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Effective urban planning for climate-driven risks relies on robust climate projections specific to built landscapes. Such pro-
jections are absent because of a near-universal lack of urban representation in global-scale Earth system models. Here, we
combine climate modelling and data-driven approaches to provide global multi-model projections of urban climates over the
twenty-first century. The results demonstrate the inter-model robustness of specific levels of urban warming over certain
regions under climate change. Under a high-emissions scenario, cities in the United States, Middle East, northern Central Asia,
northeastern China and inland South America and Africa are estimated to experience substantial warming of more than 4 K—
larger than regional warming—by the end of the century, with high inter-model confidence. Our findings highlight the critical
need for multi-model global projections of local urban climates for climate-sensitive development and support green infrastruc-
ture intervention as an effective means of reducing urban heat stress on large scales.

ities are where major human-perceived climate change

impacts occur'”. Occupying only ~3% of the Earth’s land

surface’, urban areas accommodate more than 50% of the
world’s population, and this percentage is projected to increase to
70% by 2050 (ref. *). Many globally recognized environmental prob-
lems, such as heat stress, water scarcity, air pollution and energy
security, are amplified in built areas through the uniqueness of
urban climates and high population density*~. Despite the impor-
tance of urban climatic impacts, state-of-the-art Earth system mod-
els (ESMs) and general circulation models (GCMs) that participate
in the Coupled Model Intercomparison Project (CMIP)* almost
universally lack a representation of urban areas. A primary reason
is the legacy of early versions of GCMs designed for global-scale
purposes in which urban areas were too small to resolve and did not
cause discernible changes in large-scale dynamics and feedbacks.
Therefore, the multi-model projections of global surface climate
to date are essentially projections of ‘non-urban’ climate’. While
the construction of multi-model ensembles is recognized as the
best practice for deterministic or probabilistic climate projections
with robustness and uncertainty characterization™'’, using those
non-urban projections for the assessment of climate-driven risks to
human society in built environments (such as energy expenditures,
labour productivity, city conflicts, human mortality and morbidity)
is not an adequate alternative. Urban impacts derived from these
ensembles are highly biased.

To address this shortcoming, recent efforts have either physi-
cally downscaled climate projections from one or two GCMs using
regional climate models (RCMs) that have urban land schemes
over limited regions at high computational cost''"”’, or have
implemented urban representation in a GCM". However, GCMs,
although relatively consistent for global average results, exhibit
large inter-model variability for regional climate projections, and

this variability alters the local urban response. Thus, urban forecasts
based on a single GCM are insufficient. Projections of urban cli-
mate using GCMs and downscaling have shown large discrepan-
cies or even conflicting results for the same regions'*'*. This is in
large part due to (1) the internal variability of the climate system
and (2) uncertainty in model parameters and structure and associ-
ated variation at the regional scale. For decadal or longer time hori-
zons, the dominant sources of uncertainty at the regional scale are
model parameter and structural uncertainty, in addition to scenario
uncertainty'’. The role of internal variability on local urban climate
can be addressed by multi-member ensemble simulations using a
single GCM, but the parameter and structural uncertainty are diffi-
cult to address because of the absence of multi-model urban simula-
tions'®. Additionally, the high computational demand of dynamical
downscaling limits long-term and global-scale simulations, leading
to a strong geographic bias in the regions studied toward China,
Europe and North America, with few studies in polar regions,
South America, Africa and Oceania”. This is a substantial omis-
sion, because the largest global cities are projected to be concen-
trated in Africa and Southeast Asia by 2100 (ref. *°). To plan ahead
for future climate-driven risks to cities and construct effective solu-
tions, robust projections of local-scale urban-specific climates with
quantitative characterization of confidence and uncertainty remain
a critical research gap.

We have developed a method that combines fully coupled cli-
mate simulations and reduced-order modelling to provide the first
global multi-model projections of local urban climates under cli-
mate change scenarios, with assessment of the associated robustness
and uncertainties. We used the Community Earth System Model
(CESM)*! of the US National Center for Atmospheric Research
(NCAR) to build a reduced-order urban climate emulator, which
was then applied to 26 CMIP Phase 5 (CMIP5) ESMs to generate
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Fig. 1| Difference between projected urban warming and background regional warming for JJA. Difference between CESM-modelled urban warming
(AT, pan_cesm) and background regional warming (AT, cgound_cmies) Projected by CMIP5 multi-model ensemble means for JJA. A refers to changes between
the end of the century and the beginning of the century (2091-2100 versus 2006-2015). a,¢, Global maps of the temperature difference between urban
warming and regional warming under RCP 8.5 (a) and RCP 4.5 (c). The colours indicate grid cells that have urban land (total of 4,439 grid cells). Each
coloured point represents decadal mean JJA subgrid urban 2 m air temperature difference relative to the 0.9° latitude x 1.25° longitude model grid cell

in which it is embedded. Dark grey indicates grid cells without urban land. b,d, Histograms of the temperature difference between urban warming and

regional warming under RCP 8.5 (b) and RCP 4.5 (d).

urban projections under two representative concentration pathway
(RCP) scenarios, namely RCP 4.5 and RCP 8.5. The CESM is the
only CMIP5 model that has a physically based urban land param-
eterization” and that has been evaluated against observed urban
surface energy fluxes, surface temperature and air temperature over
sites across the globe” . The emulator is a location-dependent
regression model with all of the atmospheric fields that force the
urban land model in the CESM as inputs, and the urban climatic
response as outputs (see Methods). We used 95 years (2006-2100)
of monthly average atmospheric forcings and urban outputs from
CESM simulations as the training sets to build the emulator, and
we then applied it to all available ESMs in CMIP5 over the same
time range. Although the focus of this study was on the mean urban
climate, the whole emulator framework could be further developed
to capture finer temporal scales (for example, daily or hourly), if the
requisite training data were available. We evaluated both the CESM
dynamic simulations and the emulator, with the results demonstrat-
ing its credibility (Extended Data Figs. 1-3 and Methods). We then
analysed the difference between the end (2091-2100) and beginning
(2006-2015) of the century to highlight urban warming signals for
two seasons (June-August (JJA) and December-February (DJF)),
and documented the validity of the emulator over the full range of
available projections. Because the emulator framework outputs the
data of the full time period (2006-2100), urban climate projections
for any other timescales of interest (such as mid-century or sooner)
can be obtained from the data. Urban planners and decision-makers
in any city could therefore have access to city-specific projections
for any planning horizon they need.

Our emulator uses atmospheric forcings from other ESM simu-
lations in CMIP5 to drive a statistical, rather than dynamical, ver-
sion of the CESM urban model. The variability and uncertainty in
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large-scale dynamics and feedbacks among various models are pre-
sumably preserved in the large-scale atmospheric forcings, and this
is particularly true given the small fraction of a typical ESM grid
square that is occupied by urban area. Therefore, the inter-model
variability in our emulated urban projections captures the impacts
of large-scale climatology on the local-scale urban climate.

Our results confirm that the background regional/local warming
(changes in grid cell mean temperatures between the end and begin-
ning of the century) projected by the traditional CMIP5 models fails
to capture the spatiotemporal variations of urban warming (changes
in urban subgrid temperatures between the end and beginning of
the century) forecast by the CESM under climate change (Fig. 1 and
Extended Data Fig. 4). CESM-projected local urban warmings devi-
ate from the regional background (non-urban) warming produced
by the CMIP5 ensemble means under RCP 8.5 and RCP 4.5 by the
end of the century (Fig. 1a,c). The urban warming effect relative to
the surrounding regional warming is not uniform, either spatiotem-
porally or between models. Thus, urban warming projections can-
not be represented with an anomaly added to regional background
warming projections by ESMs, as this misrepresents the realistic
warming signals for a large number of metropoles and smaller cities
globally (Fig. 1b,d).

This misrepresentation is overcome in our multi-model ensem-
ble projections of urban-specific warming, which show strong and
robust climatic and geographic signals (Figs. 2 and 3). By the end of
the century, the multi-model mean urban warming for JJA is 0.7-
6.8, 0.7-7.6 and 0.7-6.7K for monthly mean diurnal average (T,),
maximum (T,,,,) and minimum (T,,,) air temperature, respectively,
depending on the region and RCP scenario (Figs. 2 and 3). The
magnitudes of the three warming signals (AT, AT, and AT,,,) are

substantially less in the mitigated scenario (RCP 4.5) compared with
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Fig. 2 | Multi-model ensemble mean urban warming for JJA under RCP
8.5. a-¢, Seasonal mean urban warming between 2006-2015 and 2091-
2100 for the diurnal average temperature T, (a), the diurnal maximum
temperature T, (b) and the diurnal minimum temperature T, (¢) under
RCP 8.5. Stippling indicates substantial change (AT >4K) with high
inter-model robustness (SNR> 2.5).

the high-emissions scenario (RCP 8.5). Specifically, the global mean
urban warming in JJA reaches 4.4 K by the end of the century under
RCP 8.5, which is 2.5K or 130% higher than that under RCP 4.5.
This confirms the crucial role of mitigating non-local greenhouse
gas emissions for local-scale urban temperature benefits''. By the
end of the century, the mid-to-northern part of the United States,
southern Canada, Europe, the Middle East, northern Central Asia
and northwestern China exhibit the most pronounced urban warm-
ing during both daytime and night-time. Inland South America also
shows strong night-time warming. This spatial variability is likely
a result of the combined effects of regional background warm-
ing, differences in synoptic-scale dynamics, biophysical processes
associated with urban surface energy balance'>***’! and the sen-
sitivity of the urban response to large-scale climate variability.
Further research is needed for a quantitative attribution of these
dynamics in future work. Our ensemble-projected urban daytime
and night-time warming and their spatial gradients are in broad
agreement with recent studies focused on the contiguous United
States'' (CONUS; Extended Data Fig. 2) as well as over European'”
and Australian®” cities using direct dynamical downscaling with all
the mean absolute differences less than 0.5K (see Methods), fur-
ther demonstrating the high credibility of our emulator. Globally,

there is a weak diurnal effect in the ensemble mean projection. The
global mean daytime urban warming is slightly stronger than the
night-time one, with about 0.2 K difference between AT, (Figs. 2b
and 3b) and AT,,, (Figs. 2c and 3c) under both scenarios. However,
given that night-time urban warmth shows more dependence on
the morphological aspects of a city>***, AT, ;. here may be under-
estimated by the emulator due to the lack of urban growth in the
CESM.

Our results also show strong urban warming in DJF by the end of
the century (Extended Data Fig. 5). Consistent with JJA, the warm-
ing in DJF is largely mitigated under RCP 4.5 compared with RCP
8.5. The night-time warming is slightly stronger than daytime, with
the global mean night-time value ~0.2K higher than the daytime
value under RCP 8.5. The most pronounced urban warming in DJF
during daytime and night-time occurs in high-latitude cities in
the Northern Hemisphere, reaffirming more rapid warming in the
Arctic region®. For example, observational evidence suggests that
the city of Anchorage in Alaska is experiencing climate change at
twice the rate of cities at mid-latitudes™.

The spatial patterns of model local agreement on urban tem-
perature change are shown in Extended Data Fig. 6, based on the
signal-to-noise ratio (SNR), a measure of robustness. Model agree-
ment increases under RCP 8.5 compared with RCP 4.5, especially
in the middle and high latitudes of the Northern Hemisphere
(Extended Data Fig. 6). This is because models project stronger
urban warming under RCP 8.5, yet similar inter-model variability
to RCP 4.5. We have used stippling on the maps of urban warming
(AT; Figs. 2 and 3 and Extended Data Fig. 5) to indicate cities with
strong warming (AT>4K under RCP 8.5 and AT>1.5K under
RCP 4.5) with high inter-model agreement (SNR > 2.5). Under RCP
8.5, our emulator projects with high confidence that a large number
of cities globally will experience more than 4K of warming during
daytime and night-time in JJA by the end of century (Fig. 2b,c).
These areas include the CONUS, the Middle East, the northern part
of Central Asia, northeastern China and some inland cities of South
America and Africa. Despite a substantially mitigated urban warm-
ing globally and fewer ‘stippled” areas under RCP 4.5, the models
still agree that a large number of cities (especially at night-time) will
experience warming of more than 1.5K, the target set by the Paris
Agreement (Fig. 3b,c). Cities with substantial projected warming in
DJF with high robustness are shown in Extended Data Fig. 5. Arctic
cities are particularly impacted under RCP 8.5.

We find a near-universal decrease in urban relative humidity
(RH) in JJA by the end of century (Fig. 4; —6 to 3% under RCP
4.5 and —13 to 6% under RCP 8.5). Compared with RCP 8.5, the
reduction in RH is markedly smaller under RCP 4.5. Previous stud-
ies reported marginal RH change over non-urban surfaces under
climate change, because both partial and saturation water vapour
pressure increase under warming’”*. This is not the case for urban
surfaces. The saturation vapour pressure increases considerably
over these surfaces due to warming. The increase in partial water
vapour pressure, on the other hand, is limited by the large fraction
of impervious surfaces in cities that hinders evaporation despite the
elevated ability of warmer air to contain water vapour. The increase
in partial pressure therefore remains smaller than over non-urban
surfaces; urban-specific humidity during JJA is projected to
increase slightly (by ~10-20%) by the end of the century under both
scenarios (Extended Data Fig. 7). These results are in broad agree-
ment with a recent downscaling study in Germany'’. Empirical
evidence exists for such a decrease in observed urban RH in the
last decade™-*". Most coastal cities are projected to have indiscern-
ible or no decrease in RH, because of the larger water availability
that allows the increase in urban partial vapour pressure to keep up
with its rural counterpart (Fig. 4). In DJF, global urban RH changes
do not show a decreasing pattern as spatially consistent as in JJA
(Extended Data Fig. 8).
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Fig. 3 | Multi-model ensemble mean urban warming for JJA under RCP
4.5. a-c, Seasonal mean urban warming between 2006-2015 and 2091-
2100 for the diurnal average temperature T, (a), the diurnal maximum
temperature T, (b) and the diurnal minimum temperature T, (¢) under
RCP 4.5. Stippling indicates substantial change (AT >1.5K) with high
inter-model robustness (SNR> 2.5).

In general, the model agreement with respect to local urban RH
is weaker than it is for temperature, indicating larger inter-model
variability for RH projections (Extended Data Fig. 9). Regions with
higher robustness coincide with, to some extent, the regions of
large RH changes (Fig. 4). The stippling in Fig. 4 indicates urban
areas with substantial projected RH change (abs(ARH) > 5% under
RCP 8.5 or abs(ARH) >2.5% under RCP 4.5) and high inter-model
robustness (SNR>1). Its spatial coverage is markedly smaller than
the corresponding stippling for temperature (Figs. 2 and 3).

The human-perceived impacts of climate change are primary
factors that motivate the growing research focus on urban cli-
mates. We further evaluated two commonly used measures of
human-perceived heat stress in which humidity is factored in with
air temperature: the wet-bulb temperature (T,,,) and the US National
Weather Service version of the heat index (HI). The former is pref-
erable as it is a measure inherently tied to thermodynamics rather
than an empirical index and has the added advantage of serving as an
indicator of the efficiency of evaporative cooling. We estimate that
the HI increases faster than air temperature over almost all the cities
globally under both scenarios (Extended Data Fig. 10), indicating
a stronger human-perceived heat burden change for future urban
residents than would be concluded from the temperature change

alone. This effect is particularly pronounced over mid-to-low lati-
tude cities. Reanalysis and GCM simulations have shown a similar
trend of larger increases in HI compared with air temperature alone
over non-urban landscapes under climate change”. Fortunately,
heat stress can be notably mitigated through evaporative cool-
ing in both present-day and future warmer climates. Because T,
represents the lowest temperature that can be attained by a surface
evaporating at its potential rate at constant pressure®, the difference
between T, and T, represents the potential efficiency of evaporative
cooling from green infrastructure or human sweating. We illustrate
this multi-model mean potential evaporative cooling efficiency over
global urban areas in Fig. 5. In general, green infrastructure would
be less effective in evaporative cooling in wetter cities than in dryer
cities under both present-day and future climates. This supports
green infrastructure intervention as an effective means of reduc-
ing urban heat stress for dryer cities. Despite being less effective in
wetter cites, green infrastructure would still provide cooling and,
in addition, more shading (by trees). Under climate change, the
potential evaporative cooling efficiency from green infrastructure
is projected to increase in most of the urban areas globally except
some coastal cities (Fig. 5¢), with a global average increase of 16.6%
by the end of the century under RCP 8.5. This increase is largely
caused by the multi-model projected drying trend in urban RH for
global cities. Our results suggest that efforts to increase urban green
infrastructure would potentially produce more effective cooling on
a large scale in future warmer climates.

We note three main limitations to this study. First, the effect of
future urbanization on urban climate is not embedded in the cur-
rent emulator. Because the urban fraction and properties in each
grid cell are time-invariant in the current version of the CESM
(CESM version 2), the training sets produced by CESM simulations
do not contain the effects of urban development. Our emulated
results represent projections of climate change impacts on urban
climates, and likely the lower bounds of potential urban warming
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Fig. 4 | Multi-model mean urban relative humidity change for JJA. a,b,
Seasonal mean urban RH changes between 2006-2015 and 2091-2100
under RCP 8.5 (a) and RCP 4.5 (b). Stippling indicates substantial change
(abs(ARH) > 5% under RCP 8.5 or abs(ARH) > 2.5% under RCP 4.5) with
high inter-model robustness (SNR > 1).
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Fig. 5 | Multi-model mean urban evaporative cooling efficiency.
Multi-model mean urban evaporative cooling efficiency from green
infrastructure or human sweating as measured by T, - T, for JJA under RCP
8.5. a-¢, JJA mean during 2006-2015 (a), JJA mean during 2091-2100 (b)
and JJA difference between 2006-2015 and 2091-2100 (c).

for growing cities in future climates, unless heat mitigation is explic-
itly taken into account in urban development'*>*. Importantly, our
emulator strategy can be extended to include the repercussions of
urban development. One could implement a future urban scenario
in the CESM and use the urbanization-enabled CESM to train the
emulator; it would then be able to capture both urbanization and
urban physical processes in each urban grid cell. Second, the urban
projections in this study are based on a single urban model, that
is, the urban parameterization in the CESM. Developing emula-
tors based on multiple urban models would help assess associated
variability in future work. However, unlike ESMs, urban parameter-
izations do not have many internal dynamics and non-linearities,
and as such cannot drift far from each other if forced by identical
atmospheric forcing***. This is supported by the comparison of the
CESM and Weather Research and Forecasting (WRF) model results
for the CONUS (Extended Data Fig. 2); despite having two different
urban land schemes, the two models project similar warming when
the atmospheric forcing is the same, with a mean absolute difference
of 0.47K (much smaller than the urban warming signals of either
models). The major variability is from the diverse large-scale atmo-
spheric forcings that are produced by different ESMs. Therefore, the
multi-model results presented here are expected to encompass the
potential variability resulting from urban models. Third, this emu-
lator predicts city-scale urban climate rather than high-resolution
intra-city values that other downscaling (dynamical and statistical)

techniques are capable of producing. Our framework operates at the
city-to-global scale but lacks intra-city details that RCMs'!~13324%47
and microscale urban models***" can produce. The emulator can,
however, be used to select future periods and regions where heat
hazards are particularly intense and where downscaling to the ~1 km
scale may be beneficial; it can thus guide dynamical downscaling
efforts. If future generations of ESMs have finer-scale intra-city rep-
resentations, one could easily train an emulator on those ESMs to
provide multi-model high-resolution urban projections.

This study proposes a novel reduced-order urban climate emu-
lator anchored in process-based simulations and physics-guided
machine learning. Our framework makes urban areas globally com-
parable and facilitates understanding the impacts of climate change
on local urban climates. The emulated global multi-model projec-
tions of local urban climates over the full time period (2006-2100)
are provided (see Data availability), for those interested in extract-
ing time periods of interest. We highlight (1) the necessity of mod-
elling local urban-specific climates and quantifying robustness and
uncertainties, and (2) the need for multi-model global projections
of climate change-driven heat stress in urban locations. Our results
can accurately account for the human-perceived impacts of cli-
mate change in population hotspots. Our emulator strategy is not
restricted to urban systems; similar emulators can be developed for
other systems such as rivers and lakes, glaciers or vegetated ecosys-
tems. This approach can be adopted in other broad-scale climate
change impacts, vulnerability and adaptation applications to reduce
the need for computationally expensive (and maybe unattainable)
downscaling, or to guide research for higher-resolution downscal-
ing where information at finer spatial scales might be beneficial.
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Methods

The fundamental rationale of our methodology was to use the atmospheric forcings
from various ESMs to drive the CESM urban model in a statistical way rather than
a physical way.

Community Earth System Model. The NCAR's CESM* is a fully coupled ESM
consisting of seven prognostic components, namely atmosphere (Community
Atmosphere Model, CAM), land, land ice, ocean, sea ice, river and a coupler that
exchanges fluxes between components. The land-atmosphere interactions are
represented in its land component, the Community Land Model (CLM)'. The
CLM employs nested hierarchical levels to represent land surface heterogeneity.
For the first hierarchy, each grid cell consists of up to five subgrid ‘land units:
urban, vegetated, wetland, glacier and lake. These land units within a single grid
cell are driven by the same atmospheric forcing at the reference height (from the
lowest atmospheric layer in the CAM), because at this forcing height the air is

well mixed. This architecture is an important feature as it allows isolation of local
climate response (for example, urban climate response) in different landscapes to a
given atmospheric forcing (for example, background climate forcing). To simulate
the effects of different landscapes on local climate, the different landscapes in a grid
cell must be forced with the same atmospheric forcing. This modelling structure is,
to some extent, similar to those mesoscale modelling studies performed using the
WRF model, in which the forcing meteorology is usually a background regional
atmosphere coming from reanalysis data or GCM-modelled atmospheric data.

The CESM is the only model in CMIP5 that has a physically based urban land
parameterization (Community Land Model Urban, CLMU) as part of its land
model that is sufficiently detailed for the purposes of the study. This urban scheme
is based on an ‘urban canyon’ conceptual structure that comprises roof, wall (sunlit
and shaded) and canyon floor (pervious and impervious) facets®. A global urban
surface dataset specifically developed for global climate modelling™ is embedded
in the CLMU. This dataset prescribes the present-day urban extent and properties,
including thermal (for example, heat capacity and thermal conductivity), radiative
(for example, albedo and emissivity) and morphological (for example, building
height-to-street width ratio, roof areal fraction, average building height and
pervious ground fraction) characteristics for every grid cell having an ‘urban’
subgrid land unit. The urban spatial extent is derived from a population density
dataset at 1 km spatial resolution. The urban property data are compiled by
synthesizing a variety of datasets, including satellite products, a global database
of tall buildings, local building codes data and other municipal documentation,
and validated against imagery from Google Earth (see ref. * for details). With this
high-dimensional urban dataset and the prognostic forcings from the CAM, the
CESM directly outputs state and flux variables and the building energy use for the
urban land unit in each grid cell, laying the groundwork for assessing the urban
climate on a large scale.

The CLMU uses a simplified scheme to dynamically capture the building
energy use (primarily space heating and air conditioning) and associated waste
heat in urban areas. The internal boundary conditions for roofs and walls
are determined by an approximation of the internal building temperature held
between prescribed maximum and minimum temperatures. Building interior
maximum and minimum thermostat settings are prescribed by region from ref.

*2. The amount of energy required to be added to increase the interior building
temperature to the minimum temperature and the amount required to be removed
to reduce the interior building temperature to the maximum temperature are
designated as the space-heating and air-conditioning fluxes, respectively. The heat
removed by air conditioning is added as waste heat (sensible heat) to the canyon
floor. Waste heat from inefficiencies in the heating and air-conditioning equipment
and from energy lost in the conversion of primary energy sources to end-use
energy is also added as sensible heat to the canyon floor. The anthropogenic heat
flux due to traffic and human metabolism is not parameterized in the current
version of the CLMU.

The CLM-CAM coupling in the model is a two-way dynamic interaction.

In a fully coupled CESM simulation, the biogeochemical component of the

CLM captures leaf and stem area and canopy height of vegetated surfaces
prognostically in response to climate change’'. One limitation of the current
urban configuration in the CESM is that the urban extent and properties are
static, and thus urbanization effects are not represented in CESM transient climate
simulations. Therefore, this study provides global urban climate projections under
greenhouse gas forcing only, but an emulator including the urban expansion
effects can be developed when the needed CESM simulations become available.
Note that a future urban scenario with urban expansion (not densification or
other morphological changes) would not affect the urban subgrid outputs in the
CESM. Its effects on grid cell means are also minimal due to the small fraction
(2%) of urban areas on the Earth’s land surface, even in grid cells with large cities.
Compared with large-scale climate change, the impacts of urbanization on local
urban climates are minimal, as is evidenced by the recent study incorporating
urban expansion and densification scenarios into their WRF downscaling
simulations for the United States''.

Reduced-order urban climate emulator. The urban climate emulator is a
location-dependent (grid cell) regression model based on atmospheric forcings,

time and their interactions. For the scope of this study, we built and applied the
emulator on a monthly scale. It ingests the monthly average atmospheric forcings,
month of year, two-way interaction terms and location as the inputs, and then
outputs the monthly mean urban climatic response R,,:

Runy :ﬁat,long (AF,m,I) = ﬁlat,long x AF + Ylatlong X M + Oat Jong X (AFxm) (1)

where AF is the matrix of monthly average atmospheric forcings from the atmosphere
component of the models, m is the matrix of month-of-year indicator, I represents

the two-way interaction terms between AF and m, essentially accounting for the
seasonality of the atmospheric forcing variables, lat and long are the latitude and
longitude specifying the grid cell geolocation, respectively, and f,,,, denotes the
location-dependent regression functions as specified by the model coefficients (8, onp
Yiattong A0 Oyy¢10n,)- For AF, we incorporated all the atmospheric forcing fields that drive
the CLM in the CESM except three variables (lightning frequency, nitrogen deposition
rate and aerosol deposition rate) that do not affect urban climate. This ensures that
the emulator mimics the dynamic interaction between the land and atmosphere in a
CESM simulation. These atmospheric forcing fields include the atmospheric bottom
level (lowest height) in the atmosphere component of the model, incident shortwave
and longwave radiation, precipitation (liquid and solid), atmospheric temperature,
pressure, specific humidity and wind speed (zonal and meridional) at the forcing
height. The latitude- and longitude-dependent coefficients of the regression equation
(Bastongs Viatjong A Oy jog) make the emulator location-specific so that it maps from
atmospheric forcings to local urban climate specifically for each urban land unit. The
impacts of urban surface characteristics on its climate, and its specific response to

that climate, are embedded in these coefficients and the location-specific regression
function f. Therefore, applying the emulator to other CMIP5 ESMs does not need the
high-dimensional global urban dataset as long as various model latitude/longitude
grids align. Compared with the original CLMU, the emulator requires far less input
datasets and computation, making it a reduced-order model of urban climates.
Higher-capacity models for function f (including the support vector regression

and random forest models) were also investigated, found to add little skill in model
prediction and therefore deemed unnecessary.

The outputs R, in this study included the monthly average urban 2m diurnal
mean (T,), the diurnal maximum (T,,) and minimum (T,,,) air temperatures, and
urban 2 m relative humidity (RH). The emulator can be expanded to include any
variables that the CLM produces for the urban land unit.

We used fully coupled CESM simulations to provide training datasets to fit the
emulator. The model fitting was conducted on each urban land unit to produce
location-specific regression functions fi,,jo.e- To apply the emulator to other CMIP5
ESMs, consistency of the atmospheric forcings across models is required. Because
all the other ESMs do not have urban representation in their domain, one could
argue that the atmospheric forcings in the CESM might already be ‘contaminated’
by the impacts of urban land units in the CLM. Both our simulations (not shown)
and previous studies have demonstrated the indiscernible effects of urban areas
on grid cell-level atmospheric variables*>***, because the model is normally run
at a coarse spatial resolution. To minimize any potential biases introduced into
the emulator, we conducted two additional simulations identical to the CESM
CMIP5 RCP 4.5 (ref. *°) and RCP 8.5 (ref. °°) runs from 2006 to 2100 but without
urban land units represented (replaced with bare soil land units in the grid cells)
at a resolution of 0.9° latitude X 1.25° longitude. We compared the atmospheric
forcings generated from these two simulations with those from the original
CESM simulations (that is, ones with urban land units) and found indiscernible
differences (<0.3% difference in 50 atmospheric variables checked, including all
forcing fields used in the emulator). We used the entire range (95 years) of the
monthly atmospheric forcings from these two simulations without urban land, and
the CLM urban outputs from the original CESM-CMIP5 runs with urban land over
the same time span (2006-2100) as the training sets to build the emulator. This
emulator method, however, is not limited to monthly outputs. A daily or hourly
scale emulator could be trained on daily or hourly data of the CESM simulations,
and then applied to other ESMs as long as their daily or hourly atmospheric
forcings are available.

The emulator does not assume time-stationary relationships between urban
response and the atmospheric forcings. If the emulator were trained on a shorter
timespan, the regression functions would be different. When the emulator is
applied to other ESMs, it needs to be applied to the same time range to avoid
extrapolation.

Using atmospheric forcings from ‘fully coupled’ CESM runs to drive the
CLM is not equivalent to an ‘offline’ simulation. An offline simulation implies
no two-way interactions between the atmosphere and land. In other words,
any changes to land surface state variables would not affect the state of the
atmosphere. Typical examples of offline simulations include the CLM forced by
site observations or reanalysis. However, forcing the CLM with the atmosphere
fields from fully coupled CESM runs (with the same CLM) is actually a shortcut
to the fully coupled mode and should be considered as a retrieval of the land
surface variables from the fully coupled runs. It produces nearly identical
outputs to those obtained from the fully coupled CESM runs, because the
two-way land-atmosphere interactions and impacts of large-scale feedbacks (for
example, large-scale dynamics, ocean-air feedbacks, carbon climate feedbacks
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and dynamic land use/land cover change) and regional dynamics (for example,
influence of topography on regional atmospheric circulation and atmospheric
rivers) represented in a fully coupled configuration have been preserved in the
atmospheric forcings®*”. In addition, this emulator framework is not restricted to
GCM/ESM. One could train the emulator using an RCM for a given region (or
city) to reproduce mesoscale and sub-city-scale variability, if finer-scale dynamics
are important in the application.

Validation of the CLMU and urban climate emulator. We conducted a thorough
validation of the whole emulator framework. We first evaluated the process-based
CLMU simulation against a ground-based observation dataset and mesoscale
modelling simulations. We then validated the statistical robustness of the emulator.

Validation of the CLMU. The CESM-CLMU was evaluated against both in situ and
remote sensing observations in previous efforts”~**. Here, we further evaluated
the performance of the CLMU against the 4-km gridded observationally based
PRISM dataset (http://www.prism.oregonstate.edu/) and the 20-km WRF
simulations coupled with the single-layer urban canopy model (SLUCM)”. The
WREF-modelled results were taken from a recent study over the CONUS'". The
WREF simulation itself has been extensively validated against observations'’.

To ensure consistency in this evaluation, we forced the CLMU with the same
boundary conditions as used in ref. ' (ERA-Interim reanalysis), at a resolution of
0.9° latitude X 1.25° longitude. The same ten US metropolitan areas as in ref. '',
across a range of regional background climate zones, were selected for assessment.
The grid cells in the CESM domain where the selected cities reside were compared
with the corresponding PRISM and WREF grid cells. The results show that the
CLMU reproduces both the observed and WRF-modelled daily distributions of
Thaw Tmin and T, reasonably well for JJA 2000-2009 across the ten cities (Extended
Data Fig. 1). The bias in the median of the CLMU compared with the WRF data

is improved with respect to the observations for four, four and five cities for T,

T and T, respectively. The variability of the daily distributions modelled by

the CLMU is slightly smaller than that modelled by the WRE. The reason for this
lies in the different nature of the CLMU and WRE-SLUCM. As an urban scheme
in an ESM, the CLMU has to limit its ability to capture some mesoscale physical
processes and rely on parameterizations, whereas the mesoscale WRF model is able
to resolve certain detailed physics. Therefore, it is expected that some diurnal and
daily variabilities could be under-represented in the CLMU simulation compared
with the WRF-SLUCM. The validation here demonstrates the ability of the CLMU
forced by present-day meteorology to reproduce the observed urban climatology,
even at a spatial resolution coarser than that of the WRF simulation.

To assess the performance of the CLMU in a changing climate, we further
evaluated the CESM urban warming projection produced by fully coupled simulation
against the WRF downscaling simulations over the CONUS. For consistency with
our CESM configuration, we used the WRF-SLUCM simulations with present-day
urban land representation in both present-day and projected climate simulations.
The WRF-modelled urban warming was derived from the difference between the
simulation forced by ERA-Interim reanalysis (2000-2009) and the one forced by a
CESM-projected climate under RCP 8.5 (2090-2099)"". We area-weighted aggregated
the WRF 20-km grid cells (Extended Data Fig. 2a) to the CESM resolution (Extended
Data Fig. 2¢) and compared their urban warming signals. The results demonstrate
good agreement between the CESM-projected and WRF-SLUCM-downscaled
urban warming under climate change in terms of both magnitude and spatial
variation (Extended Data Fig. 2). The mean absolute difference between the CESM
and WRF-SLUCM is 0.47 K, with 10th and 90th quantiles of —0.71 and 0.73K,
respectively. The validation further confirms the fidelity of the CESM to project
the impacts of climate change on local urban climatology with similar accuracy to
mesoscale dynamical downscaling despite the coarser spatial resolution.

Validation of the urban climate emulator. We further evaluated the statistical
robustness of the emulator. We cross-validated our emulator against five

other CESM ensemble members that were excluded from the emulator

training under RCP 8.5 and RCP 4.5 (http://www.cgd.ucar.edu/projects/chsp/
brace-output-projections.html). The results demonstrated the excellent accuracy
of the emulator in predicting urban climate variables. The out-of-sample global
monthly average root-mean-square errors (RMSEs) across ensemble members
were 0.2K, 0.3K, 0.2K and 1% for T,, T,,,,, T,,;, and RH, respectively, under both
scenarios (Extended Data Fig. 3). The ‘error’ here is defined as the difference
between monthly values modelled by the CESM ensemble member and those
modelled by the emulator using atmospheric forcings from the same ensemble
member. These numbers are markedly smaller than the urban temperature
differences between ensemble members (~1.5-2.0K, P<10~°), confirming

the credibility of the emulator. We also conducted a tenfold cross-validation

by randomly selecting 60 years of training data to train the emulator and the
remaining 35 years were used for validation. The maximum tenfold cross-validated
RMSEs were less than 0.5K, 0.6K, 0.5K and 3% for T, T, T,.:, and RH,
respectively, further demonstrating the robustness of our emulator method.

Multi-model urban climate projection. The CESM architecture described above
provides the fundamental basis for our emulator to be applied to other ESMs.
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The structure of the CLMU-CAM interactions in the CESM is, to some extent,
analogous to dynamical downscaling studies using GCMs or reanalysis data, except
that dynamical downscaling includes fine-scale (subgrid to ESMs but resolved

by RCMs) horizontal interactions such as advection and turbulent transport.

The atmospheric forcing data of the type provided by the CESM-CAM can be
consistently extracted from other CMIP5 ESMs. These background forcings that
drive the CLMU in our emulator framework are similar to the boundary conditions
that force the WRE. Like the GCM/reanalysis-produced boundary conditions in
WREF downscaling studies, the atmospheric forcings from the CMIP5 models are
representative of a non-urban background atmosphere. One difference, as described
above, is the representation of small-scale horizontal exchanges in the WRE

We applied the emulator across all available CMIP5 ESMs to generate
multi-model global urban projections over 2006-2100 under RCP 4.5 and RCP 8.5.
We tried to use all available ESM RCP runs in CMIP5. Those from the exact same
models but only at lower spatial resolutions were excluded. We ended up with a
total of 26 ESMs for RCP 8.5 and 25 ESMs for RCP 4.5 (MRI-ESM1 does not have
RCP 4.5 runs; Supplementary Table 1). We selected the first ensemble member
from each of these ESMs. Because our emulator is geolocation-specific and thus
requires the grid cells from other ESMs to align with the CESM grid, we regridded
the needed atmospheric forcing fields from these ESMs to the CESM grid. The
regridded atmospheric forcings were used as inputs to emulate 26 (25) global
urban projections of monthly T,, T,.., T, and RH. The final multi-model analyses
were based on these emulated projections plus the original CESM projections.

The fundamental rationale of our methodology was to use the atmospheric
forcings from various ESMs to drive the CLMU statistically. The variability and
uncertainty in large-scale dynamics, feedbacks and climatology among CMIP5
models are presumably preserved in those atmospheric forcing fields. The
variability in the final urban climate projections reflects the impacts of large-scale
climatology on local-scale urban climates.

Implications of the emulator framework. The urban climate emulator framework
is essentially a statistical/machine-learning technique at its core, but trained

on a physical downscaling urban model (CLMU) embedded in a fully coupled
ESM (CESM). The physics represented in the CESM, especially the dynamic
interactions between urban land, lower atmosphere and large-scale climate

change, are therefore preserved in the emulator. This new framework falls into

the physics-guided machine-learning (PGML) paradigm, because the derived
statistical model is informed by the physics simulated in the ESM. We highlight
here three key novel features of this emulator method.

1.  The emulator framework is a globally consistent, robust and coherent method
for investigating multi-model urban climate simulations across the globe. It is
based on global-scale simulations that follow a well-defined and coordinated
modelling protocol (CMIP), is calibrated on a common set of input variables
(that is predictors) and operates at a common spatial resolution. The consist-
ency and coherence of the method are critical for comparing urban climates
and identifying risk hotspots across regions, especially on a large scale (for
example, planetary scale). The lack of a common set of predictors and the
use of different spatial domains and statistical families in existing statistical
downscaling techniques have made direct comparison of the downscaled
climates, and the downscaling methods themselves, difficult to achieve over
broad scales. This has presented a problem for their applications to climate
change impact assessments and climate uncertainty characterization™’.

2. Traditional statistical downscaling techniques seek to establish empiri-
cal relationships between local climate and the large-scale atmospheric
state using weather observations and reanalysis/GCM output, whereas this
emulator method is in essence a statistical ‘solver’ of the system of equations
in the CLMU as it takes all the input variables that the CLMU needs in the
coupled CESM to solve the equations. The only difference is that the emulator
‘solves’ the output variables statistically instead of numerically. The emulator’s
functions are not to reproduce observed climates empirically, but rather to
reproduce the dynamically modelled urban climates by the CLMU. Because
of their empirical nature, traditional statistical downscaling is constrained
by (1) the length and reliability of the observed historical data, (2) the choice
of predictors, which remains the subject of debate and is often incomplete
due to observational unavailability or model features, and (3) the omission
of climate system feedbacks®. There have been arguments that some of these
challenges might be addressed by identifying more appropriate large-scale
predictors and developing statistical methods that better represent the physi-
cal mechanisms®. Our emulator method, trained on a fully coupled climate
model and ingesting a complete set of variables required for dynamic simula-
tions of the CLMU, captures the physical mechanisms and climate system
feedbacks represented in the model.

3. One major limitation of traditional statistical downscaling is its accuracy of
extrapolation™-2, A fundamental assumption of the application of statistical
downscaling is that the derived predictor/predictand relationship based on
local observations remains valid outside of the training region and/or in a
changing future climate. This assumption, however, has been shown to be
questionable in observed records®*-**. This limitation is overcome in the
emulator method, which is a location-dependent statistical model at the
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global scale, and is trained on the entire temporal range of the fully coupled
simulation (2006-2100) under climate change scenarios. The emulator, by
design, is generalizable both spatially (across the globe) and temporally (with
climate change feedbacks included).

Multi-model uncertainty and robustness. We used the SNR as a measure of
model robustness to quantify how various models agree on the urban projections.
The SNR is defined as the ratio of the multi-model ensemble mean to the
inter-model variability:
_Hiy

SNR; = @
where i denotes the multi-model ensemble means, ¢ denotes the inter-model
variability, defined as the standard deviation of multi-model values, and the ,j pair
denotes the index of grid cells that have an urban land unit in the CLM. The SNR
can also be considered as an indicator of multi-model spread; the reciprocal of
SNR is essentially a multi-model variance normalized by the mean. A smaller SNR
indicates higher model spread or smaller signal change (projected change in the
multi-model ensemble mean). We quantified the SNR for each grid cell that has an
urban land unit to assess the inter-model agreement. We have used SNR> 2.5 and
SNR > 1 to indicate high inter-model agreement in the projection of temperature
and humidity, respectively. The models generally show less agreement in the
modelling of humidity than temperature®, therefore we selected a smaller SNR
threshold for humidity. These thresholds chosen for the SNR are, to some degree,
subjective and for illustration purposes only. Different thresholds could be chosen
for different applications of urban climate change to indicate higher or lower
tolerance in model disagreement.

Calculation of human-perceived heat stress. There are many methodologies

for assessing human-perceived heat stress”~*”. We evaluated two commonly used
heat stress indicators: the wet-bulb temperature (T,,,) and heat index (HI). Both
measures take both temperature and humidity into account. The former has the
added advantage of serving as an indicator of the evaporative cooling efficiency.
The T, was computed by the formulation developed by Stull””. We used a method
to calculate the HI appropriate for the United States, that is, the National Weather
Service definition. The HI was calculated using the Rothfusz regression with
adjustments under certain conditions (https://www.wpc.ncep.noaa.gov/html/
heatindex_equation.shtml):

HI= —8.7847 + 1.6114T, — 0.012308T>
+RH(2.3385 — 0.14612T, + 2.2117x 10°T2)
+RH?(—0.016425 + 7.2546x 1074T, — 3.582x 107°T2)

Both T, and HI were calculated from the emulated monthly means of urban
T, and RH.

Data availability

All CMIP5 data used in this study are available at the CMIP5 archive via https://
esgfnode.llnl.gov/projects/cmip5/ and the Climate Data Gateway at NCAR via
https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM_CAM5_BGC_
LE.html for RCP 8.5 and https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.
CESM_CAMS5_BGC_ME.html for RCP 4.5. The output data from the emulator
are available in the public repository—Illinois Data Bank’'—via https://doi.
org/10.13012/B2IDB-4585244_V 1. Source data are provided with this paper.

Code availability

The R (https://www.R-project.org/) and NCL (The NCAR Command Language,
https://doi.org/10.5065/D6WD3XH5) codes of the urban climate emulator are
available on the NCAR Cheyenne cluster (https://doi.org/10.5065/D6RX99HX)
and on Github (https://github.com/zhao-research-lab/urban_climate_emulator;
https://doi.org/10.5281/zenodo.3893401). The CESM (used to perform the
simulations) source code releases are available through the public GitHub
repository (https://github.com/ESCOMP/CESM).
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Extended Data Fig. 1| Comparison of 2000-2009 JJA (June - August) distributions of diurnal average (T,), minimum (T,;,) and maximum (T,,,,)

2m urban air temperature between CLMU (red), WRF (blue) and PRISM (green). Center bar represent the median, box edges the 25" and 75"
percentiles, and error bars the 1%t and 99" percentiles. PHX = Phoenix; LAX = Los Angeles; CHI=Chicago; DNV =Denver; POR =Portland; BAL =Baltimore;
MIA =Miami; DAL =Dallas; BOS =Boston; ATL = Atlanta.
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Extended Data Fig. 2 | Comparison of urban warming projection of diurnal average temperature between CESM and WRF-SLUCM simulation for season
JJA (June - August) in 2090 - 2099 relative to 2000 - 2009 under RCP 8.5. WRF-SLUCM dynamic downscaling simulation (forced by a CESM-RCP8.5
meteorology) was conducted in ref. "'. a, WRF-SLUCM projected urban warming in WRF's original 20 km grids; b, CESM projected urban warming in the
CESM grids (0.9° latitude x 1.25° longitude); ¢, WRF-SLUCM projected urban warming in the aggregated CESM grids (0.9° latitude x 1.25° longitude);

d, difference in projected urban warming between CESM and WRF-SLUCM in the CESM grids.
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Extended Data Fig. 3 | Average root-mean-square-error (RMSE) in urban temperature and RH validation of the emulator across 5 CESM ensemble
member runs (member #2 - #6). The ‘error’ in RMSE denotes the difference between monthly temperatures or RH dynamically modeled by the CESM
ensemble member and the ones modeled by the emulator. The average RMSE was calculated based on the 5 CESM ensemble member runs from 2006 to
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and g: RMSE in diurnal minimum temperature T, d and h: RMSE in urban relative humidity RH.

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

maxi C


http://www.nature.com/natureclimatechange

ARTICLES NATURE CLIMATE CHANGE

a
50- —— < -
B : ~
Q ¥ f(_ p b
] g ;
20 RCP8.5 2 .y.,.ji
5 T 5 T
¥ s 7
._50.
-100 0 100
Longitude (°)
b
50- -
<
]
g RCP4.5
5
_50.
-100 0 100
Longitude (°)
ATusen — AToatgrona (<) TR
urban ackgroun —6-30 3 6

Extended Data Fig. 4 | Comparison of CMIP5 multi-model mean urban warming (AT,,,.,) and background regional warming (AT,,.n«) for season JJA
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Extended Data Fig. 5 | Multi-model mean urban warming for season DJF (December - February) in 2091 - 2100 relative to 2006 - 2015. a-c: RCP
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(SNR>2.5).
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Extended Data Fig. 7 | Multi-model mean urban specific humidity (Q) change for season JJA (June - August) in 2091 - 2100 relative to 2006 - 2015.
a, RCP 8.5; b, RCP 4.5.
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Extended Data Fig. 8 | Multi-model mean urban relative humidity (RH) change for season DJF (December - February) in 2091 - 2100 relative to 2006 -

2015.a,RCP 8.5; b, RCP 4.5.
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Extended Data Fig. 9 | Inter-model robustness of urban RH projections measured by signal-to-noise ratio (SNR). a,b: RCP 8.5; ¢, d: RCP 4.5.aand c:
season JJA (June - August); b and d: season DJF (December - February).
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Extended Data Fig. 10 | Multi-model mean of urban A(HI-T,) for season JJA (June - August) in 2091 - 2100 relative to 2006 - 2015. a: RCP 8.5;
b: RCP 4.5. Stippling indicates substantial change (A(HI — T,) > 3K under RCP8.5 or A(HI — T,) > 1.5K under RCP4.5) with high inter-model robustness

(SNR>2.5).
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