

1 Larval zebrafish use olfactory detection of sodium and chloride to 2 avoid salt-water

3 Kristian J. Herrera^{1,†}, Thomas Panier², Drago Guggiana-Nilo³, Florian Engert¹,

4 August 19, 2020

5 Abstract

6 Salinity levels constrain the habitable environment of all aquatic organisms. Zebrafish are freshwater
7 fish that cannot tolerate high salt environments and would, therefore, benefit from neural mechanisms
8 that enable the navigation of salt gradients to avoid high salinity. Yet, zebrafish lack epithelial sodium
9 channels, the primary conduit land animals use to taste sodium. This suggests fish may possess novel,
10 undescribed mechanisms for salt detection. In the present study, we show that zebrafish, indeed, respond
11 to small temporal increases in salt by reorienting more frequently. Further, we use calcium imaging
12 techniques to identify the olfactory system as the primary sense used for salt detection, and we find
13 that a specific subset of olfactory receptor neurons encodes absolute salinity concentrations by detecting
14 monovalent anions and cations. In summary, our study establishes that zebrafish larvae have the ability
15 to navigate, and thus detect salinity gradients, and that this is achieved through previously undescribed
16 sensory mechanisms for salt detection.

¹ Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA

² Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 4 Place Jussieu, F-75005, Paris, France

³ Max Planck Institute for Neurobiology, Synapses - Circuits - Plasticity, Munich, Germany

† Corresponding author: kjherrera23@gmail.com

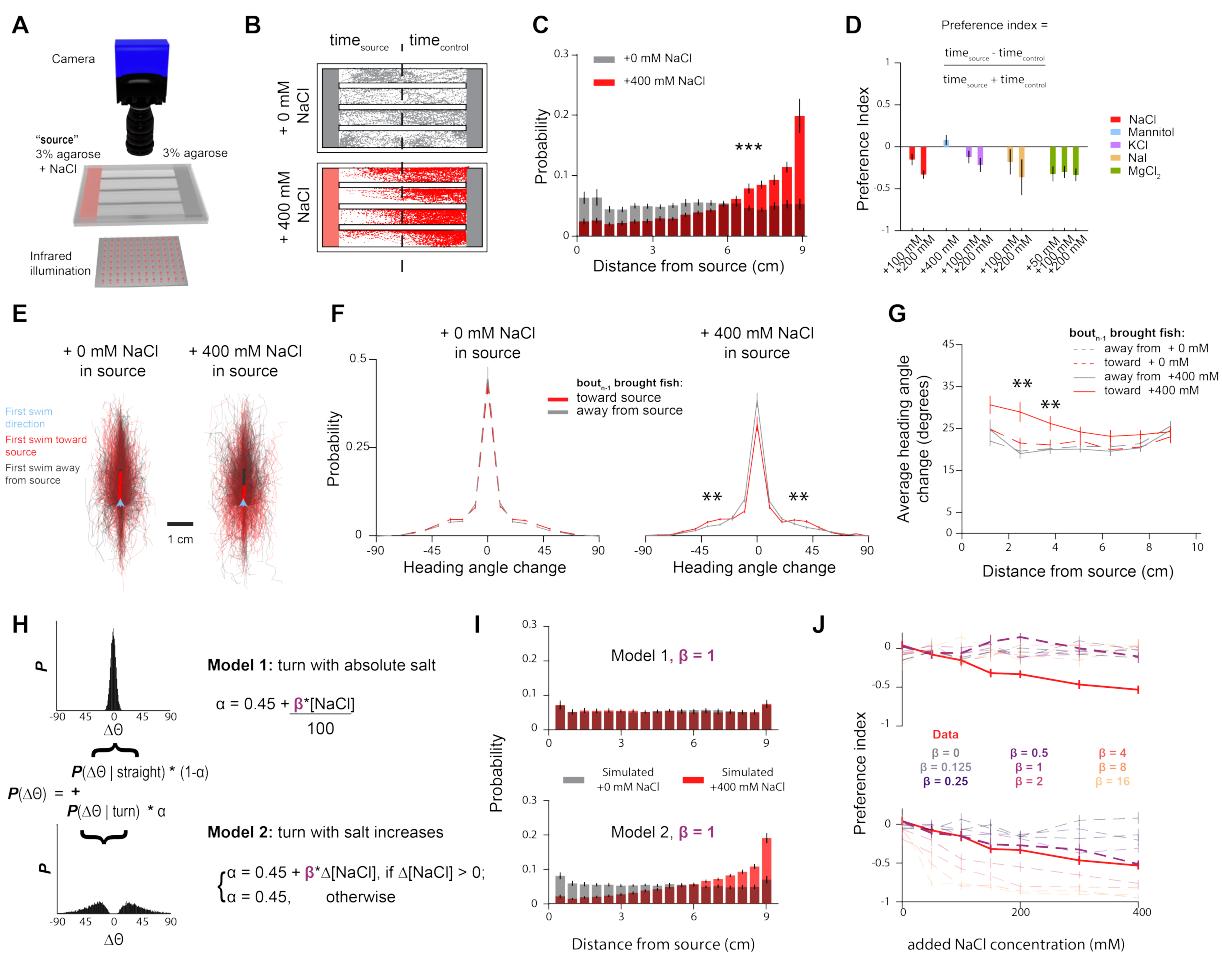
17 Introduction

18 All organisms must maintain their internal ionic content within a tight window. However, the mechanisms
19 that animals utilize for osmoregulation are diverse and depend on their environment. Land animals and
20 marine mammals balance the consumption of ion-rich food or liquids with the intake of ion-poor water
21 and excretion of excess ions^{1,2}. On the other hand, fish and amphibians supplement fluid consumption
22 and excretion with the function of a specialized system of epidermal cells, ionocytes, that exchange ions
23 with their surrounding water^{3,4}. Critically, the direction and mechanism of ion exchange depend on the
24 salinity of the animal's natural environment. Ionocytes of freshwater fish must acquire salts, while those
25 of marine fish excrete them.

26 Terrestrial animals encounter and balance salt through food intake, leading their gustatory systems
27 to evolve high sensitivity to salt^{5,6,7,8}. They usually use two separate channels for discriminating
28 either appetitive (< 100 mM) or aversive (>150 mM) NaCl concentrations. In vertebrates, these are
29 respectively mediated by epithelial sodium channels⁵, which specifically allow sodium influx⁹, and
30 bitter taste receptors⁷ that are broadly gated by noxious stimulants. By contrast, the primary external
31 salt sensors for fish are unknown at both the tissue and molecular level. However, aquatic animals are
32 directly exposed to changes in environmental salinity, suggesting it might be advantageous for their
33 salt detection to be integrated with a variety of modalities, beyond taste reception, that are suited for
34 environmental navigation, such as olfaction¹⁰, somatosensation¹¹, or even the mechanosensory lateral
35 line¹². The teleost gustatory system, although clearly implicated in feeding related behaviors, is less
36 likely to play a critical role in salt gradient navigation, since teleosts have lost all homologs of the
37 mammalian epithelial sodium channel family¹³, and bitter taste receptors do not respond to the relevant
38 salt concentrations¹⁴. As such, it is still unclear which molecular mechanisms fish use to detect external
39 NaCl and to appropriately adjust their behavior.

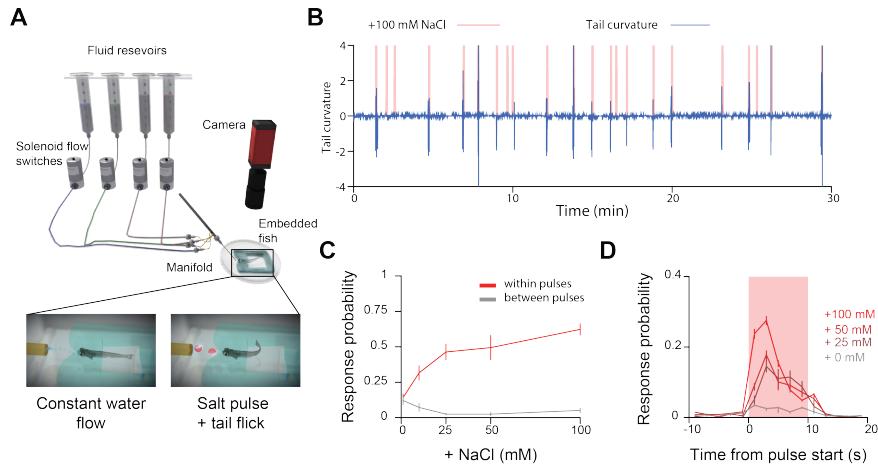
40 Zebrafish in particular, would benefit from the ability to detect and navigate NaCl gradients since
41 the environments in which they likely evolved are characterized by dramatic changes in local salinity
42 levels: the river basins that surround the Ganges River in India and Bangladesh for example^{15,16}, are
43 characterized by soft, ion-poor water with NaCl concentrations below 1 part per trillion, which can
44 increase locally by orders of magnitude during the dry season¹⁷. Importantly, such changes lead to
45 elevated stress and cortisol levels, and are ultimately lethal^{18,19,20}, which makes neural mechanisms for
46 detecting and avoiding salt gradients paramount for survival. Here, we show that zebrafish have evolved
47 behavioral strategies to avoid high-salt environments and that this behavior is mediated by the olfactory
48 system through a subset of olfactory sensory neurons that detect the combined presence of sodium and
49 chloride.

50 Results


51 Larval zebrafish avoid high salt environments

52 To test whether larval zebrafish avoid high saline environments, we developed an assay for the detailed
53 observation of larvae swimming in a salt gradient (1A and methods). In this assay, four larvae are placed
54 in separate lanes bookended by two agar pads made either from filtered fish water alone (control) or
55 from fish water plus the salt being tested (source). We show that diffusion of sodium chloride (NaCl)
56 from the source generates a persistent and reasonably stable salinity gradient throughout the lanes (S1A),
57 and that larvae navigating such a gradient spend significantly more time away from the source than in
58 control conditions where no salt is added (1B,C). This aversion emerges alongside the developing salt
59 gradient over the first 15 minutes and is stable afterward (S1B). This behavior is robust and demonstrates
60 that larvae as young as 5 days post fertilization (S1C) are already equipped with an active strategy to
61 avoid regions of high salinity.

62 External sodium chloride fluctuations change several environmental parameters, such as osmolarity,
63 net conductivity, and specific ion identities. Any of these may be detected and used by the larvae to
64 avoid high salt, and in order to dissect the relevance of each parameter, we tested the preference of
65 larvae to a series of compounds that isolate specific factors. For example, a general aversion to increased
66 osmolarity was tested by generating gradients of a sugar alcohol, mannitol, that were equimolar with the
67 previously tested NaCl gradients (1D). Under these conditions, the larvae exhibit no place preference. By
68 contrast, zebrafish reliably avoided every ionic solution that we tested, whether it consisted of chloride
69 paired with another monovalent (KCl) or divalent cation (MgCl₂), or sodium paired with another anion
70 (NaI). These results fail to tell us whether the mechanism underlying NaCl detection is based on a
71 broad conductivity sensor or whether it is specific to different ions, as it is unclear whether or not the
72 mechanisms responsible for avoiding these other ions belong to identical or parallel neural pathways. A
73 detailed resolution of this question necessitates the identification of the relevant sensory neurons, the
74 approach to which is described in later sections.


75 Salt avoidance is driven by detecting salt increases

76 Next, we wished to understand the specific heuristics that larval zebrafish employ to avoid high salt
77 concentrations. We observed that in all conditions, larvae predominantly swim back and forth between
78 the two ends of the arena, while aligned parallel to the longitudinal axis (S1D,E). As larvae ascend a salt
79 gradient, however, they reverse directions earlier than during gradient descent (1E). This suggests a
80 biased random walk where increasing salt concentrations amplify the larva's reorientation frequency^{21,22}.
81 To test this hypothesis, we compared the distribution of reorientation angles during bouts that follow a
82 swim toward salt with those that follow a swim away from salt. With no gradient, larvae do not alter
83 their turn statistics between these two cases (1F, left). By contrast, during gradient navigation, larvae

Figure 1: Larval zebrafish avoid high salt environments by responding to increases in salinity. **A.** Schematic of the rig used to perform chemical place preference assays. **B.** Sample experiments when 0 mM (top) or 400 mM (bottom) are added to the source agarose. Individual dots demarcate position of larvae at every 50th frame. **C.** Histogram of positional occupancy by larvae when the source gel contains either 0 mM (n = 30) or 400 mM NaCl (n = 24) added (Mann-Whitney U test p<0.001). **D.** Preference indices toward different cation/anion pairs. **E.** Individual trajectories of 10 bouts that follow a bout that climbs (red) or descends (gray) gradients with 0 (left) and 400 mM (right) NaCl added to the source. Average trajectory indicated by thick lines. **F.** Average turn angle as the larvae swims toward or away from the source as a function of their position in the arena (Bonferroni-corrected t-test, p <0.01). **G.** Difference in average turn angle of bouts that follow an increased salt concentration compared to those that follow a decreased salt concentration for different concentrations of source salt (Bonferroni-corrected t-test, p <0.01). **H.** Description of the two models being simulated: larvae respond to absolute (model 1) or relative (model 2) salt concentrations. **I.** Spatial distribution of larvae in a simulated linear salt gradients when model 1 (top) or model 2 (bottom) are active. **J.** Preference indices toward different concentrations of NaCl that results from simulating fish according to both algorithms for a range of salt sensitivities (β).

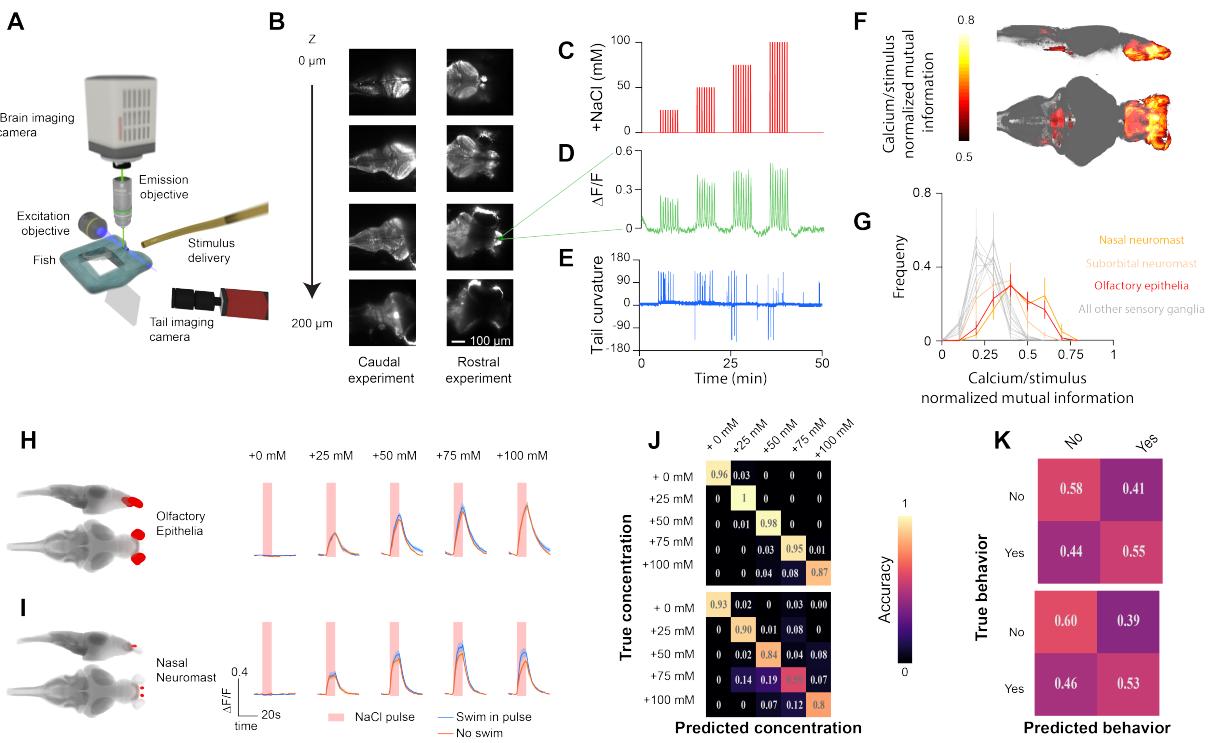
84 are significantly more likely to execute a 20-40 degree turn if the previous bout brought them closer
85 to the salt rather than away from it (1F, right). Compared to control conditions, turning magnitudes
86 are only affected by the salt concentration as the larva climbs the gradient (1G), suggesting salinity

Figure 2: Head-immobilized larvae respond to salt concentration increases **A.** Schematic of preparation used to stimulate head-embedded larvae. **B.** Sample data from an experiment where a larva is stimulated with 10 second pulses of 100 mM NaCl at random intervals. **C.** Probability that the larva will exhibit a behavioral response to a pulse of a given NaCl concentration (red) and inter-pulse spontaneous behavior rate (gray) to flowing fish water. **D.** Probability of a bout event occurring within two second bins for different concentrations of salt relative to the onset of a pulse.

87 increases, rather than absolute concentrations, drive turning.

88 To test whether a biased random walk is sufficient to explain the larvae's avoidance behavior, we simulated
89 the ability of virtual larvae utilizing natural swimming and turn statistics to navigate a salt gradient. We
90 compared the performance of these simplified agents in conditions where turning was either upregulated
91 as a function of absolute salinity levels or, alternatively, where turning probability increased after relative
92 increases in salinity (1H, see methods). We found that only the latter adequately captured the avoidance
93 behavior of real animals (1I,J). A potential concern is that, as formulated, this model predicts that larvae
94 would swim readily toward water with no salt at all, a counterintuitive result given the significantly
95 deleterious effects this would have on the animals (S1G). Testing this prediction with deionized water,
96 we found, however, that larvae indeed swim toward the lowest salt concentrations (S1H), which suggests
97 that larvae may not seek an optimal external NaCl setpoint, but instead always avoid increasing salinity.
98 A potential explanation for this simplistic, if maladaptive, strategy is that regions of deleteriously low
99 salinity are extremely rare and likely did not impart any selective pressure onto these animals.

100 We have so far identified that larval zebrafish avoid waters with high salinity, and do so by responding to
101 salt concentration increases. We next wished to identify the sensory modalities that detect salt. However,
102 to identify such sensory regions, we wished to use calcium imaging techniques (*i.e.* light-sheet or two-
103 photon point scanning microscopy) that require us to immobilize the animal's head. To accommodate
104 this constraint, we designed a stimulation setup (2A) to rapidly and reversibly present different chemicals
105 to the larvae's face (S2A-C), while the head and torso are embedded in agarose, and the tail is free
106 to move. We find that larvae in this preparation respond to salt pulses by vigorous tail flicks (2B) in


107 a concentration-dependent manner (2C). Consistent with the free-swimming behavior, the larvae are
108 most responsive during the onset of a NaCl pulse, corresponding to a recent concentration increase (2D).
109 Therefore, we treat this preparation as a reasonable proxy for the more naturalistic condition of a larva
110 swimming freely in a concentration gradient.

111 **Activity in the olfactory and lateral line systems reflects external salinity**

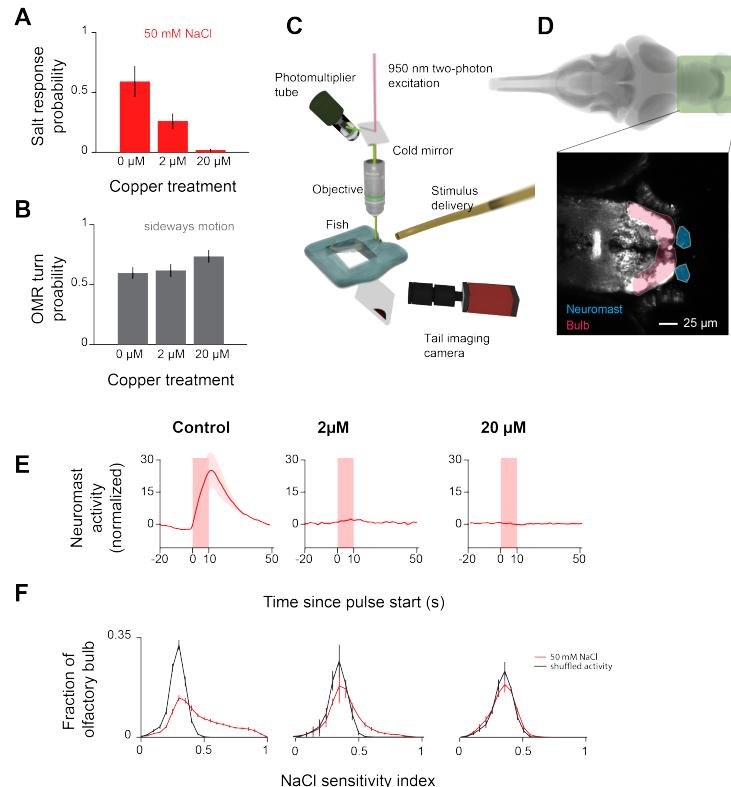
112 To screen for the brain regions most sensitive to such NaCl pulses, we combined our tethered preparation
113 with a custom-built lightsheet microscope (3A and **Movie S1**). This allowed us to perform volumetric
114 imaging over most of the larval zebrafish's brain (3B) while delivering pulses of different NaCl concen-
115 trations (3C) and simultaneously tracking its behavior (Figure 3E). After imaging, we segmented the
116 fluorescence from each plane into activity units (3D) using a temporal correlation-based algorithm²³.
117 We must note that this algorithm only utilizes correlation across time and incorporates no anatomical
118 features, so these "activity units" may consist of individual cells, neuropil, or combinations of both. To
119 localize segmented units within community standardized anatomical regions, we registered all imaged
120 volumes to the reference coordinate system of the online *Z-brain* atlas²⁴.

121 In order to identify any regions that carry information about salinity, we calculated the mutual information
122 between each unit and the delivered salt concentration. Averaging this value across fish for each voxel
123 of the *Z-brain* atlas reveals stereotypic strong NaCl representation within the fish's olfactory system,
124 which includes the epithelia, bulb, and posterior telencephalon (3F)²⁵. Of all sensory ganglia, only the
125 rostral-most neuromasts and olfactory epithelia contain units whose activity reflects NaCl concentration
126 (3G). In both of these modalities, we observe concentration-dependent activity that is independent of
127 the animal's behavioral response (3H,I). Furthermore, unlike the behavior, which quickly subsides a few
128 seconds into a pulse, these regions sustained or even ramped their calcium levels throughout the stimulus
129 period. This suggests that the olfactory epithelia and neuromasts of the lateral line contain sensory
130 representations of external salt concentration, and do not, alone, reflect when an animal will respond.
131 To verify this, we trained support vector machines to classify either the stimulus or behavioral response
132 from the activity of units within these regions. As predicted, these classifiers were independently able to
133 predict the stimulus, but failed to predict whether the animal produced a behavioral response (3J,K).
134 Thus, the neural substrate for the computations that extracts changes in salt concentration and generates
135 behavioral responses likely occurs somewhere downstream of these primary sensory regions.

136 Outside of the olfactory system and neuromasts, most regions of the brain share low mutual information
137 with the sensory stimulus, including brainstem regions previously reported to show highly stereotyped
138 responses to tastants²⁶. One exception is a midbrain cluster of units near the dorsal raphe and interpe-
139 duncular nucleus (3F), whose activity patterns share high mutual information with the animal's behavior,
140 as well as the combination of stimulus and behavior (S3A,B). We therefore propose that these areas
141 represent a substrate for the sensorimotor transformation of salt elevations into action, as supported by

Figure 3: NaCl levels are represented in the olfactory system and lateral line. **A.** Schematic of the lightsheet microscope. **B.** Sample z-slices taken within a stack. Stacks were collected at 1 Hz. Imaging experiments captured either the rostral 2/3rds or caudal 2/3rds of the fish. **C.** Arrangement of salt pulses during each experiment. Zebrafish experienced escalating concentrations of NaCl pulses in five minute blocks. **D.** Example calcium signal from an activity unit in the olfactory bulb. **E.** Example tail curvature trace during imaging experiment. **F.** Average stimulus correlation at each voxel of the *Z-brain* across 15 fish. **G.** Histogram of normalized mutual information in units from each of the sensory ganglia in the *Z-brain*. **H.** Stimulus triggered responses of top NaCl encoding units from the olfactory epithelia, averaged across fish, and their locations within the *Z-brain*. Responses are separated into trials where the fish swam (blue) or did not swim (purple). Mean \pm SEM across fish. **I.** Stimulus triggered responses of top NaCl encoding units in the nasal neuromast averaged across fish. **J.** Confusion matrices depicting *stimulus* classification accuracy of support vector machines trained from activity in the olfactory epithelia (top) and nasal neuromast (bottom). **K.** Confusion matrices depicting *behavioral response* classification accuracy of support vector machines trained from activity in the olfactory epithelia (top) and nasal neuromast (bottom).

142 the fact that both stimulus and action can be decoded from these regions (S3E,F). Consistent with our
 143 expectations from the behavioral dynamics, we show that during trials where the animals respond to salt,
 144 neural activity peaks in these regions, and descends to baseline within the trial (S3D,E). However, when
 145 the animal is unresponsive, the calcium signal plateaus, suggesting that extracting changes in external
 146 salt may follow more complicated principles than a simple derivative. Future studies should be able to
 147 shed more light on these questions.


148 **Olfactory input is necessary to drive NaCl avoidance behavior**

149 We next wanted to define the precise roles that the olfactory system and the lateral line each play in
150 the generation of salt avoidance behaviors. To do this, we incubated larvae in various concentrations
151 of copper sulfate, which kills cells in both the lateral line²⁷ and olfactory epithelia²⁸. After treatment
152 and recovery periods, we examined the larvae's behavioral responses to 50 mM NaCl pulses and found
153 their reaction rate decreased with increasing copper concentration (4A). In fact, behavioral responses to
154 NaCl were essentially abolished at a copper sulfate concentration of 20 μ M. To ensure that copper does
155 not simply degrade all motor ability, we verified that copper treated larvae showed no reduction in the
156 performance of the optomotor response (4B), an innate visuo-motor behavior that leads the animal to
157 follow whole field motion²⁹.

158 To differentiate the relative importance of olfaction and the lateral line, we examined whether the extent
159 of damage to either modality was predictive of the behavior. To quantify the remaining salt-induced
160 calcium activity in these regions, we wished to have higher spatial resolution that was afforded by the
161 light-sheet microscope, thus we performed 2-photon imaging to assess the extent of the removal of
162 NaCl-sensitivity after copper treatment (4C,D). We found that treatment with as little as 2 μ M copper
163 sulfate already abolished all lateral line responsiveness, even though the animal continued to respond
164 to NaCl (4E, S4A,B). By contrast, a significant fraction of NaCl-sensitive olfactory bulb units remained
165 responsive at this concentration (4F). Like the behavior, these responses are only completely removed
166 with 20 μ M copper sulfate, implicating the olfactory system as critical for NaCl avoidance. To validate
167 the necessity of olfaction for NaCl-triggered behaviors, we next performed a crude yet informative
168 experiment; we rotated the fish 180° relative to the stimulus. This allowed us to expose the neuromasts,
169 as well as other assorted somatosensory systems of the tail to NaCl, while keeping the face and the
170 associated olfactory system largely unaffected. Under this arrangement, fish were significantly less likely
171 to respond than when we subsequently exposed the rostrum of those same fish to NaCl (S4C), supporting
172 the notion that olfactory exposure is necessary to elicit NaCl avoidance behavior.

173 **A sparse subset of olfactory sensory neurons are sensitive to NaCl**

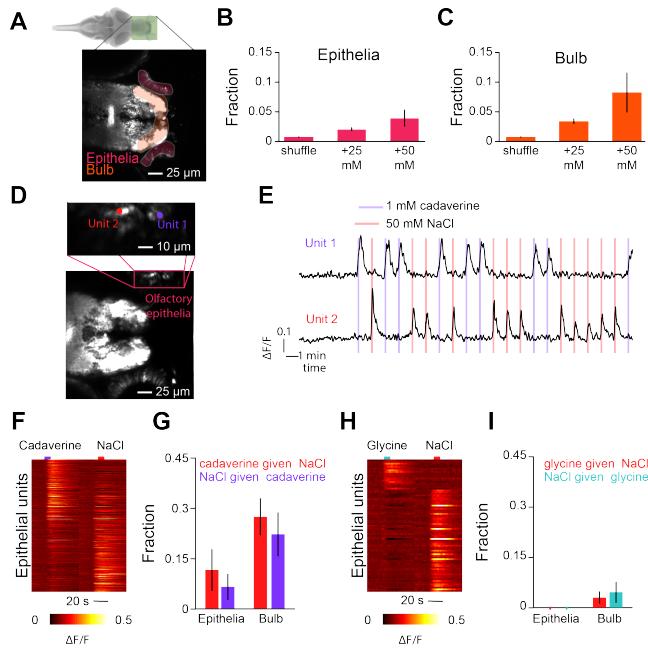

174 We next wished to determine how NaCl-sensitivity might arise in the olfactory system. One possibility is
175 that NaCl directly depolarizes the membranes of all externally contacting neurons, including all olfactory
176 sensory cells. However, we found that fewer than 5 percent of all identified sensory units are responsive
177 to the tested concentrations of NaCl (5A-C), suggesting that NaCl activates a specific subpopulation of
178 olfactory sensory neurons. To address the possibility that the large fraction of "silent" neurons may be
179 unresponsive due to some unspecified pathological condition of our preparation, we tested whether
180 these NaCl-insensitive cells might respond to other odorants. To that end we examined two compounds,
181 one noxious to zebrafish, (cadaverine³⁰) the other appetitive (glycine³¹), and found that both chemicals
182 activated many NaCl-insensitive neurons in the epithelia and bulb (5D-I). In fact, while there is some

Figure 4: Salt avoidance behavior is abolished after removing olfactory sensitivity to NaCl. **A.** Behavioral response probability of tail embedded larvae to 50 mM NaCl after incubation in different concentrations of copper. **B.** Behavioral response probability of tail embedded larvae to whole field motion after incubation in different concentrations of copper. **C.** Schematic depicting the two-photon microscope setup used to image the olfactory bulb and epithelia. **D.** Region of the brain imaged in this figure. Zoom depicts sample slices averaged over time. Shadings indicate segmented regions - neuromast (orange) and olfactory bulb (red). **E.** Stimulus-triggered averages of neuromast calcium activity during 50 mM NaCl pulses. Each unit is normalized by the variance of its activity during the pre-stimulus period. For fish where neuromasts are fully removed, masks are drawn around where they would normally be. **F.** Distribution of NaCl sensitivity in units across the olfactory bulb where the sensitivity index of a unit is defined as the average correlation of the unit's calcium response during each trial to the mean stimulus triggered response.

183 overlap between NaCl and cadaverine sensitive cells, we found zero glycine sensitive cells in the olfactory
184 epithelia that detect NaCl (**5H,I**).

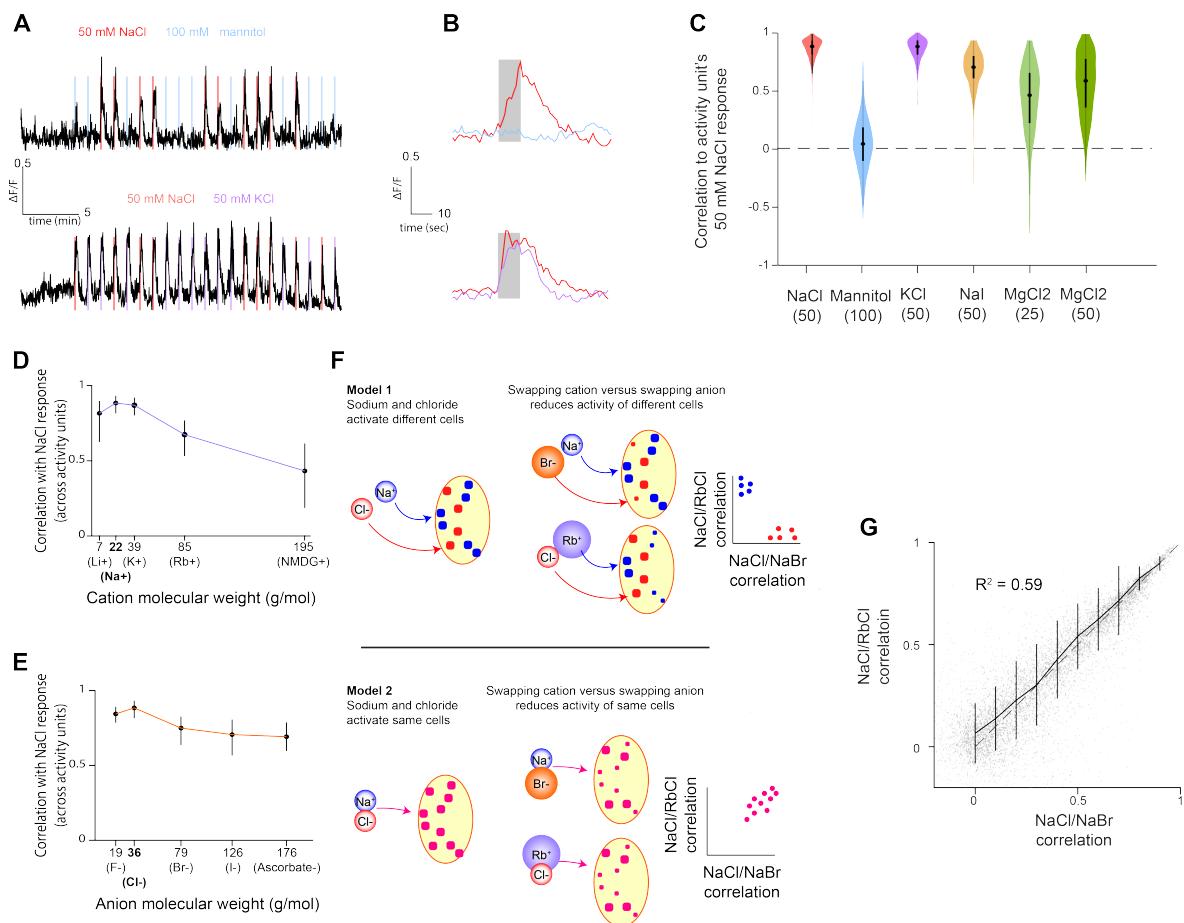

185 Since genetically separable classes of cells detect cadaverine (ciliated) and glycine (microvillous)³²,
186 the absence of sensory neurons that detect both glycine and NaCl raised the possibility that only the
187 ciliated class responds to NaCl. However, imaging the NaCl response properties in two transgenic lines
188 that distinguish these classes (*OMP:Gal4/Uas:GCaMP6S* for ciliated and *TRPC2:Gal4/Uas:GCaMP6S* for
189 microvillous), revealed comparable levels of NaCl induced activity (< 5%) in both populations (**S5**),
190 thus allowing us to rule out this hypothesis.

Figure 5: A small fraction of functional olfactory sensory neurons respond to NaCl. **A.** Plane from the imaged region. Shadings indicate segmented regions - olfactory bulb (orange) and epithelia (red). **B.** Average fraction of active units in the olfactory epithelia of *HuC:GCaMP6s* positive fish during 25 mM or 50 mM pulses and after applying the same criteria to shuffled traces (error bars indicate SEM across fish). **C.** Average fraction of active units in the olfactory bulb of *HuC:GCaMP6s* positive fish during 25 mM or 50 mM pulses and after applying the same criteria to shuffled traces (error bars indicate s.e.m. across fish). **D.** Projection across time of a sample slice imaged with 1 mM cadaverine and 50 mM NaCl. Inset depicts the location of two sample units from within the olfactory epithelia. **E.** Calcium traces of the two units depicted in F in response to 10 s pulses of 1 mM cadaverine or 50 mM NaCl. **F.** Heatmap depicting stimulus triggered average activity of all responsive epithelial units to cadaverine and NaCl. **G.** Fraction of units that are responsive to NaCl that are also responsive to cadaverine, and vice-versa (error bars indicate SEM across fish). **H.** Heatmap depicting stimulus triggered average activity of all responsive epithelial units to glycine and NaCl. **I.** Fraction of units that are responsive to NaCl that are also responsive to glycine, and vice-versa (error bars indicate SEM across fish).

191 NaCl-sensitive neurons are driven by sodium and chloride

192 Having established that sodium chloride does not directly depolarize all epithelial neurons, we next tested
 193 whether olfactory responses are driven specifically by sodium and/or chloride or whether they are tuned
 194 to an environmental shift that co-occurs with NaCl fluctuation (i.e. osmolarity or conductivity). To that
 195 end, we presented a given fish with random pulses of either 50 mM NaCl to identify the NaCl-sensitive
 196 regions, or a “test” chemical. Recalling the behavioral results in our gradient assay (1D), we expect that
 197 NaCl-sensitive neurons are not osmolarity sensors, and indeed, we found that NaCl-sensitive cells do not
 198 respond to equimolar mannitol (6A-C). However, the larvae’s behavioral avoidance of all ionic solutions
 199 (1D) offers no clues as to how the NaCl-sensitive neurons might respond. On the one hand, these neurons
 200 might detect any change in conductivity, while on the other extreme, they could be specifically tuned to

Figure 6: NaCl-sensitive olfactory bulb units are sensitive to sodium and chloride ions. **A.** Sample activity trace from an olfactory bulb unit while the fish is stimulated with pulses of 50 mM NaCl and 100 mM mannitol (top) or 50 mM KCl (bottom). **B.** Stimulus-triggered averages of the activity unit in A in response to 50 mM NaCl and 100 mM mannitol (top) or 50 mM KCl (bottom). **C.** Distribution of the correlation of each activity unit's NaCl response to different chemicals. Bars in violin plots indicate median \pm 25%. **D.** Median (error bars 25-75%) correlation of NaCl activity with different cation/chloride combinations. **E.** Median (error bars 25-75%) correlation of NaCl activity with different anion/sodium combinations. **F.** Cartoon depicting the two models of NaCl sensitivity, and expected results from stimulating NaCl sensitive cells with NaBr and RbCl given each model. **G.** Scatter plot of correlation between NaCl and RbCl responses versus correlation between NaCl and NaBr responses for each activity unit tested (indicated by gray dots, $n=3$ fish). $R^2 = 0.59$. Solid line indicates average and variance of NaCl/RbCl correlation for binned NaCl/NaBr correlations. Dashed line indicates unity.

201 sodium or chloride. Thus, we tested a series of solutions to dissect this. When we exposed larvae to
 202 KCl, which, in effect, exchanges sodium for a comparable monovalent ion, potassium, NaCl-sensitive
 203 neurons were strongly activated (6A-C), suggesting they are not sodium-specific. To determine whether
 204 chloride drives this activity, we tested sodium conjugated with a different anion, iodide. Yet, this pairing
 205 drove the population as well (6C). Overall, these results suggest NaCl-sensitive cells at least report the

206 presence of monovalent ions. However, we found they are not conductivity sensors, as exposing the fish
207 to isoelectric or higher concentrations of a divalent cation (magnesium chloride) generates significantly
208 weaker responses in these cells than to NaCl (6C, S6A-D).

209 Our observation that fish will swim towards deionized water implies that the sensory input driving this
210 behavior should be able to decrease from the baseline established under fish water. To test this, we
211 examined the activity of NaCl-sensitive olfactory neurons exposed to deionized water, and, consistent
212 with the behavior, we observed that their activity decreased (S6E-G).

213 We next wished to determine how different monovalent ions influence the activity of individual NaCl-
214 sensitive units. When we pair chloride with cations larger or smaller than sodium, we find that a
215 greater fraction of olfactory units responds with activity dissimilar to their NaCl response (6D). In
216 addition, pairing sodium with different anions generates the same effect (6E). This pattern suggests two
217 possibilities: 1) there exist distinct populations of sodium-sensitive and chloride-sensitive neurons or 2)
218 there is a single population of cells equally sensitive to both sodium and chloride (6F). To distinguish
219 between these two hypotheses, we compared the activity induced by RbCl and NaBr, two ion-pairs that
220 have similar effects at the population level. With these two solutions, we asked whether swapping either
221 sodium or chloride reduced the activity of distinct sets of neurons (6F). We found, instead, a strong
222 correlation between the activation of each individual neuron by both RbCl and NaBr (6G). Following this
223 result, we propose that NaCl-sensitive neurons in the zebrafish are tuned to the presence of both sodium
224 and chloride, thereby implicating a novel and undescribed molecular mechanism for environmental salt
225 detection.

226 Discussion

227 Salt detection is classically considered a task for the gustatory system. This view reflects a focus on
228 understanding salt sensing in terrestrial animals^{5,7,33}. On land, animals interact with environmental salt
229 through ingestion, making taste the primary conduit for salt-related decisions. For teleosts and other
230 aquatic organisms, however, saltiness is a critical environmental variable, which critically restricts their
231 possible habitats. Here, we have discovered that at least one species of fish uses olfaction to detect salt.
232 Unlike taste, which in teleosts is reportedly exclusively used for ingestion related decisions³⁴, olfaction
233 has broad influence³⁵, being involved in behaviors as diverse as finding food³⁶, mating³⁷, and avoiding
234 dangerous environments^{30,38}. Our finding thus suggests interesting implications for the evolution of
235 cross-modal behaviors. Rather than endow a salt-sensitive modality, such as taste, with the ability to
236 regulate navigational behaviors, natural selection has led to the incorporation of salt sensitivity into a
237 different modality, olfaction, that already influences navigation across animals as diverse as flies and
238 mice^{39,40,41}.

239 Further, when we investigated the detailed dynamics of the salt gradient navigation, we found that larval

240 zebrafish modify their behavior during the onset of increased salinity (Figure 1N). Yet, the heightened
241 activity in the olfactory system is sustained throughout the duration of elevated salt. This raises several
242 questions. First, how does the larva's brain generate the relevant derivative? At present, the nature of
243 this computation is unclear. While the interpeduncular nucleus as well as the raphe seem like potential
244 sites to explore this further, their activity profiles do not reflect a pure derivative of salt concentration.
245 In particular, the lack of neural adaptation during trials without a behavioral response obfuscates the
246 possible neural implementation. Future studies should further dissect the nature of the behavioral
247 algorithm by which changes in salt concentration are detected, as this may offer clear constraints to
248 the neural mechanisms. For example, feedback from an efferent relay of the animal's motor activity
249 may modulate how the animal's brain processes sustained salt elevation. Second, why does the fish
250 expend extra energy to sustain high firing rates in the olfactory system when the behaviorally relevant
251 information only lasts a few seconds? Even the baseline activity in normal fish water is well above the
252 minimal activity during exposure to deionized water. In line with a hypothesis discussed in Lovett-Baron
253 et al.¹⁹, retention of information about the surrounding salinity might be necessary for regulating
254 non-motor related functions. After early attempts to escape salt fail, the animal may still survive if it
255 can hormonally regulate its ion balance. For example, salt information from the olfactory system may
256 directly regulate hypothalamic release of prolactin⁴² or cortisol⁴³ to balance ion uptake and excretion,
257 respectively.

258 At present, the molecular mechanisms that endow hair cells and some olfactory sensory neurons with
259 NaCl-sensitivity are unclear. Here, we observe that zebrafish larvae avoid levels of salt concentrations
260 that fall within the operating range of the epithelial sodium channels that are essential for detecting
261 appetitive salt in land animals⁵. Yet, fish lack these channels, suggesting they would need to utilize
262 some other mechanism. Indeed, the response profile of the larvae's NaCl-sensitive olfactory neurons
263 suggests a different mechanism. Instead of being specifically activated by sodium like the terrestrial
264 sodium channels, these cells are broadly activated by both monovalent cations and anions. This response
265 profile is also distinct from known molecules responsible for detecting internal sodium, which are either
266 specific to high (>100 mM) concentrations of sodium⁴⁴ or are general osmolarity sensors⁴⁵. Whether
267 the cellular responses result from the action of multiple receptors and channels, or from a single protein,
268 i.e. an ion-pair receptor⁴⁶ is unclear.

269 To our knowledge, the receptor that most closely matches the ion-sensitivity profile of the larvae's
270 olfactory sensory neurons is *pickpocket23* in the fruit fly⁴⁷. Like the zebrafish cells, this protein is broadly
271 sensitive to monovalent ions, and not osmolarity. However, the relative influence of the cation and
272 anion is undescribed. Further, much higher concentrations (>200 mM) are needed to drive activity
273 in *pickpocket23* positive cells than in the zebrafish sensory neurons, suggesting, at a minimum, that
274 zebrafish use alternative secondary mechanisms. Identifying the responsible molecules should be the
275 work of future studies. The robust nature of the avoidance behavior, as well as the ability to test many

276 larvae simultaneously in our lane assay, make this question well-suited for a broad genetic screen.

277 References

278 [1] J Buggy and A E Fisher. Evidence for a dual central role for angiotensin in water and sodium intake.
279 *Nature*, 250(5469):733–735, August 1974.

280 [2] T Matsuda, T Y Hiyama, F Niimura, T Matsusaka, A Fukamizu, K Kobayashi, K Kobayashi, and
281 M Noda. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical
282 organ. *Nat. Neurosci.*, 20(2):230–241, February 2017.

283 [3] A Keys and E N Willmer. “chloride secreting cells” in the gills of fishes, with special reference to the
284 common eel. *J. Physiol.*, 76(3):368–378.2, November 1932.

285 [4] K J Karnaky, Jr, K J Degnan, and J A Zadunaisky. Chloride transport across isolated opercular
286 epithelium of killifish: a membrane rich in chloride cells. *Science*, 195(4274):203–205, January
287 1977.

288 [5] J Chandrashekhar, C Kuhn, Y Oka, D A Yarmolinsky, E Hummler, N J P Ryba, and C S Zuker. The cells
289 and peripheral representation of sodium taste in mice. *Nature*, 464(7286):297–301, March 2010.

290 [6] M J Lee, H Y Sung, H Jo, H Kim, M S Choi, J Y Kwon, and K Kang. Ionotropic receptor 76b is
291 required for gustatory aversion to excessive na+ in drosophila. *Mol. Cells*, 40(10):787–795, October
292 2017.

293 [7] Y Oka, M Butnaru, L von Buchholtz, N J P Ryba, and C S Zuker. High salt recruits aversive taste
294 pathways. *Nature*, 494(7438):472–475, February 2013.

295 [8] Y V Zhang, J Ni, and C Montell. The molecular basis for attractive salt-taste coding in drosophila.
296 *Science*, 340(6138):1334–1338, June 2013.

297 [9] K Nomura, M Nakanishi, F Ishidate, K Iwata, and A Taruno. All-Electrical Ca2+-Independent signal
298 transduction mediates attractive sodium taste in taste buds. *Neuron*, 106(5):816–829.e6, June
299 2020.

300 [10] P C Hubbard, P M Ingleton, L A Bendell, E N Barata, and A V M Canário. Olfactory sensitivity to
301 changes in environmental [ca2+] in the freshwater teleost carassius auratus: an olfactory role for
302 the ca2+-sensing receptor? *J. Exp. Biol.*, 205(18):2755–2764, September 2002.

303 [11] T Koide, Y Yabuki, and Y Yoshihara. Terminal nerve GnRH3 neurons mediate slow avoidance of
304 carbon dioxide in larval zebrafish. *Cell Rep.*, 22(5):1115–1123, January 2018.

305 [12] Y Katsuki, T Hashimoto, and J I Kendall. The chemoreception in the lateral-line organs of teleosts.
306 *Jpn. J. Physiol.*, 21(1):99–118, February 1971.

307 [13] B Venkatesh, E F Kirkness, Y Loh, A L Halpern, A P Lee, J Johnson, N Dandona, L D Viswanathan,
308 A Tay, J C Venter, R L Strausberg, and S Brenner. Survey sequencing and comparative analysis of
309 the elephant shark (*callorhinchus milii*) genome. *PLoS Biol.*, 5(4):e101, April 2007.

310 [14] H Oike, T Nagai, A Furuyama, S Okada, Y Aihara, Y Ishimaru, T Marui, I Matsumoto, T Misaka,
311 and K Abe. Characterization of ligands for fish taste receptors. *J. Neurosci.*, 27(21):5584–5592,
312 May 2007.

313 [15] R Spence, M K Fatema, Huq Reichard, M, M A K A, Wahab, Z F Ahmed, and C Smith. The distribution
314 and habitat preferences of the zebrafish in bangladesh. *J. Fish Biol.*, 69(5):1435–1448, November
315 2006.

316 [16] R Spence, G Gerlach, C Lawrence, and C Smith. The behaviour and ecology of the zebrafish, *danio*
317 *rerio*. *Biol. Rev. Camb. Philos. Soc.*, 83(1):13–34, February 2008.

318 [17] M Salehin, Md M A Chowdhury, D Clarke, S Mondal, S Nowreen, M Jahiruddin, and A Haque.
319 Mechanisms and drivers of soil salinity in coastal bangladesh. In Robert J Nicholls, Craig W Hutton,
320 W Neil Adger, Susan E Hanson, Md Munsur Rahman, and Mashfiqus Salehin, editors, *Ecosystem*
321 *Services for Well-Being in Deltas: Integrated Assessment for Policy Analysis*, pages 333–347. Springer
322 International Publishing, Cham, 2018.

323 [18] C Yeh, M Glöck, and S Ryu. An optimized whole-body cortisol quantification method for assessing
324 stress levels in larval zebrafish. *PLoS One*, 8(11):e79406, November 2013.

325 [19] M Lovett-Barron, R Chen, S Bradbury, A S Andalman, M Wagle, S Guo, and K Deisseroth. Multiple
326 convergent hypothalamus–brainstem circuits drive defensive behavior, 2020.

327 [20] S Ryu and R J De Marco. Performance on innate behaviour during early development as a function
328 of stress level. *Sci. Rep.*, 7(1):7840, August 2017.

329 [21] S M Block, J E Segall, and H C Berg. Impulse responses in bacterial chemotaxis. *Cell*, 31(1):
330 215–226, November 1982.

331 [22] M Haesemeyer, D N Robson, J M Li, A F Schier, and F Engert. The structure and timescales of heat
332 perception in larval zebrafish. *Cell Syst*, 1(5):338–348, November 2015.

333 [23] R Portugues, C E Feierstein, F Engert, and M B Orger. Whole-brain activity maps reveal stereotyped,
334 distributed networks for visuomotor behavior. *Neuron*, 81(6):1328–1343, March 2014.

335 [24] O Randlett, C L Wee, E A Naumann, O Nnaemeka, D Schoppik, J E Fitzgerald, R Portugues, A M B
336 Lacoste, C Riegler, F Engert, and A F Schier. Whole-brain activity mapping onto a zebrafish brain
337 atlas. *Nat. Methods*, 12(11):1039–1046, November 2015.

338 [25] E Yaksi, F von Saint Paul, J Niessing, S T Bundschuh, and R W Friedrich. Transformation of odor
339 representations in target areas of the olfactory bulb. *Nat. Neurosci.*, 12(4):474–482, April 2009.

340 [26] N Vendrell-Llopis and E Yaksi. Evolutionary conserved brainstem circuits encode category, concen-
341 tration and mixtures of taste. *Sci. Rep.*, 5:17825, December 2015.

342 [27] P P Hernández, V Moreno, F A Olivari, and M L Allende. Sub-lethal concentrations of waterborne
343 copper are toxic to lateral line neuromasts in zebrafish (*danio rerio*). *Hear. Res.*, 213(1-2):1–10,
344 March 2006.

345 [28] E Y Ma, K Heffern, J Cheresh, and E P Gallagher. Differential copper-induced death and regener-
346 ation of olfactory sensory neuron populations and neurobehavioral function in larval zebrafish.
347 *Neurotoxicology*, 69:141–151, December 2018.

348 [29] M B Orger, M C Smear, S M Anstis, and H Baier. Perception of fourier and non-fourier motion by
349 larval zebrafish. *Nat. Neurosci.*, 3(11):1128–1133, November 2000.

350 [30] A Hussain, L R Saraiva, D M Ferrero, G Ahuja, V S Krishna, S D Liberles, and S I K. High-affinity
351 olfactory receptor for the death-associated odor cadaverine. *Proc. Natl. Acad. Sci. U. S. A.*, 110(48):
352 19579–19584, November 2013.

353 [31] S M Lindsay and R G Vogt. Behavioral responses of newly hatched zebrafish (*danio rerio*) to amino
354 acid chemostimulants. *Chem. Senses*, 29(2):93–100, February 2004.

355 [32] T Koide, N Miyasaka, K Morimoto, K Asakawa, A Urasaki, K Kawakami, and Y Yoshihara. Olfactory
356 neural circuitry for attraction to amino acids revealed by transposon-mediated gene trap approach
357 in zebrafish. *Proc. Natl. Acad. Sci. U. S. A.*, 106(24):9884–9889, June 2009.

358 [33] Z Wang, A Singhvi, P Kong, and K Scott. Taste representations in the drosophila brain. *Cell*, 117
359 (7):981–991, June 2004.

360 [34] S Morais. The physiology of taste in fish: Potential implications for feeding stimulation and gut
361 chemical sensing. *Reviews in Fisheries Science & Aquaculture*, 25(2):133–149, April 2017.

362 [35] F Kermen, L Darnet, C Wiest, F Palumbo, J Bechert, O Uslu, and E Yaksi. Stimulus-specific behavioral
363 responses of zebrafish to a large range of odors exhibit individual variability. *BMC Biol.*, 18(1):66,
364 June 2020.

365 [36] N Wakisaka, N Miyasaka, T Koide, M Masuda, T Hiraki-Kajiyama, and Y Yoshihara. An adenosine
366 receptor for olfaction in fish. *Curr. Biol.*, 27(10):1437–1447.e4, May 2017.

367 [37] Y Yabuki, T Koide, N Miyasaka, N Wakisaka, M Masuda, M Ohkura, J Nakai, Ky Tsuge, S Tsuchiya,
368 Y Sugimoto, and Y Yoshihara. Olfactory receptor for prostaglandin F2 α mediates male fish courtship
369 behavior. *Nat. Neurosci.*, 19(7):897–904, July 2016.

370 [38] A S Mathuru, C Kibat, W F Cheong, G Shui, M R Wenk, R W Friedrich, and S Jesuthasan. Chondroitin
371 fragments are odorants that trigger fear behavior in fish. *Curr. Biol.*, 22(6):538–544, March 2012.

372 [39] K L Baker, M Dickinson, T M Findley, D H Gire, M Louis, M P Suver, J V Verhagen, K I Nagel, and
373 M C Smear. Algorithms for olfactory search across species. *J. Neurosci.*, 38(44):9383–9389, October
374 2018.

375 [40] R W Draft, Matthew R McGill, V Kapoor, and V N Murthy. Carpenter ants use diverse antennae
376 sampling strategies to track odor trails. *J. Exp. Biol.*, 221(Pt 22), November 2018.

377 [41] D H Gire, V Kapoor, A Arrighi-Allisan, A Seminara, and V N Murthy. Mice develop efficient strategies
378 for foraging and navigation using complex natural stimuli. *Curr. Biol.*, 26(10):1261–1273, May
379 2016.

380 [42] J P Breves, S D McCormick, and R O Karlstrom. Prolactin and teleost ionocytes: New insights into
381 cellular and molecular targets of prolactin in vertebrate epithelia, 2014.

382 [43] Y Kumai, N J Bernier, and S F Perry. Angiotensin-II promotes Na^+ uptake in larval zebrafish, *danio*
383 *rerio*, in acidic and ion-poor water. *J. Endocrinol.*, 220(3):195–205, March 2014.

384 [44] T Y Hiyama, E Watanabe, H Okado, and Ma Noda. The subfornical organ is the primary locus of
385 sodium-level sensing by $\text{Na}(\text{X})$ sodium channels for the control of salt-intake behavior. *J. Neurosci.*,
386 24(42):9276–9281, October 2004.

387 [45] R E Blackburn, W K Samson, R J Fulton, E M Stricker, and J G Verbalis. Central oxytocin inhibition
388 of salt appetite in rats: evidence for differential sensing of plasma sodium and osmolality. *Proc.*
389 *Natl. Acad. Sci. U. S. A.*, 90(21):10380–10384, November 1993.

390 [46] S K Kim and J L Sessler. Ion pair receptors. *Chem. Soc. Rev.*, 39(10):3784–3809, October 2010.

391 [47] A H Jaeger, M Stanley, Z F Weiss, P Musso, R Cw Chan, H Zhang, D Feldman-Kiss, and M D Gordon.
392 A complex peripheral code for salt taste in *drosophila*. *Elife*, 7, October 2018.

393 [48] D H Kim, Jungsoo Kim, J C Marques, A Grama, D G C Hildebrand, W Gu, J M Li, and D N Robson.
394 Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish. *Nat. Methods*,
395 14:1107, September 2017.

396 [49] T Panier, Sebastián A Romano, R Olive, T Pietri, G Sumbre, R Candelier, and G Debrégeas. Fast functional
397 imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination
398 microscopy. *Front. Neural Circuits*, 7:65, April 2013.

399 [50] K Huang, M B Ahrens, T W Dunn, and F Engert. Spinal projection neurons control turning behaviors
400 in zebrafish. *Curr. Biol.*, 23(16):1566–1573, August 2013.

401 [51] T Rohlfing and C R Maurer, Jr. Nonrigid image registration in shared-memory multiprocessor
402 environments with application to brains, breasts, and bees. *IEEE Trans. Inf. Technol. Biomed.*, 7(1):
403 16–25, March 2003.

404 Methods and Materials

405 Animal Husbandry

406 Unless otherwise noted, all fish used were the offspring of crosses of *HuC:GCaMP6s* positive and *nacre*
407 +/- parents. Embryos were raised at 27 degrees celsius. For the first 24 hours embryos developed in
408 embryo water plus methylene blue. Afterward, larvae were exclusively raised in filtered (200 nm pore
409 size) facility water. Water was exchanged every day. The larvae were fed live paramecia starting at 4
410 days post-fertilization (dpf). Experiments were performed on fish between 6 and 7 days old, unless
411 otherwise noted. All experiments followed institution IACUC protocols.

412 Free-swimming place-preference assay

413 In order to test whether larval zebrafish avoid salts, we sought to develop a rig that would allow us
414 to determine a larva's place preference within a chemical gradient. Previous studies have examined
415 chemical preference in adult zebrafish by using flow chambers. These strategies, however, introduce two
416 main confounds that we wished to avoid. First, any chemical avoidance behaviors will be convolved
417 with rheotaxis and the optomotor response, and switching chambers forces the larva to behave in
418 opposition to its rheotactic drive. Second, these arenas only create a very steep local gradient at the
419 chamber boundaries, which may not provide the information necessary for the larva to find its preferred
420 location.

421 Agar pads are made from 3% low melting point agarose. Agar is poured into premade casts designed
422 to fit the arena. After the agar settles, it is cut out and added to the arena, which is then filled with
423 water, lane by lane. We confirmed the presence of a gradient by using a refractometer to measure the
424 osmolarity of the water in 15-minute intervals at the quartiles of the arena's length. After the fish are
425 added the initial background image is calculated for 20 seconds and the experiment begins. To make
426 ionic solutions, salt (all purchased from Sigma-aldrich) was added to the agarose prior to melting.

427 Behavior analyses

All analyses were performed with custom-written MATLAB code. Preference indices (PI.) were calculated based upon the position of the fish along the axis perpendicular to the two agar pads. We define a preference index as the difference in time spent on the half of the arena close to the “test” pad from the

time spent away divided by the total length of the experiment:

$$P.I. = \frac{t_{source} - t_{control}}{t_{source} + t_{control}} \quad (1)$$

428 where t_{source} and $t_{control}$ are the time spent in the half of the arena closest to the salt and control,
429 respectively. As such, the preference index ranges from one for larvae that spend all of their time on the
430 side proximal to the NaCl, and negative one for those that spend all of their time distal to the salt. To
431 analyze kinematic parameters, bouts were segmented automatically from the absolute speed of the fish
432 combined with identifying periods of high variance in the heading angle. Bouts were then separated
433 by whether they brought the animal closer to or further from the source agarose pad (by at least 0.2
434 mm).

435 Free swimming simulations

436 For simulations, we assumed larvae chose bouts from one of two types of swim events - straight swims
437 and turns. We described the heading angle changed during these swims by a gaussian, $\mathcal{N}(0, 4.5)$, and
438 lognormal, $\log(\mathcal{N}(0.5, 0.6))$, distribution for straight swims and turns, respectively. For every swim,
439 larvae choose a heading angle turn from a probability distribution that is a linear combination of the
440 above distributions. As the virtual fish navigates, it experiences changes in salt concentrations. We
441 simplify the gradient by estimating it as a linear increase from the control agar pad to the source that
442 rises linearly with time. We fit slopes to reach a peak concentration of 15% of the source at the end of
443 the experiment. Following each bout, we redraw the heading distribution, based upon the change in
444 salt concentration. As the change in salt increases, we apply a higher weight to the turn distribution.
445 This weight is assumed to be a linear function of the change in salt concentration caused by the previous
446 bout. Bouts are assumed to take place at a frequency of 0.8 Hz and move the fish by 1 centimeter.

447 Head-embedded chemical stimulation

448 At present, the designs available for performing calcium imaging of the brains of freely-swimming
449 zebrafish larvae⁴⁸ do not offer the same resolution as generated by traditional methods that require the
450 brain to be immobilized, such as two-photon point scanning and light-sheet microscopy. Therefore, we
451 designed a preparation that would enable simultaneous stimulation of a head-immobilized larva with
452 salt and recording of its behavior. In this preparation, we use gravity to control fluid flow that is directed
453 to the rostral end of the fish by a narrow, 360 μm diameter perfusion pencil tip (*AutoMate Scientific*
454 04-360). The flow speed was approximately 1.5 ml/minute. Multiple solutions were passed through the
455 perfusion tip via an 8-channel manifold that ensured rapid liquid volume exchange (*AutoMate Scientific*
456 04-08-zdv). Solution outputs were regulated by solenoids (*Cole Palmer EW-01540-01*) via an Arduino[®]
457 during the experiment such that at all times one and only one solution was being presented to the fish.

458 Presenting a continuous stream of flow both attenuates behavioral responses to sudden changes of flow
459 velocity and hastens the removal of salt at the end of a trial compared to diffusion alone. The dynamics
460 of the pulse were assessed by imaging pulses of 10 nM fluorescein under an epifluorescent microscope
461 (Olympus® MVX10).

462 **Copper treatments**

463 For olfactory and lateral line ablations, fish were treated with either 0, 2, or 20 μ M Copper Sulfate
464 (CuSO_4). Fish were incubated for one hour in the chemical and then given one hour to recover before
465 behavioral experiments. Ablation of the lateral line was confirmed anatomically by incubating the fish in
466 a dye, FM 1-43 (*ThermoFisher* T3163) for five minutes followed by a 15-minute wash in fish water and
467 taking images under an epifluorescent microscope.

468 **Light-sheet microscopy**

469 Volumetric imaging experiments were performed with a custom-built single-photon lightsheet microscope
470 similar to that described previously⁴⁹. One difference, however, is that we used a transparent specimen
471 chamber and holder to enable tail tracking via a camera below the fish. For imaging, *Nacre* -/- larvae
472 positive for *GCaMP6s* expression under the *HuC* promoter⁴⁸ were embedded in agarose. To stimulate the
473 fish, we removed the agarose surrounding the nose. To allow behavioral monitoring, we also removed
474 the agarose that surrounds the tail. Larvae were illuminated with a 488 nm digitally scanned sheet that
475 swept through 200 μ m of depth with 4 μ m steps at 1 Hz. During the experiment, fish were stimulated
476 with 10 s of a given concentration of NaCl (25, 50, 75, 100 mM) separated by 40s of water flow. Each
477 concentration block lasted for 5 minutes and was separated by 5 minutes.

478 **Two-photon microscopy**

479 Two-photon microscopy experiments were performed with a custom-built two-photon microscope de-
480 scribed previously⁵⁰. *Nacre* -/- larvae positive for *GCaMP6s* expression in the brain were embedded in
481 1.8% agarose, and the tail and nose were freed as done during light-sheet experiments and embedded
482 behavior experiments. Larvae were imaged with a spectra-physics *Mai-tai* laser at 950 nm with 10
483 mW of power at the sample. Volumes spanning the olfactory bulb were imaged plane-by-plane at 8 μ m
484 steps.

485 **Image Analysis**

486 After imaging experiments, all data was segmented into activity units that approximate cells. Segmen-
487 tation was performed using an algorithm based on the one developed by Portugues et al.²³. The eyes,
488 which are heavily autofluorescent, were manually masked out of each stack to avoid segmentation

489 and registration errors. Registration to the reference brain was performed using the Computational
490 Morphometry Toolkit ()⁵¹ as described previously²⁴. The following parameter set was used:

$$a - w - r01 - T8 - X32 - C6 - G24 - A ' - accuracy 1.6' - W ' - accuracy 6.4' \quad (2)$$

The relationship between the stimulus and each activity unit was determined by calculating their mutual information. To do so, each neural signal was reduced to a 300 block time series, where each block was the average activity from 10 seconds. This made the score blind to dynamics within the pulse, so, for instance, stereotypic differentiating cells could also be discovered. The resulting signal was normalized to range from 0 to 1 and then binned into 10 equal-sized units. The same was done with the stimulus signal. A behavioral signal was generated by counting the number of behavioral responses in each 10-second block. A combined behavior and stimulus signal was generated by multiplying the behavior and stimulus signals. Mutual information was then defined as follows:

$$I(X; Y) = \sum_{x=1}^{10} \sum_{y=1}^{10} = P(X \cap Y) \times \log\left(\frac{P(X \cap Y)}{P(X) \times P(Y)}\right) \quad (3)$$

491 Here, x and y represent stimulus and activity bins. Scores were then normalized by the entropy of the
492 stimulus.

493 To test the classification ability of given regions, support vector machines were trained on a random
494 subset of 50% of trials to identify from the population activity within that region either the concentration
495 of salt in the trial, or whether the animal responded during the trial. The resulting classifier was then
496 cross-validated with the remaining trials. We report the performance of this cross-validation. For each
497 fish, this process was repeated 50 times and performance was averaged across these repetitions.

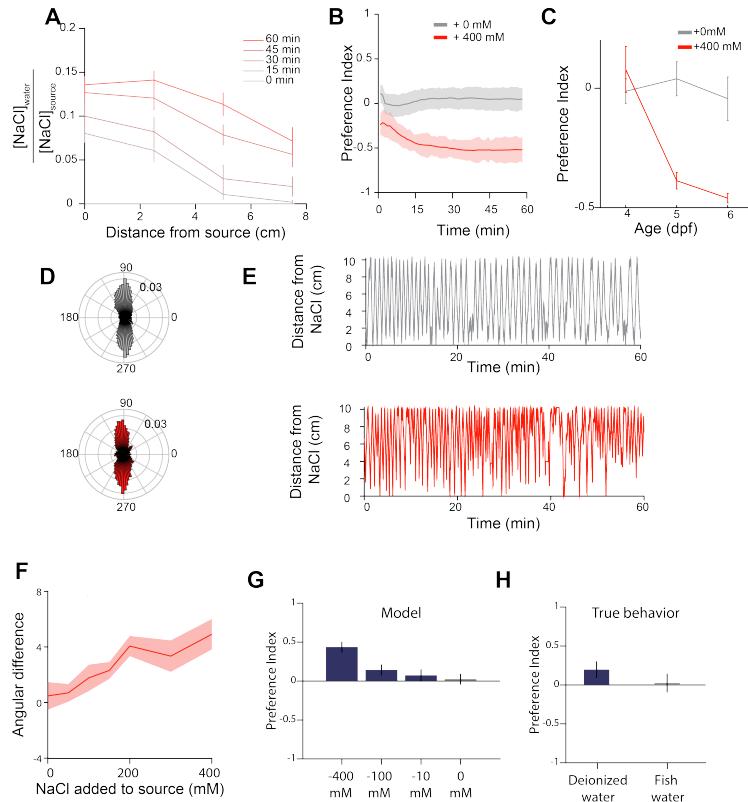
498 For two-photon imaging experiments, we defined units as active based upon their coherence across trials.
499 Namely, we asked for each trial, what is the correlation of the units activity with the average across trials.
500 All units with an average correlation across trials greater than 0.7 were deemed active. This threshold
501 was determined by the value above which the probability of being seen in shuffled data is less than
502 0.01. For comparisons across fish, calcium traces were normalized by the variance of the unstimulated
503 activity.

504 Data Availability

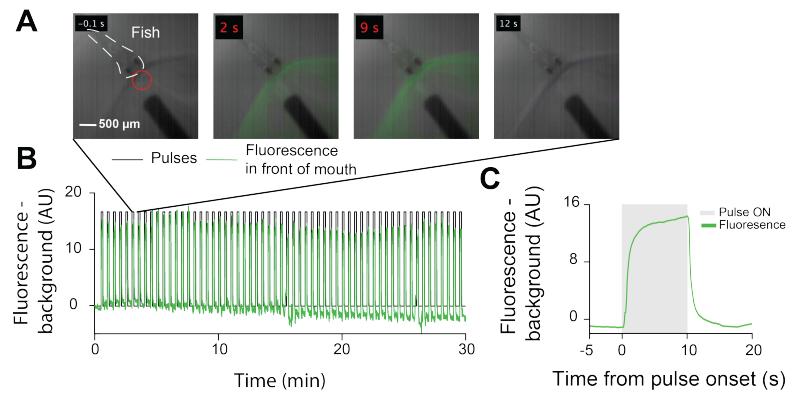
505 Analysis code and data will be made available upon final acceptance of the manuscript.

506 Competing Interests

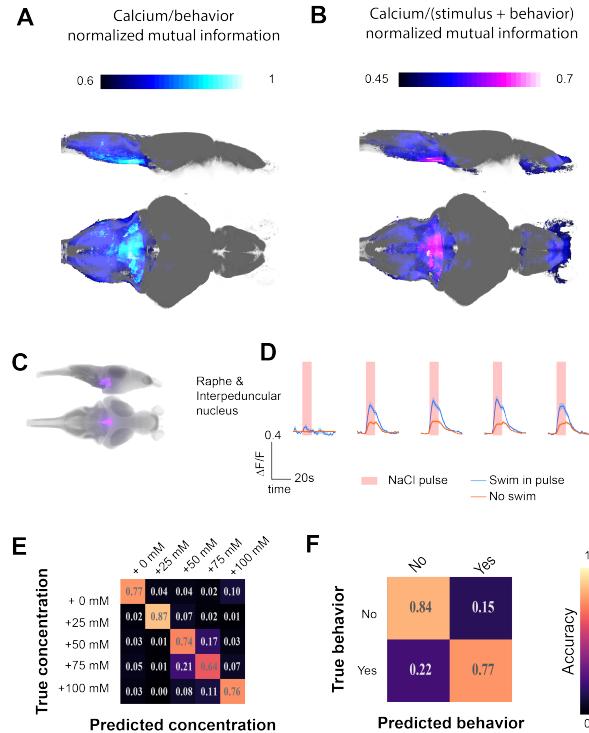
507 The authors declare no competing financial interests.

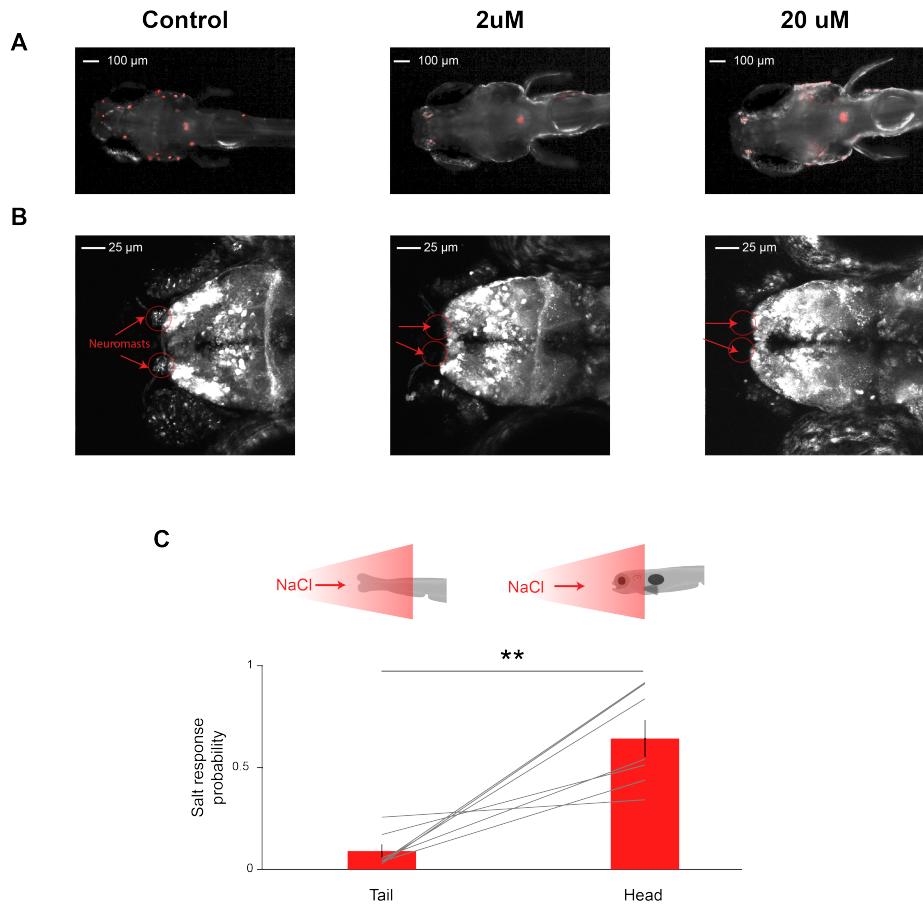

508 Author Contributions

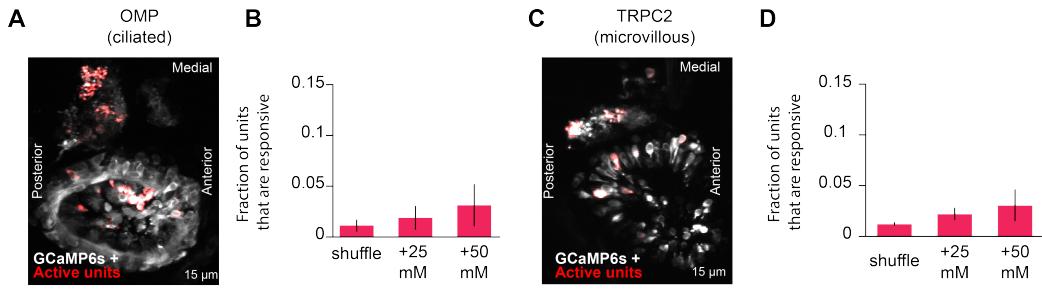
509 KJH conceived the project with FE and performed all experiments. DGN and TP built the light-sheet and
510 two-photon microscopes. KJH analyzed the data. KJH wrote the manuscript with input from FE and
511 DGN.


512 Acknowledgements

513 KJH received funding from the Harvard Minds Brains and Behavior Initiative. NIH. We thank all members
514 of the Engert lab for support and advice throughout the project. FE received funding from the National
515 Institutes of Health (U19NS104653, R43OD024879, 2R44OD024879), the National Science Foundation
516 (IIS-1912293) and the Simons Foundation (SCGB 542973). We also thank Mariela Petkova and Hanna
517 Zwaka for providing valuable feedback and suggestions to improve the manuscript.


518 **Supplementary Figures**


Figure S1: **A.** Development of the salt gradient over time relative to the concentration of salt added to the source. **B.** Evolution of preference indices over the course of the experiment. **C.** Avoidance behavior by larval age. **D.** Polar histogram of orientations of fish in no gradient (top) and a gradient generated from 400 mM NaCl (bottom). Fish facing 270 degrees are facing the source. **E.** Sample positional trace of a fish experiencing no gradient (top) and a gradient generated from 400 mM NaCl (bottom) along the axis that bisects the two agar pads. **F.** Difference in average angle for fish climbing the gradient versus descending for different concentrations of source NaCl. **G.** Model predictions for preference index of larvae navigating “negative” salt gradients. **H.** Actual preference index of a fish navigating toward deionized water in the source agar pad.


Figure S2: **A.** Example frames of a ten-second 10 nM fluorescein pulse. Red circle indicates the region analyzed in **B** and **C**. Dashed white outline surrounds the fish. Time is relative to the beginning of the fluorescein pulse, and red text indicates presentation of fluorescein. **B.** Fluorescence over the course of thirty minutes with 30 second interstimulus intervals. **C.** Average fluorescence changes during a pulse.

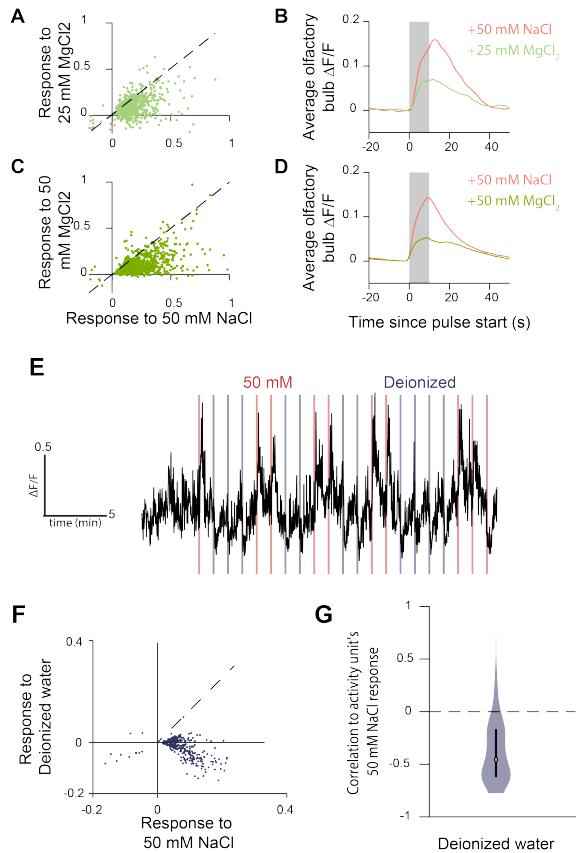

Figure S3: A. Map of mutual information with behavioral responses across all fish. **B.** Map of mutual information with NaCl concentration and behavioral responses across all fish. **C.** Location of the Raphe and interpeduncular nucleus masks within the *Z-brain*. **D.** Average responses from these regions across fish during trials where the fish attempted to swim away and those where they did not. **E.** Confusion matrix depicting *stimulus* classification accuracy of support vector machines trained from activity in the raphe and interpeduncular nucleus. **F.** Confusion matrix depicting *behavioral response* classification accuracy of support vector machines trained from the dorsal raphe and interpeduncular nucleus.

Figure S4: A. Epifluorescence images of fish stained with FM1-43 to label neuromasts (red) B. Maximum intensity projections of the average fluorescence during 2-photon imaging experiments following treatment with different concentrations of copper sulfate. Red arrows indicate where the nasal neuromasts should be located. C. Behavioral response rate to 50 mM NaCl if the stimulus is presented to the tail or to the head (Wilcoxon signed-rank test, $p < 0.01$). Gray lines indicate individual fish. Tail experiment always preceded head experiment.

Figure S5: Hunger state modulates eye position and bout-type selection. **A.** Maximum intensity projection of two-photon stack of *OMP:Gal4/UAS:GCaMP6S* positive fish with location of NaCl responsive units overlaid (red). **B.** Average fraction of activity units in the olfactory epithelia of *OMP:Gal4/UAS:GCaMP6S* positive fish that were deemed to be active during 25 mM or 50 mM NaCl pulses and after applying the same criteria to shuffled traces (error bars indicate SEM across fish). **C.** Maximum intensity projection of two-photon stack of *TRPC2:Gal4/UAS:GCaMP6S* positive fish with location of NaCl responsive units overlaid (red). **D.** Average fraction of activity units in the olfactory epithelia of *TRPC2:Gal4/UAS:GCaMP6S* positive fish that were deemed to be active during 25 mM or 50 mM NaCl pulses and after applying the same criteria to shuffled traces (error bars indicate SEM across fish).

Figure S6: Subdividing bout-classes by kinematic parameters to get bout-types. **A.** Scatter plot of unit's response to 50 mM NaCl versus 25 mM MgCl₂. **B.** Average activity induced across the olfactory bulb by 50 mM NaCl and 25 mM MgCl₂. **C.** Scatter plot of unit's response to 50 mM NaCl versus 50 mM MgCl₂. **D.** Average activity induced across the olfactory bulb by 50 mM NaCl and 50 mM MgCl₂. **E.** Sample calcium trace from a fish stimulated with pulses of 50 mM NaCl and deionized water. **F.** Scatter plot of each unit's peak calcium response to NaCl and to deionized water response. Each circle represents one unit. **G.** Violin plot that illustrates distribution of the correlation of a unit's calcium signal in response to NaCl with its response to deionized water. Bars in violin plots indicate median \pm 25%.

519 **Supplementary Video Legends**

Figure SV1: Animation of brain-wide imaging preparation.