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Abstract

We introduce a class of high order accurate, semi-implicit Runge-Kutta schemes

in the general setting of evolution equations that arise as gradient flow for a cost

function, possibly with respect to an inner product that depends on the solution,

and we establish their energy stability. This class includes as a special case high

order, unconditionally stable schemes obtained via convexity splitting. The

new schemes are demonstrated on a variety of gradient flows, including partial

differential equations that are gradient flow with respect to the Wasserstein

(mass transport) distance.

1. Introduction

We are concerned with numerical schemes for evolution equations that arise

as gradient flow (steepest descent) for an energy E : H → R, where H is a

Hilbert space with inner product 〈·, ·〉:

u′ = −∇HE(u). (1.1)

Additionally, we will study gradient flows with a solution dependent inner prod-

uct:

u′ = −L(u)∇HE(u) (1.2)
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where L(u) is a positive definite operator that depends on u.

Equations (1.1) and (1.2) may represent (scalar or vectorial) ordinary or

partial differential equations. One property of (1.1) and (1.2) is dissipation:

d
dtE(u) ≤ 0, to see this

d

dt
E(u) = 〈∇HE(u), u′〉 = −〈∇HE(u),L(u)∇HE(u)〉 ≤ 0.

In [1], the authors focused on unconditionally stable numerical methods to solve

(1.1). In this paper, our focus is on semi-implicit methods that come with a

rigorously established energy stability property inherited from the above expres-

sion of dissipation. Specifically, let

E(u) = E1(u) + E2(u) (1.3)

where in our numerical implementation we will handle E1 implicitly and E2

explicitly. We allow any choice for E1 and E2 as long as (1.3) is satisfied. Our

numerical methods will guarantee that when the time step is less than a constant

depending only on E2 the following numerical dissipation property will hold:

E(un+1) ≤ E(un) (1.4)

where un denotes the approximation to the solution at the n-th time step.

A common, but typically only first order accurate, semi-implicit scheme for

the abstract equation (1.1), with time step size k > 0, reads

un+1 − un
k

= −∇HE1(un+1)−∇HE2(un). (1.5)

Let L2(u, un) be the linearization of E2 around un so

L2(u, un) = E2(un) + 〈∇HE2(un), u− un〉.

Then (1.5) is the Euler-Lagrange equation for the optimization problem

un+1 = arg min
u

E1(u) + L2(u, un) +
1

2k
‖u− un‖2 (1.6)

where ‖ · ‖2 = 〈·, ·〉. For

Λ = max{0, max
u,‖v‖=1

D2E2(u)
(
v, v
)
}, (1.7)
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where by D2E2(u)
(
v, w

)
we mean d2

dε2dε1
E2(u+ ε1v + ε2w)

∣∣∣
ε1=ε2=0

, we have

E2(u) ≤ L2(u, p) +
Λ

2
‖u− p‖2 (1.8)

for any u and p. It follows that when k ≤ 1
Λ ,

E(un+1) = E1(un+1) + E2(un+1) ≤ E1(un+1) + L2(un+1, un) +
1

2k
‖un+1 − un‖2

≤ E1(un) + L2(un, un) +
1

2k
‖un − un‖2 = E1(un) + E2(un) = E(un),

so that scheme (1.5) is stable under this condition on the time step k, provided

that optimization problem (1.6) can be solved. In practice, this discussion

requires finding an upper bound on Λ in (1.7). Sometimes this is trivial, for

instance when E2 is quadratic. In many other cases, energy dissipation (1.4)

can ensure solutions generated by scheme (1.5) remain small in an appropriate

sense, giving an easy upper bound on Λ, which in turn guarantees continued

energy dissipation; this is true, for instance, in the case of schemes for the 1D

Allen-Cahn and Cahn-Hilliard equations discussed in section 5 as numerical

examples. In any case, we assume there is already a scheme of the form (1.5)

that is of practical interest, save for its low order of accuracy – this is our starting

point. One of our main goals in this paper is to jack up the order of accuracy

of such an existing semi-implicit scheme in a universal (problem independent)

and painless fashion, by essentially calling the same code used to implement the

first order scheme (1.5) itself multiple times per time step, and at the expense

of replacing the stability parameter (1.7) by one that is not substantially worse

or harder to bound. In particular, unconditionally stable schemes of the form

(1.5) remain so.

Our new class of methods has no assumption (e.g. convexity, concavity) on

the components E1 and E2 of the energy that are treated implicitly and ex-

plicitly, respectively. We note that depending on the problem, E1(u) may need

to be convex to ensure the unique solvability in (1.5). But this is not always

necessary, for example see [2] where E1(u) is concave and E2(u) = 0. Our

methods do not impose constraints on E1(u) and E2(u) past what is needed to
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solve (1.5) and have at least up to third order accuracy. Our stability results are

conditional, but revert to unconditional stability when E1 and E2 have appro-

priate convexity properties, and contain as a special case previous unconditional

stability results for high order, convexity splitting type schemes. In particular,

the previous papers [3, 4] on higher order ARK IMEX energy stable schemes

study, in the spirit of convexity splitting [5], formulations that break up the

energy into convex and concave parts, and treat the convex part implicitly and

the concave part explicitly. We know of no other work on problem independent

ARK IMEX methods that ensures energy stability in the very strong sense of

(1.4).

It should be mentioned that numerical schemes for gradient flows and their

stability, particularly in the context of phase-field models such as Allen-Cahn

and Cahn-Hilliard equations that are included as examples in the present paper,

have a long history. Since in practice one is interested in simulating the dynamics

of these equations for very long times, numerical methods with robust stability

properties, such as implicit and semi-implicit schemes, together with ideas such

as convexity splitting, have attracted much attention, see e.g. [4, 6, 7, 8]. Many

earlier works develop and study schemes in the context of specific equations

and models, such as the phase-field crystal equations in addition to various

versions of Allen-Cahn and Cahn-Hilliard, sometimes with complete proofs of

convergence e.g. [9, 10, 11, 12, 13]. They include second order accurate in time

methods (e.g. [14, 15, 16, 17, 18, 19, 20], as well as third order in time methods,

e.g. [21, 22, 23]. While the high order, energy stable (in the very strong sense of

(1.4)) multi-stage schemes we develop in this paper are problem independent,

going further to establish convergence based on these important consistency and

stability properties may of course require using additional information about the

specific equation being approximated.

Another goal of the present paper is extending these high order, stable,

implicit and semi-implicit methods for general gradient flows to solve (1.2),

the case when the inner product is solution dependent. There are certainly

existing stable methods for (1.2) on a case by case basis, for example for the
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Cahn-Hillard equation with degenerate mobility [24, 25] and the porous medium

equation [26, 27, 28]. To our knowledge, this is the first time high order multi-

stage schemes for general gradient flows with solution dependent inner products

have been developed that are guaranteed to dissipate the original energy from

one time step to the next, as in (1.4).

The rest of the paper is organized as follows:

• Section 2 presents the conditions for energy stability and constructs schemes

that satisfy them.

• In section 3, we state the consistency equations for the ARK IMEX

schemes for solving gradient flows (1.1) and give 2nd and 3rd order exam-

ples.

• Section 4 gives 2nd and 3rd order methods for solving gradient flows with

solution dependent inner product (1.2) and provides consistency calcula-

tions.

• In section 5, we present numerical convergence studies of several well-

known partial differential equations that are gradient flows, including with

respect to Wasserstein metrics.

The code for section 5 is publicly available, and can be found at https://

github.com/AZaitzeff/SIgradflow.

2. Stability of Our New Schemes

In this section, we formulate a wide class of numerical schemes that are

energy stable by construction. The first of these schemes are Implicit-Explicit

Additive Runge-Kutta (ARK IMEX) schemes, but we will write them in vari-

ational form in order to prove energy stability more easily. The variational

formulation of our M -stage ARK IMEX scheme is:

1. Set U0 = un.
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2. For m = 1, . . . ,M :

Um = arg min
u

(
E1(u) +

m−1∑
i=0

θm,iL2(u, Ui) +
m−1∑
i=0

γm,i
2k
‖u− Ui‖2

)
. (2.1)

where

L2(u, p) = E2(p) + 〈∇HE2(p), u− p〉. (2.2)

3. Set un+1 = UM .

We assume that (2.1) has a unique solution at every step; just like for the

original first order scheme (1.5) & (1.6) that is our starting point, this may in

general entail a restriction on the time step size k. We reiterate that the energy

is defined over an arbitrary Hilbert space, H. The norm in (2.1) is with respect

to the inner product of H.

The schemes for approximating a gradient flow with respect to a solution

dependent inner product will be a series of embedded ARK IMEX methods.

The inner product will be fixed for each ARK IMEX step, allowing the stability

results of this section to apply. Now we establish quite broad conditions on

the coefficients γm,i and θm,i that ensure conditional energy dissipation (1.4).

Before we state and prove the conditions in generality, consider the following

two-stage special case of scheme (2.1):

U1 = arg min
u

(
E1(u) + L2(u, un) +

γ1,0
2k
‖u− un‖2

)
, (2.3)

un+1 = arg min
u

(
E1(u) + θ2,1L2(u, U1) + θ2,0L2(u, un)

+
γ2,0
2k
‖u− un‖2 +

γ2,1
2k
‖u− U1‖2

) (2.4)

Let Λ = max{0,maxu,‖v‖=1D
2E2(u)

(
v, v
)
}. Note that this implies

E2(u) ≤ L2(u, p) +
Λ

2
‖u− p‖2 (2.5)

for any u and p. Also note that L2(u, u) = E2(u). Impose the conditions

γ1,0 − kΛ− (γ2,0 − kΛθ2,0)2

(γ2,0 + γ2,1 − kΛθ2,0 − kΛθ2,1)
≥ 0,

γ2,1 + γ2,0 − kΛθ2,0 − kΛθ2,1 > 0,

θ2,1 + θ2,0 = 1 and

θ2,1, θ2,0 ≥ 0

(2.6)
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on the parameters. Set µ =
γ2,0−kΛθ2,0

γ2,0+γ2,1−kΛθ2,0−kΛθ2,1
. First note that (2.4) is

equivalent to

un+1 = arg min
u

E1(u) + θ2,1L2(u, U1) + θ2,0L2(u, un) + θ2,1
Λ

2
‖u− U1‖2 +

θ2,0
Λ

2
‖u− un‖2 +

γ2,0 + γ2,1 − kΛθ2,0 − kΛθ2,1
2k

∥∥u− (µun + (1− µ)U1

)∥∥2 . (2.7)

This can be seen by expanding the norm squared and comparing the quadratic

and linear terms in u. With these tools in hand we can prove energy dissipation:

E(un+1)

=E1(un+1) + E2(un+1)

≤E1(un+1) + θ2,1[L2(un+1, U1) +
Λ

2
‖un+1 − U1‖2]

+ θ2,0[L2(un+1, un) +
Λ

2
‖un+1 − un‖2] (by (2.5))

≤E1(un+1) + θ2,1[L2(un+1, U1) +
Λ

2
‖un+1 − U1‖2]

+ θ2,0[L2(un+1, un) +
Λ

2
‖un+1 − un‖2]

+
γ2,0 + γ2,1 − kΛθ2,0 − kΛθ2,1

2k

∥∥un+1 −
(
µun + (1− µ)U1

)∥∥2 . (by (2.6))

≤E1(U1) + θ2,1E2(U1) + θ2,0[L2(U1, un) +
Λ

2
‖U1 − un‖2]

+
γ2,0 + γ2,1 − kΛθ2,0 − kΛθ2,1

2k

∥∥U1 −
(
µun + (1− µ)U1

)∥∥2 (by (2.7))

≤E1(U1) + θ2,1[L2(U1, un) +
Λ

2
‖U1 − un‖2]

+ θ2,0[L2(U1, un) +
Λ

2
‖U1 − un‖2]

+
(γ2,0 − kΛθ2,0)2

(γ2,0 + γ2,1 − kΛθ2,0 − kΛθ2,1)2k
‖U1 − un‖2 (by (2.5))

≤E1(U1) + [L2(U1, un) +
Λ

2
‖U1 − un‖2] +

γ1,0 − kΛ

2k
‖U1 − un‖2 (by (2.6))

≤E(un). (by (2.3))

The first two conditions of (2.6) require k to be below a certain threshold. Hence

the dissipation of (2.3) & (2.4) is conditional, unless E2 happens to be concave

in which case these two conditions are satisfied for all k > 0.

We will now extend this discussion to general, M -stage case of scheme (2.1):
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Theorem 2.1. Fix a time step k. Define Λ = max{0,maxu,‖v‖=1D
2E2(u)

(
v, v
)
}

and the following auxiliary quantities in terms of the coefficients γm,i and θm,i

of scheme (2.1):

γ̃m,i = γm,i − kΛθm,i −
M∑

j=m+1

γ̃j,i
S̃j,m

S̃j,j
, (2.8)

S̃j,m =
m−1∑
i=0

γ̃j,i (2.9)

If S̃m,m > 0 for m = 1, . . . ,M , θm−1,i ≥ θm,i ≥ 0 and
∑m−1
i=0 θm,i = 1,

then scheme (2.1) satisfies the energy stability condition (1.4): For every n =

0, 1, 2, . . . we have E(un+1) ≤ E(un).

As we will see in section 3, the conditions on the parameters γi,j and θm,i

of scheme (2.1) imposed in theorem 2.1 are loose enough to enable meeting

consistency conditions to high order. We will establish theorem 2.1 with the

help of a couple of lemmas:

Lemma 2.2. Let the auxiliary quantities S̃j,m, and γ̃m,i be defined as in theo-

rem 2.1. We have

arg min
u

E1(u) +

m−1∑
i=0

θm,iL2(u, Ui) +

m−1∑
i=0

γm,i

2k
‖u− Ui‖2

= arg min
u

E1(u) +

m−1∑
i=0

θm,i[L2(u, Ui) +
Λ

2
‖u− Ui‖2] +

1

2k

M∑
j=m

S̃2
j,m

S̃j,j

∥∥∥∥∥u−
m−1∑
i=0

γ̃j,i

S̃j,m

Ui

∥∥∥∥∥
2

.

Proof. As in the two step case the proof consists of expanding the norm squared

terms and showing that all the quadratic and linear terms of u are equal. First,

the expansion of
∑m−1
i=0

γm,i
2k ‖u− Ui‖

2 is

‖u‖2

2k

m−1∑
i=0

γm,i −
1

k
〈u,

m−1∑
i=0

γm,iUi〉+ terms that do not depend on u. (2.10)

Next, we will establish two identities to help us expand

1

2k

M∑
j=m

S̃2
j,m

S̃j,j

‖u−
m−1∑
i=0

γ̃j,i

S̃j,m

Ui‖2.

First by rearranging (2.8),

γm,i − kΛθm,i =

M∑
j=m

γ̃j,i
S̃j,m

S̃j,j

. (2.11)

8



Next, an identity of S̃m,m:

S̃m,m =

m−1∑
i=0

γ̃m,i =

m−1∑
i=0

[
γm,i − kΛθm,i −

M∑
j=m+1

γ̃j,i
S̃j,m

S̃j,j

]

=

m−1∑
i=0

[
γm,i − kΛθm,i

]
−

M∑
j=m+1

[m−1∑
i=0

γ̃j,i

]
S̃j,m

S̃j,j

=

m−1∑
i=0

[
γm,i − kΛθm,i

]
−

M∑
j=m+1

S̃2
j,m

S̃j,j

.

We use this identity to establish the following:

M∑
j=m

S̃2
j,m

S̃j,j

= S̃m,m +

M∑
j=m+1

S̃2
j,m

S̃j,j

=

m−1∑
i=0

[
γm,i − kΛθm,i

]
(2.12)

Now we can calculate the expansion:

1

2k

M∑
j=m

S̃2
j,m

S̃j,j

‖u−
m−1∑
i=0

γ̃j,i

S̃j,m

Ui‖2 +
1

2

m−1∑
i=0

θm,iΛ ‖u− Ui‖2

=
‖u‖2

2k

M∑
j=m

S̃2
j,m

S̃j,j

− 1

k
〈u,

m−1∑
i=0

M∑
j=m

γ̃j,i
S̃j,m

S̃j,j

Ui〉+
Λ

2
‖u‖2

m−1∑
i=0

θm,i − Λ

m−1∑
i=0

〈u, θm,iUi〉

+ terms that do not depend on u

=
‖u‖2

2k

m−1∑
i=0

γm,i −
1

k
〈u,

m−1∑
i=0

γm,iUi〉+ terms that do not depend on u.

Where the last equality follows from (2.11) and (2.12). Since this expansion

matches (2.10) up to a constant in u the proof is complete.

Lemma 2.3. Let Λ and the auxiliary quantities S̃j,m, γ̃m,i be given in theo-

rem 2.1. Additionally, let S̃m,m > 0 for m = 1, . . . ,M . Then

E1(Um) +

m−1∑
i=0

θm,i[L2(Um, Ui) +
Λ

2
‖Um − Ui‖2] +

1

2k

M∑
j=m

S̃2
j,m

S̃j,j

∥∥∥∥∥Um −
m−1∑
i=0

γ̃j,i

S̃j,m

Ui

∥∥∥∥∥
2

≤E1(Um−1) +

m−2∑
i=0

θm−1,i[L2(Um−1, Ui) +
Λ

2
‖Um−1 − Ui‖2]

+
1

2k

M∑
j=m−1

S̃2
j,m−1

S̃j,j

∥∥∥∥∥Um−1 −
m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui

∥∥∥∥∥
2

Proof. By (2.1) & lemma 2.2,

Um = arg min
u

E1(u)+

m−1∑
i=0

θm,i[L2(u, Ui)+
Λ

2
‖u− Ui‖2]+

1

2k

M∑
j=m

S̃2
j,m

S̃j,j

‖u−
m−1∑
i=0

γ̃j,i

S̃j,m

Ui‖2.
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Since Um is the minimizer of the above optimization problem

E1(Um) +

m−1∑
i=0

θm,i[L2(Um, Ui) +
Λ

2
‖Um − Ui‖2]

+
1

2k

M∑
j=m

S̃2
j,m

S̃j,j

∥∥∥∥∥Um −
m−1∑
i=0

γ̃j,i

S̃j,m

Ui

∥∥∥∥∥
2

≤E1(Um−1) + θm,m−1E2(Um−1) +

m−2∑
i=0

θm,i[L2(Um−1, Ui) +
Λ

2
‖Um−1 − Ui‖2]

+
1

2k

M∑
j=m

S̃2
j,m

S̃j,j

∥∥∥∥∥Um−1 −
m−1∑
i=0

γ̃j,i

S̃j,m

Ui

∥∥∥∥∥
2

.

(2.13)

We give two inequalities to aid us in the proof. First, using the definition of

the auxiliary variables, we can state an identity that will simplify (2.13). For

m > 1 and j ≥ m

S̃2
j,m

S̃j,j

∥∥∥∥∥Um−1 −
m−1∑
i=0

γ̃j,i

S̃j,m

Ui

∥∥∥∥∥
2

=
S̃2
j,m

S̃j,j

∥∥∥∥∥Um−1

(
1− γ̃j,m−1

S̃j,m

)
−

m−2∑
i=0

γ̃j,i

S̃j,m

Ui

∥∥∥∥∥
2

=
S̃2
j,m

S̃j,j

∥∥∥∥∥Um−1

(
S̃j,m−1

S̃j,m

)
−

m−2∑
i=0

γ̃j,i

S̃j,m

Ui

∥∥∥∥∥
2

=
S̃2
j,m−1

S̃j,j

∥∥∥∥∥Um−1 −
m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui

∥∥∥∥∥
2

.

(2.14)

Now since S̃m−1,m−1 > 0,

S̃2
m−1,m−1

S̃m−1,m−1

∥∥∥∥∥Um−1 −
m−2∑
i=0

γ̃m−1,i

S̃m−1,m−1

Ui

∥∥∥∥∥
2

> 0. (2.15)

Using (2.14) and (2.15) we have

1

2k

M∑
j=m

S̃2
j,m

S̃j,j

∥∥∥∥∥Um−1 −
m−1∑
i=0

γ̃j,i

S̃j,m

Ui

∥∥∥∥∥
2

=
1

2k

M∑
j=m

S̃2
j,m−1

S̃j,j

∥∥∥∥∥Um−1 −
m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui

∥∥∥∥∥
2

≤ 1

2k

M∑
j=m−1

S̃2
j,m−1

S̃j,j

∥∥∥∥∥Um−1 −
m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui

∥∥∥∥∥
2

. (2.16)

Next, since
∑m−1
i=1 θm,i = 1 for all m we have the equality

θm,m−1 = 1−
m−2∑
i=0

θm,i =
m−2∑
i=0

θm−1,i −
m−2∑
i=0

θm,i. (2.17)
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Using (2.5) and (2.17), we have our second inequality:

θm,m−1E2(Um−1) +

m−2∑
i=0

θm,i[L2(Um−1, Ui) +
Λ

2
‖Um−1 − Ui‖2]

=

m−2∑
i=0

(θm−1,i − θm,i)E2(Um−1) +

m−2∑
i=0

θm,i[L2(Um−1, Ui) +
Λ

2
‖Um−1 − Ui‖2]

≤
m−2∑
i=0

(θm−1,i − θm,i)[L2(Um−1, Ui) +
Λ

2
‖Um−1 − Ui‖2]

+

m−2∑
i=0

θm,i[L2(Um−1, Ui) +
Λ

2
‖Um−1 − Ui‖2]

=

m−2∑
i=0

θm−1,i[L2(Um−1, Ui) +
Λ

2
‖Um−1 − Ui‖2].

(2.18)

Using inequalities (2.16) and (2.18), we have that (2.13) is less than or equal to

E1(Um−1) +

m−2∑
i=0

θm−1,i[L2(Um−1, Ui) +
Λ

2
‖Um−1 − Ui‖2]

+
1

2k

M∑
j=m−1

S̃2
j,m−1

S̃j,j

∥∥∥∥∥Um−1 −
m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui

∥∥∥∥∥
2

,

concluding the proof.

Proof. (of theorem) The main idea of the proof is to use lemma 2.3 repeatedly

to relate the energy of E(un+1) to E(un). First, by (2.5) and our assumption

that S̃M,M > 0

E(un+1) = E1(UM ) + E2(UM )

≤ E1(UM ) +

M−1∑
i=0

θM,i[L2(UM , Ui) +
Λ

2
‖UM − Ui‖2]

+
1

2k

S̃2
M,M

S̃M,M

‖UM −
M−1∑
i=0

γ̃M,i

S̃M,M

Ui‖2.
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By using the lemma 2.3 repeatedly we have

E1(UM ) +

M−1∑
i=0

θM,i[L2(UM , Ui) +
Λ

2
‖UM − Ui‖2] +

1

2k

S̃2
M,M

S̃M,M

‖UM −
M−1∑
i=0

γ̃M,i

S̃M,M

Ui‖2

≤E1(UM−1) +

M−2∑
i=0

θM−1,i[L2(UM−1, Ui) +
Λ

2
‖UM−1 − Ui‖2]

+
1

2k

M∑
j=M−1

S̃2
j,M−1

S̃j,j

∥∥∥∥∥UM−1 −
M−2∑
i=0

γ̃j,i

S̃j,M−1

Ui

∥∥∥∥∥
2

...

≤E1(U1) + L2(U1, U0) +
Λ

2
‖U1 − U0‖2 +

1

2k

M∑
j=1

S̃2
j,1

S̃j,j

‖U1 −
γ̃j,0

S̃j,1

U0‖2.

By (2.1) and lemma 2.2,

U1 = arg min
u

E1(u) + L2(u, U0) +
Λ

2
‖u− U0‖2 +

1

2k

M∑
j=1

S̃2
j,1

S̃j,j

‖u− γ̃j,0

S̃j,1

U0‖2,

so

E1(U1) + L2(U1, U0) +
Λ

2
‖U1 − U0‖2 +

1

2k

M∑
j=1

S̃2
j,1

S̃j,j

‖U1 −
γ̃j,0

S̃j,1

U0‖2

≤E1(U0) + E2(U0) +
Λ

2
‖U0 − U0‖2 +

1

2k

M∑
j=1

S̃2
j,1

S̃j,j

‖U0 − U0‖2

=E(un),

completing the proof of the theorem.

Remark 2.4. In the above proof, we assume that E2(u) is two times differ-

entiable. This assumption can be dropped if we replace L2(u, p) with another

approximation A2(u, p) that has the properties A2(u, u) = E2(u) and for some

choice Λ, E2(u) ≤ A2(u, p) + Λ
2 ‖u− p‖

2
for all u and p.

3. Examples of the New Schemes for Gradient Flows

In this section, we give examples of high order semi-implicit schemes for

gradient flows, for any desired choice of implicit and explicit terms E1 and E2,

that are energy stable under the conditions of theorem 2.1. First, we give the

conditions on γm,i and θm,i in scheme (2.1) to ensure high order consistency

12



with the abstract evolution law (1.1). Recall that U0 = un. From (2.1), each

stage Um satisfies the Euler-Lagrange equation:[m−1∑
i=0

γm,i

]
Um + k∇HE1(Um) = −

m−1∑
i=0

kθm,i∇HE2(Ui) +
m−1∑
i=0

γm,iUi. (3.1)

Equation (3.1) is equivalent to the form more often seen for ARK IMEX meth-

ods:

Um = U0 − k
m∑
i=1

αm,i∇HE1(Ui)− k
m−1∑
i=1

α̃m,i∇HE2(Ui) (3.2)

where αm,i and α̃m,i depend on γm,i and θm,i. The consistency equations for

ARK IMEX methods have been previously worked out [3, 29, 30, 31]. As such,

we will state without proof the conditions required to achieve various orders of

accuracy in terms of γ and θ:

Claim 3.1. Let Ui be given in (2.1). The Taylor expansion of Ui at each stage

has the form:

Ui = U0 − kβ1,iDE(U0) + k2
[
β2,iD

2E1(U0)DE(U0) + β3,iD
2E2(U0)DE(U0)

]
− k3

[
β4,iD

2E1(U0)
(
D2E1(U0) (DE(U0))

)
+ β5,iD

2E1(U0)
(
D2E2(U0) (DE(U0))

)
+ β6,iD

2E2(U0)
(
D2E1(U0) (DE(U0))

)
+ β7,iD

2E2(U0)
(
D2E2(U0) (DE(U0))

)
+ β8,iD

3E1(U0)
(
DE(U0), DE(U0)

)
+ β9,iD

3E2(U0)
(
DE(U0), DE(U0)

)]
+ h.o.t.

(3.3)

where for l ∈ {1, 2, 3, . . .}, DlE(u) : H l → R denotes the multilinear form given

by

DlE(u)
(
v1, . . . , vn

)
=

∂l

∂s1 · · · ∂sl
E(u+ s1v1 + s2v2 + · · ·+ slvl)

∣∣∣∣
s1=s2=···=sl=0

so that the linear functional DlE(u)
(
v1, v2, . . . , vl−1, ·

)
: H → R may be identi-

fied with an element of H, and so on. The coefficients of (3.3) obey the following

recursive relations:

13



β1,0 = β2,0 = . . . = β9,0 = 0,

β1,m =
1

Sm

[
1 +

m−1∑
i=1

γm,iβ1,i

]
,

β2,m =
1

Sm

[
β1,m +

m−1∑
i=1

γm,iβ2,i

]
,

β3,m =
1

Sm

[m−1∑
i=0

θm,iβ1,i +
m−1∑
i=1

γm,iβ3,i

]
,

β4,m =
1

Sm

[
β2,m +

m−1∑
i=1

γm,iβ4,i

]
,

β5,m =
1

Sm

[
β3,m +

m−1∑
i=1

γm,iβ5,i

]
,

β6,m =
1

Sm

[m−1∑
i=0

θm,iβ2,i +
m−1∑
i=1

γm,iβ6,i

]
,

β7,m =
1

Sm

[m−1∑
i=0

θm,iβ3,i +

m−1∑
i=1

γm,iβ7,i

]
,

β8,m =
1

Sm

[
β2

1,m

2
+
m−1∑
i=1

γm,iβ8,i

]
,

β9,m =
1

Sm

[
1

2

m−1∑
i=0

θm,iβ
2
1,i +

m−1∑
i=1

γm,iβ9,i

]
,

(3.4)

with Sm =
∑m−1
i=0 γm,i. Furthermore, the following conditions for un+1 =

UM in scheme (2.1) are necessary and sufficient for various orders of accuracy:

First Order: Second Order: Third Order:

β1,M = 1 β1,M = 1 β1,M = 1

β2,M = 1/2 β2,M = 1/2 (3.5)

β3,M = 1/2 β3,M = 1/2

β4,M = β5,M = . . . = β9,M = 1/6.

Now, we give a second order and a third order example of method (2.1). All

14



of those coefficients in our examples are rational values, albeit with long repre-

sentations. For simplicity, we give rounded decimal values here. The coefficients

to machine precision as well as code to verify theorem 2.1 and claim 3.1 can be

found at https://github.com/AZaitzeff/SIgradflow. However, The exam-

ples we give are not unique by any means. We begin with a five step method

that is second order accurate:

θ ≈



1. 0 0 0 0

0.009 0.991 0 0 0

0.009 0.991 0 0 0

0 0 0 1. 0

0 0 0 1. 0


,

γ ≈



8.841 0 0 0 0

−0.925 5.360 0 0 0

−4.443 6.041 0.950 0 0

−3.288 5.895 −0.351 0.172 0

−3.895 −0.335 4.964 −1.722 7.684



(3.6)

which is stable for kΛ ≤ 3/872. Next we have a thirteen step method that
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is third order accurate:

θ ≈



1. 0 0 0 0 0 0 0 0 0 0 0 0

0.049 0.951 0 0 0 0 0 0 0 0 0 0 0

0.024 0.075 0.901 0 0 0 0 0 0 0 0 0 0

0.017 0.042 0.113 0.829 0 0 0 0 0 0 0 0 0

0.012 0.029 0.071 0.386 0.501 0 0 0 0 0 0 0 0

0.01 0.023 0.06 0.366 0.457 0.085 0 0 0 0 0 0 0

0.007 0.018 0.05 0.351 0.437 0.06 0.076 0 0 0 0 0 0

0.003 0.005 0.006 0.008 0.009 0.011 0.028 0.929 0 0 0 0 0

0.002 0.002 0.002 0.002 0.003 0.004 0.009 0.029 0.948 0 0 0 0

0 0.001 0.001 0.001 0.001 0.002 0.004 0.007 0.011 0.971 0 0 0

0 0 0.001 0.001 0.001 0.001 0.003 0.005 0.008 0.912 0.069 0 0

0 0 0 0 0 0.001 0.002 0.003 0.005 0.107 0.025 0.857 0

0 0 0 0 0 0 0.001 0.001 0.002 0.013 0.007 0.018 0.958



,

γ ≈



11. 0 0 0 0 0 0 0 0 0 0 0 0

2.1 15.5 0 0 0 0 0 0 0 0 0 0 0

1.4 1.6 17. 0 0 0 0 0 0 0 0 0 0

0.2 1.6 −2.4 18.1 0 0 0 0 0 0 0 0 0

0.3 −8.5 3. 9.6 7.8 0 0 0 0 0 0 0 0

−1.4 −5.9 −0.1 2. 8. 4.1 0 0 0 0 0 0 0

−4. −0.5 −0.4 −1.8 5.1 6.8 0.9 0 0 0 0 0 0

−9.2 4.8 2.7 −3.2 2.5 6.2 2.5 4.6 0 0 0 0 0

−1.7 −3.6 −0.1 1.3 5.7 3.4 −0.8 −0.8 0.4 0 0 0 0

−2.7 −3.5 0.6 1.4 6.1 3.5 −0.7 −0.2 −0.4 0.5 0 0 0

5.9 −4.8 −5.1 −3.1 3.4 6.6 −0.7 −5.2 4.9 −0.8 8.2 0 0

7.1 0.9 −3.1 −2.7 −5.8 −1.9 0.6 −3.4 4.3 −1.3 9.2 9.1 0

3.8 1.9 2.7 2.1 −7.5 −10.6 −1.2 2. 0.7 −0.2 −0.2 9.5 12.8


(3.7)

which is stable if kΛ ≤ 18/28567.

The energy stability and consistency of the schemes discussed above can

often be readily harnessed to establish their convergence. For instance, this can

be accomplished with quite familiar arguments in the context of Allen-Cahn

and Cahn-Hilliard equations. Demonstrations of this, at the expected rate of

convergence, is an important supplement of the present work that will be taken

up in a subsequent contribution.

In the following section, we consider methods for (1.2), when the inner prod-

uct changes with the solution.

4. Schemes for Solving Gradient Flows with Solution Dependent In-

ner Product

Now we move on to the problem of simulating flow (1.2),

u′ = −L(u)∇HE(u).
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We consider the case where L(u) is strictly positive definite. Our approach will

be as follows:

1. Generate a u∗ from un.

2. Construct L(u∗).

3. Use the algorithm (2.1) with norm ‖·‖2L−1(u∗) = 〈·,L−1(u∗)·〉 to generate

un+1.

One advantage to constructing L(u∗) and then using it in (2.1) is that the-

orem 2.1 immediately gives conditional energy stability for coefficients such as

(3.6) or (3.7). Thus, we only need to consider what choice of u∗ will give our

algorithm the desired level of accuracy. Now at every step we are solving[m−1∑
i=0

γm,i

]
Um + kL(u∗)∇HE1(Um) = −kL(u∗)

m−1∑
i=0

θm,i∇HE2(Ui) +

m−1∑
i=0

γm,iUi.

(4.1)

We will set up the consistency equations for (1.2). Let un = u(t0). For conve-

nience, denote L(un) as Ln and E(un) as En. We begin with the exact solution

starting from u(t0): ut = −L(u)∇E(u) t > t0

u(t0) = U0

By Taylor expanding around t0 we find

u(k + t0) = u(t0) + kut(t0) +
1

2
k2utt(t0) +

1

6
k3uttt(t0) (4.2)

where the higher derivatives in time are found using (1.2):

ut(t0) =− LnDEn

utt(t0) =DLn(LnDEn)DEn + LnD
2En(LnDEn)

uttt(t0) =−DLn(DLn(LnDEn)DEn)DEn −D2Ln(LnDEn,LnDEn)DEn

−DLn(Ln(D2En(LnDEn)))DEn − 2DLn(LnDEn)D2En(LnDEn)

− LnD
2En(DLn(LnDEn))DEn − LnD

2En(LnD
2En(LnDEn))

− LnD
3En

(
LnDEn,LnDEn

)
where for l ∈ {1, 2, 3, . . .}, DlL(u) : H l → H denotes the multilinear form given

by

DlL(u)
(
v1, . . . , vl

)
=

∂l

∂s1 · · · ∂sl
L(u+ s1v1 + s2v2 + · · ·+ slvl)

∣∣∣∣
s1=s2=···=sl=0
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so that DlL(u)
(
v1, v2, . . . , vl

)
is a linear operator from H to H.

In the next two subsections, we provide second and third order examples

and accompanying consistency calculations. Both of these examples also have

the property that E(u∗) ≤ E(un).

4.1. Second Order Method

Algorithm 1 A second order method for solving gradient flows with solution

dependent inner product

Fix a time step size k > 0. Set un = u0. To obtain un+1 from un, carry out the

following steps:

1. Find u∗ by solving u∗ + 1
2kLn∇E1(u∗) = un − 1

2kLn∇E2(un).

2. Find un+1 using (4.1) with coefficients (3.6) and u∗ in L(u∗) given by step

(1) of this algorithm.

Our second order algorithm is laid out in algorithm 1. Now we will prove

that it is indeed second order. First, the expansion of u∗ is

u∗ = un −
1

2
kLnDEn +O(k2). (4.3)

We use (3.4) to get an expansion of un+1:

un+1 = un − kL(u∗)DEn +
1

2
k2L(u∗)D

2En(L(u∗)DEn) +O(k3). (4.4)

Now, expand u∗ around un in (4.4):

un+1 =un − kLnDEn − kDLn(u∗ − un)DEn

+
1

2
k2LnD2En(LnDEn) +O(k3)

=un − kLnDEn +
1

2
k2DLn(LnDEn)DEn

+
1

2
k2LnD2En(LnDEn) +O(k3).

The Taylor expansion of un+1 matches (4.2) to second order.
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4.2. Third Order Method

Algorithm 2 A third order method for solving gradient flows with solution

dependent inner product

Fix a time step size k > 0 and set un = u0. For convenience, we will

denote D2L(u∗)
(
L(u∗)∇E(u∗),L(u∗)∇E(u∗)

)
as D2L(u∗). Additionally, let

MS
(
k̃,L(u∗), ũ, γ, θ

)
denote UM obtained from the multistage algorithm

[m−1∑
i=0

γm,i

]
Um + k̃L(u∗)∇HE1(Um) = −k̃L(u∗)

m−1∑
i=0

θm,i∇HE2(Ui) +

m−1∑
i=0

γm,iUi.

with U0 = ũ. To obtain un+1 from un, carry out the following steps:

1. Let γ and θ be given by (4.5). Set u∗1 = MS
(

1
6k,L(un), un, γ, θ

)
.

2. Let γ and θ be given by (3.7). Set

ū = MS

(
1

2
k,L(u∗1)− 1

72
k2D2L(u∗1), un, γ, θ

)
.

3. Let γ = θ = (1). Set u∗2,1 = MS
(

2
5k,L(un), un, γ, θ

)
.

4. Let γ and θ be given by (4.6). Set u∗2,2 = MS
(

5
6k,L(u∗2,1), un, γ, θ

)
.

5. Let γ and θ be given by (3.7). Then

un+1 = MS

(
1

2
k,L(u∗2,2)− 1

72
k2D2L(u∗2,2), ū, γ, θ

)
.

Now we present our third order algorithm for solving (1.2). It requires the

use of two new sets of coefficients,

θ ≈


1. 0 0.

−0.667 0.333 0

0 0 1.000

 ,

γ ≈


1.833 0 0.

0.556 0.667 0

1.030 −0.026 0.159


(4.5)
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and

θ ≈



1. 0 0 0 0 0 0

0.708 0.292 0 0 0 0 0

0.013 0.018 0.969 0 0 0 0

0.008 0.012 0.867 0.113 0 0 0

0.006 0.009 0.206 0.056 0.724 0 0

0 0.005 0.05 0.025 0.053 0.867 0

0 0 0.015 0.009 0.015 0.04 0.920


,

γ ≈



7.727 0 0 0 0 0 0

0.594 2.241 0 0 0 0 0

3.056 −0.455 0.636 0 0 0 0

−1.571 5.091 −1.063 2.786 0 0 0

−3.714 3.1 −1.267 1.545 9.655 0 0

−6.923 5.1 −2.056 3.471 4.571 4.033 0

−2.467 −2.1 0.009 −0.182 0.660 7.224 9.428


,

(4.6)

to achieve particular Taylor expansions as we explain later in the section.

The values of (4.5) and (4.6) to machine precision can be found at https:

//github.com/AZaitzeff/SIgradflow.

Algorithm 2 details our third order version for solving gradient flows with

solution dependent inner product. The method adds another condition for sta-

bility to hold, namely:

L(u)− 1

72
k2D2L(u)(w,w) (4.7)

needs to be positive definite for all u and w. Now we will prove that algorithm 2

produces a third order approximation.

By applying (3.4), the coefficients (4.5) give the following expansion for u∗1 :

u∗1 = un −
1

6
kLnDEn +

1

36
k2LnD

2En(LnDEn) +O(k3) (4.8)
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Now we can expand ū by using (3.4) and expanding u∗1 around un

ū = un −
1

2
kL(u∗1)DEn +

1

8
k2L(u∗1)D2En(L(u∗1)DEn)

− 1

48
k3L(u∗1)D2En

(
L(u∗1)D2En (L(u∗1)DEn)

)
− 1

48
k3L(u∗1)D3En

(
L(u∗1)DEn,L(u∗)DEn

)
+

1

144
k3D2L(u∗1)

(
L(u∗1)DE(u∗1),L(u∗1)DE(u∗1)

)
DEn +O(k4)

= un −
1

2
kLnDEn +

1

12
k2DLn(LnDEn)DEn +

1

8
k2LnD

2En(LnDEn)

− 1

72
k3DLn(LnD

2En(LnDEn))DEn

− 1

48
k3LnD

2En(DLn(LnDEn)DEn)

− 1

48
k3DLn(LnDEn)D2En(LnDEn)

− 1

48
k3LnD

2En

(
LnD

2En (LnDEn)
)

− 1

48
k3LnD

3En

(
LnDEn,LnDEn

)
+O(k4).

(4.9)

Now we will apply the same steps to derive the expansions of u∗2,1 ,

u∗2,1 = un −
2

5
kLnDEn +O(k2), (4.10)

and u∗2,2 ,

u∗2,2 = un −
5

6
kL(u∗2,1)DEn +

11

36
k2L(u∗2,1)D2En(L(u∗2,1)DEn) +O(k3)

= un −
5

6
kLnDEn

+
1

3
k2DLn(LnDEn)DEn +

11

36
k2LnD

2En(LnDEn) +O(k3).

(4.11)

Finally, we can find the expansion of un+1. We will first apply (3.4) around ū,

un+1 = ū− 1

2
kL(u∗2,2)DE(ū) +

1

8
k2L(u∗2,2)D2E(ū)(L(u∗2,2)DE(ū))

− 1

48
k3L(u∗2,2)D2E(ū)

(
L(u∗2,2)D2E(ū)

(
L(u∗2,2)DE(ū)

))
− 1

48
k3L(u∗2,2)D3E(ū)

(
L(u∗2,2)DE(ū),L(u∗2,2)DE(ū)

)
+

1

144
k3D2L(u∗2,2)

(
L(u∗2,2)DE(u∗2,2),L(u∗2,2)DE(u∗2,2)

)
DE(ū) +O(k4),
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expand u∗2,2 ,

un+1 = ū− 1

2
kLnDE(ū) +

5

12
k2DLn(LnDEn)DE(ū) +

1

8
k2LnD

2E(ū)(LnDE(ū))

− 1

6
k3DLn(DLn(LnDEn)DEn)DE(ū)

− 1

6
k3D2Ln(LnDEn,LnDEn)DE(ū)

− 11

72
k3DLn(LnD

2En(LnDEn))DE(ū)

− 5

48
k3DLn(LnDE(ū))D2E(ū)(LnDE(ū))

− 5

48
k3LnD

2E(ū)(DLn(LnDE(ū))DE(ū))

− 1

48
k3LnD

2E(ū)
(
LnD

2E(ū) (LnDE(ū))
)

− 1

48
k3LnD

3E(ū)
(
LnDE(ū),LnDE(ū)

)
+O(k4),

then expand ū around un:

un+1 = un − kLnDEn +
1

2
k2DLn(LnDEn)DEn +

1

2
k2LnD

2En(LnDEn)

− 1

6
k3DLn(DLn(LnDEn)DEn)DEn

− 1

6
k3D2Ln(LnDEn,LnDEn)DEn

− 1

6
k3DLn(LnD

2En(LnDEn))DEn

− 1

3
k3DLn(LnDEn)D2En(LnDEn)

− 1

6
k3LnD

2En(DLn(LnDEn)DEn)

− 1

6
k3LnD

2En

(
LnD

2En (LnDEn)
)

− 1

6
k3LnD

3En

(
LnDEn,LnDEn

)
+O(k4).

The Taylor expansion of un+1 matches (4.2) to third order. As long as (4.7)

holds,

E(un+1) ≤ E(ū) ≤ E(un)

by theorem 2.1.

Remark 4.1. In algorithm 1 and algorithm 2, we can instead handle E(u) fully

implicitly as the authors do in [1]. We give these fully implicit versions of the

algorithms in Appendix A.
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5. Numerical Examples

In this section, we will apply the second and third order accurate condition-

ally stable schemes to a variety of gradient flows, some with fixed inner product

and some with solution dependent inner product. Careful numerical conver-

gence studies are presented in each case to verify the anticipated convergence

rates of previous sections.

5.1. Gradient Flows with Fixed Inner Product

Figure 1: The double well potentials used in the Allen-Cahn (5.1) and Cahn-Hilliard (5.3)

equations: One with unequal depth wells and the other with equal depth wells.

Figure 2: The initial condition (black) and the solution at final time (gray) in the numerical

convergence study on the 1D Allen-Cahn equation (5.1) with a potential that has unequal

depth wells.

We start with the Allen-Cahn equation

ut = ∆u−W ′(u) (5.1)
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Number of

time steps 29 210 211 212 213

L2 error (2nd order) 2.08e-01 5.96e-02 1.61e-02 4.22e-03 1.08e-03

Order - 1.81 1.89 1.94 1.97

L2 error (3rd order) 2.06e-03 3.26e-04 4.68e-05 6.32e-06 8.33e-07

Order - 2.66 2.80 2.89 2.92

Table 1: The new second (3.6) and third (3.7) order accurate, conditionally stable schemes

(2.1) on the one-dimensional Allen-Cahn equation (5.1) with a traveling wave solution.

where W : R→ R is a double-well potential. This corresponds to gradient flow

for the energy

E(u) =

∫
1

2
‖∇u‖2 +W (u) dx (5.2)

with respect to the L2 inner product.

First, we consider equation (5.1) in one space dimension, with the potential

W (u) = 8u − 16u2 − 8
3u

3 + 8u4. This is a double well potential with unequal

depth wells; see fig. 1. In this case, equation (5.1) is well-known to possess

traveling wave solutions on x ∈ R, see fig. 2. We choose the initial condition

u(x, 0) = tanh(4x + 20); the exact solution is then u∗(x, t) = tanh(4x + 20 −

8t). The computational domain is x ∈ [−10, 10], discretized into a uniform

grid of 8193 points. We approximate the solution on R by using the Dirichlet

boundary conditions u(±10, t) = ±1: The domain size is large enough that

the mismatch in boundary conditions does not substantially contribute to the

error in the approximate solution over the time interval t ∈ [0, 5]. We use

E1(u) =
∫

1
2‖∇u‖

2dx and E2(u) =
∫
W (u)dx. Table 1 tabulates the error in

the computed solution at time T = 5 for our two new schemes.

Next, we consider the Allen-Cahn equation (5.1) in two space-dimensions,

with the potential W (u) = u2(1 − u)2 that has equal depth wells; see fig. 1.

We take the initial condition u(x, y, 0) = 1

1+exp[−(7.5−
√
x2+y2)]

on the domain

x ∈ [−10, 10]2, and impose periodic boundary conditions. Once again we use

E1(u) =
∫

1
2‖∇u‖

2dx and E2(u) =
∫
W (u)dx. As a proxy for the exact solu-

24



Figure 3: Initial condition and the solution at final time for the 2D Allen-Cahn equation with

a potential that has equal depth wells.

tion of the equation with this initial data, we compute a very highly accurate

numerical approximation u∗(x, y, t) via the following second order accurate in

time, semi-implicit, multi-step scheme [32] on an extremely fine spatial grid

and take very small time steps:

3

2
un+1 − 2un +

1

2
un−1 = k∆un+1 − k(2W ′(un)−W ′(un−1)).

Table 2 show the errors and convergence rates for the approximate solutions

computed by our new multi-stage schemes.

Number of

time steps 28 29 210 211 212

L2 error (2nd order) 3.62e-05 9.07e-06 2.27e-06 5.68e-07 1.41e-07

Order - 2.00 2.00 2.00 2.00

L2 error (3rd order) 2.35e-05 3.18e-06 4.15e-07 5.29e-08 6.24e-09

Order - 2.88 2.94 2.97 3.08

Table 2: The new second (3.6) and third (3.7) order accurate, conditionally stable schemes

(2.1) on the two-dimensional Allen-Cahn equation (5.1) with a potential that has equal depth

wells.

For our next example, we consider the Cahn-Hilliard equation

ut = −∆
(
∆u−W ′(u)

)
(5.3)
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Figure 4: Initial condition and the solution at final time for the 2D Cahn-Hillard equation

with a potential that has equal depth wells.

where we take W to be the double well potential W (u) = u2(1−u)2 with equal

depth wells and impose periodic boundary conditions. This flow is also gradient

descent for energy (5.2), but with respect to the H−1 inner product:

〈u , v 〉 = −
∫
u∆−1v dx.

Starting from the initial condition u(x, y, 0) = 1

1+exp[−(5−
√
x2+y2)]

, we computed

a proxy for the “exact” solution once again using the second order accurate,

semi-implicit multi-step scheme from [32]:

3

2
un+1 − 2un +

1

2
un−1 = −k∆[∆un+1 − (2W ′(un)−W ′(un−1))]

where the spatial and temporal resolution was taken to be high to ensure the

errors are small. Table 3 show the errors and convergence rates for the approx-

imate solutions computed by our new multi-stage schemes.

As a final example we do the following porous medium equation:

ut = ∆u5/3. (5.4)

Under the H−1 inner product, (5.4) is gradient flow for the energy

E(u) =
3

8

∫
u8/3dx.

Our initial data is

u(x, 0) =
3

2
√

2π
exp

(
− 9x2

8

)
(5.5)
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Number of

time steps 27 28 29 210 211

L2 error (2nd order) 6.20e-04 1.92e-04 5.59e-05 1.55e-05 4.09e-06

Order - 1.69 1.78 1.85 1.92

L2 error (3rd order) 6.45e-06 1.35e-06 2.51e-07 4.15e-08 7.20e-09

Order - 2.25 2.43 2.60 2.53

Table 3: The new second (3.6) and third (3.7) order accurate, conditionally stable schemes

(2.1) on the two-dimensional Cahn-Hilliard equation (5.3) with a potential that has equal

depth wells.

Figure 5: The initial condition (black) and the solution at final time (gray) in the numerical

convergence study on the PME

in x ∈ [−3, 3] with derivative zero Neumann boundary conditions. We let

E1(u) = 3
8

∫
u2dx and E2(u) = E(u) − 3

8

∫
u2dx. We run the simulation for

T = 1. See fig. 5 for our initial and final curve. We generate the “true” solution

using the L-stable (but not energy stable) TR-BDF2 method with a high spatial

and temporal resolution. See table 4 for results.

5.2. Gradient Flow For Solution Dependent Inner Product

Our first example we present in this section is the heat equation, ut = ∆u,

but with a different energy. Under the Wasserstein metric (denoted as W2), the

heat equation is a gradient flow for the negative entropy [33]:

E(u) =

∫
u log(u)dx. (5.6)
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Number of

time steps 212 213 214 215 216

L2 error (2nd order) 1.91e-06 6.85e-07 2.26e-07 6.90e-08 1.97e-08

Order - 1.48 1.60 1.71 1.81

L2 error (3rd order) 2.21e-07 5.69e-08 1.26e-08 2.41e-09 4.13e-10

Order - 1.96 2.18 2.38 2.54

Table 4: The new second (3.6) and third (3.7) order accurate, conditionally stable schemes

(2.1) on the porous medium equation

However the minimization

arg min
u

E(u) +
1

2k
W 2

2 (u, un)

is a difficult optimization problem. On the other hand, we can approximate the

the Wasserstein metric, W2(u, v), with

〈u− v,L(u)−1(u− v)〉L2 where L(u) = −∇ · u∇ (5.7)

when u and v are near each other. Indeed

−L(u)∇L2E(u) = ∇ · u∇(log(u) + 1) = ∆u.

Thus, we can alternatively think of the heat equation as minimizing movements

on negative entropy with respect to the solution dependent inner product (5.7)

and therefore use algorithm 1 and algorithm 2 to evolve the heat equation while

decreasing the negative entropy (5.6) at every step.

We use the exact solution u(x, t) = cos(πx) exp(−tπ2) + 2 as our test with

domain x ∈ [0, 1] using derivative zero Neumann boundary conditions. Our

initial data is u(x, 0) and we run the simulation to final time T = 1
10 . We use

E1(u) = 1
2

∫
u2dx and E2(u) =

∫
u log(u)dx− 1

2

∫
u2dx in (2.1) so at every step

we are solving a linear systems of equation. We run simulation for T = 1
10 . See

table 5 for results.

The next example is the porous medium equation in one dimension. The
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Number of

time steps 23 24 25 26 27

L2 error (2nd order) 1.06e-03 3.11e-04 8.58e-05 2.27e-05 5.85e-06

Order - 1.77 1.86 1.92 1.96

L2 error (3rd order) 1.00e-05 1.57e-06 2.20e-07 3.04e-08 4.29e-09

Order - 2.69 2.82 2.87 2.83

Table 5: The new second (algorithm 1) and third (algorithm 2) order accurate, conditionally

stable schemes for gradient flows with solution dependent inner product on the heat equation

with Wasserstein metric.

Number of

time steps 24 25 26 27 28

L2 error (2nd order) 2.69e-04 6.10e-05 1.49e-05 3.71e-06 9.25e-07

Order - 2.14 2.04 2.01 2.00

L2 error (3rd order) 2.88e-0 3.17e-06 3.72e-07 4.53e-08 5.50e-09

Order - 3.18 3.09 3.04 3.04

Table 6: The new second and third order accurate, unconditionally stable schemes (see re-

mark 4.1) for gradient flows with solution dependent inner product on the porous medium

equation with the linearized Wasserstein metric.

energy is

E(u) =
3

2

∫
u5/3dx

under the Wasserstein metric. As with the heat equation, we can again replace

the Wasserstein metric with (5.7). We will let E1(u) = E(u) and E2(u) = 0.

We use the same test as in the H−1 gradient flow porous medium equation

(see (5.5) and accompanying explanation). We present the results of the porous

medium equation test with movement limiter (5.7) in table 6.

For our final example, we consider the Cahn-Hilliard equation with variable

mobility and a forcing term:

ut = −∇ · µ(u)∇
(
ε2∆u−W ′(u)− F (x)

)
(5.8)
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Figure 6: Initial condition (black) and the solution at final time (gray) for the 1D Cahn-Hillard

with variable mobility and forcing term example.

where we take W to be the double well potential W (u) = (1− u2)2 with equal

depth wells, the forcing term to be F (x) = tanh
( cos(2πx)

10ε

)
and the mobility to

be µ(u) = (1 − ε)(1 − u2)2 + ε to avoid degeneracy in the PDE. This flow is

gradient descent for energy

E(u) =

∫
ε2

2
‖∇u‖2 +W (u) + uF (x) dx,

with respect to the solution dependent inner product

〈u− v,L(u)−1(u− v)〉L2 where L(u) = −∇ · µ(u)∇. (5.9)

For our example, we take ε = 1
20 and start from the initial condition

u(x, 0) = tanh

(
cos(2πx)

10ε

)
on the domain x ∈ [− 1

2 ,
1
2 ], and impose periodic boundary conditions. We run

the PDE until time T = 1
8 . We computed a proxy for the “exact” solution using

the following second order BDF/AB scheme:

3un+1 + 2kε2∆2un+1 = 4un − un−1 + 4
(
kε2∆2un − k∇ · µ(un)∇[ε2∆un −W ′(un)]

)
− 2
(
kε2∆2un−1 − k∇ · µ(un−1)∇[ε2∆un−1 −W ′(un−1)]

)
where the spatial and temporal resolution were taken to be high to ensure

the errors are negligible. See fig. 6 for plots of the initial condition and the

solution at the final time. Table 7 shows the errors and convergence rates for

the approximate solutions computed by our new multi-stage schemes.
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Number of

time steps 27 28 29 210 211

L2 error (2nd order) 4.10e-04 1.29e-04 3.84e-05 1.09e-05 2.96e-06

Order - 1.67 1.75 1.82 1.88

L2 error (3rd order) 1.79e-05 3.68e-06 6.72e-07 1.06e-07 1.42e-08

Order - 2.28 2.46 2.66 2.90

Table 7: The new second algorithm 1 and third algorithm 2 order accurate, conditionally stable

schemes for gradient flows with solution dependent inner product on the one-dimensional

Cahn-Hilliard equation with variable mobility and forcing term (5.8).

6. Conclusion

We presented a new class of implicit-explicit additive Runge-Kutta schemes

for gradient flows that are high order and conditionally stable. Additionally, we

developed new high order stable schemes for gradient flows on solution depen-

dent inner products. Both of these methods allow us to painlessly increase the

order of accuracy of existing schemes for gradient flows without sacrificing sta-

bility. We provided many numerical examples of gradient flows, including those

that have solution dependent inner product, and have shown that the methods

achieve their advertised accuracy.

However, in this paper, we have not developed a systematic approach to

coming up with conditionally stable methods of a certain order. In fact, there

may exist 2nd and 3rd order methods of fewer stages than given here. Addition-

ally, whether these schemes can be used to achieve arbitrarily high (i.e. ≥ 4)

order in time is unknown. We leave these questions to future work.
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Appendix A. A Second and Third Order Fully Implicit Methods for

Gradient Flows with Solution Dependant Inner Prod-

uct

Here we layout fully implicit, second and third order algorithms for gradient

flows with solution dependant inner product,

ut = −L(u)∇E(u).

In this case, each substep has form:[m−1∑
i=0

γm,i

]
Um + kL(u∗)∇HE(Um) =

m−1∑
i=0

γm,iUi. (A.1)

The satisfaction of consistency to the exact solution, (4.2), is similar to its

semi-implicit counterpart in section 4. Theorem 2.1 in [1] (which is the special

case of this paper’s theorem 2.1 when E2 = 0) ensures that the coefficients

in this section form multistage methods that are energy stable. The exact

values for the coefficients for the multistage methods can be found at https:

//github.com/AZaitzeff/SIgradflow.

Appendix A.1. Second order example

The following second order method is unconditionally energy stable. Fix a

time step size k > 0. Set un = u0. To obtain un+1 from un, carry out the

following steps:

1. Find u∗ by solving

u∗ +
1

2
kLn∇E(u∗) = un

2. Find un+1 using (A.1) with coefficients

γ ≈


5.0 0 0

−2.0 6.0 0

−2.0 0.22 6.29

 . (A.2)

and u∗ in L(u∗) given by step 1 of this algorithm.
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Appendix A.2. Third order example

This third order algorithm is energy stable as long as

L(u)− 1

72
k2D2L(u)(w,w)

is positive definite for all u and w.

Fix a time step size k > 0. Set un = u0. For convenience, we will denote

D2L(u∗)
(
L(u∗)∇E(u∗),L(u∗)∇E(u∗)

)
as D2L(u∗) and MS(k̃,L(u∗), ũ, γ) as

UM in the multistage algorithm[m−1∑
i=0

γm,i

]
Um + k̃L(u∗)∇HE(Um) =

m−1∑
i=0

γm,iUi.

with time step k̃, operator L(u∗), U0 = ũ and coefficients γ. To obtain un+1

from un, carry out the following steps:

1. Set γ = (1) and u∗1 = MS
(

1
6k,L(un), un, γ

)
.

2. Set

γ ≈



11.17 0 0 0 0 0

−7.5 19.43 0 0 0 0

−1.05 −4.75 13.98 0 0 0

1.8 0.05 −7.83 13.8 0 0

6.2 −7.17 −1.33 1.63 11.52 0

−2.83 4.69 2.46 −11.55 6.68 11.95


(A.3)

and

ū = MS

(
1

2
k,L(u∗1)− 1

72
D2L(u∗1), un, γ

)
.

3. Set γ = (1) and u∗2,1 = MS
(

2
5k,L(un), un, γ

)
.

4. Set

γ ≈


6.17 0 0 0

−0.5 6 0 0

−3 2 7 0

−3.1 0 2.23 7.40

 (A.4)

and

u∗2,2 = MS

(
5

6
k,L(u∗2,1), un, γ

)
.
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5. Set γ to (A.3) and then

un+1 = MS

(
1

2
k,L(u∗2,2)− 1

72
D2L(u∗2,2), ū, γ

)
.
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