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Abstract: In the past few years, concepts from non-
Hermitian (NH) physics, originally developed within the
context of quantum field theories, have been successfully
deployed over a wide range of physical settings where
wave dynamics are known to play a key role. In optics, a
special class of NH Hamiltonians — which respects parity-
time symmetry — has been intensely pursued along several
fronts. What makes this family of systems so intriguing is
the prospect of phase transitions and NH singularities that
can in turn lead to a plethora of counterintuitive phe-
nomena. Quite recently, these ideas have permeated
several other fields of science and technology in a quest to
achieve new behaviors and functionalities in nonconser-
vative environments that would have otherwise been
impossible in standard Hermitian arrangements. Here, we
provide an overview of recent advancements in these
emerging fields, with emphasis on photonic NH platforms,
exceptional point dynamics, and the very promising
interplay between non-Hermiticity and topological
physics.
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1 Introduction

Quantum mechanics dictates that every observable should
be described by means of a self-adjoint or Hermitian
operator. In this respect, the Hamiltonian of a system —
being no exception to this rule — must exhibit real eige-
nenergies and orthogonal eigenstates, attributes necessary
for unitary evolution and conservation of probability.
However, while this universal conservation principle does
apply for a closed system as a whole, there is nothing to
exclude the possibility of energy exchange among its
subsystems. When considered individually, each subsys-
tem can see an overall growth or decay in energy or prob-
ability norm - aspects that can phenomenologically be
accounted for through the adoption of complex energy
eigenvalues. Indeed, approaching quantum mechanical
phenomena from such a “nonconservative” standpoint can
be traced back to the early studies of Gamow [1] on particle
decay or other contributions on neutron scattering [2]. On
the other hand, in many classical settings like optics, non-
Hermiticity is not always welcome. In particular, energy/
power dissipation has been traditionally considered
something undesirable, an aspect to be mitigated at all
costs (typically through the use of amplification) in order to
maintain the performance metrics of a device or a system.
At this point, one may naturally ask as to whether loss is
always a problem. If not, is there a strategy to use it judi-
ciously in order to attain new degrees of freedom?

A radical change in the way we perceive many of the
aforementioned aspects occurred when Bender and
Boettcher [3] realized that a large class of non-Hermitian
(NH) Hamiltonians can exhibit entirely real spectra, pro-
vided that they commute with the parity-time (PT) oper-
ator. Here, the parity operator P represents a reflection in
the coordinate space with respect to the origin, while T
signifies the time-reversal operator. This rather counterin-
tuitive result suggests that a PT-symmetric Hamiltonian
can display altogether real eigenvalues whenever its
pertinent NH parameters lie in the PT symmetry unbroken
phase. On the other hand, once the non-Hermiticity
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parameter exceeds a certain critical threshold, the eigen-
states spontaneously break PT symmetry, thus entering
into a PT broken phase. This marks the onset of a phase
transition that entails NH degeneracies, better known as
exceptional points (EPs) [4]. In addition, the eigenfunc-
tions associated with these NH operators are no longer
orthogonal with each other; instead, they are now skewed.
Starting from these premises, one can then directly show
that a necessary (albeit not sufficient) condition for a NH
Hamiltonian to be PT symmetric is that its complex
potential should satisfy V (r) = V* (=7)[3]. From here, one
can conclude that the real part of the potential must be
symmetric with respect to the origin, while the imaginary
component must be antisymmetric.

While the physical ramifications of the aforemen-
tioned mathematical findings remained for several years a
matter of debate, a series of subsequent studies indicated
that optics could provide instead an ideal test bed to realize
and experimentally investigate the implications of PT
symmetry and NH physics in actual settings (see Figure 1A—
D) [5-10]. After all, in photonic arrangements, the refrac-
tive index profile plays the role of the potential in quantum
mechanics. Consequently, optical PT symmetry can be
readily established by judiciously distributing the gain and
loss in such a way that the refractive index profile is an
even function of position while the optical gain/loss
emerges as an odd function in the spatial coordinates.
These early studies incited a flurry of research activities in
many and diverse fields such as microwaves [11],
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Figure 1: PT symmetry in optics.
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electronics [12], mechanics [13], optomechanics [14, 15],
acoustics [16, 17], atomic lattices [18-20], etc., all aiming to
harness the very characteristics of PT symmetry and EPs.

A distinctive feature of optical arrangements is the
possibility of controlling both the real and imaginary parts
of the electromagnetic permittivity in an independent
manner, without being over-restricted by the Kramers—
Kronig relations. In this regard, photonic platforms can
host a multitude of fascinating wave phenomena that
solely arise owing to a synergy between PT symmetry and
EPs on the one hand and Hermitian symmetries on the
other hand. A profound example of such fruitful in-
teractions is the newly emerging field of NH topological
photonics. Topological notions originally arose within the
context of condensed matter physics after the discovery of
topological insulators (TIs), where electron conduction
was found to be prohibited in the bulk while it can take
place in the periphery of a material via topologically pro-
tected unidirectional edge states [21-23]. These de-
velopments in turn inspired further research endeavors in
employing topological notions in optical arrangements,
which led to the observation of unidirectional transport
and robust topological edge modes in coupled resonators
and waveguide lattices [24-26]. Unlike in early efforts
where the emphasis was on conservative optical systems,
quite recently, there has been an ever-growing interest in
expanding these concepts into NH photonic structures.

In this review article, we focus on novel phenomena
in photonics that are enabled by the synergies among
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(A) Different regimes associated with parity-time (PT)-symmetry breaking manifested in light propagation dynamics within a non-Hermitian
(NH) waveguide coupler [9]. (B) Enforcing single-mode lasing in a pair of PT-symmetric microring resonators, each supporting a multitude of
lasing states in isolation [55]. (C) A schematic representation of whispering-gallery-mode PT-symmetric microtoroid cavities [48]. (D) Coupled
quantum-cascade-laser (QCL) arrangement used to observe pump-induced suppression and revival of lasing [50].
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non-Hermiticity, topology, and various other types of
symmetries. In Section 2, we discuss PT symmetry and its
various realizations in nonconservative optical structures.
Section 3 focuses on the physics of EPs and the exotic ef-
fects displayed by photonic systems that happen to operate
in the vicinity of such NH degeneracies. Section 4 is
devoted to topological concepts and their manifestations in
connection with non-Hermiticity in the presence of certain
classes of symmetries. Finally, Section 5 provides a sum-
mary along with an outlook in this general area of research.

2 Non-Hermitian photonics and PT
symmetry

As mentioned earlier, an important class of NH Hamilto-
nians that are capable of exhibiting entirely real eigen-
values is that respecting PT symmetry. In optics, PT
symmetry can be established by judiciously distributing
gain and loss, processes that are readily accessible in a
wide variety of optical platforms ranging from bulk cavities
and optical fiber amplifiers to on-chip photonic circuits
(Figure 1A). In this regard, optics provides a fertile ground
for exploring NH phenomena and their ensuing effects
when considered in conjunction with other conservative
effects associated with light dynamics. This, in turn, has
led to a paradigm shift in molding the flow of light, which
was thus far traditionally limited to only shaping the
refractive index distribution, starting from the early
development of the first lenses and reaching the modern
era that witnessed the advent of more sophisticated optical
systems like photonic crystal fibers and metamaterials
[27-30]. In this section, we focus on some of the exotic
behaviors resulting from the introduction of non-
Hermiticity and PT symmetry in optical arrangements.

It should be noted that NH effects in photonic settings
are not limited to systems exhibiting optical absorption
and/or amplification [31-37]. Such phenomena can also
arise, for instance, owing to an energy exchange between
metastable guided states and leaky modes in optical fibers
or whenever a conservative subsystem is open [38—41].

2.1 Lasers and non-Hermitian symmetry
breaking

Lasers provide an ideal test bed for studying some of the
ramifications of non-Hermiticity. Both gain and loss are
indispensable components of any light system, especially
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when there is a need to overcome optical absorption
through the use of amplification. It therefore comes as no
surprise that signatures of non-Hermiticity had already
been considered in early efforts on lasers, manifested, for
example, in mode nonorthogonalities that are known to
lead to the Petermann K-factor enhancement [42-44] in the
fundamental Schawlow-Townes linewidth [45] of a laser
cavity. Nevertheless, until very recently, almost all efforts
in designing laser resonators were aimed at lowering the
dissipation, something that was traditionally deemed
detrimental to the performance of these devices.

The recent developments in NH optics and PT sym-
metry have provided a systematic framework to explore
exotic regimes of behavior in laser systems. Perhaps, the
most archetypical example is a pair of two coupled iden-
tical cavities, with one being subjected to gain while the
other being subjected to an equal amount of loss.
Following the previous discussion, this arrangement is PT
symmetric, given that the gain/loss distribution is anti-
symmetric while index-wise is even [46—48]. In the vicinity
of the PT phase transition, i.e., at the EP, this structure was
shown to exhibit a counterintuitive pump-induced sup-
pression and revival of lasing (Figure 1D) [49-52]. Varia-
tions of this behavior have also been demonstrated in a
phonon laser arrangement [14], where substantial line-
width enhancement at the EP was found to occur [53]. This
latter effect is a by-product of the collapsing supermodes at
the degeneracy point, an extreme case of the mode non-
orthogonality mentioned earlier.

On many occasions, a primary goal in laser design is to
enforce single-mode operation to achieve a coherent, high-
quality output. A general trend in fulfilling this require-
ment is to use miniature semiconductor lasers. However,
the inhomogeneously broadened gain bandwidth in such
semiconductor-based active materials can easily span a
wavelength range that is many times larger than the free
spectral range associated with a typical microring cavity,
hence eluding the aforementioned goal of exclusively
lasing in a single longitudinal mode. One way to mitigate
this issue is to use dispersive elements similar to those
used, for example, in distributed feedback lasers. An
alternative route to accomplish this goal is to exploit the PT
symmetry in the underlying cavity structure. In this sce-
nario, by adjusting the pump levels in the system, one can
ensure that PT symmetry is broken for only one longitu-
dinal mode, while the other supported states are kept
below the PT threshold and hence exhibit real eigenvalues
with no amplification. This in turn ensures single-mode
operation of the device while all the other principal attri-
butes of the laser cavity remain intact. This scheme has
been lately demonstrated in microring lasers (involving
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whispering gallery modes) without any compromise in
terms of slope efficiency or threshold pump intensities (see
Figure 1B, C) [54-57]. PT-symmetric lasers have also been
demonstrated in various other platforms such as electri-
cally pumped integrated arrangements [58, 59] and optical
fibers [60]. A similar approach can be applied to achieve
single-frequency lasing through the use of EPs, an aspect
demonstrated in dark-state lasers [61, 62].
Non-Hermiticity and loss management in active lat-
tices is shown to be an effective tool for implementing
various spin Hamiltonians in an optical platform [63-67].
In these schemes, the loss that vectorial electromagnetic
modes experience on the interface of metallic nanocavities
provides an effective way to establish the ferromagnetic
and antiferromagnetic type of exchanges. Based on such
arrangements, large arrays of nanolasers have been real-
ized, which emit in a single mode and with a desired to-
pological singularity [66, 67]. In laser arrays, the interplay
between supersymmetry (SUSY) and non-Hermiticity has
also been shown to result in single spatial mode operation.
In this regard, a waveguide array subject to gain is coupled
to a lossy superpartner. With the exception of the funda-
mental mode that has no counterpart in the partner array,
all other modes of the main array share the same eigen-
frequencies with those in the superpartner. By adjusting
the gain—loss contrast between the two arrays, one can
keep all the higher order modes of the array below the PT
symmetry breaking point, thus allowing the fundamental
mode to experience gain and subsequently lase [68, 69].

On-chip single-mode microlasers based on EPs have so
far found applications in generating states with pre-
specified orbital angular momentum (OAM) on a chip.
Typically, the counterpropagating modes within a
microring laser cavity form a degenerate pair which tend to
simultaneously lase together once the gain exceeds
threshold. This precludes a direct generation of a vortex
beam with nonzero topological charge since the two
opposite azimuthal mode numbers tend to cancel each
other. NH schemes based on EPs have recently provided an
elegant method to selectively extract only one chiral mode
in such lasers [52, 60-72]. This class of devices can emitin a
tunable OAM order while operating in a broadband
fashion. Another interesting effect that is closely tied to the
aforementioned NH aspects is the so-called coherent per-
fect absorption, where a coherent monochromatic light
input is entirely absorbed by a lossy medium [73, 74]. In
this respect, a coherent perfect absorber (CPA) acts as a
time-reversed version of a laser. Interestingly, it has been
shown that a PT-symmetric cavity can simultaneously
behave as a laser and a CPA at the same frequency [75, 76].
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2.2 PT-symmetric metamaterials and
non-Hermitian cloaking

The past two decades have witnessed considerable
research efforts that are geared to develop artificial mate-
rials, tailored to display properties that are not found in
nature. Yet, until recently, such electromagnetic meta-
materials have almost exclusively relied only on modifying
the real permittivities and permeabilities associated with
the material elements [30]. The recent developments in NH
photonics have opened up new avenues in exploring light—
matter interactions in the entire complex plane of the ma-
terial constitutive parameters.

In the linear Hermitian domain, a one-dimensional
(1D) grating exhibits transmission and reflection properties
that are typically independent from the direction the light
impinges upon the structure. On the other hand, this
feature can be violated in a NH grating. In particular, one
can establish gain and loss regions within the unit cell of a
grating in such a way that the reflection coefficients are
direction dependent (Figure 2A) [77]. This asymmetric wave
propagation becomes mostly pronounced at the EP, where
light can propagate completely without reflection from one
side while exhibiting strong reflection in the opposite di-
rection, a process leading to unidirectional invisibility.
Interestingly, because the system is not conservative in this
case, the reflection values can greatly exceed unity [77].
Unidirectional invisibility was recently observed in various
platforms including photonic mesh lattices (see Figure 2B)
[78, 79], passive silicon periodic nanowires [80], multilayer
Si/Si0, structures [81], organic films [82], and electro-
acoustic resonators [17].

The peculiar wave transport in NH systems is known to
result in other unconventional effects such as unidirec-
tional cloaking [83, 84]. This could be achieved via a
PT-symmetric surface that surrounds an object with an
arbitrary size. In such a scenario, a lossy part in the surface
is designed to entirely absorb the incoming wave while a
corresponding active segment can reemit the same amount
of power impinging on the object. The result is a broadband
cloaking device which benefits from relaxed design con-
straints owing to its active architecture. Another relevant
aspect to this discussion are the so-called “constant in-
tensity waves”. Typically, in a lossless medium, an elec-
tromagnetic wave (like a plane wave) can remain invariant
during propagation when the propagation space is homo-
geneous. Any inhomogeneity such as an obstacle would
inevitably cause reflections and scattering, which disturb
the original uniform wavefront. In sharp contrast to this
Hermitian picture, by introducing gain and loss in a
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general class of nonuniform potentials, one can construct
a constant-intensity wave solution, even systems with
random index distributions (Figure 2C) [85, 86].

Other types of PT-symmetric and complex lattices have
been studied and shown to behave quite differently from
their Hermitian counterparts. For instance, beam dynamics
in a PT-symmetric optical lattice can display band merging
effects in the associated complex band structure with EPs
emerging in the Bloch momentum space [6]. In addition,
even though the material parameters in such lattices are
isotropic, the light propagation through the array could
exhibit double refraction. This latter unusual behavior
stems from the skewedness in the associated Floquet-
Bloch modes of the structure. Nonreciprocal Bloch oscil-
lations is yet another peculiar phenomenon that can occur
in such complex crystals with no analog in Hermitian ar-
rays [87]. Other works have studied NH symmetry breaking
in graphene-like lattices [88], PT Talbot revivals [89], and
Anderson localization in disordered PT-symmetric ar-
rangements [90].

Extensions of these ideas have been lately pursued in
PT-symmetric metasurfaces. It has been shown that
negative refraction and planar focusing could be ach-
ieved in such NH sheets without engaging negative-
index metamaterials or phase-conjugating surfaces
[91-93]. Such structures could enable loss-free all-angle
negative refraction and planar lenses in free space.
PT-symmetric phase transitions have also been studied

Figure 2: Unidirectional invisibility and
parity-time (PT)-symmetry.

(A) A schematic of a PT-symmetric grating
that exhibits unidirectional invisibility [77].
(B) Photonic mesh lattices utilized to
observe exceptional points [78]. (C) Plane
wave propagation in a scattering medium
with appropriately patterned gain and loss
resulting in a constant intensity wave
profile throughout the entire structure [86].
(D) Experimental setup employed to
demonstrate efficient wireless power
transfer in a nonlinear PT-symmetric
arrangement [99].

in the polarization space of a complex metasurface, in
which the eigenstates eventually collapse on each other
on the Poincaré sphere when the system reaches an EP
[94]. Similar ideas have been exploited to diffract light
with asymmetric diffraction orders using a deformed
honeycomb metasurface with a diatomic Bravais-lattice
topology [95].

2.3 Nonlinear effects in non-Hermitian
systems

Nonlinear effects are an integral part of many optical
platforms used for implementing NH Hamiltonians. For
instance, gain saturation nonlinearities in active materials
are known to be responsible for stabilizing laser oscillators.
It is therefore natural to investigate the interplay between
nonlinearity and non-Hermiticity and the prospect for NH
phases such as PT symmetry under such conditions. In this
regard, it has been theoretically predicted that optical
Kerr nonlinearities can reverse PT-symmetric phases,
i.e., transforming a linear system in the PT-unbroken phase
to a nonlinear one with a broken symmetry and vice versa
[96]. Such nonlinearly induced phase transitions were later
shown to also hold in the case of gain saturation non-
linearities and were successfully observed in coupled
semiconductor microring lasers [97, 98]. Nevertheless,
even in the presence of these nonlinear processes, the
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eigenmodes of the system still retain their corresponding
forms in the linear regime [97]. Interestingly, nonlinear
processes can have practical implications in active envi-
ronments that go beyond lasers. For instance, it has been
shown that robust wireless power transfer could be
accomplished through the realization of a nonlinear
PT-symmetric circuit (Figure 2D) [99]. In this scenario, the
nonlinearity guarantees that the system remains in the
PT-unbroken phase for strong enough couplings, a feature
that allows for a wide range of accessible distances be-
tween the source and the receiver. This in turn eliminates
the need for constant tunings of the corresponding reso-
nators that is otherwise necessary to attain efficient power
transfer.

The impact of non-Hermiticity on nonlinear pro-
cesses such as that of three- and four-wave mixing has
also been investigated. In this vein, non-Hermiticity
could assist phase-matching in optical parametric am-
plifiers when a Hermitian system cannot satisfy these
conditions [100, 101]. Such techniques could facilitate
parametric amplification in long-wavelength regimes
using on-chip semiconductor arrangements with large
nonlinearities. In addition, the interplay between
nonlinearity and non-Hermiticity in a PT-symmetric
optical coupler can lead to interesting functionalities
such as optical switching [102] and selective parametric
amplification in the spectral domain [103]. Similar
concepts have also been considered in optomechanical
settings, where the nonlinearity is induced by me-
chanical vibrations [15]. Along different lines, it has
been shown that PT symmetry can be established solely
by optical nonlinear processes, without requiring active
elements [104]. Such nonlinearity-induced PT effects
are instead enabled by parametric gain in a three-wave
mixing scenario.

Another interesting function emerging from the com-
bined effects of optical gain and loss is providing addi-
tional tools to control light transport in active nonlinear
environments [7, 105]. An important class of such NH sys-
tems satisfies PT-symmetric conditions with balanced
amplification and decay [106-108]. In this vein,
PT-symmetry plays a crucial role in determining the sta-
bility regimes of nonlinear excitations such as optical sol-
itons in such settings. For instance, it has been predicted
and experimentally observed that contrary to other NH
nonlinear systems wherein self-trapped states emerge as
fixed points in the parameter space, discrete PT solitons
can form a continuous family of solutions [79, 108].
Moreover, the synergy between non-Hermiticity and
nonlinearity has been deployed to demonstrate unidirec-
tional light transport [109, 110]. Such structures could lead
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to new approaches in developing all-dielectric on-chip
optical components such as circulators.

3 Exceptional points in optics

An EP is a special type of degeneracy in the complex
parameter space of a non-Hermitian Hamiltonian. The
most profound characteristic of an EP that distinguishes it
from a regular Hermitian degeneracy is the fact that not
only the eigenvalues degenerately coalesce at this point
but also their corresponding eigenvectors simultaneously
collapse on each other-leading to an abrupt reduction in
dimensionality. In general, an EP is said to be of the order
N, if at the same time, N eigenvalues and their respective
eigenvectors fuse with each other at this NH degeneracy
[111, 112]. This exotic property in turn leads into an array of
fascinating effects that are unique to NH systems operating
at or close to such singularities (see Figure 3A-D). In this
section, we discuss some of these unconventional aspects.

3.1 Enhancement effects around EPs

Over the years, optics has provided some of the most ac-
curate metrology tools for a variety of sensing applications.
These devices range from optical gyroscopes and ta-
chometers to chemical and biomedical sensors, to name a
few. In this regard, optical resonators have been widely
utilized for such purposes mainly due to their ability to
provide a strong interaction between the light field and the
sensing target. In recent years, the development of
ultralow-loss microtoroids [113] and low loss silicon
microresonators [114] has sparked a great deal of interest in
implementing photonic sensors on a chip.

In spite of their remarkable performance, standard
microcavity resonators (characterized by a set of orthog-
onal modes) are still limited within the bounds imposed by
their Hermitian nature. This aspect can be better under-
stood from the perspective of standard perturbation theory.
As is well known, if a Hermitian system is perturbed to
order ¢, then its eigenvalues A can be obtained from the
familiar power series A = Ag + A; € + A, £%++++, from where one
can quickly conclude that the response of any Hermitian
arrangement is at best linear with respect to the
disturbance €. In contrast, if a NH system is biased at an EP
of order N, once perturbed to order &, its associated
eigenvalues instead follow a Newton-Puiseux series
A=A + 4™+ e+ In other words, when an
NH configuration is placed at an EP of order N, its first order
response is now expected to vary according to €N, Given
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Figure 3: Enhanced sensitivity using exceptional points (EPs).
(A) Coupled microring lasers equipped with microheaters used to realize a third-order EP [118]. (B) A coupled microtoroid phonon laser

operating at an exceptional point [53]. (C, D) Enhanced Sagnac effectin EP-based gyroscopes implemented in aring laser gyroscope [121] and a
Brillouin laser cavity [122], respectively.

that for small €, €N > ¢, then it is straightforward to

deduce that an NH arrangement (at an EP) can react
considerably more drastically than its Hermitian counter-
part. Intuitively, this distinctive behavior stems from the
abrupt phase transition associated with the reduction in
the dimensionality of the corresponding eigenspace. As a
result, when dealing with small input signals, the response
of EP-based structures can be boosted by orders of
magnitude.

Lately, this magnified response provided by EPs has
been employed to realize optical sensors with enhanced
performance. This can be achieved for example by incor-
porating two or more scatterers around a passive micro-
cavity which establishes an EP involving the two
counterpropagating whispering-gallery modes within the
structure [115, 116]. Theoretical results suggest that such an
arrangement could enhance single-particle detection
sensitivity by a factor of seven as compared to an isolated
microcavity [117]. This concept was later demonstrated
experimentally both in active and passive photonic plat-
forms. In an active scenario, coupled microring lasers in
binary and ternary PT symmetric photonic molecule ar-
rangements have been used to demonstrate second- and
third-order EPs, respectively (Figure 3A) [118]. In this case,
more than an order of magnitude sensitivity enhancement
has been reported which can be boosted even further by the
amplitude of the gain present in the system. An alternative
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realization involves a passive single whispering-gallery
optical microresonator which is brought to a second-order
EP by using two lossy Rayleigh scatterers [119]. A third
scatterer is then used as the target object to be detected
which causes a frequency splitting in the complex plane.

From a practical perspective, the augmented response
enabled via NH degeneracies has found direct applications
in Sagnac-based gyroscopes [120], which can be realized by
retrofitting a helium-neon ring laser gyroscope (He-Ne
RLG) with a Faraday rotator and a half-wave plate (see
Figure 3C) [121]. Combined with Brewster windows sur-
rounding the gain tube, these components can then intro-
duce a differential gain/loss contrast in the system,
necessary for establishing an EP. Experimental measure-
ments on such devices indicate a square-root dependence
of the frequency response on the gyration speed, in contrast
to the linear behavior in a standard arrangement, leading to
a twenty-fold enhancement in sensitivity. A different
implementation of an EP-enhanced Sagnac effect has been
experimentally demonstrated using a microring Brillouin
laser (Figure 3D) [122]. By incorporating a fiber taper in the
vicinity of the microring, a dissipative coupling takes place
between the two counterpropagating modes involved. This
in turn induces a second-order EP at a critical pump-
detuning frequency, resulting in a four-fold increase in the
Sagnac scale factor while allowing for measuring rotations
of approximately one revolution per hour.
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Interestingly, enhancement effects in systems
involving EPs are not limited to sensing [123, 124]. In fact, it
has been suggested that these NH degeneracies can
considerably modify light-matter interactions within an
active structure, leading into substantially higher sponta-
neous emission rates (Figure 3B) [125]. As opposed to
traditional spontaneous emission theories that lead to
“infinite” values at an EP, an analysis that consistently
takes into account the local density of states predicts a
bounded response. Specifically, in passive structures
involving second-order EP2 degeneracies, this bound is
found to be a four-fold enhancement in the associated
spontaneous emission. Another consequence emerging
from the presence of an EP in such settings is the emission
lineshape itself which can deviate from the Lorentzian
profile, thus resulting in a nonlinear scaling of the spon-
taneous emission with the associated resonance quality
factors. Similar studies have also been conducted within
the context of NH photonic crystals hosting third-order EP3
degeneracies where an eight-fold enhancement is expected
[126]. These results can also be generalized to EPs of higher-

order N inducing larger emissions by a factor of VN3 [126].

The fact that EPs are highly sensitive to changes in
their environment is not always desirable. For instance, an
EP sensor can also be excessively vulnerable to fabrication
errors and imperfections that are inevitable in experiments.
In this respect, exceptional surfaces have been suggested
as a possible avenue to combine the robustness required
for practical applications with the characteristic sensitivity
offered by EPs [127]. One way to achieve this is to introduce
a unidirectional coupling between the counterpropagating
modes of a microring cavity. The resulting NH Hamiltonian
describing the system features an exceptional surface in
the parameter space. In this case, undesired perturbations
such as random variations in the coupling coefficients or
the resonant frequency of the cavity cause the system to
move across this exceptional surface, thus maintaining the
useful properties of an EP. On the other hand, when
external scatterers start to perturb the cavity, the structure
is promptly pushed out of the exceptional surface as a
result of the bidirectional coupling that is now induced
between the counterpropagating modes. In this latter case,
an amplified response could be measured in the spectral
splitting of the device. The exceptional surfaces mentioned
here are also known to arise in other photonic arrange-
ments such as three-dimensional (3D) PT-symmetric pho-
tonic crystals [71, 128].

The prospect of using EPs for optical sensing has
recently prompted an investigation of practical aspects
associated with these applications such as noise figures. In
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particular, because boosting the input signal is typically
accompanied by an unwanted enhancement of various
noise sources, it is not immediately clear if EP-based sen-
sors could offer a superior signal-to-noise ratio (SNR) [129,
130]. To this end, the role of classical noise in the form of
mesoscopic fluctuations on the spectral and temporal
behavior of resonator-based arrangements operating near
an EP has recently been studied [131]. In these configura-
tions, the presence of noise results in frequency detuning
among the constituent resonant entities, which in turn
modifies the conditions for reaching an EP. Moreover,
statistical averaging of the aforementioned fluctuations
could smear the spectral features, hence downgrading the
effective sensitivity of EP-based sensors to noise-limited
values. Along different lines, the performance of EP
sensing can be analyzed from the point of view of quantum
noise theory [132]. In this vein, it has been shown that by
using the quantum Fisher information one could obtain a
lower bound for the SNR associated with an EP sensor.
These theoretical results predict that by implementing an
EP amplifier near the lasing threshold in conjunction with a
heterodyne detection scheme, an improved SNR perfor-
mance as compared with Hermitian sensors can be
achieved.

3.2 Encircling EPs and mode conversion

A remarkable behavior of NH degeneracies is related to
the dynamical behavior of their associated Hamiltonian.
In Hermitian settings, a cyclic evolution that occurs in an
adiabatic manner tends to preserve an eigenstate of the
system, apart from a geometric phase factor [133]. This
picture could completely break down in the case of NH
structures involving an EP. A possible scenario in this
regard is when the system undergoes a cyclic evolution in
a quasi-static fashion. In this case, the instantaneous
eigenstates will swap with each other at the end of a single
cycle, apart from acquiring a geometric phase [134, 135].
This peculiar behavior can be attributed to the geometry
of the intersecting complex Riemann sheets unique to
nonconservative systems and has been experimentally
observed in microwave [136] and optical cavities [137] as
well as exciton—polaritonic arrangements [138]. Alterna-
tively, the NH Hamiltonian may change in such a way that
the EP encirclement can no longer be considered adia-
batic [139]. Such dynamical evolutions are known to give
rise to chiral mode conversions, where the final state of
the system is determined by the direction of EP encircle-
ment [140]. This exotic behavior has been experimentally
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demonstrated in a coupled optical waveguide arrange-
ment [141]. By properly designing the boundaries and
losses of each waveguide, a dynamical EP encirclement
could be effectively realized in the parameter domain.
Owing to the chiral behavior, the output of the system
toggles between the even and odd supermodes depending
on the direction of propagation of light, regardless of the
input beams. A parallel experiment on this chiral mode
conversion was carried out in an optomechanical system,
where a nonreciprocal transfer was observed between two
vibrational modes of a silicon membrane embedded in a
high-finesse optical cavity [142]. Similar effects have also
been observed in silicon-based photonic architectures
[143]. More recently, an analytical explanation of this
chiral and robust state conversion mechanism was pro-
vided through the asymptotics of exact solutions, along
with the fact that this effect can persist even in the pres-
ence of nonlinearities [144, 145]. In addition, the possi-
bility of a single-channel optical omni-polarizer was
proposed that benefits from this chiral response [144].
Finally, some of the peculiar features arising from the
process of winding around multiple NH singularities or
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Figure 4: Exceptional rings and higher-order effects.
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EPs have also been explored by invoking the topological
notion of homotopy (Figure 4A) [146].

3.3 Symmetries and topology meet EPs

The recent advances in the field of NH physics has incited a
flurry of research activities aimed at understanding the
interplay between symmetries and topology on the one
hand and EPs on the other hand. Such studies can provide
a guideline to achieving new symmetry-protected NH
phases that have no counterpart whatsoever in the Her-
mitian domain. For instance, it has been shown that a Dirac
point with a nontrivial Berry phase can split into isolated
pairs of EPs in the presence of non-Hermiticity [147]. The
ensuing double Riemann sheet associated with these EP
pairs in turn leads to a bulk Fermi arc which bridges the two
EPs in the complex band structure (Figure 4B). This latter
effect is a direct by-product of non-Hermiticity and is
different from surface Fermi arcs that arise from Weyl
points in 3D Hermitian systems. In addition, the EPs ob-
tained in this fashion exhibit half-integer topological

Bulk Fermi arc

— Analytics © Numerics
ll : ) A=790.10 nm

A=790.26 nm

Re(5w)

(A) Exceptional point (EP) encirclement in the parameter space of a system supporting two EPs. In this case, nonhomotopic loops encircling EP1
indicated in the diagram result in different dynamic and stroboscopic evolution behaviors [146]. (B) A bulk Fermi arc that connects a pair of EPs
arising from a single Dirac point in the presence of radiation losses in a rhombic lattice having elliptical air holes embedded in a dielectric
substrate [147]. (C) Real and imaginary parts of the complex band structure associated with a non-Hermitian square lattice photonic crystal
exhibiting a ring of EPs [150]. (D) Helical waveguide lattices with controllable losses utilized to observe a Weyl exceptional ring in their

corresponding band structure [156].
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invariants, which could manifest themselves in the far-
field polarization of the light scattered by the implemented
photonic crystal [147]. Along similar lines, there have been
proposals to observe bulk Fermi arcs in solid state, where
the required non-Hermiticity could be induced via ferro-
magnetic leads attached to a TI [148].

A Dirac Hamiltonian that deviates from the Hermitian
regime is also known to exhibit other interesting effects. To
this end, a circuit realization of NH Dirac and Weyl Ham-
iltonians under the influence of a pseudomagnetic field
which is artificially induced by a judicious spatial variation
of the circuit elements has been proposed [149]. In this
scenario, the combined effect of non-Hermiticity along
with the pseudomagnetic field lifts the degeneracy and
leads to the emergence of Landau-level-like flat bands in
the band structure of the system. Another example involves
an accidental degeneracy in the form of a Dirac cone in the
Hermitian band structure of a square-lattice photonic
crystal [150]. Once non-Hermiticity is at play in the form of
radiation losses, this Dirac point transforms into a ring of
EPs (Figure 4C) which manifest themselves in the angle-
resolved reflection measurements.

Another topic of interest is the synergy between sym-
metry and EPs. In this vein, symmetry-protected excep-
tional surfaces are known to generically arise in NH band
structures with an increased dimensionality as compared
with the case with no symmetries [151]. In this context, NH
symmetries can transport nodal NH semimetals into
symmetry-protected NH metals. Other works have also
investigated these concepts in nonconservative systems,
where exceptional surfaces are protected by various con-
straints such as PT and parity-particle-hole (CP) symme-
tries [128, 152]. Similar studies have predicted symmetry-
protected exceptional rings which are characterized by
nonzero topological invariants [153].

In Hermitian topological physics, an important family
of degeneracies are the celebrated Weyl points. Such de-
generacy points can be interpreted as magnetic monopoles
in reciprocal space which are characterized by a quantized
Chern number [154]. A closely related concept is a Weyl
nodal ring, which is essentially a 3D generalization of Dirac
nodes. These latter rings happen to have trivial Chern in-
variants while acquiring a nonzero Berry phase over a
closed path that encircles the entire ring in the momentum
space. Quite recently, a set of NH degeneracies termed
Weyl exceptional rings have been theoretically predicted
which feature both a nontrivial Chern number and a
quantized nonzero Berry phase [155]. This intriguing
behavior stems from the topology of the Riemann surface
which is unique to NH arrangements. Weyl exceptional
rings were later experimentally demonstrated in a Floquet
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system realized in a 3D photonic bipartite lattice
comprising evanescently coupled helical waveguides
written in silica (Figure 4D) [156]. The required non-
Hermiticity in this platform is obtained by incorporating
equidistant breaks within the waveguides in one of the
sublattices to impose a controlled amount of loss. Experi-
mental measurements confirm a topological transition
where Fermi arc surface states emerge in the system after
increasing the dissipation levels.

4 Non-Hermitian topological
physics

Topological physics is an emerging field that aims to un-
derstand and harness a set of new properties arising in a
recently discovered phase of matter — properties that tend
to remain invariant during a continuous deformation of the
system [21-23]. A prime example of such material systems
is that of TIs, where electron conduction occurs along the
edges while it is prohibited in the bulk [157-160]. In recent
years, the prospect of using topological notions in optics to
utilize the unique attributes offered by topologically
nontrivial structures has been the subject of intense
research efforts [25, 26, 161-164]. In this regard, unidirec-
tional transport and robust topological edge modes have
been demonstrated in coupled resonators and waveguide
lattices [24—26]. The field of topological photonics took a
drastic turn after the pioneering experiment of Ref. [25] that
demonstrated topologically protected light transport in a
magnet-free photonic structure. Quite recently, the field
also made a substantial leap forward after optical ampli-
fication/attenuation was introduced in conjunction with
topology. In this regard, it has been shown that the synergy
between non-Hermiticity and topology can lead to more
efficient coherent light sources with superior performance
in terms of robustness and emission characteristics. In
addition, the very possibility of realizing NH topological
systems in photonic platforms has led to a new field of
research, namely NH topological physics, which makes an
effort to understand and predict the response of topologi-
cal phases in the presence of non-Hermiticity [165, 166]. In
this section, we summarize some of the advances in this
exciting field.

4.1 Topological lasers

The fact that lasers are susceptible to defects and disorder
has always posed a significant challenge in the
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performance of these devices. Such imperfections are in
general inevitable during the fabrication process or may
develop in time due to operational degradation and mal-
function. These in turn could lead to spatial localization of
light within the cavity, eventually leading to lower output
powers or even a sudden shutdown of the laser itself. In
addition, on many occasions, an array of coupled lasers is
used to boost the total emitted power via coherent
constructive interference among individual elements. In
such scenarios, the system would be even more prone to
random deficiencies and failure. It is in this vein that to-
pological features have been sought as a means to develop
laser systems that could be immune to perturbations.

In one dimension, an archetypical topological struc-
ture is that offered by the Su-Schrieffer—Heeger (SSH)
model [167]. When terminated properly, such an array
hosts topologically protected defect states with

Figure 5: Topological lasers.
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eigenvalues that reside in the middle of the bandgap and
are robust against structural disorders. Lasing in this defect
state has been demonstrated in systems involving polar-
itons (Figure 5A) [168], microring cavities (Figure 5B, C)
[169, 170], and photonic crystals [171]. Depending on the
pumping pattern used, this NH lattice exhibits different
regimes of behavior, as dictated by its associated symme-
tries [169, 172]. In this regard, by appropriately distributing
optical gain and loss among the constituent elements, the
defect state can be induced to lase in a single-mode fashion
while maintaining its topological features in the NH
domain. In particular, the lasing edge mode in the SSH
array was found to be resilient to both on-site and
tunneling disorders [168, 170]. Moreover, unlike the bulk
modes, this edge state lases at a wavelength that tends to
remain unperturbed even at high pump power levels where
non-Hermiticity plays an important role [169].

— 200-nm

Pump region

Domain wall

(A) Lasing in the topological defect state of a one-dimensional Su-Schrieffer—-Heeger (SSH) array of polaritonic micropillar cavities [168]. (B, C)
Similar SSH structures implemented based on microring resonators [169, 170]. (D) All-dielectric two-dimensional (2D) topological laser array
using microrings coupled via intermediary links to induce an artificial gauge field [174]. (E) Topological lasing in a photonic crystal fabricated
on an yttrium iron garnet (YIG) substrate [175]. (F) Electrically pumped topological laser demonstrated in a valley photonic crystal based on

quantum cascade lasers (QCLs) [178].
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The concept of topological edge transport in a two-
dimensional (2D) laser array is yet another avenue that has
been pursued in a number of platforms. In this respect,
various methods have been used to induce a topologically
nontrivial response in these active settings. The prospect of
realizing 2D topological lasers has also been pursued in all-
dielectric photonic platforms. To achieve this, arrays of
coupled microcavities with asymmetric intermediary rings
have been used to emulate the presence of an artificial
magnetic field (see Figure 5D) [173, 174]. By pumping the
boundaries of such a lattice, topological transport in the
lasing edge mode has been reported. As compared with a
similar but trivial array, higher slope efficiencies and
robust single-mode operation is observed even for pump
intensities high above threshold. Along different lines, a
topologically nontrivial square lattice has been imple-
mented by depositing magneto-optic materials in the
substrate of a photonic crystal, where time-reversal sym-
metry (TRS) can be broken when applying a magnetic field
(Figure 5E) [175]. The resulting topological structure is then
optically pumped, thus promoting unidirectional lasing
along the interface of this square lattice with its sur-
rounding topologically trivial triangular crystal. Similar
schemes have been utilized in exciton—polaritonic systems
[176]. Alternatively, topological features can be induced in
a crystal via the valley degree of freedom [177]. Using this
technique, electrically pumped topological lasers have
been experimentally realized in the THz regime in a valley
photonic crystal inscribed in a QCL wafer (Figure 5F) [178,
179]. The lasing edge mode in such a device can be immune
to backscattering due to defects that do not cause inter-
valley scattering. Interestingly, the role of topology in la-
sers is not limited to the edge states confined at the
boundaries of a photonic system. Rather, it has been sug-
gested that by judiciously interfacing topological and
trivial crystals, one can form a highly confined 2D cavity
enabled by band inversion reflections [180]. This reflection
mechanism can then lead to single-mode lasing with high
vertical directionality.

4.2 Non-Hermitian symmetries and
topology

In the Hermitian domain, it is well known that symmetries
play a pivotal role in topological arrangements. In 2D
systems, for example, a Chern insulator could be obtained
when the TRS is broken [181]. In fact, the concept of topo-
logical protection is often closely intertwined with certain
types of symmetries associated with the system [22, 158].
When generalizing topological notions to NH systems, it is
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therefore natural to ask as to how NH symmetries would
interact with topology. Do topologically nontrivial phases
exist in certain open systems in various dimensions that
satisfy a specific type of symmetry? Can NH symmetries
protect a topological edge state?

Answering some of the aforementioned questions has
been the subject of numerous recent studies. The existence
of topologically protected defect states in PT-symmetric 1D
SSH lattices has been predicted and observed in passive
coupled waveguides inscribed in silica (Figure 6A) [182,
183]. Various regimes of PT-broken and unbroken were
examined as a function of the dimerization in this same
structure, and the onset of topological phase transition was
shown to be linked to the mean displacement of the light
traveling in this discrete lattice. The role of NH symmetries
in protecting the defect state of an SSH topological array
that respects PT symmetry has also been studied [184]. In
such cases, unlike the trivial eigenstates, the topological
defect modes preserve their associated eigenvalues even in
the presence of perturbations that respect PT symmetry.
Remarkably, in some cases, NH symmetries like for
example that of NH charge-conjugation or PT symmetry
can be the origin of topological edge states, even when a
similar Hermitian system is topologically trivial [172, 185,
186]. Therefore, the corresponding defect state resides at
the boundary of two regions that are characterized by
different NH parameters, and is known to emerge from a
continuum in the band structure. Similar effects have been
studied in a PT-symmetric Aubry—André-Harper (AAH)
model [187].

As mentioned earlier, breaking TRS is yet another way
to endow a physical system with nontrivial topological
properties. In static optical systems, however, such TRS
breaking can typically emerge from gyromagnetic effects
[24, 161, 162]. In this regard, alternative methodologies
geared at breaking TRS in the NH domain have been pur-
sued, like for example, Floquet systems in 1D quantum
walks [188] and 2D lattices for implementing Chern in-
sulators [189, 190]. Alternative techniques for realizing
Chern insulators in active platforms have also been sug-
gested that rely on the interplay between nonlinearity and
non-Hermiticity [191]. On a different front, endowing to-
pological systems with NH symmetries has been used to
develop optical devices with new functionalities. These
include PT-symmetric resonator arrays in microwave sys-
tems (see Figure 6B) [192], optical isolators in waveguide
arrays [193], optical limiters [194], and microring laser ar-
rays capable of light steering [195].

There are currently ongoing efforts aiming to find a
unified classification of topological NH systems with
different types of symmetries [196, 197]. In this respect,
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even though similar studies in Hermitian TIs [198, 199] can
provide a baseline, studies suggest stark distinctions be-
tween such arrangements and their NH analogs. For
instance, it has been found that the NH counterparts of
some of the fundamental symmetries, which are distinct in
the Hermitian regime, are in fact equivalent to each other
and can be unified [200]. This could lead to nonequilibrium
states that are unique to NH topological settings, and im-
plies that in general, the topological classifications of NH
symmetries are expected to be quite different from the ones
known in the Hermitian domain.

4.3 Non-Hermitian bulk-edge
correspondence and non-Hermitian
skin effects

The hallmark of topological phases is the presence of edge
states that emerge at the boundaries between structures with
different topological invariants. In the Hermitian regime, this
exotic behavior is a by-product of the bulk-boundary corre-
spondence which relates the topological properties of bulk
media to their boundary states [22]. Nevertheless, despite a
growing interest in NH topological systems and their appli-
cations [46], it is not immediately clear how this correspon-
dence could be translated to such settings [201-204].
Perhaps, a prominent example of how conventional bulk-
boundary correspondence could no longer hold in the NH
regime is the so-called “non-Hermitian skin effect” [202, 205—
208]. In accordance with this, an NH structure with extended

9y
0-0-0-0
SIS
-0-0-0-0

-0-0=0-0

O Loss cavity <= Coupling cavity

M. Parto et al.: Non-Hermitian and topological photonics =—— 415

Figure 6: Symmetries and higher-order ef-
fects in non-Hermitian (NH) topological
systems.

= ] (A) Parity-time (PT)-symmetric Su—
Schrieffer—Heeger (SSH) Hamiltonian
realized in a waveguide array inscribed in
fused silica [182]. (B) Selective
enhancement of a topological defect state
in a one-dimensional (1D) array of dielectric
microwave resonators by utilizing
PT-symmetry [192]. (C) Topological
funneling of light via the NH skin effectin a
1D chain with anisotropic couplings (top).
The input beam is always funneled through
the topological interface localized in the
middle of the structure, irrespective of its
initial launching position (bottom) [209].
(D) Atwo-dimensional (2D) NH model which
supports second-order topological corner
states (left). Such a system could be
physically realized using microring
resonators with intermediary links (right)
[219].

Microwave antenna

bulk states under periodic boundary conditions could
behave in a completely different way when terminated with
open boundaries. In particular, for certain regions of the NH
parameter space, such bulk modes all collapse into localized
edge modes — a clear violation of the standard bulk-
boundary correspondence. This interesting NH phenome-
non has recently been observed in photonic mesh lattices
(Figure 6C) [209] and is currently the subject of further
studies that aim to shed light on how different NH symme-
tries could modify the skin effect [196, 207].

Attempts to explain the NH skin effect have been at the
core of developing an appropriately modified formalism
that could successfully describe the bulk-boundary corre-
spondence in the NH domain. In this regard, two main
methods have been implemented so far, each focusing on
either the complex spectra of the corresponding NH
Hamiltonian and its associated point/line degeneracies
[196, 207, 210], or the non-Bloch nature of the eigenstates in
an open boundary geometry [205, 206, 211]. In the first
approach, topological invariants are interpreted in terms of
dynamical phases which depend not only on the eigen-
states of the Hamiltonian, but also the associated complex
eigenspectrum. In this context, similar to the concept of a
topological bandgap in the Hermitian domain, an NH
system can be considered as topologically nontrivial if its
complex energy spectrum encircles a prespecified base
point in the complex plane [210]. Using this, a new kind of
bulk-boundary correspondence is then established,
wherein a winding number is defined as the degeneracy at
the chosen base point. This latter topological invariant
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represents the number of independent edge states in a
semi-infinite arrangement. In this formalism, one finds that
unlike Hermitian topological lattices which require at least
two bands in their band structure, an NH system could
exhibit topological behavior in the absence of any sym-
metry constraints even within a single band. Other results
also related to the role of NH degeneracies in this matter
have been reported [212].

Alternatively, the breakdown of the conventional bulk-
boundary correspondence in NH arrangements can be
attributed to the non-Bloch nature of the eigenstates in
such systems. To address this issue, a non-Bloch Chern
number could be defined in a 2D lattice which successfully
takes into account the aforementioned NH skin effect [206].
Considering a modified NH version of the Haldane model, it
has been shown that while the Hermitian Chern number
fails to capture topological phase transitions, the new NH
Chern number successfully predicts such topological
phases and is a faithful indicator of the number of chiral
edge modes in this scenario. In contrast to the first
approach mentioned previously, this formalism explicitly
relies on the non-Bloch eigenstates to redefine the bulk-
edge correspondence. Similar findings have been also
presented in 1D NH settings [205, 211].

We would like to mention that there are several mod-
ifications of the non-Bloch formalism that intend to intro-
duce a self-consistent framework for NH topological
systems. One such result exploits the biorthogonal basis for
NH Hamiltonians to redefine the bulk as well as edge states
in terms of the left and right eigenstates [213]. Based on
these, a biorthogonal polarization parameter is then
introduced that is shown to be quantized and capable of
describing the topological properties of the corresponding
NH structure. In addition, it has been suggested that by
defining a modified version of the periodic boundary con-
ditions, one could restore the Hermitian bulk-boundary
correspondence even in the presence of non-Hermiticity
[214]. This could be achieved by introducing a new
parameter in this type of boundary conditions. The
resulting generalized parameter space can then be used to
bridge the open boundary skin effects with the bulk
Hamiltonian in a periodic geometry.

4.4 Higher-order non-Hermitian topological
effects

In a conventional N-dimensional TI, a nontrivial topolog-
ical invariant guarantees the existence of N-1-dimen-
sional gapless edge states. Examples include topological
transport of surface states and edge modes in 3D and 2D
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systems, respectively. This paradigm was extended
recently [215] by introducing higher-order topological in-
sulators (HOTI), wherein generalized multipole moments
are posed as quantized electromagnetic observables [215—
217]. By using Wilson loop operators, these quantized
multipole moments are proved to act as topological in-
variants that can lead to topologically protected boundary
states. Examples of such HOTIs include second-order 2D
and 3D TIs with topologically protected corner and hinge
states, respectively [217].

In the context of NH systems, higher-order topological
effects could lead to interesting effects that are absent in the
Hermitian domain [218]. For instance, HOTIs could arise as a
result of non-Hermiticity [219]. This can happen for example
in a 2D array of coupled microring cavities with on-site gain
and loss arranged in a staggered manner (Figure 6D). In this
scenario, although the structure is topologically trivial in the
Hermitian limit, by increasing the gain/loss levels above a
certain threshold value, a higher-order topological phase
transition occurs. The resulting second-order TI is a host to
four degenerate corner states in the boundaries of the
structure. This behavior can be justified by using a bio-
rthogonal form of nested Wilson loops to establish a higher-
order bulk-boundary correspondence [219]. Along different
lines, higher-order corner modes within the skin states of NH
2D and 3D lattices have been studied [220] both in reciprocal
and nonreciprocal regimes. These NH behaviors have been
shown to be governed by a biorthogonal bulk-boundary
correspondence [213].

As mentioned before, the usual bulk-boundary corre-
spondence defined for Hermitian TIs can break down in the
presence of non-Hermiticity. Interestingly, the higher-
order bulk-boundary correspondence could also be modi-
fied when translated to the NH domain [221]. In this
context, symmetry protected second-order TIs with corner
states localized asymmetrically in one boundary have been
predicted in 2D NH lattices [221, 222]. In 3D, the breakdown
of Hermitian bulk-boundary correspondence can lead to
the emergence of anomalous second-order corner modes
instead of hinge states. This discrepancy can be rectified
via proper use of a non-Bloch eigenstate formalism [221].

5 Summary

In this article, we provided an overview of the recent ad-
vances in the field of NH optics. We discussed how various
optical platforms exhibiting gain and loss can be utilized to
investigate different aspects associated with PT symmetry
and NH phenomena. In addition to enabling new func-
tionalities within the discipline of photonics that have no
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counterparts in the Hermitian domain, such optical re-
alizations have also played a key role in the emerging field
of NH topological physics that aims to understand and
utilize the synergy between topological notions and non-
Hermiticity. More importantly, although PT symmetry,
EPs, and the interplay of topology and non-Hermiticity
have been extensively explored in the classical and semi-
classical regimes, still little is known about the ramifica-
tion of these developments in a fully quantum domain. In
addition, despite intensive recent efforts, a universal the-
ory of NH bulk-boundary correspondence that self-
consistently describes topologically nontrivial behavior
in all dimensionalities is still elusive. Given that many of
these aspects remain unexplored, we believe that further
activities in this field will not only yield results that are
fundamental in nature, but they could also introduce new
tools in photonics and other fields for a new generation of
devices and systems.
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