This CVPR 2021 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Center-based 3D Object Detection and Tracking

Tianwei Yin
UT Austin

yintianwei@utexas.edu

Abstract

Three-dimensional objects are commonly represented as
3D boxes in a point-cloud. This representation mimics the
well-studied image-based 2D bounding-box detection but
comes with additional challenges. Objects in a 3D world do
not follow any particular orientation, and box-based detec-
tors have difficulties enumerating all orientations or fitting
an axis-aligned bounding box to rotated objects. In this
paper, we instead propose to represent, detect, and track 3D
objects as points. Our framework, CenterPoint, first detects
centers of objects using a keypoint detector and regresses
to other attributes, including 3D size, 3D orientation, and
velocity. In a second stage, it refines these estimates using
additional point features on the object. In CenterPoint, 3D
object tracking simplifies to greedy closest-point matching.
The resulting detection and tracking algorithm is simple,
efficient, and effective. CenterPoint achieved state-of-the-
art performance on the nuScenes benchmark for both 3D
detection and tracking, with 65.5 NDS and 63.8 AMOTA
for a single model. On the Waymo Open Dataset, Center-
Point outperforms all previous single model methods by a
large margin and ranks first among all Lidar-only submis-
sions. The code and pretrained models are available at
https://github.com/tianweiy/CenterPoint.

1. Introduction

Strong 3D perception is a core ingredient in many state-
of-the-art driving systems [, 48]. Compared to the well-
studied 2D detection problem, 3D detection on point-clouds
offers a series of interesting challenges: First, point-clouds
are sparse, and most parts of 3D objects are without mea-
surements [22]. Second, the resulting output is a three-
dimensional box that is often not well aligned with any
global coordinate frame. Third, 3D objects come in a wide
range of sizes, shapes, and aspect ratios, e.g., in the traf-
fic domain, bicycles are near planer, buses and limousines
elongated, and pedestrians tall. These marked differences be-
tween 2D and 3D detection made a transfer of ideas between

Xingyi Zhou
UT Austin

zhouxy@cs.utexas.edu

Philipp Krihenbiihl
UT Austin

philkr@cs.utexas.edu

a) Anchor-based t=1

I\, o)
g o e

b) Center-based t=1
Ve e
&

B D

¢) Anchor-based t=2 d) Center-based t=2
Figure 1: We present a center-based framework to represent,
detect and track objects. Previous anchor-based methods
use axis-aligned anchors with respect to ego-vehicle coor-
dinate. When the vehicle is driving on straight roads, both
anchor-based (red boxes) and our center-based (red points)
method can detect objects accurately (top). However, during
a safety-critical left turn (bottom), anchor-based methods
have difficulty fitting axis-aligned bounding boxes to rotated
objects. Our center-based model accurately detects objects
through rotationally invariant points. Best viewed in color.

the two domains harder [43,45,58]. An axis-aligned 2D
box [16, 17] is a poor proxy of a free-form 3D object. One
solution might be to classify a different template (anchor)
for each object orientation [56,57], but this unnecessarily in-
creases the computational burden and may introduce a large
number of potential false-positive detections. We argue that
the main underlying challenge in linking up the 2D and 3D
domains lies in this representation of objects.

In this paper, we show how representing objects as
points (Figure 1) greatly simplifies 3D recognition. Our
two-stage 3D detector, CenterPoint, finds centers of ob-

11784

jects and their properties using a keypoint detector [62], a
second-stage refines all estimates. Specifically, CenterPoint
uses a standard Lidar-based backbone network, i.e., Voxel-
Net [54, 64] or PointPillars [27], to build a representation
of the input point-cloud. It then flattens this representation
into an overhead map-view and uses a standard image-based
keypoint detector to find object centers [62]. For each de-
tected center, it regresses to all other object properties such
as 3D size, orientation, and velocity from a point-feature at
the center location. Furthermore, we use a light-weighted
second stage to refine the object locations. This second stage
extracts point-features at the 3D centers of each face of the
estimated objects 3D bounding box. It recovers the lost local
geometric information due to striding and a limited receptive
field and brings a decent performance boost with minor cost.

The center-based representation has several key advan-
tages: First, unlike bounding boxes, points have no intrinsic
orientation. This dramatically reduces the object detector’s
search space and allows the backbone to learn the rotational
invariance and equivalence of objects. Second, a center-
based representation simplifies downstream tasks such as
tracking. If objects are points, tracklets are paths in space
and time. CenterPoint predicts the relative offset (veloc-
ity) of objects between consecutive frames and links objects
greedily. Thirdly, point-based feature extraction enables us
to design an effective two-stage refinement module that is
much faster than the previous approaches [42—44].

We test our models on two popular large datasets: Waymo
Open [46], and nuScenes [0]. We show that a simple switch
from the box representation to center-based representation
yields a 3-4 mAP increase in 3D detection under different
backbones [27,54,64,65]. Two-stage refinement further
brings an additional 2 mAP boost with a small (< 10%)
computation overhead. Our best single model achieves 71.8
and 66.4 level 2 mAPH for vehicle and pedestrian detec-
tion on Waymo, 58.0 mAP and 65.5 NDS on nuScenes,
outperforming all published methods on both datasets. No-
tably, in NeurIPS 2020 nuScenes 3D Detection challenge,
CenterPoint forms the basis of 3 of the top 4 winning en-
tries. For 3D tracking, our model performs at 63.8 AMOTA
outperforming the prior state-of-the-art by 8.8 AMOTA on
nuScenes. On Waymo 3D tracking benchmark, our model
achieves 59.4 and 56.6 level 2 MOTA for vehicle and pedes-
trian tracking, respectively, surpassing previous methods by
up to 50%. Our end-to-end 3D detection and tracking system
runs near real-time, with 11 FPS on Waymo and 16 FPS on
nuScenes.

2. Related work

2D object detection predicts axis-algined bounding box
from image inputs. The RCNN family [16,17,20,41] finds a
category-agnostic bounding box candidates, then classifies
and refines it. YOLO [40], SSD [32], and RetinaNet [31]

directly find a category-specific box candidate, sidestepping
later classification and refinement. Center-based detectors,
e.g. CenterNet [62] or CenterTrack [61], directly detect the
implicit object center point without the need for candidate
boxes. Many 3D detectors [19, 43,45, 58] evolved from
these 2D detectors. We show that center-based representa-
tions [61,62] are an ideal fit for 3D application.

3D object detection aims to predict three dimensional ro-
tated bounding boxes [11,15,27,30,37,54,58,59]. They dif-
fer from 2D detectors on the input encoder. Vote3Deep [2]
leverages feature-centric voting [49] to efficiently process
the sparse 3D point-cloud on equally spaced 3D voxels. Vox-
elNet [64] uses a PointNet [38] inside each voxel to generate
a unified feature representation from which a head with 3D
sparse convolutions [18] and 2D convolutions produces de-
tections. SECOND [54] simplifies the VoxelNet and speeds
up sparse 3D convolutions. PIXOR [55] project all points
onto a 2D feature map with 3D occupancy and point inten-
sity information to remove the expensive 3D convolutions.
PointPillars [27] replaces all voxel computation with a pillar
representation, a single tall elongated voxel per map location,
improving backbone efficiency. MVF [63] and Pillar-od [50]
combine multiple view features to learn a more effective
pillar representation. Our contribution focuses on the output
representation and is compatible with any 3D encoder and
can improve them all.

VoteNet [36] detects objects through vote clustering us-
ing point feature sampling and grouping. In contrast, we
directly regress to 3D bounding boxes through features at
the center point without voting. Wong et al. [53] and Chen
et al. [8] used similar multiple points representation in the
object center region (i.e., point-anchors) and regress to other
attributes. We use a single positive cell for each object and
use a keypoint estimation loss.

Two-stage 3D object detection. Recent works considered
directly applying RCNN style 2D detectors to the 3D do-
mains [9,42-44,59]. Most of them apply RolPool [41] or
RolAlign [20] to aggregate Rol-specific features in 3D space,
using PointNet-based point [43] or voxel [42] feature extrac-
tor. These approaches extract region features from 3D Lidar
measurements (points and voxels), resulting in a prohibitive
run-time due to massive points. Instead, we extract sparse
features of 5 surface center points from the intermediate
feature map. This makes our second stage very efficient and
keeps effective.

3D object tracking. Many 2D tracking algorithms [2, 4,

,52] readily track 3D objects out of the box. However,
dedicated 3D trackers based on 3D Kalman filters [10,51]
still have an edge as they better exploit the three-dimensional
motion in a scene. Here, we adopt a much simpler approach
following CenterTrack [61]. We use a velocity estimate to-
gether with point-based detection to track centers of objects
through multiple frames. This tracker is much faster and

11785

more accurate than dedicated 3D trackers [10,51].

3. Preliminaries

2D CenterNet [02] rephrases object detection as keypoint
estimation. It takes an input image and predicts a w X h
heatmap Y € [0,1]**"*X for each of K classes. Each
local maximum (i.e., pixels whose value is greater than its
eight neighbors) in the output heatmap corresponds to the
center of a detected object. To retrieve a 2D box, CenterNet
regresses to a size map S e R¥*"*2 ghared between all
categories. For each detection object, the size-map stores its
width and height at the center location. The CenterNet archi-
tecture uses a standard fully convolutional image backbone
and adds a dense prediction head on top. During training,
CenterNet learns to predict heatmaps with rendered Gaus-
sian kernels at each annotated object center q; for each class
c; € {1... K}, and regress to object size S at the center of
the annotated bounding box. To make up for quantization er-
rors introduced by the striding of the backbone architecture,
CenterNet also regresses to a local offset 0.

At test time, the detector produces K heatmaps and
dense class-agnostic regression maps. Each local maxima
(peak) in the heatmaps corresponds to an object, with
confidence proportional to the heatmap value at the peak.
For each detected object, the detector retrieves all regression
values from the regression maps at the corresponding
peak location. Depending on the application domain,
Non-Maxima Suppression (NMS) may be warranted.

3D Detection Let P = {(z,y, z,7);} be an orderless point-
cloud of 3D location (z,y, z) and reflectance r measure-
ments. 3D object detection aims to predict a set of 3D object
bounding boxes B = {b;} in the bird eye view from this
point-cloud. Each bounding box b = (u,v,d,w,l, h,)
consists of a center location (u, v, d), relative to the objects
ground plane, and 3D size (w, [, h), and rotation expressed
by yaw a.. Without loss of generality, we use an egocentric
coordinate system with the sensor at (0, 0,0) and yaw= 0.

Modern 3D object detectors [19,27, 54, 64] uses a 3D
encoder that quantizes the point-cloud into regular bins. A
point-based network [38] then extracts features for all points
inside a bin. The 3D encoder then pools these features into
its primary feature representation. Most of the computation
happens in the backbone network, which operates solely
on these quantized and pooled feature representations. The
output of a backbone network is a map-view feature-map
M € RWXEXF of width W and length L with F' channels
in a map-view reference frame. Both width and height di-
rectly relate to the resolution of individual voxel bins and
the backbone network’s stride. Common backbones include
VoxelNet [54, 64] and PointPillars [27].

With a map-view feature map M, a detection head, most
commonly a one- [31] or two-stage [4 1] bounding-box de-

tector, then produces object detections from some predefined
bounding boxes anchored on this overhead feature-map. As
3D bounding boxes come with various sizes and orienta-
tion, anchor-based 3D detectors have difficulty fitting an
axis-aligned 2D box to a 3D object. Moreover, during the
training, previous anchor-based 3D detectors rely on 2D Box
IoU for target assignment [42, 54], which creates unneces-
sary burdens for choosing positive/negative thresholds for
different classes or different dataset. In the next section,
we show how to build a principled 3D object detection and
tracking model based on point representation. We introduce
a novel center-based detection head but rely on existing 3D
backbones (VoxelNet or PointPillars).

4. CenterPoint

Figure 2 shows the overall framework of the CenterPoint
model. Let M € RW*H*F be the output of the 3D back-
bone. The first stage of CenterPoint predicts a class-specific
heatmap, object size, a sub-voxel location refinement, rota-
tion, and velocity. All outputs are dense predictions.
Center heatmap head. The center-head’s goal is to produce
a heatmap peak at the center location of any detected object.
This head produces a K -channel heatmap Y, one channel for
each of K classes. During training, it targets a 2D Gaussian
produced by the projection of 3D centers of annotated bound-
ing boxes into the map-view. We use a focal loss [28, 62].
Objects in a top-down map view are sparser than in an image.
In map-view, distances are absolute, while an image-view
distorts them by perspective. Consider a road scene, in map-
view the area occupied by vehicles small, but in image-view,
a few large objects may occupy most of the screen. Further-
more, the compression of the depth-dimension in perspective
projection naturally places object centers much closer to each
other in image-view. Following the standard supervision of
CenterNet [62] results in a very sparse supervisory signal,
where most locations are considered background. To coun-
teract this, we increase the positive supervision for the target
heatmap Y by enlarging the Gaussian peak rendered at each
ground truth object center. Specifically, we set the Gaussian
radius to 0 = max(f(wl),), where 7 = 2 is the smallest
allowable Gaussian radius, and f is a radius function defined
in CornerNet [28]. In this way, CenterPoint maintains the
center-based target assignment’s simplicity; the model gets
denser supervision from nearby pixels.

Regression heads. We store several object properties at
center-features of objects: a sub-voxel location refinement
o € R?, height-above-ground h, € R, the 3D size s € R3,
and a yaw rotation angle (sin(«), cos(a)) € [—1,1]%. The
sub-voxel location refinement o reduces the quantization
error from voxelization and striding of the backbone network.
The height-above-ground h helps localize the object in 3D
and adds the missing elevation information removed by the
map-view projection. The orientation prediction uses the

11786

Head

(3D Backbone)

—

(a) Point. cloud (b) Map-view features

Centers and 3D boxes

°)

B a | score 0.765
° |

— = | 3D box 0
-
)

a | score 0.436
4

~a\ ¢ =| 3D boxg
o -

(c) First stage: (d) Second stage:

Score and 3D boxes

Figure 2: Overview of our CenterPoint framework. We rely on a standard 3D backbone that extracts map-view feature
representation from Lidar point-clouds. Then, a 2D CNN architecture detection head finds object centers and regress to full 3D
bounding boxes using center features. From this box prediction, we extract point features at the 3D centers of each face of
the estimated 3D bounding box, and pass them into a MLP to predict an IoU-guided confidence score and box regression

refinement. Best viewed in color.

sine and cosine of the yaw angle as a continuous regression
target. Combined with box size, these regression heads
provide the full state information of the 3D bounding box.
Each output uses its own head. We train all outputs using
an L1 loss at the ground truth center location. We regress
to logarithmic size to better handle boxes of various shapes.
At inference time, we extract all properties by indexing into
dense regression head outputs at each object’s peak location.

Velocity head and tracking. To track objects through time,
we learn to predict a two-dimensional velocity estimation
v € R? for each detected object as an additional regression
output. The velocity estimate requires temporal point cloud
sequences [60]. In our implementation, we transform and
merge points from previous frames into the current reference
frame and predict the difference in object position between
the current and the past frame normalized by the time differ-
ence (velocity). Like other regression targets, the velocity
estimation is also supervised using L1 loss at the ground
truth object’s location at the current time-step.

At inference time, we use this offset to associate current
detections to past ones in a greedy fashion. Specifically, we
project the object centers in the current frame back to the
previous frame by applying the negative velocity estimate
and then matching them to the tracked objects by closest
distance matching. Following SORT [4], we keep unmatched
tracks up to 7' = 3 frames before deleting them. We update
each unmatched track with its last known velocity estimation.
See supplement for the detailed tracking algorithm diagram.

CenterPoint combines all heatmap and regression losses
in one common objective and jointly optimizes them. It
simplifies and improves previous anchor-based 3D detec-
tors (see experiments). However, all object properties are

currently inferred from the object’s center-feature, which
may not contain sufficient information for accurate object
localization. For example, in autonomous driving, the sensor
often only sees the side of the object, but not its center. Next,
we improve CenterPoint by using a second refinement stage
with a light-weight point-feature extractor.

4.1. Two-Stage CenterPoint

We use CenterPoint unchanged as a first stage. The sec-
ond stage extracts additional point-features from the output
of the backbone. We extract one point-feature from the 3D
center of each face of the predicted bounding box. Note
that the bounding box center, top and bottom face centers
all project to the same point in map-view. We thus only
consider the four outward-facing box-faces together with the
predicted object center. For each point, we extract a feature
using bilinear interpolation from the backbone map-view
output M. Next, we concatenate the extracted point-features
and pass them through an MLP. The second stage predicts a
class-agnostic confidence score and box refinement on top
of one-stage CenterPoint’s prediction results.

For class-agnostic confidence score prediction, we follow
[25,29,42,44] and use a score target I guided by the box’s
3D IoU with the corresponding ground truth bounding box:

I = min(1, max(0,2 x IoU; — 0.5)) (1

where IoU, is the IoU between the ¢-th proposal box and the
ground-truth. We train using a binary cross entropy loss:

Lscore = _It log(ft) — (1 — It) log(l — ft) (2)

where I is the predicted confidence score. During the infer-
ence, we directly use the class prediction from one-stage

11787

CenterPoint and computes the final confidence score as

the geometric average of the two scores Qt =V Yt * ft
where Qt is the final prediction confidence of object ¢ and
f’t = MaxXo<k<K ?},7 . and ft are the first stage and second
stage confidence of object ¢, respectively.

For box regression, the model predicts a refinement on
top of first stage proposals, and we train the model with L1
loss. Our two-stage CenterPoint simplifies and accelerates
previous two-stage 3D detectors that use expensive PointNet-
based feature extractor and RolAlign operations [42,43].

4.2. Architecture

All first-stage outputs share a first 3 x 3 convolutional
layer, Batch Normalization [24], and ReLU. Each output
then uses its own branch of two 3 x 3 convolutions separated
by a batch norm and ReLLU. Our second-stage uses a shared
two-layer MLP, with a batch norm, ReLU, and Dropout [2 1]
with a drop rate of 0.3, followed by separate three-layer
MLPs for confidence prediction and box regression.

5. Experiments

We evaluate CenterPoint on Waymo Open Dataset and
nuScenes dataset. We implement CenterPoint using two 3D
encoders: VoxelNet [54,64,65] and PointPillars [27], termed
CenterPoint-Voxel and CenterPoint-Pillar respectively.

Waymo Open Dataset. Waymo Open Dataset [46] contains
798 training sequences and 202 validation sequences for ve-
hicles and pedestrians. The point-clouds contain 64 lanes of
Lidar corresponding to 180k points every 0.1s. The official
3D detection evaluation metrics include 3D bounding box
mean average precision (mAP) and mAP weighted by head-
ing accuracy (mAPH). The mAP and mAPH are based on
an IoU threshold of 0.7 for vehicles and 0.5 for pedestrians.
For 3D tracking, the official metrics are Multiple Object
Tracking Accuracy (MOTA) and Multiple Object Tracking
Precision (MOTP) [3]. The official evaluation toolkit also
provides a performance breakdown for two difficulty levels:
LEVEL_1 for boxes with more than five Lidar points, and
LEVEL_2 for boxes with at least one Lidar point.

Our Waymo model uses a detection range of
[—75.2m, 75.2m)] for the X and Y axis, and [—2m, 4m] for
the Z axis. CenterPoint-Voxel uses a (0.1m, 0.1m, 0.15m)
voxel size following PV-RCNN [42] while CenterPoint-Pillar
uses a grid size of (0.32m, 0.32m).

nuScenes Dataset. nuScenes [6] contains 1000 driving
sequences, with 700, 150, 150 sequences for training, vali-
dation, and testing, respectively. Each sequence is approxi-
mately 20-second long, with a Lidar frequency of 20 FPS.
The dataset provides calibrated vehicle pose information for
each Lidar frame but only provides box annotations every

ten frames (0.5s). nuScenes uses a 32 lanes Lidar, which
produces approximately 30k points per frame. In total, there
are 28k, 6k, 6k, annotated frames for training, validation,
and testing, respectively. The annotations include ten classes
with a long-tail distribution. The official evaluation met-
rics are an average among the classes. For 3D detection,
the main metrics are mean Average Precision (mAP) [13]
and nuScenes detection score (NDS). The mAP uses a bird-
eye-view center distance < 0.5m, 1m, 2m,4m instead of
standard box-overlap. NDS is a weighted average of mAP
and other attributes metrics, including translation, scale, ori-
entation, velocity, and other box attributes [0]. After our
test set submission, the nuScenes team adds a new neural
planning metric (PKL) [35]. The PKL metric measures
the influence of 3D object detection for down-streamed au-
tonomous driving tasks based on the KL divergence of a
planner’s route (using 3D detection) and the ground truth tra-
jectory. Thus, we also report the PKL metric for all methods
that evaluate on the test set.

For 3D tracking, nuScenes uses AMOTA [51], which
penalizes ID switches, false positives, and false negatives
averaged over various recall thresholds.

For experiments on nuScenes, we set the detection range
to [—51.2m, 51.2m] for the X and Y axis, and [—5m, 3m]
for Z axis. CenterPoint-Voxel use a (0.1m,0.1m, 0.2m)
voxel size and CenterPoint-Pillars uses a (0.2m, 0.2m) grid.

Training and Inference. We use the same network designs
and training schedules as prior works [42,65]. See supple-
ment for detailed hyper-parameters. During the training of
two-stage CenterPoint, we randomly sample 128 boxes with
1:1 positive negative ratio [41] from the first stage predic-
tions. A proposal is positive if it overlaps with a ground truth
annotation with at least 0.55 IoU [42]. During inference,
we run the second stage on the top 500 predictions after
Non-Maxima Suppression (NMS). The inference times are
measured on an Intel Core i7 CPU and a Titan RTX GPU.

5.1. Main Results

3D Detection We first present our 3D detection results
on the test sets of Waymo and nuScenes. Both results use
a single CenterPoint-Voxel model. Table 1 and Table 2
summarize our results. On the Waymo test set, our model
achieves 71.8 level 2 mAPH for vehicle detection and 66.4
level 2 mAPH for pedestrian detection, surpassing previous
methods by 7.1% mAPH for vehicles and 10.6% mAPH for
pedestrians. On nuScenes (Table 2), our model outperforms
the last-year challenge winner CBGS [65] with multi-scale
inputs and multi-model ensemble by 5.2% mAP and 2.2%
NDS. Our model is also much faster, as shown later. Sup-
plementary material contains a breakdown along classes.
Our model displays a consistent performance improvement
over all categories and shows more significant gains in small

11788

Vehicle Pedestrian
mAP mAPH mAP mAPH

StarNet [34] 61.5 61.0 67.8 599
PointPillars [27] 63.3 62.8 62.1 50.2

Difficulty Method

Level 1 PPBA [34] 67.5 67.0 69.7 61.7
RCD [5] 720 71.6 _ _
Ours 80.2 79.7 783 721
StarNet [34] 549 545 61.1 54.0
PointPillars [27] 55.6 55.1 559 45.1

Level2 PPBA [34] 59.6 59.1 63.0 558
RCD [5] 65.1 64.7 _ _
Ours 722 71.8 722 664

Table 1: State-of-the-art comparisons for 3D detection on
Waymo test set. We show the mAP and mAPH for both level
1 and level 2 benchmarks.

Method mAPT NDST PKL|

WYSIWYG [22] 35.0 41.9 1.14
PointPillars [27] 40.1 55.0 1.00

CVCNet [7] 55.3 64.4 0.92
PointPainting [47] 46.4 58.1 0.89
PMPNet [60] 454 53.1 0.81
SSN [66] 46.3 56.9 0.77
CBGS [65] 52.8 63.3 0.77
Ours 58.0 65.5 0.69

Table 2: State-of-the-art comparisons for 3D detection
on nuScenes test set. We show the nuScenes detection
score (NDS), and mean Average Precision (mAP).

MOTA?T MOTP|
Vehicle Ped. Vechile Ped.

AB3D [46,51] 425 389 18.6 34.0

Difficulty Method

Level 1 s 626 583 163 311
Levely AB3D[I0SI] 401 377 186 340
v Ours 594 566 164 312

Table 3: State-of-the-art comparisons for 3D tracking on
Waymo test set. We show MOTA, and MOTP. 1 signifies
higher is better and | lower is better.

categories (+5.6 mAP for traffic cone) and extreme-aspect
ratio categories (46.4 mAP for bicycle and 7.0 mAP for
construction vehicle). More importantly, our model signif-
icantly outperforms all other submissions under the neural
planar metric (PKL), a hidden metric evaluated by the orga-
nizers after our leaderboard submission. This highlights the
generalization ability of our framework.

3D Tracking Table 3 shows CenterPoint’s tracking perfor-
mance on the Waymo test set. Our velocity-based closest
distance matching described in Section 4 significantly outper-

Method AMOTA? FP| FN| IDSJ
AB3D[51] 15.1 15088 75730 9027
Chiu et al. [10] 55.0 17533 33216 950
Ours 63.8 18612 22928 760

Table 4: State-of-the-art comparisons for 3D tracking on
nuScenes test set. We show AMOTA, the number of false
positives (FP), false negatives (FN), id switches (IDS), and
per-category AMOTA. 7 signifies higher is better and | lower
is better.

Method Vehicle Pedestrain mAPH

Anchor-based 66.1 54.4 60.3
Center-based 66.5 62.7 64.6
Anchor-based 64.1 50.8 57.5

PointPillars Center-based 66.5 57.4 62.0

Encoder

VoxelNet

Table 5: Comparison between anchor-based and center-
based methods for 3D detection on Waymo validation. We
show the per-calss and average LEVEL_2 mAPH.

Encoder Method mAP NDS
Anchor-based 52,6 63.0
VoxelNet Grid Point-based 53.1 62.8
Center-based 564 64.8
Anchor-based 46.2 59.1
PointPillars Grid Point-based 47.1 58.8
Center-based 50.3 60.2

Table 6: Comparison between anchor-based, grid point-
based, and center-based methods for 3D detection on
nuScenes validation. We show mean average precision
(mAP) and nuScenes detection score (NDS).

forms the official tracking baseline in the Waymo paper [46],
which uses a Kalman-filter based tracker [51]. We observe
a 19.4 and 18.9 MOTA improvement for vehicle and pedes-
trian tracking, respectively. On nuScenes (Table 4), our
framework outperforms the last challenge winner Chiu et
al. [10] by 8.8 AMOTA. Notably, our tracking does not re-
quire a separate motion model and runs in a negligible time,
1ms on top of detection.

5.2. Ablation studies

Center-based vs Anchor-based We first compare our
center-based one-stage detector with its anchor-based coun-
terparts [27,54,65]. On Waymo, we follow the state-of-the-
art PV-RCNN [42] to set the anchor hyper-parameters: we
use two anchors per-locations with 0°and 90°, a positive/ neg-
ative IoU thresholds of 0.55/0.4 for vehicles and 0.5/0.35
for pedestrians. On nuScenes, we follow the anchor assign-
ment strategy from the last challenge winner CBGS [65]. We

11789

Vehicle Pedestrian
Rel. yaw 0°-15° 15°-30° 30°-45° 0°-15° 15°-30° 30°-45°
annot. 81.4% 10.5% 8.1% 71.4% 15.8% 12.8%

Anchor-based 67.1 47.7 454 559 320 26.5
Center-based 67.8 464 51.6 64.0 421 35.7

Table 7: Comparison between anchor-based and center based
methods for detecting objects of different heading angles.
Line 2 and 3 list the ranges of the rotation angle and their
corresponding portion of objects. We show the LEVEL 2
mAPH for both methods on the Waymo validation.

Vehicle Pedestrian
small medium large small medium large

Anchor-based 58.5 72.8 644 29.6 60.2 60.1
Center-based 59.0 724 654 38,5 69.5 69.0

Method

Table 8: Effects of object size for the performance of anchor-
based and center-based methods. We show the per-class
LEVEL_2 mAPH for objects in different size range: small
33%, middle 33%, and large 33%

also compare to a grid point-based representation, as used
in VoteNet [36], PointRCNN [43], and PIXOR [55], which
assigns all points inside the ground truth box as positive. For
this experiment, we keep all other parameters the same as
our CenterPoint model.

As shown in Table 5, on Waymo dataset, simply switch-
ing from anchors to our centers gives 4.3 mAPH and 4.5
mAPH improvements for VoxelNet and PointPillars encoder,
respectively. On nuScenes (Table 6) CenterPoint improves
anchor-based counterparts by 3.8-4.1 mAP and 1.1-1.8 NDS
across different backbones. Similar results hold comparing
to grid point-based representation (3.2-3.3 mAP and 1.4-2.0
NDS improvements). To understand the source of this im-
provement, we further show the performance breakdown on
different subsets based on object sizes and orientation angles
on the Waymo validation set.

We first divide the ground truth instances into three bins
based on their heading angles: 0°to 15°, 15°to 30°, and
30°to 45°. This division tests the detector’s performance
for detecting heavily rotated boxes, which is critical for the
safe deployment of autonomous driving. We also divide the
dataset into three splits: small, medium, and large, and each
split contains % of the overall ground truth boxes.

Table 7 and Table 8 summarize the results. Our center-
based detectors perform much better than the anchor-based
baseline when the box is rotated or deviates from the average
box size, demonstrating the model’s ability to capture the
rotation and size invariance when detecting objects. These
results convincingly highlight the advantage of using a point-
based representation of 3D objects.

One-stage vs. Two-stage In Table 9, we show the com-

Encoder Method Vehicle Ped. Tproposal Trefine
First Stage 66.5 62.7 7lms -
VoxelNet + Box Center 68.0 649 7lms Sms

+ Surface Center 68.3 65.3 71lms 6ms
Dense Sampling 682 654 71ms 8ms

First Stage 66.5 574 56ms _
PointPillars + Box Center 67.3 574 56ms 6ms

+ Surface Center 67.5 57.9 56ms Tms

Dense Sampling 67.3 57.9 56ms 8ms

Table 9: Compare 3D LEVEL_2 mAPH for VoxelNet and
PointPillars encoders using single stage, two stage with 3D
center features, and two stage with 3D center and surface
center features on Waymo validation.

Methods Vehicle Pedestrian Runtime
BEV Feature 68.3 65.3 77ms
w/ VSA [42] 68.3 65.2 98ms

w/ RBF Interpolation [19,39] 68.4 65.7 89ms

Table 10: Ablation studies of different feature components
for two stage refinement module. VSA stands for Voxel
Set Abstraction, the feature aggregation methods used in PV-
RCNN [42]. RBF uses a radial basis function to interpolate 3
nearest neighbors. We compare bird-eye view and 3D voxel
features using LEVEL_2 mAPH on Waymo validation.

parison between single and two-stage CenterPoint models
using 2D CNN features on Waymo validation. Two-stage
refinement with multiple center features gives a large
accuracy boost to both 3D encoders with small overheads
(6ms-7ms). We also compare with RoIAlign, which densely
samples 6 x 6 points in the Rol [42, 44], our center-based
feature aggregation achieved comparable performance but is
faster and simpler. The voxel quantization limits two-stage
CenterPoint’s improvements for pedestrian detection with
PointPillars as pedestrians typically only reside in 1 pixel
in the model input. Two-stage refinement does not bring
an improvement over the single-stage CenterPoint model
on nuScenes in our experiments. This is in part due to the
sparser point cloud in nuScenes. nuScenes uses 32 lanes
Lidar, which produces about 30k Lidar points per frame,
about % of the number of points in the Waymo dataset. This
limits the available information and potential improvements
of two-stage refinement. Similar results have been observed
in previous two-stage methods like PointRCNN [43] and
PV-RCNN [42].

Effects of different feature components In our two-stage
CenterPoint model, we only use features from the 2D CNN
feature map. However, previous methods propose to also uti-
lize voxel features for second stage refinement [42,44]. Here,
we compare with two voxel feature extraction baselines:

11790

ol
B
B

il

na

Figure 3: Example qualitative results of CenterPoint on the Waymo validation. We show the raw point-cloud in blue, our
detected objects in green bounding boxes, and Lidar points inside bounding boxes in red. Best viewed on screen.

. Vehicle Pedestrian

Difficulty Method MAP mAPH mAP mAPH
DOPS [33] 56.4 _ _
PointPillars [27] 56.6 _ 59.3 _
PPBA [34] 62.4 _ 66.0 _

Level 1 MVF [63] 62.9 _ 65.3 _
Huang et al. [23] 63.6 _ _
AFDet [11,14] 63.7 - -
CVCNet [7] 65.2 _ _
Pillar-OD [50] 69.8 _ 72.5 _
PV-RCNN [42] 744 738 614 534
CenterPoint-Pillar(ours) 76.1 75.5 76.1 65.1
CenterPoint-Voxel(ours) 76.7 76.2 79.0 72.9

Level 2 PV-RCNN [42] 654 648 539 46.7

CenterPoint-Pillar(ours) 68.0 67.5 68.1 579
CenterPoint-Voxel(ours) 68.8 68.3 71.0 65.3

Table 11: State-of-the-art comparisons for 3D detection on
Waymo validation.

Tracker AMOTAT AMOTP| Tiracke Tiot

CenterPoint-Voxel Point 63.7 0.606 Ims 62ms
CBGS [65] Point 59.8 0.682 Ims > 182ms
CenterPoint-Voxel M-KF 60.0 0.765 73ms 135ms
CBGS [65] M-KF 56.1 0.800 73ms >254ms

Detector

Table 12: Ablation studies for 3D tracking on nuScenes
validation. We show combinations of different detectors
and trackers. CenterPoint-* are our detectors. Point is our
proposed tracker. M-KF is short for Mahalanobis distance-
based Kalman filter [10]. T},4cx denotes tracking time and
T} denotes total time for both detection and tracking.

Voxel-Set Abstraction. PV-RCNN [42] proposes the
Voxel-Set Abstraction (VSA) module, which extends Point-
Net++ [39]’s set abstraction layer to aggregate voxel features
in a fixed radius ball.

Radial basis function (RBF) Interpolation. Point-
Net++ [39] and SA-SSD [19] use a radial basis function to
aggregate grid point features from three nearest non-empty
3D feature volumes.

For both baselines, we combine bird-eye view features
with voxel features using their official implementations. Ta-
ble 10 summarizes the results. It shows bird-eye view

features are sufficient for good performance while being
more efficient comparing to voxel features used in the litera-
tures [19,39,42].

To compare with prior work that did not evaluate on the
Waymo test, we also report results on the Waymo validation
split in Table 11. Our model outperforms all published
methods by a large margin, especially for the challenging
pedestrian class(+18.6 mAPH) of the level 2 dataset, where
boxes contain as little as one Lidar point.

3D Tracking. Table 12 shows the ablation experiments of
3D tracking on nuScenes validation. We compare with last
year’s challenge winner Chiu et al. [10], which uses maha-
lanobis distance-based Kalman filter to associate detection
results of CBGS [65]. We decompose the evaluation into the
detector and tracker to make the comparison strict. Given the
same detected objects, using our simple velocity-based clos-
est point distance matching outperforms the Kalman filter-
based Mahalanobis distance matching [10] by 3.7 AMOTA
(line 1 vs. line 3 and line 2 vs. line4). There are two sources
of improvements: 1) we model the object motion with a
learned point velocity, rather than modeling 3D bounding
box dynamic with a Kalman filter; 2) we match objects
by center point-distance instead of a Mahalanobis distance
of box states or 3D bounding box IoU. More importantly,
our tracking is a simple nearest-neighbor matching without
any hidden-state computation. This saves the computational
overhead of a 3D Kalman filter [10] (73ms vs. 1ms).

Conclusion We proposed a center-based framework for si-
multaneous 3D object detection and tracking from the Lidar
point-clouds. Our method uses a standard 3D point-cloud en-
coder with a few convolutional layers in the head to produce
a bird-eye-view heatmap and other dense regression outputs.
Detection is a simple local peak extraction with refinement,
and tracking is a closest-distance matching. CenterPoint is
simple, near real-time, and achieves state-of-the-art perfor-
mance on the Waymo and nuScenes benchmarks.

Acknowledgement This material is based upon work sup-
ported by the National Science Foundation under Grant No.
IIS-1845485 and IIS-2006820.

11791

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

(13]

[14]

[15]

(16]
[17]

(18]

Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauf-
feurnet: Learning to drive by imitating the best and synthesiz-
ing the worst. RSS, 2019.

Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe.
Tracking without bells and whistles. /CCV, 2019.

Keni Bernardin, Alexander Elbs, and Rainer Stiefelhagen.
Multiple object tracking performance metrics and evaluation
in a smart room environment. Citeseer.

Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and
Ben Upcroft. Simple online and realtime tracking. ICIP,
2016.

Alex Bewley, Pei Sun, Thomas Mensink, Dragomir Anguelov,
and Cristian Sminchisescu. Range conditioned dilated convo-
lutions for scale invariant 3d object detection. arXiv preprint
arXiv:2005.09927, 2020.

Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. CVPR, 2020.

Qi Chen, Lin Sun, Ernest Cheung, Kui Jia, and Alan Yuille.
Every view counts: Cross-view consistency in 3d object detec-
tion with hybrid-cylindrical-spherical voxelization. NeurIPS,
2020.

Qi Chen, Lin Sun, Zhixin Wang, Kui Jia, and Alan Yuille. Ob-
ject as hotspots: An anchor-free 3d object detection approach
via firing of hotspots. ECCV, 2020.

Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast
point r-cnn. ICCV, 2019.

Hsu-kuang Chiu, Antonio Prioletti, Jie Li, and Jeannette Bohg.
Probabilistic 3d multi-object tracking for autonomous driving.
arXiv:2001.05673, 2020.

Zhuangzhuang Ding, Yihan Hu, Runzhou Ge, Li Huang, Sijia
Chen, Yu Wang, and Jie Liao. 1st place solution for waymo
open dataset challenge—3d detection and domain adaptation.
arXiv preprint arXiv:2006.15505, 2020.

Martin Engelcke, Dushyant Rao, Dominic Zeng Wang,
Chi Hay Tong, and Ingmar Posner. Vote3deep: Fast ob-
ject detection in 3d point clouds using efficient convolutional
neural networks. ICRA, 2017.

Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. 1JCV, 2010.

Runzhou Ge, Zhuangzhuang Ding, Yihan Hu, Yu Wang, Sijia
Chen, Li Huang, and Yuan Li. Afdet: Anchor free one stage
3d object detection. arXiv preprint arXiv:2006.12671, 2020.
Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. CVPR, 2012.

Ross Girshick. Fast r-cnn. ICCV, 2015.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. CVPR, 2014.

Benjamin Graham, Martin Engelcke, and Laurens van der
Maaten. 3d semantic segmentation with submanifold sparse
convolutional networks. CVPR, 2018.

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

11792

Chenhang He, Hui Zeng, Jiangiang Huang, Xian-Sheng Hua,
and Lei Zhang. Structure aware single-stage 3d object detec-
tion from point cloud. CVPR, 2020.

Kaiming He, Georgia Gkioxari, Piotr Dollér, and Ross Gir-
shick. Mask r-cnn. ICCV, 2017.

Geoftrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever, and Ruslan R Salakhutdinov. Improving neural
networks by preventing co-adaptation of feature detectors.
JMLR, 2012.

Peiyun Hu, Jason Ziglar, David Held, and Deva Ramanan.
What you see is what you get: Exploiting visibility for 3d
object detection. CVPR, 2020.

Rui Huang, Wanyue Zhang, Abhijit Kundu, Caroline Panto-
faru, David A Ross, Thomas Funkhouser, and Alireza Fathi.
An Istm approach to temporal 3d object detection in lidar
point clouds. ECCV, 2020.

Sergey loffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. ICML, 2015.

Borui Jiang, Ruixuan Luo, Jiayuan Mao, Tete Xiao, and Yun-
ing Jiang. Acquisition of localization confidence for accurate
object detection. ECCV, 2018.

H. Karunasekera, H. Wang, and H. Zhang. Multiple object
tracking with attention to appearance, structure, motion and
size. IEEE Access, 2019.

Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. CVPR, 2019.

Hei Law and Jia Deng. Cornernet: Detecting objects as paired
keypoints. ECCV, 2018.

Buyu Li, Wanli Ouyang, Lu Sheng, Xingyu Zeng, and Xiao-
gang Wang. Gs3d: An efficient 3d object detection framework
for autonomous driving. CVPR, 2019.

Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urta-
sun. Multi-task multi-sensor fusion for 3d object detection.
CVPR, 2019.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. Focal loss for dense object detection. ICCV,
2017.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.
Ssd: Single shot multibox detector. ECCV, 2016.

Mahyar Najibi, Guangda Lai, Abhijit Kundu, Zhichao Lu,
Vivek Rathod, Thomas Funkhouser, Caroline Pantofaru,
David Ross, Larry S Davis, and Alireza Fathi. Dops: Learn-
ing to detect 3d objects and predict their 3d shapes. CVPR,
2020.

Jiquan Ngiam, Benjamin Caine, Wei Han, Brandon Yang,
Yuning Chai, Pei Sun, Yin Zhou, Xi Yi, Ouais Alsharif,
Patrick Nguyen, et al. Starnet: Targeted computation
for object detection in point clouds. arXiv preprint
arXiv:1908.11069, 2019.

Jonah Philion, Amlan Kar, and Sanja Fidler. Learning to eval-
uate perception models using planner-centric metrics. CVPR,
2020.

Charles R. Qi, Or Litany, Kaiming He, and Leonidas Guibas.
Deep hough voting for 3d object detection in point clouds.
ICCV, 2019.

(37]

(38]

[39]

(40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

[53]

[54]

[55]

Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J
Guibas. Frustum pointnets for 3d object detection from rgb-d
data. CVPR, 2018.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification and
segmentation. CVPR, 2017.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, 2017.

Joseph Redmon and Ali Farhadi. Yolo9000: better, faster,
stronger. CVPR, 2017.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. NIPS, 2015.

Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping
Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-
voxel feature set abstraction for 3d object detection. CVPR,
2020.

Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. CVPR, 2019.

Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and
Hongsheng Li. From points to parts: 3d object detection from
point cloud with part-aware and part-aggregation network.
TPAMI, 2020.

Martin Simony, Stefan Milzy, Karl Amendey, and Horst-
Michael Gross. Complex-yolo: An euler-region-proposal
for real-time 3d object detection on point clouds. ECCYV,
2018.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: An open dataset benchmark. CVPR,
2020.

Sourabh Vora, Alex H Lang, Bassam Helou, and Oscar Bei-
jbom. Pointpainting: Sequential fusion for 3d object detection.
CVPR, 2020.

Dequan Wang, Coline Devin, Qi-Zhi Cai, Philipp Krihenbiihl,
and Trevor Darrell. Monocular plan view networks for au-
tonomous driving. IROS, 2019.

Dominic Zeng Wang and Ingmar Posner. Voting for voting in
online point cloud object detection. RSS, 2015.

Yue Wang, Alireza Fathi, Abhijit Kundu, David Ross, Caro-
line Pantofaru, Tom Funkhouser, and Justin Solomon. Pillar-
based object detection for autonomous driving. ECCV, 2020.
Xinshuo Weng and Kris Kitani. A Baseline for 3D Multi-
Object Tracking. IROS, 2020.

Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple
online and realtime tracking with a deep association metric.
ICIP, 2017.

Kelvin Wong, Shenlong Wang, Mengye Ren, Ming Liang,
and Raquel Urtasun. Identifying unknown instances for au-
tonomous driving. CORL, 2019.

Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-
ded convolutional detection. Sensors, 2018.

Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time
3d object detection from point clouds. CVPR, 2018.

[56]

(571

(58]

[59]

[60]

[61]

(62]

[63]

[64]

[65]

[66]

11793

Xue Yang, Qingqing Liu, Junchi Yan, Ang Li, Zhigiang
Zhang, and Gang Yu. R3det: Refined single-stage detector
with feature refinement for rotating object. arXiv:1908.05612,
2019.

Xue Yang, Jirui Yang, Junchi Yan, Yue Zhang, Tengfei Zhang,
Zhi Guo, Xian Sun, and Kun Fu. Scrdet: Towards more robust
detection for small, cluttered and rotated objects. ICCV,
2019.

Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3dssd:
Point-based 3d single stage object detector. CVPR, 2020.
Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya
Jia. Std: Sparse-to-dense 3d object detector for point cloud.
ICCV, 2019.

Junbo Yin, Jianbing Shen, Chenye Guan, Dingfu Zhou, and
Ruigang Yang. Lidar-based online 3d video object detec-
tion with graph-based message passing and spatiotemporal
transformer attention. CVPR, 2020.

Xingyi Zhou, Vladlen Koltun, and Philipp Kréihenbiihl. Track-
ing objects as points. ECCV, 2020.

Xingyi Zhou, Dequan Wang, and Philipp Krihenbiihl. Objects
as points. arXiv:1904.07850, 2019.

Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang
Gao, Tom Ouyang, James Guo, Jiquan Ngiam, and Vijay Va-
sudevan. End-to-end multi-view fusion for 3d object detection
in lidar point clouds. CORL, 2019.

Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. CVPR, 2018.
Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and
Gang Yu. Class-balanced grouping and sampling for point
cloud 3d object detection. arXiv:1908.09492, 2019.

Xinge Zhu, Yuexin Ma, Tai Wang, Yan Xu, Jianping Shi, and
Dahua Lin. Ssn: Shape signature networks for multi-class
object detection from point clouds. ECCV, 2020.

