MRI-based neuroimaging

[] Animals and other organisms
[ ] Human research participants
[] clinical data

[ ] Dual use research of concern
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