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Entropic thermodynamics of nonlinear photonic
chain networks
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The convoluted nonlinear behaviors of heavily multimode photonic structures have been

recently the focus of considerable attention. The sheer complexity associated with such

multimode systems, allows them to display a host of phenomena that are otherwise

impossible in few-mode settings. At the same time, however, it introduces a set of funda-

mental challenges in terms of comprehending and harnessing their response. Here, we

develop an optical thermodynamic approach capable of describing the thermalization

dynamics in large scale nonlinear photonic tight-binding networks. For this specific system,

an optical Sackur-Tetrode equation is obtained that explicitly provides the optical tempera-

ture and chemical potential of the photon gas. Processes like isentropic expansion/com-

pression, Joule expansion, as well as aspects associated with beam cleaning/cooling and

thermal conduction effects in such chain networks are discussed. Our results can be used to

describe in an effortless manner the exceedingly complex dynamics of highly multimoded

nonlinear bosonic systems.
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In recent years, there has been considerable interest in
understanding the rich and complex dynamics of large-scale
nonlinear multimoded optical systems1–5. To a great extent,

what has fueled this effort is the ever-increasing quest for high
information capacity photonic networks6–10 and high-power
optical sources11. Similarly, the nonlinear physics of high-quality
factor multimode microresonators has been intensively investi-
gated in a number of areas, like comb-generation and opto-
mechanics12–16. Yet, what kept us from fully expanding these
classical settings, is the sheer complexity behind the nonlinear
interactions taking place in such vastly many-moded environ-
ments. To appreciate this difficulty, consider for example a
multimode optical fiber supporting thousands of modes. In this
case, to correctly account for all the nonlinear processes unfolding
in this structure, one has to first estimate at least a trillion or so
four-wave mixing coefficients, before even attempting to
numerically solve the evolution problem—a formidable task
which is by itself computationally intensive. Clearly, to overcome
these hurdles, a statistical approach has to be deployed that can
effectively deal with many-body configurations. In essence, this
calls for the development of a theoretical framework, akin to that
of statistical mechanics, that has so far allowed us to understand
the macroscopic properties of matter, in spite of the fact that on
most occasions one has to deal with a great multitude of atoms or
molecules—most often exceeding Avogadro’s number17.

Quite recently, an optical thermodynamic theory was put
forward, that can self-consistently describe by means of statistical
mechanics the utterly complex processes of energy exchange in
nonlinear multimode systems at thermal equilibrium18. In accord
with the axioms of thermodynamics19, the entropy of these sys-
tems was appropriately defined in terms of other extensive vari-
ables and a global equation of state was derived18,20. Moreover,
the laws governing isentropic processes were obtained and the
prospect for Carnot cycles was suggested. Similar results were
derived from the perspective of the grand canonical ensemble
along with the expected statistical fluctuations in these
systems21,22.

Here, by means of an optical Sackur–Tetrode equation, we
investigate the entropic response of large-scale weakly nonlinear
photonic chain networks. These classical networks may for
example involve a large number of evanescently coupled wave-
guide lattices23 that exchange power in both crystalline (Fig. 1a)
and other more complex arrangements (Fig. 1b), or could be
comprised of arrays of optical resonators (CROWs)24 that allow
for energy transfer in time—used as building blocks as shown in
Fig. 1c. While in this work, we will be primarily dealing with
coupled waveguide topologies in order to exemplify these notions,
a similar discussion holds for heavily multimode chain cavity
configurations and other bosonic systems25,26. In this case, the
underlying Sackur–Tetrode equation can be expressed as a
function of the electrodynamic momentum flow U, the number of

available modes M, and the input optical power P. This analytical
formalism developed here is in turn used to study and predict
several distinct phenomena that could be of practical importance.
These include, for example, the prospect for beam cooling
(leading to an improvement in beam quality) as well as Joule
expansion and aspects associated with the photo-capacity and
thermal conductivity of such chain networks. As opposed to
previous works that were foundational in nature18,20, the results
reported here (applicable to large-scale nonlinear tight-binding
lattices) establish a tangible theoretical model through which
many of these abstract ideas can be conceptually grasped and
further developed.

Results and discussion
Optical Sackur–Tetrode equation. We begin our discussion by
considering a lossless and leak-free, nonlinear array network ofM
single-mode elements that are coupled via nearest-neighbor
interactions. In this nonlinear optical chain, the equation of
motion is given by idam=dξ þ κam�1 þ κamþ1 þ amj j2am ¼ 0,
where am represents the local mode amplitude at site m and κ
stands for the coupling coefficient between two successive ele-
ments. These evolution equations can be obtained from the
classical Hamiltonian HTh i ¼ P

m κ am�1a
*
m þ amþ1a

*
m

� �þ
1=2ð ÞPm amj j4: The linear eigenvalues εj corresponding to the
optical supermodes |ϕj〉 of the arrangement shown in Fig. 1a are
given by εj ¼ 2κcos πj= M þ 1ð Þ½ � (refs. 23,24). In general, the
evolution of this weakly nonlinear system can be described in
terms of its supermodes, i.e., jψi ¼ PM

j¼1 cjðξÞjϕji where the
square of the moduli (|cj|2) of the complex coefficients cj denotes
modal occupancies. In this case, the norm in this conservative
system P ¼ PM

j¼1 jcjj2 is preserved, thus implying power/photon
conservation in these coupled waveguide/cavity arrangements. In
addition, in the weakly nonlinear regime, the expectation value of
the total Hamiltonian 〈HT〉= 〈HL〉+ 〈HNL〉 is dominated by its
linear component 〈HL〉 and as a result the internal energy U ¼
� ψ HLj jψh i ¼ �PM

j¼1 εjjcjj2 remains invariant during evolution,
thus establishing the second conservation law associated with this
class of structures. In fact, in multimode waveguide settings, the
conserved internal energy U so happens to be the longitudinal
electrodynamic momentum flow in these systems27. In this
respect, the two normalized constants of the motion P and U are
uniquely determined by the initial excitation amplitudes cj0, since
P ¼ PM

j¼1 jcj0j2 and U ¼ �PM
j¼1 εjjcj0j2. At this point, it is

important to stress that the sole role of the weak nonlinearity
involved (χ(2), χ(3), etc.) is to chaotically reshuffle the optical
power among modes through multi-wave mixing processes28—
thus causing the complex amplitudes cj to vary randomly during
propagation. In other words, the lack of M conserved quantities

Fig. 1 Nonlinear multimode optical chain networks. a–c This class of networks may come in a variety of forms, like a a large lattice of evanescently coupled
waveguide elements b a twisted topological array system, and c an optical coupled-cavity lattice configuration where energy is exchanged in time.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00484-1

2 COMMUNICATIONS PHYSICS | (2020)3:216 | https://doi.org/10.1038/s42005-020-00484-1 | www.nature.com/commsphys

www.nature.com/commsphys


or integrability, allows this nonlinear array system to ergodically
explore in a fair manner, all its accessible microstates (in its phase
space) that lie on the constant energy (U) and power (P) mani-
folds. It is this ergodicity that provides the foundation for
establishing an entropic thermodynamic theory for the afore-
mentioned multimode chain networks. Moreover, in heavily
multimode arrangements, the thermodynamically extensive
variables ðU ;M;PÞ are related to each other through the optical
temperature T (henceforth called temperature) and chemical
potential μ associated with the system. This relation is given
through a global equation of state, given by U � μP ¼ MT that
explicitly involves the total number of modes M (ref. 18). Here,
the optical temperature is associated with the optical field itself
and has nothing to do with the actual temperature of the envir-
onment the system is embedded in. In general, any system is
expected to reach thermal equilibrium by maximizing its entropy.
In this case, the thermalized average power levels conveyed by
each mode are found to obey a Rayleigh–Jeans distribution29–32,
i.e., jcjj2 ¼ �T=ðεj þ μÞ.

Based on the above premises, one can show that the relative
entropy associated with a photonic monoatomic chain network
(Fig. 1) is given by the following equation (see Supplementary
Note 1 for the derivation), i.e.,

S ¼ S U ;M;Pð Þ ¼ M ln
4κ2P2 � U2

4Mκ2P
� �

: ð1Þ

Equation (1) is analogous to the entropic Sackur–Tetrode
equation—developed more than a century ago (based on an
appropriate quantization of the phase space) in order to correctly
account for the properties of monoatomic gases17,33. Like its
counterpart in statistical mechanics, the optical entropy of these
nonlinear monoatomic chains is extensive with respect to the
three other extensive variables U ;M;Pð Þ. In other words, if we let
U ;M;Pð Þ ! λU ; λM; λPð Þ, then from Eq. (1), one directly
obtains S → λS. We note that this extensivity in entropy is crucial
in developing a self-consistent thermodynamic formulation—free
of Gibbs paradoxes. On the other hand, the optical entropy given
above is by nature different from that of an ideal monoatomic gas
in standard thermodynamics. This is apparent, since the prefactor
in Eq. (1) is now given by the number of modes M (optical
volume) as opposed to the optical power P which here plays the
role of N—the number of gas particles. Figure 2a depicts the
entropy of a chain system as a function of U ;Pð Þ as obtained
from Eq. (1), when M= 100. The three pertinent equations of
state can in turn be derived from (1) by employing the
fundamental equation of thermodynamics (see Supplementary
Note 2 for the derivation), i.e.,

1
T
¼ ∂S

∂U
¼ 2MU

U2 � 4κ2P2 ð2Þ

μ

T
¼ � ∂S

∂P ¼ M
P þ 8Mκ2P

U2 � 4κ2P2
ð3Þ

p̂
T
¼ ∂S

∂M
¼ ln

4κ2P2 � U2

4Mκ2P
� �

� 1 ð4Þ

Equations (2–4), relate the three intensive thermodynamic
variables T; μ; p̂ð Þ to their respective conjugate quantities
U ;P;Mð Þ. As in statistical mechanics, in this nonlinear multi-
moded setting, the temperature T ¼ U2 � 4κ2P2

� �
=ð2MUÞ

represents a thermodynamic force responsible for energy transfer
ΔU from a hot to a colder subsystem whereas the chemical
potential μ dictates the power exchange ΔP—all aiming to
maximize the entropy in accord with the second law of

thermodynamics. Finally, p̂ represents the relative optical
pressure in this configuration. From Eq. (2), one can readily
deduce that as the system attains its lowest possible internal
energy Umin ! �2κP (as imposed by the band structure of the

Fig. 2 Optical entropy and U–T diagrams associated with a nonlinear
multimode chain network. a Relative entropy S as a function of the internal
energy U and input power P. b Entropy cross-sections as a function of energy U
for the power levels indicated in (a) with the same colored curves. The inset in
(b) depicts the modal occupancies corresponding to different temperatures.
While for positive temperatures the lowest group of modes is occupied, the
converse is true for negative temperatures. When T→±∞, equipartition of
power takes place among modes. c Energy–temperature diagrams pertaining to
this family of lattices corresponding to the same power levels in (a) and (b),
shown as colored curves. The gray shaded areas indicate physically inaccessible
regions. In all cases, the number of modes was taken to be M= 100.
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monoatomic lattice), its temperature tends to zero (T → 0+) and
as a result the photon gas becomes a condensate that exclusively
occupies the ground state of the lattice. Conversely, when the
internal energy is maximized Umax ! 2κP, the opposite is true
(i.e., T → 0−), and hence the highest order mode is now solely
occupied (anti-condensate)34. The first equation of state (Eq. (2))
directly indicates that the temperature of these lattices is positive
for �2κP <U < 0 whereas is negative if the internal energy lies in
the domain 0<U < 2κP. On the other hand, when U ! 0�, the
temperature tends to T → ±∞ (as schematically shown in the
inset of Fig. 2b), and as a result, equipartition of power takes place
among modes, i.e., jcjj2 ¼ �T=μ ¼ P=M. In general, negative
temperatures correspond to bodies hotter than hot17—a relation
that regulates the direction of the energy flow ΔU. While for
positive temperatures the lower group of modes is mostly
occupied (since jcjj2 ¼ �T=ðεj þ μÞ), the opposite is true for
negative temperatures where the higher-order modes are
populated (Fig. 2b). We note that, the set of the three equations
in (2–4) is complete, and is formally equivalent to the global
equation of state (U � μP ¼ MT) as well as to the corresponding
Euler equation (S ¼ U � μP þ p̂Mð Þ=T)—a relation that again
reaffirms the extensivity of the entropy itself (see Supplementary
Note 2). Meanwhile, Fig. 2c depicts energy–temperature curves
(U – T) at various power levels, that as we will see dictate the
photo-capacity of these photonic chain networks.

Thermodynamic processes. The above results can be used to
predict the outcome of more complex processes like, for example,
that associated with Joule expansion of the photon gas in such
nonlinear heavily multimoded environments. This prospect is
shown schematically in Fig. 3, where as an example, χ(3) nonlinear
array supportingMmodes suddenly expands to four times its size
(M → 4M), while all the lattice parameters are kept the same. In
this microcanonical scenario, both the internal energy U and
power P remain constant during this abrupt transition. From
Eqs. (2–3), one can quickly deduce that after Joule expansion, the
temperature is reduced to one-fourth of its original value (T → T/
4), while the chemical potential μ is entirely unaffected. This
photonic response is in stark contrast to the Joule expansion
behavior expected from ideal monoatomic gases where the tem-
perature is constant whereas the chemical potential substantially
changes. On the other hand, even in this case, the absolute
entropy of the system always increases in response to this irre-
versible expansion (for details see Supplementary Note 3). In a
similar vein, isentropic processes (S= const) can also be exam-
ined. These effects can be readily produced if, for example, a Kerr
nonlinear multimode array adiabatically expands/contracts (in
which case the mode occupancies |cj|2 are unaltered) while the
individual single-mode elements remain the same (only the
coupling coefficient κ adiabatically changes). Since M and P are
invariant, an isentropic transition can only occur provided that
U/κ= const (see Supplementary Note 4 for the derivation). This
last relation can be justified given that U ¼ �PM

j¼1 εjjcjj2 and
εj∝ κ. From the first two equations of state (Eqs. (2–3)), one can
quickly conclude that U/T= const and μ/T= const. These latter
isentropic relations, applicable for the photon gas in multimode
chain networks, are to some extent reminiscent of their coun-
terparts in the theory of monatomic gases, i.e., pV5/3= const and
TV2/3= const (ref. 17). Nevertheless, there is a fundamental dif-
ference between these two physical settings, in the sense that in
the former case there is a physical change in the lattice structure
(and hence in the width of the density of states) while in the latter
the gaseous substance stays the same.

Beam self-cleaning and cooling. The analytical formalism (Eqs.
(2–4)) developed here, can now be utilized to predict the response
of such nonlinear chain systems in settings of practical interest
like those allowing for beam self-cleaning35–38 and cooling. Fig-
ure 4a schematically shows such a nonlinear multicore optical
arrangement involving M= 30 sites. In this configuration, the
power ðP ¼ 2Þ is injected in the ŷ polarization and is uniformly
distributed (with random phases) between the supermodes hav-
ing eigenvalues εj in the range of −0.5κ ≤ εj ≤ 1.2κ, in which case
U=−0.77, as shown in Fig. 4b. For these initial conditions, Eqs.
(2–4) predict the following equilibrium parameters T= 0.33, μ=
−5.38. While at the input (z= 0) the intensity distribution dis-
plays considerable disorder (Fig. 4c), this speckle pattern dis-
appears (Fig. 4d) after the system attains thermal equilibrium at
the output (z= L). What facilitates this beam self-cleaning effect
has to do with the fact that during thermalization, the power is
reshuffled in such a way so as to favor the lower order modes (for
T > 0) in the Rayleigh–Jeans distribution (Fig. 4b)—a process that
removes the initial speckle in the beam. Yet, while the output
beam at (z= L) seems to improve in the near-field, its multimode
far-field is still highly divergent and thus is of poor quality as
shown in Fig. 4e. Interestingly, the thermodynamic formulation
developed here suggests that this situation can be greatly
improved if in this same array structure, a cooler beam is laun-
ched—having a perpendicular polarization x̂ (Fig. 4f). In this
latter arrangement, each waveguide site is assumed to be sub-
stantially birefringent, thus prohibiting any power exchange
between the two beams. Instead, the two wavefronts only interact
through cross-phase modulation24. In the example provided in
Fig. 4f, the internal energy and power corresponding to each
polarization is Ux ¼ �3:95;Px ¼ 2;Uy ¼ �0:77;Py ¼ 2. Based
on these initial conditions, Eq. (2) indicates that on its own, each
polarization would have settled to an equilibrium temperature of
Tx= 1.7 × 10−3, Ty= 0.33. On the other hand, once interacting
together in a canonical-like arrangement, the two beams reach the
same temperature T= 0.075 which can be exactly predicted fol-
lowing the procedure in Supplementary Note 5. In other words,
the ŷ polarized beam can be considerably cooled after exchanging
energy ΔU with its x̂ polarized counterpart. This in turn leads to a

T

T/4

P

Fig. 3 Joule expansion in a nonlinear photonic multimoded chain system.
Light conveying power P is allowed to suddenly expand in a larger chain
network having four times as many waveguide elements (M→4M). In this
case, if the temperature of the photon gas before this transition is T, after
this abrupt and thermodynamically irreversible expansion, the system
reaches equilibrium at T/4—a direct consequence of the way Joule
expansion manifests itself in these heavily multimoded nonlinear optical
environments.
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~3-fold improvement in the far-field of the original beam
(Fig. 4g).

Heat capacity and thermal conductivity of nonlinear chain
networks. The formalism developed here, allows one to define a
photo-capacity CM= ∂U/∂T associated with such nonlinear
multimode photonic systems—a property that is in every respect
analogous to that of the heat capacity pertaining to various phases
of matter. Like its counterpart (heat capacity), this quantity cri-
tically depends on the density of states and hence it is char-
acteristic of the multimode optical system itself. In this respect, it
is formally possible to assign a CM capacity to any possible many-
mode arrangement, irrespective of whether it is discrete or con-
tinuous. For the chain networks considered here, the photo-
capacity can be explicitly obtained from Eq. (2) and it is given by

CM ¼ M � Tj jM2 T2M2 þ 4κ2P2
� ��1=2

. Figure 5a shows the CM

function (blue curve) for such a chain configuration, involving M
= 200 sites while conveying a power of P ¼ 20. In this case, the
photo-capacity function is an even function of temperature—as
one should expect from the symmetry in the density of states. The
photo-capacity curves corresponding to two different types of
Lieb lattices are also displayed, as an example, in Fig. 5a for the
same parameters (M= 200, P ¼ 20). Note that the CM(T)
function for the Lieb-2 lattice with cross-couplings is in this case
highly asymmetric—a feature attributed to the band structure of
this specific system.

We next explore the possibility for energy ΔU transport
phenomena occurring when a hot and a cold optical nonlinear
multimode system are linked together under non-equilibrium
conditions. To some extent, these processes have much in
common with heat conduction problems in solids. Figure 5b
shows such an arrangement where a square multicore photonic

lattice L1 with M1= 900 sites is connected to a graphene-like
system L2 (M2= 896) via a chain bridge L3 involving M3= 140
evanescently coupled waveguides. The bridge L3 is appropriately
designed using birefringent elements so as to allow for energy
exchange ΔU between the two lattices L1 and L2 while prohibiting
any power transfer ΔP. System L1 together with the link array L3
are initially brought to thermal equilibrium where both share a
temperature of T1= 0.3 when conveying a total power of P1þ3 ¼
65 at a total internal energy U1+3=−60. Similarly, lattice L2
(before is connected to the bridge) is kept at T2= 0.1 when P2 ¼
40 and U2=−46. Once L2 is put in contact with the L3 bridge, a
non-equilibrium thermodynamical process ensues during which
the entropy of the combined system starts to increase as expected
from the second law of thermodynamics (Fig. 5c). During this
non-equilibrium stage, internal energy ΔU starts to flow through
the bridge from hot to cold (L1 → L2). In this case, the local
temperature along this bridge (obtained after projecting on the
local eigenfunctions) is found to linearly decrease from T1 to T2 in
full accord to Fick’s law of heat diffusion39, J=−k∇T.
This in turn allows one to express this energy transfer
through an effective photo-conduction coefficient K as ΔU/Δz
=−K(T1 − T2). From our simulations, we estimate that here the
photo-conduction coefficient of the L3 chain is K ≈ 3.2 × 10−5.

Conclusion. By harnessing concepts from statistical mechanics,
we have developed an optical thermodynamic theory that expli-
citly provides the Sackur–Tetrode entropy associated with large
nonlinear photonic chain networks. Based on these premises, the
temperature and chemical potential of such systems can be
obtained in closed form as a function of the initial excitation
conditions. The formalism developed here is general and can be
readily deployed to describe a number of thermodynamic
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Fig. 4 Thermodynamic beam cleaning and cooling. a Propagation of a ŷ polarized optical beam in a nonlinear chain of waveguides involving 30 elements.
The projected far-field after the beam exits the system at z= L is also shown. b Thermalization dynamics of the modal occupancies as a function of
distance when P ¼ 2 and the modes are uniformly excited in the range of −0.5κ≤ εj≤ 1.2κ. At the output, the system settles into a Rayleigh–Jeans
distribution with a temperature of T= 0.33. c The intensity distribution after ensemble average corresponding to the input used in (b) displays a strong
speckle. d The beam self-cleans after thermalization takes place. e Far-field pattern associated with the thermalized ŷ polarized output field for the same
conditions used in (b). f Cooling the ŷ polarized wavefront using cross-phase modulation with an x̂ polarized beam of equal power. g After cooling, the far-
field of the ŷ polarized wave experiences considerable improvement. This cooling interaction can be analytically predicted from Eqs. (2–4).
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processes, like isentropic expansion/compression, Joule expan-
sion, as well as aspects pertaining to beam self-cleaning and
cooling in such chain networks. Of interest would be to explore
similar possibilities in quasi-conversive systems under non-
equilibrium conditions. Our results not only provide a platform
to understand and predict in a systematic way the utterly complex
dynamics of heavily multimoded nonlinear optical systems that
are nowadays of importance in areas ranging from high-power
photonic settings to cold atom condensates and optomechanics.
In addition, they could be of practical importance in designing
high-brightness multimode optical sources.

Methods
Simulations. Throughout this study, simulations were conducted by numerically
solving the discrete nonlinear Schrödinger equations, using 4th order Runge–Kutta
methods. Ensemble averages were obtained by performing a number of simulations
with the same initial modal amplitudes but different random relative phases. The
modal occupancies |cj|2 obtained were then averaged over several ensembles. More
information concerning these results can be found in the Supplementary Methods.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code that support the findings of this study are available from the corresponding
author upon reasonable request.
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