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Cities are where major human-perceived climate change 
impacts occur1,2. Occupying only ~3% of the Earth’s land 
surface3, urban areas accommodate more than 50% of the 

world’s population, and this percentage is projected to increase to 
70% by 2050 (ref. 4). Many globally recognized environmental prob-
lems, such as heat stress, water scarcity, air pollution and energy 
security, are amplified in built areas through the uniqueness of 
urban climates and high population density5–7. Despite the impor-
tance of urban climatic impacts, state-of-the-art Earth system mod-
els (ESMs) and general circulation models (GCMs) that participate 
in the Coupled Model Intercomparison Project (CMIP)8 almost 
universally lack a representation of urban areas. A primary reason 
is the legacy of early versions of GCMs designed for global-scale 
purposes in which urban areas were too small to resolve and did not 
cause discernible changes in large-scale dynamics and feedbacks. 
Therefore, the multi-model projections of global surface climate 
to date are essentially projections of ‘non-urban’ climate9. While 
the construction of multi-model ensembles is recognized as the 
best practice for deterministic or probabilistic climate projections 
with robustness and uncertainty characterization9,10, using those 
non-urban projections for the assessment of climate-driven risks to 
human society in built environments (such as energy expenditures, 
labour productivity, city conflicts, human mortality and morbidity) 
is not an adequate alternative. Urban impacts derived from these 
ensembles are highly biased.

To address this shortcoming, recent efforts have either physi-
cally downscaled climate projections from one or two GCMs using 
regional climate models (RCMs) that have urban land schemes 
over limited regions at high computational cost11–13, or have 
implemented urban representation in a GCM14. However, GCMs, 
although relatively consistent for global average results, exhibit 
large inter-model variability for regional climate projections, and 

this variability alters the local urban response. Thus, urban forecasts 
based on a single GCM are insufficient. Projections of urban cli-
mate using GCMs and downscaling have shown large discrepan-
cies or even conflicting results for the same regions15,16. This is in 
large part due to (1) the internal variability of the climate system 
and (2) uncertainty in model parameters and structure and associ-
ated variation at the regional scale. For decadal or longer time hori-
zons, the dominant sources of uncertainty at the regional scale are 
model parameter and structural uncertainty, in addition to scenario 
uncertainty17. The role of internal variability on local urban climate 
can be addressed by multi-member ensemble simulations using a 
single GCM, but the parameter and structural uncertainty are diffi-
cult to address because of the absence of multi-model urban simula-
tions18. Additionally, the high computational demand of dynamical 
downscaling limits long-term and global-scale simulations, leading 
to a strong geographic bias in the regions studied toward China, 
Europe and North America, with few studies in polar regions, 
South America, Africa and Oceania19. This is a substantial omis-
sion, because the largest global cities are projected to be concen-
trated in Africa and Southeast Asia by 2100 (ref. 20). To plan ahead 
for future climate-driven risks to cities and construct effective solu-
tions, robust projections of local-scale urban-specific climates with 
quantitative characterization of confidence and uncertainty remain 
a critical research gap.

We have developed a method that combines fully coupled cli-
mate simulations and reduced-order modelling to provide the first 
global multi-model projections of local urban climates under cli-
mate change scenarios, with assessment of the associated robustness 
and uncertainties. We used the Community Earth System Model 
(CESM)21 of the US National Center for Atmospheric Research 
(NCAR) to build a reduced-order urban climate emulator, which 
was then applied to 26 CMIP Phase 5 (CMIP5) ESMs to generate 
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urban projections under two representative concentration pathway 
(RCP) scenarios, namely RCP 4.5 and RCP 8.5. The CESM is the 
only CMIP5 model that has a physically based urban land param-
eterization22 and that has been evaluated against observed urban 
surface energy fluxes, surface temperature and air temperature over 
sites across the globe23–29. The emulator is a location-dependent 
regression model with all of the atmospheric fields that force the 
urban land model in the CESM as inputs, and the urban climatic 
response as outputs (see Methods). We used 95 years (2006–2100) 
of monthly average atmospheric forcings and urban outputs from 
CESM simulations as the training sets to build the emulator, and 
we then applied it to all available ESMs in CMIP5 over the same 
time range. Although the focus of this study was on the mean urban 
climate, the whole emulator framework could be further developed 
to capture finer temporal scales (for example, daily or hourly), if the 
requisite training data were available. We evaluated both the CESM 
dynamic simulations and the emulator, with the results demonstrat-
ing its credibility (Extended Data Figs. 1–3 and Methods). We then 
analysed the difference between the end (2091–2100) and beginning 
(2006–2015) of the century to highlight urban warming signals for 
two seasons (June–August (JJA) and December–February (DJF)), 
and documented the validity of the emulator over the full range of 
available projections. Because the emulator framework outputs the 
data of the full time period (2006–2100), urban climate projections 
for any other timescales of interest (such as mid-century or sooner) 
can be obtained from the data. Urban planners and decision-makers 
in any city could therefore have access to city-specific projections 
for any planning horizon they need.

Our emulator uses atmospheric forcings from other ESM simu-
lations in CMIP5 to drive a statistical, rather than dynamical, ver-
sion of the CESM urban model. The variability and uncertainty in 

large-scale dynamics and feedbacks among various models are pre-
sumably preserved in the large-scale atmospheric forcings, and this 
is particularly true given the small fraction of a typical ESM grid 
square that is occupied by urban area. Therefore, the inter-model 
variability in our emulated urban projections captures the impacts 
of large-scale climatology on the local-scale urban climate.

Our results confirm that the background regional/local warming 
(changes in grid cell mean temperatures between the end and begin-
ning of the century) projected by the traditional CMIP5 models fails 
to capture the spatiotemporal variations of urban warming (changes 
in urban subgrid temperatures between the end and beginning of 
the century) forecast by the CESM under climate change (Fig. 1 and 
Extended Data Fig. 4). CESM-projected local urban warmings devi-
ate from the regional background (non-urban) warming produced 
by the CMIP5 ensemble means under RCP 8.5 and RCP 4.5 by the 
end of the century (Fig. 1a,c). The urban warming effect relative to 
the surrounding regional warming is not uniform, either spatiotem-
porally or between models. Thus, urban warming projections can-
not be represented with an anomaly added to regional background 
warming projections by ESMs, as this misrepresents the realistic 
warming signals for a large number of metropoles and smaller cities 
globally (Fig. 1b,d).

This misrepresentation is overcome in our multi-model ensem-
ble projections of urban-specific warming, which show strong and 
robust climatic and geographic signals (Figs. 2 and 3). By the end of 
the century, the multi-model mean urban warming for JJA is 0.7–
6.8, 0.7–7.6 and 0.7–6.7 K for monthly mean diurnal average (Ta), 
maximum (Tmax) and minimum (Tmin) air temperature, respectively, 
depending on the region and RCP scenario (Figs. 2 and 3). The 
magnitudes of the three warming signals (∆Ta, ∆Tmax and ∆Tmin) are 
substantially less in the mitigated scenario (RCP 4.5) compared with 
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Fig. 1 | Difference between projected urban warming and background regional warming for JJA. Difference between CESM-modelled urban warming 
(∆Turban_CESM) and background regional warming (∆Tbackground_CMIP5) projected by CMIP5 multi-model ensemble means for JJA. Δ refers to changes between 
the end of the century and the beginning of the century (2091–2100 versus 2006–2015). a,c, Global maps of the temperature difference between urban 
warming and regional warming under RCP 8.5 (a) and RCP 4.5 (c). The colours indicate grid cells that have urban land (total of 4,439 grid cells). Each 
coloured point represents decadal mean JJA subgrid urban 2 m air temperature difference relative to the 0.9° latitude × 1.25° longitude model grid cell 
in which it is embedded. Dark grey indicates grid cells without urban land. b,d, Histograms of the temperature difference between urban warming and 
regional warming under RCP 8.5 (b) and RCP 4.5 (d).
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the high-emissions scenario (RCP 8.5). Specifically, the global mean 
urban warming in JJA reaches 4.4 K by the end of the century under 
RCP 8.5, which is 2.5 K or 130% higher than that under RCP 4.5. 
This confirms the crucial role of mitigating non-local greenhouse 
gas emissions for local-scale urban temperature benefits11. By the 
end of the century, the mid-to-northern part of the United States, 
southern Canada, Europe, the Middle East, northern Central Asia 
and northwestern China exhibit the most pronounced urban warm-
ing during both daytime and night-time. Inland South America also 
shows strong night-time warming. This spatial variability is likely 
a result of the combined effects of regional background warm-
ing, differences in synoptic-scale dynamics, biophysical processes 
associated with urban surface energy balance16,23,30,31 and the sen-
sitivity of the urban response to large-scale climate variability. 
Further research is needed for a quantitative attribution of these 
dynamics in future work. Our ensemble-projected urban daytime 
and night-time warming and their spatial gradients are in broad 
agreement with recent studies focused on the contiguous United 
States11 (CONUS; Extended Data Fig. 2) as well as over European12 
and Australian32 cities using direct dynamical downscaling with all 
the mean absolute differences less than 0.5 K (see Methods), fur-
ther demonstrating the high credibility of our emulator. Globally, 

there is a weak diurnal effect in the ensemble mean projection. The 
global mean daytime urban warming is slightly stronger than the 
night-time one, with about 0.2 K difference between ∆Tmax (Figs. 2b 
and 3b) and ∆Tmin (Figs. 2c and 3c) under both scenarios. However, 
given that night-time urban warmth shows more dependence on 
the morphological aspects of a city23,33,34, ∆Tmin here may be under-
estimated by the emulator due to the lack of urban growth in the 
CESM.

Our results also show strong urban warming in DJF by the end of 
the century (Extended Data Fig. 5). Consistent with JJA, the warm-
ing in DJF is largely mitigated under RCP 4.5 compared with RCP 
8.5. The night-time warming is slightly stronger than daytime, with 
the global mean night-time value ~0.2 K higher than the daytime 
value under RCP 8.5. The most pronounced urban warming in DJF 
during daytime and night-time occurs in high-latitude cities in 
the Northern Hemisphere, reaffirming more rapid warming in the 
Arctic region35. For example, observational evidence suggests that 
the city of Anchorage in Alaska is experiencing climate change at 
twice the rate of cities at mid-latitudes36.

The spatial patterns of model local agreement on urban tem-
perature change are shown in Extended Data Fig. 6, based on the 
signal-to-noise ratio (SNR), a measure of robustness. Model agree-
ment increases under RCP 8.5 compared with RCP 4.5, especially 
in the middle and high latitudes of the Northern Hemisphere 
(Extended Data Fig. 6). This is because models project stronger 
urban warming under RCP 8.5, yet similar inter-model variability 
to RCP 4.5. We have used stippling on the maps of urban warming 
(∆T; Figs. 2 and 3 and Extended Data Fig. 5) to indicate cities with 
strong warming (∆T ≥ 4 K under RCP 8.5 and ∆T ≥ 1.5 K under 
RCP 4.5) with high inter-model agreement (SNR > 2.5). Under RCP 
8.5, our emulator projects with high confidence that a large number 
of cities globally will experience more than 4 K of warming during 
daytime and night-time in JJA by the end of century (Fig. 2b,c). 
These areas include the CONUS, the Middle East, the northern part 
of Central Asia, northeastern China and some inland cities of South 
America and Africa. Despite a substantially mitigated urban warm-
ing globally and fewer ‘stippled’ areas under RCP 4.5, the models 
still agree that a large number of cities (especially at night-time) will 
experience warming of more than 1.5 K, the target set by the Paris 
Agreement (Fig. 3b,c). Cities with substantial projected warming in 
DJF with high robustness are shown in Extended Data Fig. 5. Arctic 
cities are particularly impacted under RCP 8.5.

We find a near-universal decrease in urban relative humidity 
(RH) in JJA by the end of century (Fig. 4; −6 to 3% under RCP 
4.5 and −13 to 6% under RCP 8.5). Compared with RCP 8.5, the 
reduction in RH is markedly smaller under RCP 4.5. Previous stud-
ies reported marginal RH change over non-urban surfaces under 
climate change, because both partial and saturation water vapour 
pressure increase under warming37,38. This is not the case for urban 
surfaces. The saturation vapour pressure increases considerably 
over these surfaces due to warming. The increase in partial water 
vapour pressure, on the other hand, is limited by the large fraction 
of impervious surfaces in cities that hinders evaporation despite the 
elevated ability of warmer air to contain water vapour. The increase 
in partial pressure therefore remains smaller than over non-urban 
surfaces; urban-specific humidity during JJA is projected to 
increase slightly (by ~10–20%) by the end of the century under both 
scenarios (Extended Data Fig. 7). These results are in broad agree-
ment with a recent downscaling study in Germany12. Empirical 
evidence exists for such a decrease in observed urban RH in the 
last decade39–41. Most coastal cities are projected to have indiscern-
ible or no decrease in RH, because of the larger water availability 
that allows the increase in urban partial vapour pressure to keep up 
with its rural counterpart (Fig. 4). In DJF, global urban RH changes 
do not show a decreasing pattern as spatially consistent as in JJA 
(Extended Data Fig. 8).
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Fig. 2 | Multi-model ensemble mean urban warming for JJA under rCP 
8.5. a–c, Seasonal mean urban warming between 2006–2015 and 2091–
2100 for the diurnal average temperature Ta (a), the diurnal maximum 
temperature Tmax (b) and the diurnal minimum temperature Tmin (c) under 
RCP 8.5. Stippling indicates substantial change (∆T ≥ 4 K) with high 
inter-model robustness (SNR > 2.5).
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In general, the model agreement with respect to local urban RH 
is weaker than it is for temperature, indicating larger inter-model 
variability for RH projections (Extended Data Fig. 9). Regions with 
higher robustness coincide with, to some extent, the regions of 
large RH changes (Fig. 4). The stippling in Fig. 4 indicates urban 
areas with substantial projected RH change (abs(∆RH) > 5% under 
RCP 8.5 or abs(∆RH) > 2.5% under RCP 4.5) and high inter-model 
robustness (SNR > 1). Its spatial coverage is markedly smaller than 
the corresponding stippling for temperature (Figs. 2 and 3).

The human-perceived impacts of climate change are primary 
factors that motivate the growing research focus on urban cli-
mates. We further evaluated two commonly used measures of 
human-perceived heat stress in which humidity is factored in with 
air temperature: the wet-bulb temperature (Twb) and the US National 
Weather Service version of the heat index (HI). The former is pref-
erable as it is a measure inherently tied to thermodynamics rather 
than an empirical index and has the added advantage of serving as an 
indicator of the efficiency of evaporative cooling. We estimate that 
the HI increases faster than air temperature over almost all the cities 
globally under both scenarios (Extended Data Fig. 10), indicating 
a stronger human-perceived heat burden change for future urban 
residents than would be concluded from the temperature change 

alone. This effect is particularly pronounced over mid-to-low lati-
tude cities. Reanalysis and GCM simulations have shown a similar 
trend of larger increases in HI compared with air temperature alone 
over non-urban landscapes under climate change37. Fortunately, 
heat stress can be notably mitigated through evaporative cool-
ing in both present-day and future warmer climates. Because Twb 
represents the lowest temperature that can be attained by a surface 
evaporating at its potential rate at constant pressure42, the difference 
between Ta and Twb represents the potential efficiency of evaporative 
cooling from green infrastructure or human sweating. We illustrate 
this multi-model mean potential evaporative cooling efficiency over 
global urban areas in Fig. 5. In general, green infrastructure would 
be less effective in evaporative cooling in wetter cities than in dryer 
cities under both present-day and future climates. This supports 
green infrastructure intervention as an effective means of reduc-
ing urban heat stress for dryer cities. Despite being less effective in 
wetter cites, green infrastructure would still provide cooling and, 
in addition, more shading (by trees). Under climate change, the 
potential evaporative cooling efficiency from green infrastructure 
is projected to increase in most of the urban areas globally except 
some coastal cities (Fig. 5c), with a global average increase of 16.6% 
by the end of the century under RCP 8.5. This increase is largely 
caused by the multi-model projected drying trend in urban RH for 
global cities. Our results suggest that efforts to increase urban green 
infrastructure would potentially produce more effective cooling on 
a large scale in future warmer climates.

We note three main limitations to this study. First, the effect of 
future urbanization on urban climate is not embedded in the cur-
rent emulator. Because the urban fraction and properties in each 
grid cell are time-invariant in the current version of the CESM 
(CESM version 2), the training sets produced by CESM simulations 
do not contain the effects of urban development. Our emulated 
results represent projections of climate change impacts on urban 
climates, and likely the lower bounds of potential urban warming 
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for growing cities in future climates, unless heat mitigation is explic-
itly taken into account in urban development11,32,43. Importantly, our 
emulator strategy can be extended to include the repercussions of 
urban development. One could implement a future urban scenario 
in the CESM and use the urbanization-enabled CESM to train the 
emulator; it would then be able to capture both urbanization and 
urban physical processes in each urban grid cell. Second, the urban 
projections in this study are based on a single urban model, that 
is, the urban parameterization in the CESM. Developing emula-
tors based on multiple urban models would help assess associated 
variability in future work. However, unlike ESMs, urban parameter-
izations do not have many internal dynamics and non-linearities, 
and as such cannot drift far from each other if forced by identical 
atmospheric forcing44,45. This is supported by the comparison of the 
CESM and Weather Research and Forecasting (WRF) model results 
for the CONUS (Extended Data Fig. 2); despite having two different 
urban land schemes, the two models project similar warming when 
the atmospheric forcing is the same, with a mean absolute difference 
of 0.47 K (much smaller than the urban warming signals of either 
models). The major variability is from the diverse large-scale atmo-
spheric forcings that are produced by different ESMs. Therefore, the 
multi-model results presented here are expected to encompass the 
potential variability resulting from urban models. Third, this emu-
lator predicts city-scale urban climate rather than high-resolution 
intra-city values that other downscaling (dynamical and statistical) 

techniques are capable of producing. Our framework operates at the 
city-to-global scale but lacks intra-city details that RCMs11–13,32,46,47 
and microscale urban models48–50 can produce. The emulator can, 
however, be used to select future periods and regions where heat 
hazards are particularly intense and where downscaling to the ~1 km 
scale may be beneficial; it can thus guide dynamical downscaling 
efforts. If future generations of ESMs have finer-scale intra-city rep-
resentations, one could easily train an emulator on those ESMs to 
provide multi-model high-resolution urban projections.

This study proposes a novel reduced-order urban climate emu-
lator anchored in process-based simulations and physics-guided 
machine learning. Our framework makes urban areas globally com-
parable and facilitates understanding the impacts of climate change 
on local urban climates. The emulated global multi-model projec-
tions of local urban climates over the full time period (2006–2100) 
are provided (see Data availability), for those interested in extract-
ing time periods of interest. We highlight (1) the necessity of mod-
elling local urban-specific climates and quantifying robustness and 
uncertainties, and (2) the need for multi-model global projections 
of climate change-driven heat stress in urban locations. Our results 
can accurately account for the human-perceived impacts of cli-
mate change in population hotspots. Our emulator strategy is not 
restricted to urban systems; similar emulators can be developed for 
other systems such as rivers and lakes, glaciers or vegetated ecosys-
tems. This approach can be adopted in other broad-scale climate 
change impacts, vulnerability and adaptation applications to reduce 
the need for computationally expensive (and maybe unattainable) 
downscaling, or to guide research for higher-resolution downscal-
ing where information at finer spatial scales might be beneficial.
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Methods
The fundamental rationale of our methodology was to use the atmospheric forcings 
from various ESMs to drive the CESM urban model in a statistical way rather than 
a physical way.

Community Earth System Model. The NCAR’s CESM21 is a fully coupled ESM 
consisting of seven prognostic components, namely atmosphere (Community 
Atmosphere Model, CAM), land, land ice, ocean, sea ice, river and a coupler that 
exchanges fluxes between components. The land–atmosphere interactions are 
represented in its land component, the Community Land Model (CLM)51. The 
CLM employs nested hierarchical levels to represent land surface heterogeneity. 
For the first hierarchy, each grid cell consists of up to five subgrid ‘land units’: 
urban, vegetated, wetland, glacier and lake. These land units within a single grid 
cell are driven by the same atmospheric forcing at the reference height (from the 
lowest atmospheric layer in the CAM), because at this forcing height the air is 
well mixed. This architecture is an important feature as it allows isolation of local 
climate response (for example, urban climate response) in different landscapes to a 
given atmospheric forcing (for example, background climate forcing). To simulate 
the effects of different landscapes on local climate, the different landscapes in a grid 
cell must be forced with the same atmospheric forcing. This modelling structure is, 
to some extent, similar to those mesoscale modelling studies performed using the 
WRF model, in which the forcing meteorology is usually a background regional 
atmosphere coming from reanalysis data or GCM-modelled atmospheric data.

The CESM is the only model in CMIP5 that has a physically based urban land 
parameterization (Community Land Model Urban, CLMU) as part of its land 
model that is sufficiently detailed for the purposes of the study. This urban scheme 
is based on an ‘urban canyon’ conceptual structure that comprises roof, wall (sunlit 
and shaded) and canyon floor (pervious and impervious) facets22. A global urban 
surface dataset specifically developed for global climate modelling52 is embedded 
in the CLMU. This dataset prescribes the present-day urban extent and properties, 
including thermal (for example, heat capacity and thermal conductivity), radiative 
(for example, albedo and emissivity) and morphological (for example, building 
height-to-street width ratio, roof areal fraction, average building height and 
pervious ground fraction) characteristics for every grid cell having an ‘urban’ 
subgrid land unit. The urban spatial extent is derived from a population density 
dataset at 1 km spatial resolution. The urban property data are compiled by 
synthesizing a variety of datasets, including satellite products, a global database 
of tall buildings, local building codes data and other municipal documentation, 
and validated against imagery from Google Earth (see ref. 52 for details). With this 
high-dimensional urban dataset and the prognostic forcings from the CAM, the 
CESM directly outputs state and flux variables and the building energy use for the 
urban land unit in each grid cell, laying the groundwork for assessing the urban 
climate on a large scale.

The CLMU uses a simplified scheme to dynamically capture the building 
energy use (primarily space heating and air conditioning) and associated waste 
heat in urban areas22. The internal boundary conditions for roofs and walls 
are determined by an approximation of the internal building temperature held 
between prescribed maximum and minimum temperatures. Building interior 
maximum and minimum thermostat settings are prescribed by region from ref. 
52. The amount of energy required to be added to increase the interior building 
temperature to the minimum temperature and the amount required to be removed 
to reduce the interior building temperature to the maximum temperature are 
designated as the space-heating and air-conditioning fluxes, respectively. The heat 
removed by air conditioning is added as waste heat (sensible heat) to the canyon 
floor. Waste heat from inefficiencies in the heating and air-conditioning equipment 
and from energy lost in the conversion of primary energy sources to end-use 
energy is also added as sensible heat to the canyon floor. The anthropogenic heat 
flux due to traffic and human metabolism is not parameterized in the current 
version of the CLMU.

The CLM-CAM coupling in the model is a two-way dynamic interaction. 
In a fully coupled CESM simulation, the biogeochemical component of the 
CLM captures leaf and stem area and canopy height of vegetated surfaces 
prognostically in response to climate change51. One limitation of the current 
urban configuration in the CESM is that the urban extent and properties are 
static, and thus urbanization effects are not represented in CESM transient climate 
simulations. Therefore, this study provides global urban climate projections under 
greenhouse gas forcing only, but an emulator including the urban expansion 
effects can be developed when the needed CESM simulations become available. 
Note that a future urban scenario with urban expansion (not densification or 
other morphological changes) would not affect the urban subgrid outputs in the 
CESM. Its effects on grid cell means are also minimal due to the small fraction 
(2%) of urban areas on the Earth’s land surface, even in grid cells with large cities. 
Compared with large-scale climate change, the impacts of urbanization on local 
urban climates are minimal, as is evidenced by the recent study incorporating 
urban expansion and densification scenarios into their WRF downscaling 
simulations for the United States11.

Reduced-order urban climate emulator. The urban climate emulator is a 
location-dependent (grid cell) regression model based on atmospheric forcings, 

time and their interactions. For the scope of this study, we built and applied the 
emulator on a monthly scale. It ingests the monthly average atmospheric forcings, 
month of year, two-way interaction terms and location as the inputs, and then 
outputs the monthly mean urban climatic response Rurb:

Rurb ¼ flat;long AF;m; Ið Þ ¼ βlat;long ´AFþ γlat;long ´mþ θlat;long ´ AF ´mð Þ ð1Þ

where AF is the matrix of monthly average atmospheric forcings from the atmosphere 
component of the models, m is the matrix of month-of-year indicator, I represents 
the two-way interaction terms between AF and m, essentially accounting for the 
seasonality of the atmospheric forcing variables, lat and long are the latitude and 
longitude specifying the grid cell geolocation, respectively, and flat,long denotes the 
location-dependent regression functions as specified by the model coefficients (βlat,long, 
γlat,long and θlat,long). For AF, we incorporated all the atmospheric forcing fields that drive 
the CLM in the CESM except three variables (lightning frequency, nitrogen deposition 
rate and aerosol deposition rate) that do not affect urban climate. This ensures that 
the emulator mimics the dynamic interaction between the land and atmosphere in a 
CESM simulation. These atmospheric forcing fields include the atmospheric bottom 
level (lowest height) in the atmosphere component of the model, incident shortwave 
and longwave radiation, precipitation (liquid and solid), atmospheric temperature, 
pressure, specific humidity and wind speed (zonal and meridional) at the forcing 
height. The latitude- and longitude-dependent coefficients of the regression equation 
(βlat,long, γlat,long and θlat,long) make the emulator location-specific so that it maps from 
atmospheric forcings to local urban climate specifically for each urban land unit. The 
impacts of urban surface characteristics on its climate, and its specific response to 
that climate, are embedded in these coefficients and the location-specific regression 
function f. Therefore, applying the emulator to other CMIP5 ESMs does not need the 
high-dimensional global urban dataset as long as various model latitude/longitude 
grids align. Compared with the original CLMU, the emulator requires far less input 
datasets and computation, making it a reduced-order model of urban climates. 
Higher-capacity models for function f (including the support vector regression 
and random forest models) were also investigated, found to add little skill in model 
prediction and therefore deemed unnecessary.

The outputs Rurb in this study included the monthly average urban 2 m diurnal 
mean (Ta), the diurnal maximum (Tmax) and minimum (Tmin) air temperatures, and 
urban 2 m relative humidity (RH). The emulator can be expanded to include any 
variables that the CLM produces for the urban land unit.

We used fully coupled CESM simulations to provide training datasets to fit the 
emulator. The model fitting was conducted on each urban land unit to produce 
location-specific regression functions flat,long. To apply the emulator to other CMIP5 
ESMs, consistency of the atmospheric forcings across models is required. Because 
all the other ESMs do not have urban representation in their domain, one could 
argue that the atmospheric forcings in the CESM might already be ‘contaminated’ 
by the impacts of urban land units in the CLM. Both our simulations (not shown) 
and previous studies have demonstrated the indiscernible effects of urban areas 
on grid cell-level atmospheric variables43,53,54, because the model is normally run 
at a coarse spatial resolution. To minimize any potential biases introduced into 
the emulator, we conducted two additional simulations identical to the CESM 
CMIP5 RCP 4.5 (ref. 55) and RCP 8.5 (ref. 56) runs from 2006 to 2100 but without 
urban land units represented (replaced with bare soil land units in the grid cells) 
at a resolution of 0.9° latitude × 1.25° longitude. We compared the atmospheric 
forcings generated from these two simulations with those from the original 
CESM simulations (that is, ones with urban land units) and found indiscernible 
differences (<0.3% difference in 50 atmospheric variables checked, including all 
forcing fields used in the emulator). We used the entire range (95 years) of the 
monthly atmospheric forcings from these two simulations without urban land, and 
the CLM urban outputs from the original CESM-CMIP5 runs with urban land over 
the same time span (2006–2100) as the training sets to build the emulator. This 
emulator method, however, is not limited to monthly outputs. A daily or hourly 
scale emulator could be trained on daily or hourly data of the CESM simulations, 
and then applied to other ESMs as long as their daily or hourly atmospheric 
forcings are available.

The emulator does not assume time-stationary relationships between urban 
response and the atmospheric forcings. If the emulator were trained on a shorter 
timespan, the regression functions would be different. When the emulator is 
applied to other ESMs, it needs to be applied to the same time range to avoid 
extrapolation.

Using atmospheric forcings from ‘fully coupled’ CESM runs to drive the 
CLM is not equivalent to an ‘offline’ simulation. An offline simulation implies 
no two-way interactions between the atmosphere and land. In other words, 
any changes to land surface state variables would not affect the state of the 
atmosphere. Typical examples of offline simulations include the CLM forced by 
site observations or reanalysis. However, forcing the CLM with the atmosphere 
fields from fully coupled CESM runs (with the same CLM) is actually a shortcut 
to the fully coupled mode and should be considered as a retrieval of the land 
surface variables from the fully coupled runs. It produces nearly identical 
outputs to those obtained from the fully coupled CESM runs, because the 
two-way land–atmosphere interactions and impacts of large-scale feedbacks (for 
example, large-scale dynamics, ocean–air feedbacks, carbon climate feedbacks 
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and dynamic land use/land cover change) and regional dynamics (for example, 
influence of topography on regional atmospheric circulation and atmospheric 
rivers) represented in a fully coupled configuration have been preserved in the 
atmospheric forcings6,43. In addition, this emulator framework is not restricted to 
GCM/ESM. One could train the emulator using an RCM for a given region (or 
city) to reproduce mesoscale and sub-city-scale variability, if finer-scale dynamics 
are important in the application.

Validation of the CLMU and urban climate emulator. We conducted a thorough 
validation of the whole emulator framework. We first evaluated the process-based 
CLMU simulation against a ground-based observation dataset and mesoscale 
modelling simulations. We then validated the statistical robustness of the emulator.

Validation of the CLMU. The CESM-CLMU was evaluated against both in situ and 
remote sensing observations in previous efforts23–29. Here, we further evaluated 
the performance of the CLMU against the 4-km gridded observationally based 
PRISM dataset (http://www.prism.oregonstate.edu/) and the 20-km WRF 
simulations coupled with the single-layer urban canopy model (SLUCM)57. The 
WRF-modelled results were taken from a recent study over the CONUS11. The 
WRF simulation itself has been extensively validated against observations11. 
To ensure consistency in this evaluation, we forced the CLMU with the same 
boundary conditions as used in ref. 11 (ERA-Interim reanalysis), at a resolution of 
0.9° latitude × 1.25° longitude. The same ten US metropolitan areas as in ref. 11, 
across a range of regional background climate zones, were selected for assessment. 
The grid cells in the CESM domain where the selected cities reside were compared 
with the corresponding PRISM and WRF grid cells. The results show that the 
CLMU reproduces both the observed and WRF-modelled daily distributions of 
Tmax, Tmin and Ta reasonably well for JJA 2000–2009 across the ten cities (Extended 
Data Fig. 1). The bias in the median of the CLMU compared with the WRF data 
is improved with respect to the observations for four, four and five cities for Ta, 
Tmin and Tmax, respectively. The variability of the daily distributions modelled by 
the CLMU is slightly smaller than that modelled by the WRF. The reason for this 
lies in the different nature of the CLMU and WRF-SLUCM. As an urban scheme 
in an ESM, the CLMU has to limit its ability to capture some mesoscale physical 
processes and rely on parameterizations, whereas the mesoscale WRF model is able 
to resolve certain detailed physics. Therefore, it is expected that some diurnal and 
daily variabilities could be under-represented in the CLMU simulation compared 
with the WRF-SLUCM. The validation here demonstrates the ability of the CLMU 
forced by present-day meteorology to reproduce the observed urban climatology, 
even at a spatial resolution coarser than that of the WRF simulation.

To assess the performance of the CLMU in a changing climate, we further 
evaluated the CESM urban warming projection produced by fully coupled simulation 
against the WRF downscaling simulations over the CONUS. For consistency with 
our CESM configuration, we used the WRF-SLUCM simulations with present-day 
urban land representation in both present-day and projected climate simulations. 
The WRF-modelled urban warming was derived from the difference between the 
simulation forced by ERA-Interim reanalysis (2000–2009) and the one forced by a 
CESM-projected climate under RCP 8.5 (2090–2099)11. We area-weighted aggregated 
the WRF 20-km grid cells (Extended Data Fig. 2a) to the CESM resolution (Extended 
Data Fig. 2c) and compared their urban warming signals. The results demonstrate 
good agreement between the CESM-projected and WRF-SLUCM-downscaled 
urban warming under climate change in terms of both magnitude and spatial 
variation (Extended Data Fig. 2). The mean absolute difference between the CESM 
and WRF-SLUCM is 0.47 K, with 10th and 90th quantiles of −0.71 and 0.73 K, 
respectively. The validation further confirms the fidelity of the CESM to project 
the impacts of climate change on local urban climatology with similar accuracy to 
mesoscale dynamical downscaling despite the coarser spatial resolution.

Validation of the urban climate emulator. We further evaluated the statistical 
robustness of the emulator. We cross-validated our emulator against five 
other CESM ensemble members that were excluded from the emulator 
training under RCP 8.5 and RCP 4.5 (http://www.cgd.ucar.edu/projects/chsp/
brace-output-projections.html). The results demonstrated the excellent accuracy 
of the emulator in predicting urban climate variables. The out-of-sample global 
monthly average root-mean-square errors (RMSEs) across ensemble members 
were 0.2 K, 0.3 K, 0.2 K and 1% for Ta, Tmax, Tmin and RH, respectively, under both 
scenarios (Extended Data Fig. 3). The ‘error’ here is defined as the difference 
between monthly values modelled by the CESM ensemble member and those 
modelled by the emulator using atmospheric forcings from the same ensemble 
member. These numbers are markedly smaller than the urban temperature 
differences between ensemble members (~1.5–2.0 K, P < 10−6), confirming 
the credibility of the emulator. We also conducted a tenfold cross-validation 
by randomly selecting 60 years of training data to train the emulator and the 
remaining 35 years were used for validation. The maximum tenfold cross-validated 
RMSEs were less than 0.5 K, 0.6 K, 0.5 K and 3% for Ta, Tmax, Tmin and RH, 
respectively, further demonstrating the robustness of our emulator method.

Multi-model urban climate projection. The CESM architecture described above 
provides the fundamental basis for our emulator to be applied to other ESMs. 

The structure of the CLMU-CAM interactions in the CESM is, to some extent, 
analogous to dynamical downscaling studies using GCMs or reanalysis data, except 
that dynamical downscaling includes fine-scale (subgrid to ESMs but resolved 
by RCMs) horizontal interactions such as advection and turbulent transport. 
The atmospheric forcing data of the type provided by the CESM-CAM can be 
consistently extracted from other CMIP5 ESMs. These background forcings that 
drive the CLMU in our emulator framework are similar to the boundary conditions 
that force the WRF. Like the GCM/reanalysis-produced boundary conditions in 
WRF downscaling studies, the atmospheric forcings from the CMIP5 models are 
representative of a non-urban background atmosphere. One difference, as described 
above, is the representation of small-scale horizontal exchanges in the WRF.

We applied the emulator across all available CMIP5 ESMs to generate 
multi-model global urban projections over 2006–2100 under RCP 4.5 and RCP 8.5. 
We tried to use all available ESM RCP runs in CMIP5. Those from the exact same 
models but only at lower spatial resolutions were excluded. We ended up with a 
total of 26 ESMs for RCP 8.5 and 25 ESMs for RCP 4.5 (MRI-ESM1 does not have 
RCP 4.5 runs; Supplementary Table 1). We selected the first ensemble member 
from each of these ESMs. Because our emulator is geolocation-specific and thus 
requires the grid cells from other ESMs to align with the CESM grid, we regridded 
the needed atmospheric forcing fields from these ESMs to the CESM grid. The 
regridded atmospheric forcings were used as inputs to emulate 26 (25) global 
urban projections of monthly Ta, Tmax, Tmin and RH. The final multi-model analyses 
were based on these emulated projections plus the original CESM projections.

The fundamental rationale of our methodology was to use the atmospheric 
forcings from various ESMs to drive the CLMU statistically. The variability and 
uncertainty in large-scale dynamics, feedbacks and climatology among CMIP5 
models are presumably preserved in those atmospheric forcing fields. The 
variability in the final urban climate projections reflects the impacts of large-scale 
climatology on local-scale urban climates.

Implications of the emulator framework. The urban climate emulator framework 
is essentially a statistical/machine-learning technique at its core, but trained 
on a physical downscaling urban model (CLMU) embedded in a fully coupled 
ESM (CESM). The physics represented in the CESM, especially the dynamic 
interactions between urban land, lower atmosphere and large-scale climate 
change, are therefore preserved in the emulator. This new framework falls into 
the physics-guided machine-learning (PGML) paradigm, because the derived 
statistical model is informed by the physics simulated in the ESM. We highlight 
here three key novel features of this emulator method.

 1. The emulator framework is a globally consistent, robust and coherent method 
for investigating multi-model urban climate simulations across the globe. It is 
based on global-scale simulations that follow a well-defined and coordinated 
modelling protocol (CMIP), is calibrated on a common set of input variables 
(that is predictors) and operates at a common spatial resolution. The consist-
ency and coherence of the method are critical for comparing urban climates 
and identifying risk hotspots across regions, especially on a large scale (for 
example, planetary scale). The lack of a common set of predictors and the 
use of different spatial domains and statistical families in existing statistical 
downscaling techniques have made direct comparison of the downscaled 
climates, and the downscaling methods themselves, difficult to achieve over 
broad scales. This has presented a problem for their applications to climate 
change impact assessments and climate uncertainty characterization58,59.

 2. Traditional statistical downscaling techniques seek to establish empiri-
cal relationships between local climate and the large-scale atmospheric 
state using weather observations and reanalysis/GCM output, whereas this 
emulator method is in essence a statistical ‘solver’ of the system of equations 
in the CLMU as it takes all the input variables that the CLMU needs in the 
coupled CESM to solve the equations. The only difference is that the emulator 
‘solves’ the output variables statistically instead of numerically. The emulator’s 
functions are not to reproduce observed climates empirically, but rather to 
reproduce the dynamically modelled urban climates by the CLMU. Because 
of their empirical nature, traditional statistical downscaling is constrained 
by (1) the length and reliability of the observed historical data, (2) the choice 
of predictors, which remains the subject of debate and is often incomplete 
due to observational unavailability or model features, and (3) the omission 
of climate system feedbacks58. There have been arguments that some of these 
challenges might be addressed by identifying more appropriate large-scale 
predictors and developing statistical methods that better represent the physi-
cal mechanisms60. Our emulator method, trained on a fully coupled climate 
model and ingesting a complete set of variables required for dynamic simula-
tions of the CLMU, captures the physical mechanisms and climate system 
feedbacks represented in the model.

 3. One major limitation of traditional statistical downscaling is its accuracy of 
extrapolation58,60–62. A fundamental assumption of the application of statistical 
downscaling is that the derived predictor/predictand relationship based on 
local observations remains valid outside of the training region and/or in a 
changing future climate. This assumption, however, has been shown to be 
questionable in observed records58,63–65. This limitation is overcome in the 
emulator method, which is a location-dependent statistical model at the 
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global scale, and is trained on the entire temporal range of the fully coupled 
simulation (2006–2100) under climate change scenarios. The emulator, by 
design, is generalizable both spatially (across the globe) and temporally (with 
climate change feedbacks included).

Multi-model uncertainty and robustness. We used the SNR as a measure of 
model robustness to quantify how various models agree on the urban projections. 
The SNR is defined as the ratio of the multi-model ensemble mean to the 
inter-model variability:

SNRi;j ¼
μi;j
σi;j

ð2Þ

where μ denotes the multi-model ensemble means, σ denotes the inter-model 
variability, defined as the standard deviation of multi-model values, and the i,j pair 
denotes the index of grid cells that have an urban land unit in the CLM. The SNR 
can also be considered as an indicator of multi-model spread; the reciprocal of 
SNR is essentially a multi-model variance normalized by the mean. A smaller SNR 
indicates higher model spread or smaller signal change (projected change in the 
multi-model ensemble mean). We quantified the SNR for each grid cell that has an 
urban land unit to assess the inter-model agreement. We have used SNR > 2.5 and 
SNR > 1 to indicate high inter-model agreement in the projection of temperature 
and humidity, respectively. The models generally show less agreement in the 
modelling of humidity than temperature66, therefore we selected a smaller SNR 
threshold for humidity. These thresholds chosen for the SNR are, to some degree, 
subjective and for illustration purposes only. Different thresholds could be chosen 
for different applications of urban climate change to indicate higher or lower 
tolerance in model disagreement.

Calculation of human-perceived heat stress. There are many methodologies 
for assessing human-perceived heat stress67–69. We evaluated two commonly used 
heat stress indicators: the wet-bulb temperature (Twb) and heat index (HI). Both 
measures take both temperature and humidity into account. The former has the 
added advantage of serving as an indicator of the evaporative cooling efficiency. 
The Twb was computed by the formulation developed by Stull70. We used a method 
to calculate the HI appropriate for the United States, that is, the National Weather 
Service definition. The HI was calculated using the Rothfusz regression with 
adjustments under certain conditions (https://www.wpc.ncep.noaa.gov/html/
heatindex_equation.shtml):

HI¼ �8:7847þ 1:6114Ta � 0:012308T2
a

þRH 2:3385� 0:14612Ta þ 2:2117 ´ 10�3T2
a

� �

þRH2ð�0:016425þ 7:2546 ´ 10�4Ta � 3:582 ´ 10�6T2
a Þ

Both Twb and HI were calculated from the emulated monthly means of urban 
Ta and RH.

Data availability
All CMIP5 data used in this study are available at the CMIP5 archive via https://
esgfnode.llnl.gov/projects/cmip5/ and the Climate Data Gateway at NCAR via 
https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM_CAM5_BGC_
LE.html for RCP 8.5 and https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.
CESM_CAM5_BGC_ME.html for RCP 4.5. The output data from the emulator 
are available in the public repository—‘Illinois Data Bank’—via https://doi.
org/10.13012/B2IDB-4585244_V1. Source data are provided with this paper.

Code availability
The R (https://www.R-project.org/) and NCL (The NCAR Command Language, 
https://doi.org/10.5065/D6WD3XH5) codes of the urban climate emulator are 
available on the NCAR Cheyenne cluster (https://doi.org/10.5065/D6RX99HX) 
and on Github (https://github.com/zhao-research-lab/urban_climate_emulator; 
https://doi.org/10.5281/zenodo.3893401). The CESM (used to perform the 
simulations) source code releases are available through the public GitHub 
repository (https://github.com/ESCOMP/CESM).
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Extended Data Fig. 1 | Comparison of 2000–2009 JJA (June – August) distributions of diurnal average (Ta), minimum (Tmin) and maximum (Tmax) 
2 m urban air temperature between CLMu (red), WrF (blue) and PriSM (green). Center bar represent the median, box edges the 25th and 75th 
percentiles, and error bars the 1st and 99th percentiles. PHX = Phoenix; LAX = Los Angeles; CHI = Chicago; DNV = Denver; POR = Portland; BAL = Baltimore; 
MIA = Miami; DAL = Dallas; BOS = Boston; ATL = Atlanta.
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Extended Data Fig. 2 | Comparison of urban warming projection of diurnal average temperature between CESM and WrF-SLuCM simulation for season 
JJA (June – August) in 2090 – 2099 relative to 2000 – 2009 under rCP 8.5. WRF-SLUCM dynamic downscaling simulation (forced by a CESM-RCP8.5 
meteorology) was conducted in ref. 11. a, WRF-SLUCM projected urban warming in WRF’s original 20 km grids; b, CESM projected urban warming in the 
CESM grids (0.9° latitude × 1.25° longitude); c, WRF-SLUCM projected urban warming in the aggregated CESM grids (0.9° latitude × 1.25° longitude);  
d, difference in projected urban warming between CESM and WRF-SLUCM in the CESM grids.

NAturE CLiMAtE ChANGE | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange


ArticlesNature Climate ChaNge

Extended Data Fig. 3 | Average root-mean-square-error (rMSE) in urban temperature and RH validation of the emulator across 5 CESM ensemble 
member runs (member #2 - #6). The ‘error’ in RMSE denotes the difference between monthly temperatures or RH dynamically modeled by the CESM 
ensemble member and the ones modeled by the emulator. The average RMSE was calculated based on the 5 CESM ensemble member runs from 2006 to 
2100 (that is 95 years). a-d: RCP 8.5; e-h: RCP 4.5. a and e: RMSE in diurnal average temperature Ta; b and f: RMSE in diurnal maximum temperature Tmax; c 
and g: RMSE in diurnal minimum temperature Tmin; d and h: RMSE in urban relative humidity RH.
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Extended Data Fig. 4 | Comparison of CMiP5 multi-model mean urban warming (Δturban) and background regional warming (Δtbackground) for season JJA 
(June – August) in 2091 – 2100 relative to 2006 – 2015. Δ refers to changes between end of the century and beginning of the century, that is (2091 to 
2100) − (2006 to 2015); a, RCP 8.5; b, RCP 4.5.
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Extended Data Fig. 5 | Multi-model mean urban warming for season DJF (December – February) in 2091 – 2100 relative to 2006 – 2015. a–c: RCP 
8.5; d-f: RCP 4.5. a and d: urban warming in diurnal average temperature Ta; b and e: in diurnal maximum temperature Tmax; c and f: in diurnal minimum 
temperature Tmin. Stippling indicates substantial change (ΔT ≥ 4K under RCP 8.5 or ΔT ≥ 1.5K under RCP 4.5) with high inter-model robustness 
(SNR > 2.5).
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Extended Data Fig. 6 | inter-model robustness of urban temperature projections measured by signal-to-noise ratio (SNr). a–d, RCP 8.5; e-h, RCP 4.5.  
a, b, e and f: season JJA (June – August); c, d, g and h: season DJF (December – February); a, c, e and g: projection in diurnal maximum temperature Tmax;  
b, d, f and h: projection in diurnal minimum temperature Tmin.
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Extended Data Fig. 7 | Multi-model mean urban specific humidity (Q) change for season JJA (June – August) in 2091 – 2100 relative to 2006 – 2015.  
a, RCP 8.5; b, RCP 4.5.

NAturE CLiMAtE ChANGE | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange


Articles Nature Climate ChaNge

Extended Data Fig. 8 | Multi-model mean urban relative humidity (RH) change for season DJF (December – February) in 2091 – 2100 relative to 2006 – 
2015. a, RCP 8.5; b, RCP 4.5.

NAturE CLiMAtE ChANGE | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange


ArticlesNature Climate ChaNge

Extended Data Fig. 9 | inter-model robustness of urban RH projections measured by signal-to-noise ratio (SNr). a,b: RCP 8.5; c,d: RCP 4.5. a and c: 
season JJA (June – August); b and d: season DJF (December – February).
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Extended Data Fig. 10 | Multi-model mean of urban Δ(HI−Ta) for season JJA (June – August) in 2091 – 2100 relative to 2006 – 2015. a: RCP 8.5;  
b: RCP 4.5. Stippling indicates substantial change (Δ(HI − Ta) > 3 K under RCP8.5 or Δ(HI − Ta) > 1.5 K under RCP4.5) with high inter-model robustness 
(SNR>2.5).
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