IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, MM 2021 1

An Overview of Hardware Security and Trust:
Threats, Countermeasures and Design Tools

Wei Hu, Member, IEEE, Chip-Hong Chang, Fellow, IEEE, Anirban Sengupta, Senior Member, IEEE,
Swarup Bhunia, Senior Member, IEEE, Ryan Kastner, Senior Member, IEEE, and Hai Li, Fellow, IEEE

(Invited Paper)

Abstract—Hardware security and trust have become a pressing
issue during the last two decades due to the globalization of the
semi-conductor supply chain and ubiquitous network connection
of computing devices. Computing hardware is now an attrac-
tive attack surface for launching powerful cross-layer security
attacks, allowing attackers to infer secret information, hijack
control flow, compromise system root-of-trust, steal intellectual
property (IP) and fool machine learners. On the other hand,
security practitioners have been making tremendous efforts in
developing protection techniques and design tools to detect hard-
ware vulnerabilities and fortify hardware design against various
known hardware attacks. This paper presents an overview of
hardware security and trust from the perspectives of threats,
countermeasures and design tools. By introducing the most
recent advances in hardware security research and developments,
we aim to motivate hardware designers and electronic design
automation tool developers to consider the new challenges and
opportunities of incorporating an additional dimension of secu-
rity into robust hardware design, testing and verification.

Index Terms—Hardware security, security threat, security
countermeasures, design tools, survey.

I. INTRODUCTION

ODERN computing hardware devices are usually

crafted by vendors with different established levels of
trust and at discrete locations. These hardware components,
while residing in a mixed-trust computing environment, are
often shared among execution contexts of different security
levels in a back-to-back manner. In addition, the rich connec-
tivity features of modern computing systems expose critical
hardware resources to attackers and open up doors for remote
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attacks without requiring physical access to the victim. As
a consequence, our computing hardware is ever closer to the
front-line of a burning battle field and confronted with various
security threats.

Hardware security threats can arise during various stages
of the entire semiconductor life cycle, ranging from specifica-
tion to fabrication and even recycling. They can result from
unintentional design flaws [1]-[3], system side effects [4]—-[7]
and intended malicious design modifications [8]-[10]. They
usually target security assets like cryptographic functions,
secure architectures, intellectual property (IP) and machine
learning (ML) models. While classic hardware security threats
such as covert and side channels, hardware Trojans and reverse
engineering (RE) are constantly evolving, recent powerful
attacks exploit remote [6], [11], cross-layer [2], [3], [12],
specification-compatible [8], [13] attack surfaces to compro-
mise strong cryptographic primitives, isolation mechanisms,
memory protection techniques and deep neural networks
(DNNs). Understanding the different hardware security threats
is an important first step to developing effective security
countermeasures and design tools for circumventing them.

Security practitioners have been making tremendous efforts
in developing effective hardware security countermeasures. An
important first task is to create hardware security primitives
that can serve as the building blocks for crafting an archi-
tectural level trusted computing environment enhanced with
strong isolation mechanisms. Effective side channel protection
and Trojan detection techniques are essential for verifying that
the security primitives and trusted computing environment are
free of design flaws, covert and side channels, and backdoors.
Recent advances in ML and artificial intelligence (AI) have
shown promise in developing more accurate detection solu-
tions [14], [15]. IP protection techniques [16]-[19], on the
other hand, protect security primitives, hardware designs and
DNN models from RE, counterfeiting, model extraction and
other adversary attacks.

Despite the numerous protection techniques for thwarting
hardware security threats, security is still at large an af-
terthought in hardware design. Most security holes are exposed
only after their exploitation by the threat actors. Over-reliance
on software patches for hardware flaws also contributed to the
trove of zero-day exploits for the attackers. In many ways, the
database of common vulnerabilities and exposures (CVE) is
just the tip of an iceberg. This is largely due to the lack of
effective hardware security tools that allow automated spec-
ification, verification and evaluation of security constraints.
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Best design practices and tacit knowledge are necessary but
inadequate. We need better design tools to enforce hardware
security properties for trust assurance. Proactive hardware
information flow analyses facilitate vulnerability shielding and
on-site monitoring. For example, unintentional hardware flaws
and potential security vulnerabilities can be detected early
by the recent security-driven hardware design flow [20]-
[22]. As the rally of attacks and countermeasures is a never-
ending recursion, it is important to keep abreast of its latest
development to continuously close the productivity gap of
secure hardware design. If the tool chain does not constantly
update to catch up with the latest design-for-trust and security
verification methodologies, at the present rate of growth in
hardware design complexity, security may terminate Moore’s
law before other physical limits.

At present, the hardware security space has grown to a
point with many different specialized topics and each topic
has been discussed in several focused survey papers. Exam-
ples of recent surveys on a few specialized topics are side
and covert channels [4], [23], [24], reverse engineering [25],
hardware Trojan [26], [27], physical unclonable function [28],
logic locking [29] and security verification tools [30]. This
paper provides a concise overview of hardware security from
three perspectives, namely threats, countermeasures and design
tools, with emphasis on niche, uncharted topics and updated
recent developments for hardware security in a mixed-trust
environment. We also identify potential future research direc-
tions with this overarching vision.

The reminder of this paper is organized as follows. A brief
description about the common hardware security properties is
introduced in Section II. In Section III, an overview of the
classic as well as state-of-the-art hardware security attacks is
provided. Section IV reviews the frequently used hardware
security mechanisms for thwarting these attacks. Section V
summarizes various secure hardware design tools from both
the academia and industry. Some research challenges and op-
portunities in the discussed topics are highlighted in Section VI
and the paper is concluded in Section VIIL

II. HARDWARE SECURITY PROPERTIES

Hardware security properties are formal specifications about
invariant security-related behaviors of circuit designs. Secu-
rity threats and attacks usually cause violations of desirable
security properties while security countermeasures implement
mechanisms for enforcing them. Security properties provide
important constraints to security verification tools. In the fol-
lowing, we briefly cover different hardware security properties.

A. Dependability

Reliability, Availability and Safety are three important at-
tributes to assess the trustworthiness of a computing hardware
device to perform the expected function during its service
lifespan. Reliability is the ability to produce the intended
functions under normal operation and even under small fluc-
tuations in the computing environment for a specified time
period. Availability is the percentage of time a system is able
to serve its intended function. Safety is the ability to avoid

catastrophic consequences for the user or the environment.
Catastrophic failures represent only a small subset of all
failures. Hence, safety is a relative and subjective attribute
that cannot be measured directly. Critical path timing failures,
single-event-upsets and aging effects can be resulted from
security exploits, such as fault injection [31] and recent ML
attacks [32], to reduce the reliability, increasing the downtime
or impose safety hazards upon a system.

B. Confidentiality

Confidentiality is a general security property stating that
secret information should never be obtained or inferred by
observing a public output or memory location. While the direct
movements of sensitive information can be easily identified,
the stealthy leakage through system side effects and back-
doors can be more subtle. These include the covert and
side channels [4], [33] in cryptographic cores, system bus
and high-performance elements such as caches and branch
predictors [2], [3] as well as hardware Trojans [34].

C. Integrity

Integrity is the dual property of confidentiality. It requires
that a trusted data object should never be overwritten by an
untrusted entity. Integrity attacks often target critical memory
locations, e.g., the cryptographic key, program counter and
privilege registers. These attacks are usually a first step for
performing further malicious activities, e.g., hijacking the
control flow [35] and fooling machine learners [36].

D. Isolation

Isolation is a two-way property requiring that two hardware
components of different security levels should not directly
communicate with each other. It is a common security property
that needs to be enforced in System-on-Chip (SoC), modern
processors and the cloud, where the interaction between the
secure and normal worlds are strictly controlled. However,
there are still ingenious security exploits that break strong
isolation mechanisms such as ARM Trust-Zone [37] and Intel
Software Guide Extension (SGX) [38].

E. Constant Time

The constant time security property enforces that the hard-
ware design should take invariant amount of time to compute
and produce the result under different input combinations.
In other words, we cannot learn any information about the
inputs by observing the computation time. Violation of the
constant time property creates a timing channel that can
leak sensitive information. Such violation can result from
performance optimizations [2], [3], e.g., cache and branch
predictor as well as fast path in arithmetic units.

F. Quantitative Security Properties

Quantitative security properties allow more accurate mea-
surement of hardware design security, e.g., assessing the
severity of a vulnerability or evaluating the effectiveness of
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a security protection mechanism. Typical examples of such
quantitative properties include randomness of the output of
a cryptographic function [20], leakage of side and covert
channels [39] and strength of a security mitigation [40]. These
security properties are usually measured using statistical and
information theoretic security metrics [41]. The security of
approximate computing and machine learning are more often
measured quantitatively.

III. HARDWARE SECURITY THREATS
A. Architectural and System Threats

1) Secure Boot Attacks: A secure boot starts by loading
code from an immutable boot ROM, correctly initializing
critical peripherals, configuring security and system settings,
authenticating and properly loading boot images and appli-
cation code and properly sanitizing data upon reset. Many
issues arise due to the system being configured incorrectly,
e.g., system memory space not protected. Other issues relate
to data not being properly erased (e.g., keyboard strokes stay in
buffers). These and many other real-world secure boot attacks
are documented by Bulygin et al. [42].

The secure boot process is fairly well-documented making
it amenable to formal property specification [43], [44]. Such
properties relate to isolation and access control between boot
stages (e.g., the next stage can only access a limited subset
of the previous stage information), determining if a boot
stage completes fully before continuing to the next stage and
protecting boot state information properly upon completion
(e.g., it cannot be modified and can only be read from boot
code). Additionally, there should be a sequence that causes the
hardware to fully reset all data, code, configuration and any
other state, and the system should only load from the boot
ROM upon reset.

2) Firmware Attacks: Firmware is the low-level software
that controls the interaction and behavior of a piece of hard-
ware or IP core. Firmware plays a key role in determining the
security of the SoC. Incorrectly setting configuration registers
can lead to catastrophic consequences and open the door to
leaking confidential information, unsafe behaviors and critical
flaws that can be exploited by attackers. An analysis in 2014
showed that at least 140,000 devices had a firmware vulner-
ability [45]. This should not be too surprising as determining
the correctness of the firmware is challenging as each hardware
core has different configurations that interact with the overall
system in a non-obvious manner.

Firmware is particularly important for SoC architectures.
Modern SoC architectures are a patchwork of hundreds,
sometimes thousands, of different IP cores that are cobbled
together from in-house sources, outside vendors and open
source repositories. Ensuring that these are functionally correct
is a massive undertaking; determining that they lack security
flaws is even more challenging. Subramanyan et al. [46]
provide good motivation and the early work in this space.

Device drivers are typically small, but important pieces of
low-level C or assembly code that play an important role
in firmware security. They provide an application program
interface (API) that is used to deliver data to/from a device,

query the status of the device, or set the device mode. More
often than not, device drivers require access to critical parts of
the system and thus it is crucial that they execute efficiently,
handle real-time constraints and be secure. A first step towards
synthesizing correct, efficient and secure device drivers is
to create properties around on-chip communication protocols
like Advanced Extensible Interface (AXI) and Wishbone [47].
Properly handling access control to the hardware resource is
also important for secure computing with devices [48].

3) Dynamic Random Access Memory (DRAM) Threats:
The Coldboot [49] and Rowhammer [50] attacks demonstrate
the importance of protecting sensitive data stored in DRAM.
Coldboot exploits the physical phenomenon that DRAM data
persists for a short amount of time even after powering off
the memory. This time can be extended by cooling down the
memory, which further reduces the leakage of current from the
DRAM capacitors. Researchers used this idea to show how to
remove a DRAM from one computer, place it into another
and grab the data. Other malicious attacks are also possible.
Rowhammer exploits another physical vulnerability of DRAM,
this time using the fact that DRAM data can be altered by
accessing nearby data. The attacker locates some of their data
next to some critical data in DRAM. By changing the values
of their data, the attacker induces circuit noise that causes the
target sensitive data to change.

4) Cache Attacks: Cache attacks [4] exploit information
leakage though cache state and are extremely effective at
extracting protected information. The cache is a shared re-
source and any process that uses it can leave traces about
their computation, in particular, the memory addresses they
accessed.

Cache timing attacks can be categorized as time-driven
and access-driven [23]. A time-driven attack measures the
execution time of the victim process. The attacker manipulates
the contents of a shared cache and observes the timing of
another process (e.g., a cryptographic operation). The timing is
effected by cache hits and misses, which provides information
about the key [51]. An access-driven attack extracts informa-
tion by measuring the time that it takes the attacker to perform
a cache access [52]. If a particular cache line is accessed
by the victim process, the attacker would observe a cache
hit and vice-versa. For instance, an attacker can identify data
access patterns by the victim (e.g., which S-Box entries are
being accessed during AES execution) and use this information
to extract the confidential information (e.g., the secret key).
Cache side channel is a powerful attack that is often used
in combination with other attacks, e.g., Meltdown [3] and
Spectre [2] as we will discuss.

5) Speculative Execution Attacks: Meltdown [3] and Spec-
tre [2] are the first of a series of attacks that leverage spec-
ulative execution, out of order execution, caching and other
architectural performance enhancements to break isolation and
other security policies.

Meltdown enables unauthorized processes to read data from
any address that is mapped to the current process’s memory
space. Meltdown exploits a race condition where the unautho-
rized process attempts to access privileged data. A privilege
check eventually squashes the execution of that code, but not
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before the data is temporarily loaded into cache. The attack
then uses a cache side-channel attack (SCA) to determine
contents of the data.

Spectre is a vulnerability that tricks a victim process to
leak its data. Many processors perform speculative execution
by branch prediction. Spectre uses the fact that this specula-
tive code leaves traces of its execution in the cache whose
information can be extracted using a cache SCA (similar to
Meltdown). Spectre trains a branch predictor to make a wrong
decision and then wraps code that should not be executed in a
condition. The code is speculatively executed since the branch
predictor is wrong. It eventually gets squashed but it leaves
important information in the cache state, which is extracted
via a cache SCA.

6) Code Reuse Attacks: Code reuse attacks carefully use
existing snippets of software to perform computation of the
attackers choosing. Return oriented programming (ROP) [53]
is an example of code reuse attack where existing code
fragments (or gadgets) are carefully sequenced to perform a
malicious act. The attacker’s goal is to divert the control flow
by gaining control of the call stack and invocating the first
gadget, which in term calls subsequent gadgets. This allows
the attacker to perform actions of their choosing.

B. Covert and Side Channels

Covert and side channels have emerged as two types of po-
tent information leakage channels. Micro-architectural features
targeted towards performance improvement, e.g., shared cache,
speculative control, and hyper-threading, create new covert
and side-channel security issues. Covert channels use non-
traditional communication mechanisms to leak critical infor-
mation — often between an insider process (e.g., a Trojan Horse
program) and an outsider spy process. These two processes
do not communicate directly through traditional mechanism,
e.g., shared cache. Instead, a Trojan process may communicate
with a spy process by modulating timing of specific events on
a shared resource or writing/checking if a file is locked. On
the other hand, SCAs utilize physical side-channel parameters
(supply current, event timing, electromagnetic emission, etc.)
to leak on-chip secrets.

While some covert channels require sharing of hardware
resources among exchanging parties (e.g., shared cache), oth-
ers may exist among hardware components that are physically
isolated or not even in proximity. Hardware-oriented covert
channels are typically initiated by introducing manipulation
or exploitation of certain functional (response to a fault) or
parametric (e.g., timing, power and electromagnetic radiation,
etc.) behavior of the hardware that is observed to decode
the secret information being transmitted. Side channels are
unintentional information leakage where an attacker tries to
extract information from a target computing system utilizing
its inherent implementation vulnerabilities. Similar to covert
channels, side channel also requires the observation of certain
functional or parametric behaviors at runtime.

1) Timing Channel: A timing channel is established
through the observation of the execution time of a certain
process. Timing-based covert and side channels may exist

due to the sharing of hardware resources across different
software processes. Moreover, an IC may contain fast and slow
execution paths that reveal information regarding the under-
lying operation being executed (e.g., arithmetic vs. Boolean
operation [54]. While chip designers introduce novel features
to improve execution time, more timing channels are being
discovered. These channels may facilitate information transfer
at a rate of up to few megabits per second [55]. These timing
channels are often practical only under certain assumptions
regarding the attacker and the victim. For instance, to form a
timing channel using some cache-based attack, the victim and
the attack processes must execute on the same processor core
for a specific amount of time. The attacker’s ability to adhere
to these assumptions can significantly impact the capacity or
sensitivity of the channel.

Over the last few years, researchers have demonstrated
the feasibility of a wide range of timing-based covert and
side channels. Szefer [4] presents a comprehensive overview
of timing attacks that are feasible due to vulnerabilities in
processor architecture. Execution time differences for various
instructions, resource sharing, impact of functional unit’s state
on program execution (e.g., branch prediction) and timing
behaviors of memory subsystems (e.g., cache and prefetcher,
etc.) are some characteristics of modern processors that lead
to microarchitectural timing channels.

2) Power Channel: In power SCA [56], [57], an attacker
measures the switching power traces of an electronic compo-
nent during operation and then employ mathematical analysis
on the traces to extract secret information. Basic premise of
such an attack lies in the fact that the transient power traces
of a chip leak its internal switching patterns, thereby leaking
data secrets (e.g., cryptographic key) through the switching
behavior. Shrinking technology nodes and increasing power
density have made it possible for attackers to carry out power
SCAs with increasing degree of success.

Attackers have utilized a wide-variety of techniques to ex-
tract information. A simple visual inspection of the power sig-
nal information known as Simple Power Analysis (SPA) [56]
is utilized when the internal implementation is known to the
attacker. If the attacker has complete access to a device, he/she
resorts to template matching attacks. Template attacks [5]
consist of a profiling step and an attack step. The attacker has
the freedom to collect many samples in the profiling phase
as he/she fully controls the device. In the profiling step, the
parameters of the design are learnt from a device and a profile
of the device is created. This profile is applied as a template
to other copies of the same device in the attack phase.

Differential Power Analysis (DPA) [56] relies on the prin-
ciples of statistical hypothesis testing, where the attacker
measures the power consumption traces of a target device
over several time steps by feeding a large number of input
vectors. The attacker then partitions the resulting power traces
into subsets. The difference in the average values of these
subsets reveal the presence or absence of information leakage
in the design. In the absence of leakage, the difference in
average values tends to be zero as the choice of assigning a
trace to a subset is purely random and is uncorrelated with
the power measurements. On the other hand, a statistically
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significant difference implies that there exists a correlation
between the partitioning and trace measurements. Unlike SPA,
DPA does not require any knowledge about the underlying
implementation and can be carried out in highly noisy environ-
ments. Correlation Power Analysis (CPA) [57] relies on using
statistical models to estimate the correlation between the secret
and the power consumption of the device when the secret is
being used for computation. A CPA typically relies on building
a model of the device’s dynamic power consumption. The
activity factor « is modeled using Hamming distance (HD) or
Hamming weight (HW). The change in the bits of the input
that cause a change in a can be modelled by the HD between
the initial input and the changed input values or the HW of
an input in case of a software implementation (e.g., on smart
card). This HD or HW model serves as a good approximation
to estimate the power consumption of a device. During a CPA
attack, the attacker guesses the value of the secret and obtains
as many traces as possible for each guess of the secret.

ML algorithms have also been applied to both profiling-
based and non-profiling-based SCAs. In profiling-based ap-
proaches, where attackers have access to an exact copy of
the attacked hardware, a supervised ML model can be trained
based on data points in different profiling traces [58]. In non-
profiling based approaches, where attackers do not have access
to a copy of the device, unsupervised ML algorithms such as
clustering are applied to reveal the secret information [59].

The growth of cloud-based service providers like Amazon
and Google has led to an increase in multiple users sharing the
same hardware resource, such as a Field Programmable Gate
Array (FPGA). In such multi-tenant operating environments,
remote power attacks are becoming feasible when an untrusted
party shares resources with a trusted one [6], [11]. The attacker
can infer information regarding the trusted program executing
in the same resource as the attacker by accessing the power
delivery network. Furthermore, in cloud settings, new attacks
are emerging where malicious power/current surge caused by
an untrusted process can create denial of service attack in
another process mapped to the same FPGA device [60].

3) Electronmagnetic and Photonic Channels: Unintentional
Electronmagnetic (EM) radiation from electronic devices is
a well-known concern for semiconductor vendors due to the
possibility of interference with wireless communication chan-
nels and potential health risks to the end-users [24]. However,
EM radiation during a security-critical process could also lead
to vulnerabilities due to its potential to leak information re-
garding the operation. EM emission characteristics are largely
device dependent; hence it is difficult to develop break-one-
break-all scenario for the attackers. The effectiveness of small
magnetic loop antennas in detecting EM emission from ICs has
been evaluated in various studies [61]. The signals captured by
magnetic loop antennas are digitized for the extraction of the
secret. EM signal for information leakage can be observed in
various ways. Visual inspection of the time-domain representa-
tion of EM signals is called simple EM analysis (SEMA) [62].
SEMA can be considered as the EM equivalent of the SPA.
EM signal can be transformed to frequency domain to perform
visual analysis of the spectrogram to reveal information.
SEMA approach has been used to extract secret information

from various cryptographic processes, including RSA, Elliptic
Curve-based Diffie Hellman (ECDH) and Elliptic Curve based
Digital Signature Algorithm (ECDSA) [63]. Algorithms like
ECDH and ECDSA are suitable for mobile devices and Inter-
net of Things (IoT) platforms where a malicious end-user with
complete physical access can compromise the cryptographic
process using SEMA approach.

Simple visual observation of EM signal may not be suf-
ficient for revealing information from many applications. A
more sophisticated attack vector called Differential EM Anal-
ysis (DEMA), a variant of DPA for EM is proposed [64].
However, DEMA requires a large number of EM traces of a
given operation to extract the secret bits that are involved in
the process by observing the variation in EM emission. With
the alteration of signal or register states between logic high and
low, energy dissipation in a CPU varies and consequently the
EM emission is impacted [61]. Moreover, alteration of signal
states in a CPU depends on the instructions and variables.
Hence, observation of EM emission for a large number of op-
erations is useful in retrieving the instructions being executed
and intermediate states of different variables.

4) Fault Injection: Fault attacks form a potent class of
SCAs wherein the attacker can subvert the execution of the
hardware by deliberately injecting a fault. A well-placed fault
attack could cause the system to reveal secret information,
such as the key bits [65]. Fault attacks have also emerged
as major threats for a program executed by a processor. For
example, precisely flipping the status flags can allow an at-
tacker to bypass the authentication process giving unauthorized
control or privilege escalation [7]. These faults can be injected
by causing a glitch in the underlying hardware. The attacker
typically attempts to manipulate one or more of the devices’
power supply or clock or utilizes a highly powerful laser to
control the temperature of the device.

Fault attacks have been demonstrated on several crypto-
functions such as Data Encryption Standard (DES), Advanced
Encryption Standard (AES), International Data Encryption
Algorithm (IDEA), Secure and Fast Encryption Routine
(SAFER) and Blowfish. However, not all faults are exploitable.
Hence, it requires careful profiling of the fault space to identify
the set of exploitable faults. In AES, it has been demonstrated
that a well-placed fault injected in between the seventh and
ninth round operation could cause the device to reveal the
entire key with as few as eight faulty ciphertexts.

More recently, attacks like PlunderVolt [31], VoltJockey [38]
and CLKScrew [7] have demonstrated that fault attacks are
not restricted to crypto-cores but can also impact general
purpose SoCs. Both CLKScrew and Plundervolt are software
generated fault attacks. The attacker leverages the access to
clock or energy management APIs for injecting the fault.
CLKScrew exploits the dynamic voltage frequency scaling
utility to extract secrets from ARM Trust-Zone. PlunderVolt
utilizes the power management utility to compromise the
execution of Intel’s SGX.

Apart from the above discussed side and covert channels,
test and debug infrastructures usually provide privileged access
to critical hardware resources such as machine state and con-
figuration registers. Insecure test and debug ports are potential



6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, MM 2021

attack surfaces for launching powerful low-level attacks. In
2012, a military grade FPGA was reported to have a backdoor
in the JTAG port, which allows the attacker to retrieve the
AES key for decrypting the protected bitstream [66]. Rajput
et al. [67] summarized the security attacks and protections for
the commonly used JTAG port. Valea et al. [68] performed a
more complete survey of security threats and countermeasures
in different test standards.

C. IP Theft and Counterfeiting Threats

Modern SoC and IC designs usually involve different forms
of IPs, e.g., register transfer level (RTL) design (soft IP),
gate level netlist (firm IP) and physical layout (hard IP).
The owner’s IP is outsourced to trustworthy offshore design
houses/foundries for SoC integration or IC fabrication to
reduce design complexity, time to market pressure and manu-
facturing cost. This can lead to various IP security threats.

In IP counterfeiting, an attacker illegally imitates the orig-
inal design, creates counterfeited versions of the IPs/ICs,
and sells them in the brand name of a genuine supplier. In
cloning attack, an adversary copies the original design and
supplies cloned versions of original IPs/ICs under his/her own
label. These attacks result in integration of fake IPs/ICs in
the electronics systems used in critical applications such as
military, healthcare and banking, etc. The fake designs not only
sabotage the genuine vendor’s reputation and revenue but also
lead to large consequences: (i) affecting the reliability and per-
formance of the critical systems; (ii) containing malicious or
backdoor logic that cause leakage of confidential information
or assist to override the critical systems [69].

In RE attack, an attacker back engineers the design in
order to deduce the design structure or functionality. This
can be done by RE its various design forms such as RTL,
netlist, layout (GDS-II), mask or a manufactured IC [70]. RE
attack allows the adversary to realize his/her intentions of
inserting backdoors or Trojans into the design and also enables
counterfeiting and IC overbuilding, thereby entails reassessing
trust in electronics hardware [70], [71].

D. Hardware Trojan

1) Classical Digital Trojans: Early HTs typically use a
single trigger signal to activate the Trojan under a rare event.
The Trust-HUB benchmarks [72] employ such a simple trigger
mechanism, which is very sensitive to switching probability
analysis. The De-Trust [73] project provides some HT designs
that use multiple discrete trigger signals so that each trigger
signal will be able to switch normally. These HTs, when
activated, will violate explicitly specified design behavior in
the design specification.

A comprehensive list of Trojan taxonomies [74], [75],
benchmark sets [72], [75] and lessons [27] of these classical
HT research have been documented. In what follows, we will
discuss some recent HT designs and attacks.

2) Exploitation of Don’t Care Conditions: Fern et al. [8]
leveraged external don’t care conditions (i.e., unspecified func-
tionality) for HT design. For example, the design output may
be unspecified under certain “illegal” input conditions or when

the output is not yet valid. Such don’t care HTs can be hard
to detect since they are out of the functional specification. A
more recent work hides HT in the unspecified functionality in
obfuscated hardware designs [13]. Based on the fact that the
design functionality under incorrect obfuscation keys cannot
be explicitly specified in order to protect the correct key,
the IP designer has numerous flexibility in implementing the
obfuscation logic, including inserting malicious circuitry.

Nahiyan et al. [76] proposed a HT design by adding
malicious state to the finite state machine (FSM). The idea
is to use unoccupied state encoding to insert a floating Trojan
state. The FSM will never transit to the dangling Trojan state
during normal operation. The Trojan can be activated using
fault attack to force the FSM into the malicious state.

Hu et al. [34] leveraged satisfiability don’t cares for HT
insertion. The Trojan uses a pair of signals that will never
reach a specific input combination (e.g., cannot be logical ‘0’
simultaneously due to path correlation) under normal operation
as triggers. Thus, the Trojan will never be triggered during
normal run although each trigger signal is able to switch.
Similarly, fault injection is used to force the trigger signals
into a desired condition to activate the Trojan. Such Trojan has
recently been demonstrated on a multi-tenant FPGA, where the
attacker can remotely activate the Trojan by deploying power
wasting circuitry to induce considerable fluctuations in the on-
chip signal delays and, consequently, timing faults [77].

3) Analog Trojans: Researchers have also demonstrated
how to create analog HTs through slight modifications of the
design layout [78]. Becker et al. [79] and Kumar et al. [80]
insert analog HTs by changing the dopant polarity or ratio
of input to transistors to cause a short circuit. These dopant-
level HTs can be hard to identify since they do not introduce
additional transistors but only modify circuit parameter. Liu
et al. [10] demonstrate an analog HT that leaks the AES key
by slightly modulating the amplitude or frequency of wireless
transmission without violating the protocol specification. The
HT cannot be detected using routine testing methods since it
does not change the design functionality. The A2 Trojan [9]
is a small and stealthy malicious analog circuitry. It only adds
a single capacitor that siphons charge from nearby wires as
they transit. When the capacitor is fully charged, it drives
a victim flip-flop to a desired value to perform malicious
activities, e.g., elevating privilege. The Trojan will remain
dormant if the capacitor resets through leakage current due
to inactive switching activities in the charging wires. A more
recent work exploits analog/mixed-signal circuits for hardware
Trojans, whose trigger mechanism is deployed in the digital
domain while the payload is transferred to the analog domain
via the on-chip test infrastructure [81].

4) Trojans Induced Aging and Performance Degradation:
In a nanoscale semiconductor device, physical occurrences
such as hot-carrier injection, electromigration, time-driven
dielectric breakdown and negative bias temperature instabil-
ity (NBTI) lead to aging phenomenon [82]. These physical
occurrences are the result of the restrained design margins
and transistor scaling. Even a small change in the transistor
parameter may significantly affect the device performance and
reliability [82], [83]. Device aging may result in failure of
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semiconductor devices during critical operations. Heavy re-
liance of SoCs on third party IPs (3PIPs) raises the possibilities
of aging attacks. A rouge 3PIP vendor may accelerate the de-
vice aging process by covertly making malicious modifications
in the design of 3PIPs, with an aim of causing a premature
failure of an electronic device within the warranty period [84].

One prevalent way of launching an accelerated aging attack
is through NBTT stress. NBTI refers to the increase in thresh-
old voltage of a P-type metal oxide semiconductor (PMOS)
transistor over time due to the charges trapped under the gate
area by the negative bias applied between its source and gate
terminals [82]. As NBTI is heavily dependent on the dynamic
operating condition of the device. Attackers can control the
supply voltage, temperature and input signal probability to
increase a device NBTI stress to accelerate its aging effect.
An attacker may force the device into continuous stress even
in standby mode, by modifying/adding malicious circuitry. To
accelerate the aging process, the attacker can use selected input
vectors to maximize the NBTI stress on the target devices.

This attack is demonstrated by Kachave er al. [84] on
digital signal processor (DSP). In this attack model, an attacker
continuously applies NBTI stress during the standby mode
of the device to accelerate the aging by either hardware
or software modifications. In the hardware-based attack, an
attacker introduces some alterations in the DSP hardware such
that a rare event (hidden Trojan) triggers the application of
input vectors that maximize NBTI stress. In the cross-layer
attack, an attacker builds a program that automatically applies
the test vectors on the DSP circuit to create the greatest stress
during the operational mode.

5) Trojans Insertion Through Malicious EDA Tool: HT
threat arises primarily from untrusted design process and
supply chain. EDA tools, as an important element in this
untrusted environment, can also assist in Trojan attacks.

Krieg et al. [85] demonstrated an automated HT inser-
tion technique through light-weight modification to an open
source synthesis tool. The modified FPGA synthesis front-
end deploys a special look-up table (LUT), whose simulated
design behavior is totally correct. In a second attack phase,
the malicious back-end identifies this LUT and changes its
functionality when translating the design into bitstream, which
acts as a Trojan trigger. The challenge in detecting such
HT lies in the lack of bitstream verification tools. In their
successive work, the differences in how the don’t care ‘X’
appears in logic simulation and implementation are exploited
to create a Trojan trigger. The trigger signal ‘X’ will be logic 0
during simulation and logic ‘1’ in hardware implementation.
Thus, the HT will remain inactive during the design phase
and will be automatically activated upon configured onto the
FPGA. Similarly, light-weight modification to the synthesis
tool will facilitate automated insertion of such HTs.

Besides, several HTs target emerging computing technolo-
gies. In [13], a HT is hidden in the obfuscation logic intended
for IP protection. In [6], a remote HT attack targeting multi-
tenant FPGAs deployed in the cloud was demonstrated.

E. Vulnerabilities and Attacks on Deep Learning Networks

1) Adversarial Examples: Al has been promoting fast in the
recent decade, thanks to various deep neural networks (DNNs),
which learn high-level features from raw data to solve many
challenging object recognition problems end-to-end with very
high accuracy and without requiring human intervention. Sim-
ilar to any other fast-advancing fields, the infiltration of deep
learning models into safety and security critical applications
such as self-driving cars and face recognition payment systems
make them an interesting target of attack.

A well-known vulnerability has been exposed in a surprising
way by the input of adversarial examples. It was initially
demonstrated by Szegedy et al. [86] that small intentionally
designed perturbations added to the original input image
can create an optical illusion for the DNN classifier at the
inference phase. Adversarial example generation algorithms,
such as fast gradient sign method [87], universal perturba-
tions [88] and Carlini and Wagner (C&W) attack [89], have
succeeded in subverting the deep learning model output with
high success rate. Hardware accelerator for the generation of
adversarial examples has also been proposed to improve the
attack efficiency [36]. The imperceptibility of the perturbation
and generalization ability across models further aggravate
the damage of such attacks. Recent research suggests that
adversarial example attacks can also be applied in the physical
world [90] and incorporated with cameras [91]. Adversarial
examples work across different media and are recognized
by Open AI Inc. as a concrete problem in Al safety. They
shatter the confidence of DNN implementation robustness,
and extend the DNN attack surface beyond the software
boundary. Although conventional techniques such as laser
beam interference, memory collision and rowhammer have
been deployed as means to attack DNN hardware, they must
be subtly and significantly devised to exploit the unique
characteristics of DNN. The target asset and threat model of a
DNN attack are in many ways different from those of the
cryptosystem. DNN has the transferability, noise immunity
and graceful degradation properties that are absent in many
other domain-specific computing solutions. Effectiveness and
efficiency of attacks on DNN are often data, model and
application dependent. In general, data plays a more significant
role than the model and the model plays a more significant role
than parameter optimization in the inference.

2) Hardware-oriented Attacks: Artificial Intelligence of
Things (AloT) is the convergence of Al and IoT infrastructure.
Placement of cognitive computing and Al processing at the IoT
edges can benefit in terms of privacy maintenance, bandwidth
reduction and responsiveness. As a core enabler of innovation,
dedicated hardware accelerators for efficient on-device infer-
ence are increasingly used for edge Al deployment. Commer-
cially available hardware accelerators for local Al inferencing
include Intel Neural Compute Stick 2 (NCS2), Google Coral,
Nvidia Jetson Nano and Xilinx edge AI IP core. This new
wave of edge intelligence in the AloT age invites new attack
vectors, which are methodologically different from software-
oriented DNN attacks like the previously described input of
adversarial examples. This is because adversarial examples
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that assume any input pixel can be precisely altered to any
arbitrary value may not achieve the same desired outcomes
when they are presented to a DNN hardware accelerator.

Fault injection attacks such as laser injection [92], glitch dis-
turbance [93], memory collision [94] and rowhammering [95]
can impact circuit operations within the DNN and are potential
threats to edge intelligence. Straightforward fault injection
will cause denial of service, but it also alerts attention. For
instance, overheating the DNN hardware will not only affect
classification but also suspend the system. Immediate damage
control may be triggered to limit the benefits that can be
reaped from suck attacks. Existing fault attacks on DNN focus
mainly on model weight manipulations [95], [96]. Falsifying
model parameters such as saturating last layer’s bias [32] to
converge the output to one specific class regardless of inputs or
constraining modification magnitude on the weights of all lay-
ers [96] can be used to create selective input misclassification.
These simulated attacks assume that the data stored in memory
can be precisely manipulated to arbitrary values through fault
injection, which are not realistic for real-world DNN hard-
ware accelerators. Moreover, manipulation and interpolation of
model parameters tend to leave footprints in memory or create
conspicuous output patterns. Such persistent fault induction in
the weights are likely to be directly detected by model read-
back and bypassed by parameter reloading. Although practical
fault injection techniques such as laser beam interference [92]
and Rowhammer [95] are able to perturb the output of DNN
algorithm running on general purpose hardware, the attacks
can be mitigated by low-precision numeral representation, as
suggested in [95], which happens to be a common practice of
existing deep learning accelerator for edge applications.

HTs pose a real threat for outsourced DNN IC design,
fabrication or testing activity or the use of 3PIPs within DNN
hardware. Successfully embedded stealthy trigger and payload
into the activation layer [97] or memory controller [98] can
cause misclassification. Fortunately, hardware attacks on edge
deep learning applications have so far been constrained to
DNN hardware on small scale (10 categories) classifica-
tion [92], [94] or are based on simulated instead of physically
induced faults [96], [98] on larger network such as Ima-
geNet [99] (1000 categories) classification. One exception is
the most recently reported stealthy misclassification attack on
deep learning accelerator for ImageNet applications in [100].
This attack induces temporal fault into intermediate results
of convolutional layer by introducing infrequent instantaneous
glitches into the clock signal. The temporary perturbated
data will propagate to the inference stage but they will be
overwritten by the correct data after each prediction, leaving
no trace for detection.

3) Model Extraction Attacks: Model extraction attack [101]
occurs when attackers attempt to replicate a pre-trained model.
Because of the amount of costly training data collected, a
superior deep learning model trained for a specific task is a
precious IP that an enterprise can monetize as a commodity
through third party offerings or leverage as a technology
barrier to competitors of the market. Unlike cryptosystems,
model confidentiality is assumed as a trained DNN is a pricey
IP. For this reason, there is strong incentive for opponents to

steal the model so as to build similar performance Al products
or solutions at substantially reduced cost. Existing model
extraction attacks can be broadly divided into two categories:
query-based and implementation-based. Query-based model
extraction attack mainly utilizes the input-output relationship
of the target model to build a substitute model that has the sim-
ilar functionality [101]. In the scenario of embedded devices,
the internal model is exposed to the risk of being attacked
by malicious users who have physical access to the device
by observing the I/O dataflow [102]. These users can then
train a new model with similar performance based on the I/O
pairs, i.e., replicating the original model. Unlike crypto engine,
where all computations can be completed fully on chip, edge
implementations of DNN models, except a few tiny models,
require some off-chip communications for each inference.
Implementation-based model extraction attack exploits side
channel leakage during model execution. Fine-grained infor-
mation could be obtained by tracking cache misses, memory
access pattern, power consumption and hardware performance
counters [103], [104]. Algorithms such as DPA and CPA can
be applied to extract the number of parameters in each layer,
the value of each parameter, the total number of layers and
the type of activation function. Optimization techniques on
DNN hardware, such as zero weight pruning, can be utilized
to reduce the complexity of reverse engineering [105]. The
success of model extraction can enable further exploitation
of the security weaknesses of deep learning, such as evading
systems thereby forcing incorrect predictions and revealing
additional information from the training data to leak sensitive
and confidential information.

IV. COUNTERMEASURES
A. Hardware Security Primitives

True random number generator (TRNG) and physical un-
clonable function (PUF) are two important hardware-intrinsic
security primitives that provide built-in instead of bolted-on
defense against various emerging threats and vulnerabilities
arising at different phases of the IC life cycle or device
operation. Compared with TRNG, PUFs have been very well
surveyed by many researchers in recent years. For TRNG, we
exemplify typical CMOS circuit implementations from four
different entropy sources. For PUFs, we focus on the feasibility
of its integration with other non-device signatures. Such a
unique provenance proof is promising in detecting imposer,
tampering, spoofing and fabrication attacks that aim to gain
unauthorized access to system, data or premises.

1) TRNG: A random number generator is a device or
software that generates sequences of unpredictable numbers.
The ancient ways of using dice roll or coin toss to harvest
natural randomness are too slow to meet the demands of mod-
ern computing systems. A pseudorandom number generator
(PRNG) is an algorithm or a mathematical formula that can
be used to produce a sequence of random numbers with a
sufficiently long but finite period from a seed state. PRNGs
that are suitable for the cryptographic applications are called
cryptographically secure pseudorandom number generators
(CSPRNGs). CSPNGs are designed from cryptographic prim-
itives or hard mathematical problems to pass the next-bit test
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such that the (k+1)-th bit of a sequence cannot be successfully
predicted in polynomial time from the knowledge of the
first k& bits. CSPRNG should also be resilient to the “state
compromise extensions” attack, which is an attack that makes
use of some known internal states to predict future outputs
or recover previous outputs. On the contrary, a TRNG is a
hardware security primitive that yields unpredictable random
numbers even if the internal design details are all known.
With infinite period, it provides higher security property than
CSPRNG. TRNG designs that originated from solid-state
devices typically harvest their randomness from four sources,
namely noise, jitter, metastability and chaos.

Thermal noise is a good source of randomness because it
is frequency- and technology-independent [106]. The weak
thermal noise needs to be boosted by a wide-bandwidth
amplifier, which can consume significant silicon area and
power. Matsumoto et al. [107] added a silicon nitride (SiN)
layer in a standard CMOS process to amplify the thermal noise
to a measurable level without the amplifier but the extra SiN
mask is itself expensive. Recently, Bae ef al. [108] proposed
a high-speed TRNG by harvesting the thermal noise from the
biasing circuit of a common-mode operating comparator and
the sampling uncertainty of a Delay Flip Flop (DFF). The
idea is illustrated in Fig. 1. Common-mode noise is generated
by connecting both inputs of a comparator to the output of
a beta-multiplier voltage reference. The thermal noises of the
comparator and the biasing circuit are added up and amplified
by the differential-to-single ended (D2S) amplifier. The ampli-
fied noise is fed into a slicer to generate a full swing output,
which is then sampled by a 3 GHz clocked DFF. By combining
thermal noise and sampling uncertainty of the asynchronous
input, this TRNG has a very high throughput of 3 Gbps. Its
power consumption is also very high, 5 mW excluding the
power-hungry external high-speed clock generator.
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Fig. 1. Design concept of noise-based TRNG [108].

Conventional jitter-based TRNGs [109] use a slower jittery
frequency clock to sample a faster clock. Using clock jitters
of free running ring oscillators (ROs) as entropy source,
the extractor design can be simplified, but additional power-
hungry clock generators are required to provide adequate jitter
variations. Yang et al. [110] proposed a process variation tol-
erant TRNG by exploiting the oscillation collapse in a double
edge injected RO. To achieve the robustness against process
variations, 32 stages with 8 selectable inverters per stage are
used to provide the tuning space. Recently, a lightweight
TRNG consisting of only two 9-stage current-starved ROs
(CSROs) with an identical layout, a 3-stage regular RO and

a 2-bit counter was proposed [111]. In order to maximize
jitters and reduce power consumption, the inverters in the
two CSROs are biased in the weak inversion region and the
inverters in the regular RO are operating in the strong inversion
region. Systemic biases in the beat frequency are effectively
cancelled out by XORing the outputs of the two matched
CSROs. The resulting random pulse width is used to clock gate
the regular inverter-based RO to the 2-bit counter. This jitter-
based TRNG, fabricated in a standard 65 nm, 1.2 V CMOS
process, consumes only 260 W at a bit rate of 52 Mbps and
has a small footprint of 366 pm?.

Metastability is a stable state of a dynamical system besides
the system’s state of least energy. Metastabilities in cross-
coupled inverters, latches, DFFs and SRAMs [112] have been
utilized to produce random bit streams at high bit rate, but
complex post-processing units are usually required to elimi-
nate the systematic bias. The key component of metasability-
based TRNG of [112] is the metastability latch, which is
designed based on a cross-coupled inverter pair with equal rise
and fall time. A random bit is produced by the metastability
latch in each cycle. To assure high entropy, a time-to-digital
converter (TDC) is used to measure the settling time and tune
the metastable latch against bias introduced by the process and
temperature variations. The switching speed of the metastabil-
ity latch cannot be too fast to prevent the settling time from
exceeding the time resolution of the TDC. The latch size and
load must also preserve the dominance of thermal noise over
flicker noise. By combining three entropy sources of similar
cross-coupled inverter pairs that share the same supply and
clock, Intel [106] fabricated a fast TRNG in 14nm FinFET
CMOS process that produces 3 full-entropy bits per clock
cycle. The three bitstreams of at least 0.33 min-entropy/bit
each are combined by a Barak-Impagliazzo-Wigderson (BIW)
extractor [113]. Correlation suppressors and under-sampled
feedback shift registers are used to de-correlate and whitening
the raw data to generate 24 uncorrelated bits in every 64 clock
cycles with an ultra-low energy consumption of 3 pl/bit.

TRNGs can also be designed from chaotic system described
by deterministic equations. At first sight, this may sound like
God plays dice with complete law and order. Being extremely
sensitive to the initial conditions, the disorder states of a
chaotic system are very hard to be modeled mathematically
even though they are produced by simple systems that obey
precise rules. Chaos is, as described by the legendary Lorenz,
“when the present determines the future, but the approximate
present does not approximately determine the future.” [114].
Chaos-based TRNGs [115] are typically designed by a chaotic
map and a bit generation function. Unfortunately, the map
characteristics are susceptible to process, voltage and temper-
ature (PVT) variations. The optimal bit generation function
for achieving the highest possible entropy rate from a map
function is costly to implement, and consumes great power. An
exceptionally energy-efficient implementation [116] is shown
in Fig. 2. It consists of a 10-bit fine-SAR ADC, a 5-bit coarse-
SAR ADC, a dynamic residue amplifier, and an XOR post-
processing block. The ADC recursively amplifies the initial
state of the system with environmental noise to produce a
discrete time chaotic map. Due to quantization errors of the
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coarse-SAR ADC, the design is highly sensitive to the initial
state. The switching power of fine-SAR ADC is reduced by
using the coarse-SAR ADC to detect and skip switching. The
design consumes only 82 nW of power and 0.3 plJ/bit of
energy. A larger portion of the power savings are due to the
dynamic residue amplifier and adaptive reset comparator.

Coarse-SAR ADC Residue Amplification

Q(x) | AMP

Recursive Path
I

-
Lz

D[4:0]
Random[4:0] ¢ l))(rf))i\l::]s; M ~

Xn,out

—»ADCout[9:0]

Fine-SAR ADC

Fig. 2. Block diagram of chaos-based TRNG of [116].

As the need for publicly auditable randomness from appli-
cations like elections and lotteries increases, so is the demand
for randomness beacon. A randomness beacon is a public
server that produces completely unpredictable bit strings at
regular intervals. During the Crypto Week last year, a new
public randomness beacon called “League of Entropy” [117]
was released by the American web-infrastructure and website-
security titan company Cloudflare. Built upon the provably
secure cryptographic architecture of drand [118], this is a net-
work of beacons run by a consortium of global organizations
and individual contributors to provide publicly verifiable, de-
centralized random outputs. Interestingly, Cloudflare actually
sources her entropy from a video of a wall of lava lamps.
These unpredictable visual data of floating blogs are converted
to truly random numbers. Most recently, truly random numbers
were also created from growing crystals [119].

2) PUF as Provenance Proof: PUF utilizes intrinsic man-
ufacturing process variations to generate a unique unforgeable
device fingerprint. A comprehensive review of PUFs can be
found in [28], where different PUF structures, including the
conventional delay-based or memory-based PUFs, and the
emerging non-volatile memory (NVM) based PUFs, FinFET
PUF, quantum secure PUF and sensor PUFs, have been sur-
veyed. In the early stage of development, the reproducibility of
PUF responses at different time and in different environmental
conditions is the main practical issue that limits its industrial
adoption. Majority voting, fuzzy extractor and reverse fuzzy
extractor are three commonly used techniques to improve the
reliability of a PUF. Majority voting votes for the most stable
response by repeated application of the same challenge. It is
a lightweight technique to enhance the reliability of a PUF
at the expense of latency. Fuzzy extractor (FE) [28] increases
the noise tolerance and uniformity of PUF response by error
correction code (ECC) and hash function. As ECC decoding
is too expensive for resource-constrained IoT devices, it is
moved from the regeneration phase at the prover (device)
side to the verifier (server) side by reverse fuzzy extractor
(RFE) [120]. Instead of generating the helper data only once
in the PUF enrolment phase, RFE generates helper data on site
to different noisy versions of the same PUF response. While

this eases the enrollment of strong PUF with a large number of
CRPs, the disclosure of multiple helper data also increases the
risk of side-channel information leakage. This problem can be
mitigated by a well-structured PUF with balanced BER [121]
or appending an Z-channel [122]. Today, PUFs have made
their presence known in industry, e.g., Xilinx [123], NXP
Semiconductor [124] and Qualcomm [125].

As a hardware root of trust, PUF has opened up new
horizons for solving IoT security problems. The rise of IoT
has created a huge influx of sensors and accelerated sen-
sor standardization towards building a fully connected and
cohesive supply chain. With sensors as the data feeder, a
direct consequence is the new gloss on pushed media data
and distinctively new interactions between human, events and
devices. A promising new approach to assure real end point
security against the imminent risk of sensor and data analytic
attacks is to derive provenance proof from the unification of
PUF responses and biometrics or other existing data analytic
based security measures. This approach endows PUF systems
with the capability to not only identifying the device, but also
(i) authenticating the users who have privileged access to the
device and its data, (ii) assuring the integrity of the data it
generated or acquired, and (iii) responding actively to events
occurred in the area of surveillance. Unlike conventional PUF
designs, such interactive PUF systems are usually application-
or sensor-specific, and have dedicated authentication protocols.

(i) Typical user and device authentication methods perform
user and device authentication sequentially with a substantial
message exchange. To protect the sensitive credentials during
transmission, encryption keys are required to be stored in
the end device, which are vulnerable to NVM key retrieval
attacks [25]. In [126], [127], a completely different concept
of unified user-device (UD) PUF was proposed to distinguish
different users and devices by extracting raw biometric infor-
mation like touch screen pressure or voice with the innate
silicon sensor variations. The challenge to the UD-PUF in
[126] is a series of binary coordinates that forms a pattern
on the touchscreen. The response is a digital word obtained
by quantizing the sequence of sensed pressure values read
from an Android APP when the user traces the pattern.
Unfortunately, the intrinsic parametric changes contributed
by device fabrication process variations are not structurally
harnessed, resulting in high identification error rate for the
(same user, same challenge, different device) combination. The
problem is intrigue as amplifying the parametric deviations
to improve device identification will reduce the sensitivity
of the user biometric whereas noise reduction in biometric
information processing will distort device parametric distribu-
tion. Another “UD-PUF” was proposed in [128] for match-
on-device applications. A strong PUF is required to generate
an obfuscated biometric template by feeding the processed
biometric feature into it. As small change in the challenge will
cause a dramatic bit flips in the PUF response, the quantized
biometric feature-based challenge has to be 100% accurate
to ensure reproducibility of template in the authentication
phase. This problem is mitigated by selecting the most robust
biometric feature for each individual user using noise aware-
interval optimized mapping bit allocation (NA-IOMBA). As
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NA-IOMBA requires accurate noise samples/models over time
for different conditions, the scheme can only generate one
determinant template for a (user, device) combination. Once
the template is leaked, the security of using the particular
device will be compromised. This dilemma is resolved by
a “UDhashing” scheme in [129]. UDhashing adopts a “fuse-
on-device” and “match-on-server” strategy. Machine learning
(ML) resilient strong PUF [130] is preferred to prevent the
reuse of authentication credentials, and to achieve cancellable
biometrics and system reconfigurability. To bind a device to
its user, the user live biometric and device PUF response
are unified by random projection into a bio-code at the end-
device. The endpoint and the server are mutually authenticated
by a zero-knowledge proof of the endpoint’s secrets. The
server is authenticated by the endpoint through the hashed
PUF responses while the endpoint is authenticated by the
server through the bio-codes. A correct biometric input of
a user to his registered device and a correct response to a
query from that device are both required to authenticate the
bio-code. Neither the hashed PUF response nor the bio-code
reveals the endpoint’s secrets. The bio-code can be easily
revoked, reissued or refreshed by a different challenge to
prevent permanent compromise of the users’ biometrics.

(ii) Similarly, PUF-assisted data-device authentication sys-
tems fill the gap of existing data and device independent
authentication schemes in digital forensics. Digital images
and videos have been increasingly exposed as important
information or art carriers. Their easy-to-access and low-
cost attributes also escalate image fraudulence. Two related
problems are to be solved: detection of image tampering
and authentication of the imaging device. Image tampering
is typically detected by image watermarking [131], digital
image forensics [132] and perceptual image hashing [133]. Of
which perceptual image hashing is most effective in tamper
detection. It is very sensitive to content-specific modifications
and yet robust against normal content-preserving processing.
Since such methods depend on a shared secret key for au-
thentication, the security of the whole system will collapse
if the secret key is compromised, lost or stolen. Source
camera identification is mainly accomplished with ML based
methods. By analyzing the structure and processing stages of
the digital camera, appropriate features representing the unique
device characteristics can be algorithmically extracted with
the knowledge of lens aberration, sensor imperfection, color
filter array interpolation and salient image features [134]. Ex-
isting works focusing on imaging device brand identification
achieve very high accuracy but fail to distinguish individual
devices from the same model and the same brand. Identifying
individual camera devices have been increasingly studied in
recent years based on photo response non-uniformity (PRNU)
pattern [135], [136]. To achieve high reliability and accuracy,
strict conditions in the acquisition process, number and content
of training images as well as geometrical synchronization
of testing images have to be met. More importantly, the
same approach can also be used by a malicious user to
extract the device features from publicly available images.
To provide dual authentication without the aforementioned
shortcomings, PUF-based data device authentication schemes

have been proposed. PUF based perceptual image hash was
first conceptualized in [137] for simultaneous tamper detection
and source camera identification. This work shares the same
PUF reliability problem as [128] since the data features were
directly applied as the challenge to the underlying PUF. Alter-
natively, a data-device PUF (DD PUF) with relaxed reliability
requirement was proposed in [138]. The method [138] imprints
an indelible birthmark of the camera into its captured images
for forgery detection. The robust data-device hash is produced
by projecting the rotation-/scaling-invariant image features into
the Bernoulli random matrix generated by the PUF responses.
This hash is “keyless” and time-, data- and device-dependent.
Attestation is non-repudiable as the perceptual image hash can
only be generated by the timestamp of the image captured
through the camera’s tamper-resistant image sensor PUF. To
achieve secure and accurate camera identification with re-
duced hardware overhead, the CMOS image sensor PUF [139]
derived from fixed pattern noise of individual active pixel
elements is utilized in both schemes [128], [138].

(iii) Existing PUFs, including the CMOS image sensor
PUF [139], are typically triggered by server-provided chal-
lenges. Since the challenges are independent from the sensing
targets, it is difficult to control the attestation frequency,
resulting in either redundant or inadequate security tagging.
Traditional frame-based imager generates too much redundant
background data, which limits its processing bandwidth in
high-speed and privacy-preserved video surveillance applica-
tions. Dynamic vision sensor (DVS), also known as neuromor-
phic vision sensor, provides a solution to design PUF system
that is capable of responding actively to incidents occurred in
the surveillance scene. DVS responds only to temporal inten-
sity change and records only sparse asynchronous address-
events with precise timing information. It has low latency,
high dynamic range and significantly reduced data size. These
features are exploited to make an event-driven PUF in [140].
It adds only three transistors per DVS pixel to harness the
entropy from the fabrication process variability. The PUF
response can only be triggered by and is uniquely dependent
on the asynchronous addressed event detected in the scene
without being interfered by the simultaneous firing of other
address events. The package of address events acquired by the
DVS camera is tagged by the event-driven PUF response using
a keyed Hash-based Message Authentication Code (HMAC).
This is believed to be the first event-driven PUF system to fill
the forensic gap of simultaneously authenticating the event
data integrity and source camera identity.

B. System and Architectural Protection Techniques

Resource sharing is inevitable as it leads to more efficient
computation. Software processes share memories, datapaths,
accelerators, monitors, sensors and I/O. Hardware IP cores
require shared access to on-chip interconnect and memories.
Yet, it is a challenge for security since any entity must consider
information leakage through shared resource especially when
computing on sensitive data. The cache side channel is a
key example of this that has been exploited countless times
for nefarious purposes. Resource isolation is a key security
mechanism that is often difficult to implement in practice.
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1) Trusted Execution Environment: One common approach
for software isolation is a trusted execution environment
(TEE). TEE uses hardware mechanisms to ensure that isolation
properties are properly enforced. These properties, in general,
enforce rules that provide a fixed set of resources for a
sensitive computation, and assurances that those computations
are hidden from other system users. There are a number of
different TEEs. Intel’s SGX [141] uses enclaves — a protected
environment that contains the code and data of a security-
sensitive computation. SGX performs isolation by setting aside
a memory for trusted computation and isolating the memory
from any other access including kernel, hypervisor and DMA
accesses. ARM Trust-Zone [142] has two worlds. Sensitive
computations are put into the secure world and are isolated
from code running in the normal world.

2) Cache Side Channel Mitigations: Cache side channel
mitigations attempt to minimize or eliminate information
leakage by isolating secure and non-secure accesses to the
cache. Cache partitioning is one class of approaches that
attempts to separate the cache to avoid conflicts. Partitioning
can be performed in various ways, including static locking
(PLCache) [143], dynamic locking [144], page coloring [145],
and selective cache flushing [146]. Randomization is another
class of techniques where of cache access patterns are per-
muted to minimize any information leakage on conflicts,
e.g., RPCache [143]. Other mitigations include DAWG [147],
InvisiSpec [148], non-monopolizable caches [149], Intel Cache
Allocation Technology [150], and CATalyst [151].

It is difficult to develop and implement a cache mitigation
scheme. For example, Ardeshiricham et al. [152] showed that
the well-known PLCache [143] mitigation was flawed, and
developed a fix to the vulnerability that was formally verified
to be secure. This points to the need for any mitigation to come
with proof that they are correct. Property driven hardware
security [20] advocates for such an approach where the threat
model is formally specified as properties, e.g., SystemVerilog
Assertion (SVA) assertions, information flow properties, etc.,
and hardware security verification tools provide assurance that
the designs adhere to the specified properties.

3) Memory Protection: Many of the system and architec-
tural threats revolve around performing proper access control
on memory locations. This includes strict isolation of memory
regions (e.g., non-secure processes should never read/write
secure memory) and dynamic policies (e.g., a cryptographic
key is written during secure boot process and is never accessed
by anyone after that). Standard memory protections rely on a
memory management unit (MMU). Common protections in-
clude access control through segmentation to provide isolation,
data encryption to provide confidentiality [153], and hashing
to provide integrity [154]. Protecting the memory access infor-
mation, along with the confidentiality and integrity of the data,
is also crucial. Oblivious RAM [155] is an example approach
for access pattern protection. 3D integration is a powerful
technique for hardware security and can be used for memory
protection [156], e.g., embedded DRAM can mitigate threats
related to off-chip data accesses. Anti-tamper techniques are
also widely adopted by chip makers such as Altera [157], ON
Semiconductor [158] and Cypress [159] to secure key storage.

The most recent nonvolatile static RAM technology based
anti-tamper memory [159] can provide a single or combined
features of password protection, data destruction, functional
destruction and physical destruction upon tampering.

4) Control Flow Integrity (CFI): Control flow integrity
(CFI) defends against code reuse attacks by monitoring the
program’s flow of execution and attempts to ensure that it
performs the correct sequence of operations. CFI is a general
class of mitigation strategies that monitor and restrict the
control flow decisions that a program makes. While there
are many software CFI techniques, including some done in
practice [160], there are fewer hardware based CFI techniques
as they generally require substantial changes to the underlying
microarchitecture. Hardware CFI defenses depend on a trusted
hardware monitor integrated into the instruction pipeline or
with access to the processor’s debugging resources to analyze
control flow information. de Clercq and Verbauwhede [161]
classify CFI mitigation strategies into the followings: shadow
call stack, labels, tables, finite state machine, branch reg-
ulation, instruction set randomization, signature modeling,
and code pointer integrity. These mitigation strategies aim to
monitor execution using a limited number of resources. Their
differences are reflected in the resources that they monitor,
how they track execution flows, and the type and amount of
stateful information that must be stored.

C. Side Channel Protection Techniques

1) Timing-channel Countermeasures: Existing countermea-
sures against SCA explore both software and hardware-level
approaches. A countermeasure could be detection of the attack
at runtime or analysis of susceptibility during the design
stage. It could also be a design approach (both software and
hardware) for mitigating the covert or side-channel.

Most timing channels in cryptographic implementations
occur due to the difference in execution time for different key
and data inputs. As key and data inputs vary, the memory
access pattern, branches, and various other operations become
different across multiple executions that lead to leakage of
information. Researchers have proposed constant-time tech-
niques to eliminate such leakage. However, they are difficult
to achieve through hardware-level re-implementation and may
cause significant impact on performance [162]. Bitslicing
technique has been explored to implement constant-time AES
core with improved performance [163].

Researchers have developed compiler-based countermea-
sures to thwart timing channels. These techniques focus on
introducing noise or randomization in the software implemen-
tation to eliminate timing leakage. Coppens et al. [164] pro-
posed compiler-based automatic elimination of key-dependent
control flow by removing conditional move instructions.

2) Power Side-channel Countermeasures: Power SCA
countermeasures can be categorized as algorithmic, physical,
or system-level. Algorithmic countermeasures insert additional
operations that mask [165] or split [166] the sensitive com-
putation. They have the advantage of being provably secure.
Physical countermeasures rely on measurements for validating
the security of the device. The problem of measuring the side-
channel leakage of a device has been addressed in [39], [41],



HU et al.: AN OVERVIEW OF HARDWARE SECURITY AND TRUST: THREATS, COUNTERMEASURES AND DESIGN TOOLS 13

[167], [168]. Works like [169], [170] use custom gates that
consume power independent of the gate’s switching. System-
level countermeasures, such as [171]-[174], use the device’s
power supply to normalize or randomize the overall power
consumption. While algorithmic and system-level countermea-
sures require additional circuitry, physical countermeasures
use custom logic design methodologies to tackle the leakage.
System-level countermeasures rely on injecting noise in the
power supply, which reduces the signal-to-noise ratio in the
side-channel leakage [171]-[174]. The specialized circuitry
required by these schemes can drastically affect the area,
power and performance of the design. For example, the
popular algorithmic masking scheme [175] results in over 3x
of performance degradation. In the recent years, the need for
incorporating security countermeasures in low-cost embedded
hardware has motivated the emergence of efficient counter-
measures like [176]-[178], where the algorithms available in
the commercial EDA flows are leveraged to reduce area and
delay overheads of these countermeasures.

3) EM Side-channel Countermeasure: Both hardware and
software-level countermeasures have been proposed to thwart
EM side-channel. Execution sequence randomization and ran-
domization of LUTs have been explored as software-based
methods [179], [180]. Certain pairs of instruction sequence
may have distinguishing features in the EM signature that can
be leveraged for the detection of security critical events [181].
Randomization of sequence can also be useful in mitigating
such leakage. Accessing critical data using pointers may raise
the difficulty of extracting access pattern information through
EM analysis [182]. While masking of critical variables by
random values during execution has been explored, they are
found less effective in mitigating the leakage [183], [184].

Minimization of metal artifacts in the chip and use of
Faraday cage packaging have been suggested as hardware-
level countermeasures against EM emission [24]. Since EM
emission is proportional to power consumption, low-power
design methodology could also be useful. Introducing asyn-
chronous design methods using multiple clocks may raise
the difficulty of analyzing EM signature as different parts
of the design will be switching at different frequency [24].
Analysis framework for evaluating hardware designs for EM
side-channel vulnerability would be useful for early detection
and integration of design-time mitigation techniques [185].

4) Fault Attack Countermeasures: Over the years, various
countermeasures have been proposed for protecting digital
designs against fault attacks. These countermeasures can be
broadly classified as infective countermeasures and detection-
based countermeasures. Detection-based countermeasures in-
volve the addition of detection-circuitry such as parity or
additional copies of the design in-order to detect the presence
of a fault. Works such as [186]-[189] rely on parity based
circuits while [190], [191] rely on redundant circuits. Works
like [65], [192] attempt to thwart a fault attack by increasing
the probability of unexploitable faults. They achieve this by
transforming the fault space. Infective countermeasures such
as [193], [194] on the other hand prevent the occurrence of a
fault attack by making it impossible for the attacker to inject
a fault. Works like [193] use diffusion-based technique where

portions of the redundant and original outputs are swapped
thereby making it harder for the attacker to identify exploitable
faults. Another diffusion method is through the use of a fixed
constant matrix to modify the output data [194]. Infection can
also be achieved by adding dummy rounds in addition to the
redundant datapath [195], [196].

However, a significant drawback of the above mentioned
works is that they still require the design engineer to manually
identify the vulnerable fault locations. This poses a significant
challenge in larger designs. Thus, in recent years automatic
identification of vulnerable locations has become an interesting
area of research. With respect to fault attacks, the initial works
were restricted to light-weight ciphers [197] or made strong
assumptions such as restricting to bit-flip faults. Safari [198]
can cater to a large class of block ciphers including add-
rotate-xor (ARX) ciphers. It can comprehensively evaluate
all possible fault scenarios, including those with multiple
fault locations. Expfault [199] uses data mining to determine
vulnerable components of a cipher. Solomon [200] is a formal
verification based tool-flow that can map vulnerable regions
in the specification to their corresponding gate-level or placed
netlist representations. Feds [201] is a similar formal verifica-
tion tool-flow that can map fault-attack vulnerable regions in
the specification of a cipher to the corresponding lines in the
source code for its implementation.

D. IP Protection Techniques

1) Hardware Watermarking: Hardware watermarking can
be performed at electronic system level (ESL), high-level
synthesis (HLS) level or logic synthesis level to protect
an [P against threats such as piracy (or counterfeiting and
cloning) and false claim of IP ownership. ESL or HLS based
hardware watermarking is exemplified by binary encoding of
author’s signature in [202]. This technique embeds watermark
in the pre-synthesis phase of HLS or behavioral synthesis
in the form of additional design and timing constraints. The
extra constraints encode the author’s signature into a binary
bitstream of ASCII characters. The high-level description of a
design is converted into control data flow graph (CDFG). After
scheduling the CDFG into control steps (CS), an interval graph
(IG) is created wherein each node indicates a storage variable,
and an edge between two nodes indicates the overlapping of
the life time between two storage variables. Register allocation
to these variables is performed by graph coloring. Each node
is first assigned a unique number in increasing order of their
lifetime. From the sorted list of nodes, each author signature
bit is embedded as an extra edge in the IG by selecting a
terminal node based on its node number. Bit ‘0’ (or ‘1’) is
embedded by selecting an even (or odd) numbered terminal
node. The extra constraints are thus imposed into the graph
coloring problem for optimal register allocation. The strength
of the authorship proof is assessed by the probabilities of
coincidence (P¢) and tampering (Pr). Po denotes the proba-
bility of coincidentally obtaining the same register allocation
to the same storage variables as the signature by using any
other register allocation methods. Pr denotes the probability
of successfully corrupting the watermark by eliminating one
or more signature bits by altering the color of a node.
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Triple phase Watermarking [16] is another HLS water-
marking scheme for protecting DSP hardware accelerators.
A complex author-signature is formed by seven variables,
', ‘e, B, U, T, ‘T and ‘!, and embedded into three
different phases of HLS. During the scheduling phase, on each
occurrence of ‘v’ digit, an operation in the non-critical path
with the highest mobility is moved into the next immediate CS.
During the resource allocation phase, in the odd CS on each
occurrence of ‘o’ digit in the odd CS, hardware resources to
the odd and even operations are reallocated to type 1 and type
2 venders, respectively; In the even CS, on each occurrence
of ‘4’ digits , hardware resources to even and odd operations
are reallocated to type 1 and type 2 vendors, respectively.
During the register allocation phase, on each occurrence of
9, ‘I, “T” and ‘!’ digits, additional edges are added into the
colored IG (CIG) to reallocate the registers to a set of storage
variables. Specifically, ‘i’ is encoded as an edge between two
prime nodes, ‘I’ an edge between two even nodes, ‘T" i an
edge between a pair of odd and even nodes, and ‘!” an edge
between node number 0 and any other integer node.

CDFG HLS Framework
representation .
P of DSP R Scheduling phase [« Y
" Author’s
hardware Hardware a, b seven
accelerator allocation phase variables
Resource Register allocation|_{ 1, L, T, ! signature
constraints phase
Watermark Three phases of
embedded watermark
hardware | _
accelerator [ | Datapath synthesis |

Fig. 3. Triple phase watermarking based IP protection technique.

Fig. 3 depicts the triple phase watermarking approach.
Owing to the large number of signature variables embedded in
three different phases of HLS, it is highly tamper-tolerant and
has extremely low Pc. The complex signature combination in
the three embedding phases has tightly constrained the solution
space, making it highly improbable to find a design of the same
functionality to also fulfill the additional watermark constraints
by coincidence. By embedding the watermark at the highest
level of design abstraction, the IP distributed at all lower
levels of abstraction will also be protected without introducing
integration complexity to the traditional design flow.

Besides HLS, Kirovski et al. [203] proposed the first
logic synthesis watermarking method by implanting user and
tool specific information into a combinational circuit through
technology mapping. Design constraints are generated by
hashing the owner signature using SHA-256 and a pseudo-
random number generator. The watermark constraints are used
to select the internal circuit nodes as pseudo-primary output
to synthesize a new netlist with the minimum number of
cells for a given technology library without changing the
functionality of the original circuit. Instead of full technology
mapping, Cui et al. [204] proposed an incremental technology
mapping technique to adaptively synthesize part of the design
for watermark insertion. Using a globally optimized master

design, the slack sustainability of disjoint closed cones is
assessed to determined their suitability as watermark hosts.
The watermarked solution is generated by remapping only the
selected closed cones according to the watermark constraint
through incremental synthesis. As the closed cones are selected
based on both slack and slack sustainability, the embedding
capacity is maximized, and the watermark bits are stealthier
than hosting them in non-critical paths determined merely by
absolute timing slacks.

2) Hardware Steganography: A limitation of IP water-
marking is that it is arduous, and not always possible, to
optimize the design-dependent signature to increase its ro-
bustness without exceeding acceptable overhead. Hardware
steganography is a promising alternative to watermarking. This
is due to the following reasons: a) hardware steganography
provides a seamless control to resolve ownership conflict and
piracy detection; b) the secret stego-based hardware constraints
are derived from the entropy threshold parameter instead of
the combination and encoding process of signature variables.
Consequently, the design overheads are reduced over IP water-
marking. From design perspective, modeling the relationship
between signature combination and design overhead to select
a robust signature is extremely difficult. Hence, it is desirable
to do away with signature dependency for IP protection.

High level [—{CDFG]
description 3 Collecting node-pairs
of DSP Schedule between same colors
hardware CDFG D — :
etermining swapping
acce.lera.tor pairs for each edge between|
application two nodes of same color
Stego- Embedding constraint Shortlisting Entrﬁply
embedded [«H edges during register [«— edges based «-|threshold
design allocation on Eth value
HLS Framework (Eth)

Fig. 4. Entropy based hardware steganography approach.

In [17], a vendor signature-free entropy-based hardware
steganography method is proposed to protect DSP cores. This
approach is depicted in Fig. 4. The secret information is
embedded in the register allocation phase of HLS through
the CIG framework. The stego-constraints are derived from
a set of edges between node-pairs of identical colors. To
add an edge between two nodes of the same color, the color
of one node in the pair needs to be swapped with another
node in the CIG. There are a number of possible swapping
pairs corresponding to each potential edge to be embedded.
An entropy value is computed for each swapping pair as
an indicator of the number of color transformations needed
for the swapping. The entropy value for all swapping pairs
of a potential edge is computed to determine its maximum
entropy. Only those edges whose maximum entropy is less
than or equal to a chosen entropy threshold (Eth) are qualified
to be embedded as stego-constraints. The strength of the
ownership proof is also measured by P,.. The difference is that
a steganography technique is capable of embedding effectively
a larger number of constraints than HLS based watermarking
approaches. This is because it assumes no default constraint,
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while some constraints corresponding to the author’s signature
exist by default for watermarking approaches. All the stego-
constraints corresponding to the chosen Eth are essentially
embedded as the author’s secret information. The amount of
implanted stego-information and the strength of steganography
can be increased by increasing Eth with negligible design
overhead. Hence, this technique offers more designer control
on the digital evidence implanted into the design.

To improve the robustness of steganography, two distinct
phases viz. register allocation and functional unit (FU) ven-
dor allocation of HLS are leveraged for stego-constraints
insertion [205]. In addition, the author’s stego-information
generation involves cryptographic modules and stego-keys to
enhance the protection against piracy and false ownership
claim. The reasons are: (i) even if the secret constraints are
compromised by an attacker, the owner has a meaningful and
mathematical way to prove his constraints; (ii) the very large
size stego-key (more than 600 bits and scalable with the size
of the IP) is only known to the owner, and such a large
key cannot be cracked by brute force; (iii) the stego-mark
and ownership proof are strengthened by a stronger digital
evidence by embedding the stego-information in two distinct
phases of HLS.

The secret stego-constraints are generated using secret de-
sign data and stego-keys. The secret design data, obtained
from CIG of target DSP application, are a set of elements
where each element is represented by the indices (z, 7) of a
node pair (V;, V) of identical colors in the CIG. A series
of transformations involving row and column diffusions and
cryptographic encryptions using the stego-keys are applied on
the secret design data to obtain the stego-constraints in the
form of a bitstream. Each bit in the stego-constraints is mapped
to the hardware security constraints based on designer specific
mapping rules. Further hardware security constraints are em-
bedded during the register allocation and FU vendor allocation
phases of HLS; thereby, generating a stego-embedded DSP
design. This crypto-based dual phase steganography technique
has also been applied along with structural obfuscation to be
discussed in the next subsection to double the line of defense
for securing JPEG compression-decompression hardware used
in medical imaging systems [206].

3) Logic Obfuscation: Logic obfuscation is another effec-
tive hardware IP protection technique against illegal black-
box reuse and RE. It inserts extra logic associated with
dedicated obfuscation key inputs to functionally lock the
design. Such design modification introduces programmability
into the design such that the circuit functions properly only
upon application of the correct obfuscation key and would
otherwise malfunction.

Commonly used logic obfuscation techniques include
XOR/XNOR and MUX based logic locking which can affect
values of circuit internal nodes or the hardware information
flow [207], [208]. Similarly, logic obfuscation can also be im-
plemented by introducing programmable elements to withhold
part of the logic for later configuration [209]. However, these
obfuscation techniques are vulnerable to powerful functional
oracle-guided SAT attacks that iteratively finds distinguishing
input patterns (DIPs) to prune the wrong keys [210].

A number of anti-SAT logic locking techniques were pro-
posed to increase the number SAT iterations required. For
example, Xie et al. [18] leverage point function logic to
reduce the number of wrong keys pruned by each DIP so that
the number of DIPs required exhibits an exponential relation
with the obfuscation key length. However, since such anti-
SAT logic obfuscation approaches generally rely on AND-tree
based point function structure, they suffer from removal attack
and bypass attack [211], [212]. Several research work [213],
[214] improved the obfuscation techniques to eliminate such
vulnerability by adopting a corrupt-and-correct scheme which
ensures that when the point function logic is removed, the
circuit would not function properly. However, a recently pro-
posed functionality analysis on logic locking (FALL) attack
combines structural and functional analyses of the obfuscation
circuit followed by a SAT-based key confirmation to suc-
cessfully defeat such obfuscation techniques [215]. Another
solution to developing anti-SAT logic locking techniques is
to increase the time for each SAT iteration by using pro-
grammable logic and routing block networks to obfuscate the
routing of selected wires as well as the logic of the gates
preceding and succeeding the selected wires [216].

Another branch of logic encryption is the FSM based
sequential obfuscation techniques. It involves augmenting the
original FSM with additional states such that the FSM will
start from a dummy state and can only reach a functional
state upon receiving the correct key sequence [217]. Sequential
obfuscation techniques can be breached if the FSM can be
enumerated with its transition graph extracted [19].

E. Hardware Trojan Detection and Prevention Techniques

1) Pre-silicon Countermeasures: Pre-silicon HT detection
techniques are designed to identify HTs in the early design
phase. These techniques include switching probability analy-
sis, structural checking and security verification.

Switching Probability Analysis based HT detection ap-
proaches are developed upon the assumption that the Trojan
trigger signal should have extremely low switching probability
in order to prevent the HT from being frequently activated.
These methods try to identify the signals with switching ac-
tivities significantly lower than the average through structural
analysis or behavioral code analysis [218]-[220]. These re-
search works have revealed the close connection between low
controllability or observability signals and Trojan circuitry.

Structural Checking based HT detection methods attempt
to extract structural features (e.g., gate type, gate count and
manners of interconnections) specific to HT designs and
perform detection leveraging techniques such as pattern match-
ing [221]. They usually use a scoring algorithm to match such
features against the circuit structures under test to identify
Trojan circuitry. However, these methods may indicate false
positives and suffer from scalability issues.

Security Verification can be used to detect certain types of
HTs. It works by deriving formal security models for hardware
designs and prove security properties such as confidentiality
and integrity through formal approaches, e.g., SAT solving,
model checking and type checking [222]-[224]. A security
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property violation indicates the existence of unintentional de-
sign flaw or intended malicious design modification. However,
formal verification typically has the scalability problem and
usually only works for detecting HTs at IP level.

2) Post-silicon Countermeasure: Pre-silicon HT detection
methods check for malicious design modifications after chip
fabrication. Destructive RE, which involves de-packaging and
delayering the ICs and extracting the circuit structure from
layout images, is a common approach for post-silicon HT
detection. However, this costly and time-consuming process
may fail when HT is only inserted into a small number of
chips. On the contrary, non-destructive methods, including
functional testing and SCA, are generally considered more
viable in practice.

Functional testing aims to activate the rarely triggered Tro-
jan circuitry and propagate the effect to an observable point.
A major research vector is how to generate test vectors which
can excite each rarely switching node in a circuit. Statistical
approaches have provided one possible solution [225] while
another attempt is guided tests against HT's in critical portions
of the design [226].

SCA based methods detect HTs by analyzing physical IC
parameters such as power consumption [227], path delay [228]
and chip emissions [229], [230]. The major challenges with
these methods lie in the lack of golden chip and the effect of
process variation on side-channel measurements. To improve
HT detection sensitivity, researchers exploit multiple side-
channel parameters [231] or combine logic testing and SCA
for directed pattern generation [232]. There are also efforts in
developing ‘“golden-free” solutions by estimating the golden
signature through simulation [233] or comparing the signatures
collected at different time windows [234].

3) Design-for-Trust (DFS) Techniques: DFS techniques in-
sert dedicated logic to facilitate HT detection. Some techniques
add dummy flip-flops and testing points to improve the con-
trollability and observability of internal nodes to accelerate
the Trojan activation process [235]. Another type of DFS tech-
niques insert circuit infrastructure such as ring oscillators [236]
and current sensors [237] to facilitate production screening and
on-site monitoring of HT-infected chips or favor SCA-based
HT detection. DFS techniques can also be applied to make HT
insertion more difficult while detection easier as demonstrated
in [238].

4) Runtime Monitoring Techniques: Due to the NP-
completeness of several testing problems (e.g., controllability,
observability and ATPG), it is impossible to guarantee that
HTs can be completely eliminated before device deployment.
Thus, it is desirable to employ runtime monitoring techniques
to detect and prevent HT attacks in security critical systems.
This can be done by monitoring critical signals [239], dy-
namic power [240] or EM radiation [241] and even through
hardware-assisted formal approach [223].

5) 3PIP Trojan Detection: The majority of HT detection
methods use Trojan benchmarks for evaluating their effective-
ness. The task of detecting unknown HTs in 3PIP is more
challenging due to the lack of knowledge about the Trojan
implementation. Coverage of functional testing, locality of
switching probability analysis and noise from process vari-

ation add difficulty to this process. Functional [242], [243]
and security verification [224], [244]-[248] techniques are
promising, with detection rate dependent on the quality of
the properties. Unfortunately, specifying the right property for
Trojan detection is a non-trivial task for 3PIP. Techniques for
identifying HTs by matching the design structural [249] or
control data flow [250] features to existing templates is reliable
provided that the features of the Trojans are included in the
feature library. New HTs that have not yet been reported may
evade detection. Techniques that deploy on-chip monitors can
still protect critical security assets from malicious activities
triggered by unknown HTs [251], but full chip protection is
infeasible due to the high design overheads.

6) HT Prevention Techniques: HT prevention techniques
aim to make HT insertion more difficult or ideally impos-
sible. Logic obfuscation, split manufacturing and structural
obfuscation are three common Trojan prevention techniques.

Logic obfuscation techniques, initially proposed for IP pro-
tection, can also be leveraged as a HT prevention approach.
Without the correct key, the functionality of the obfuscated
circuit is locked to the untrusted foundry. This renders HT
insertion a difficult task [252], [253].

Split Manufacturing can also help to prevent malicious
design modification. It separates a design layout into Front
End of Line (FEOL) and Back End of Line (BEOL) portions,
which will be fabricated by trusted and untrusted foundries
respectively. Without information about the BEOL portion, it is
difficult for the untrusted foundry to embed a useful HT [254].

Structural Obfuscation transforms the design structure in
order to hide its functionality and make the structure non-
obvious/non-interpretable by an adversary. This renders RE
harder, which thwarts malicious component/Trojan insertion.
By considering the trade-off between design metrics such
as area, delay and power during high-level transformations
(HLTs), Lao and Parhi [255] obfuscated DSP circuits with
huge structural alterations against RE and HT attacks without
compromising their original functionality.

Hierarchical contiguous folding (HCF) is used to fold X
cascaded stages to one hardware module, and N operations
inside one stage to a hardware FU. All operations of one stage
are performed before the next stage of operations. Different
modes can be implemented by varying the number of stages
in the cascaded structure. Some modes produce functionally
invalid outputs but are otherwise meaningful from signal
processing perspective. Other modes produce non-meaningful
outputs. Manifold meaningful and non-meaningful modes are
regulated through configured data. The functional mode of a
DSP design is activated by applying a valid key to an FSM. If
an invalid key or wrong configured data is applied, different
modes will result in many equivalent circuits to obscure the
DSP design structure.

Compiler based HLTs [256] is an alternative approach that
targets mainly loop based DSP applications to achieve struc-
tural obfuscation. The exploitable HLTs include redundant op-
eration elimination (ROE) by eliminating nodes in CDFG with
matching inputs and operation type, logic transformation by
altering some operation types in CDFG without changing the
functionality, tree height transformation (THT) by paralleliz-
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ing some sequential operations, loop unrolling by unrolling
the loop body to reduce latency, and loop invariant code
motion by moving non-iterative operations out of the loop.
The aforementioned complier-based techniques considerably
transform the CDFG and alter the RTL datapath of the DSP
application post HLS. The latter alteration includes changes
in the size and number of MUXes and DeMUXes, changes
in the interconnectivity of FUs with MUXes and DeMUXes,
change in the number of storage elements (registers), etc. By
integrating particle swarm optimization based design space ex-
ploration (PSO-DSE) framework with the HLS process [256],
the transformed/obfuscated graph can be scheduled with the
optimal resource constraints, which minimizes the cost of the
structurally obfuscated design. THT based [257] and hybrid
transformations based [258] structural obfuscations are also
applied to protect the JPEG codec hardware accelerators and
fault secured DSP designs, respectively.

F. ML-assisted Solutions

Defenses against hardware security threats leveraging ML
are mainly bifold:

1) ML for Detection: 1C counterfeiting and HTs are two
emerging threats to the IC manufacturing industry. In both
cases, defective or malicious entities are injected as part of
the system. Traditional inspection methods can be either very
time-consuming or ineffective. As a result, ML models are
used to automate the inspection procedure. Parametric mea-
surements collected from on-chip sensors can be analyzed and
classified using support vector machines (SVMs) to identify
recycled ICs [259]. SVMs can also be utilized for real-time
HT detection [14]. Additionally, various ML models such as
SVM, random forest and multi-layer perceptron (MLP) have
been applied to counter micro-architectural SCAs [15].

2) ML for Robust Architecture Design: Systems with robust
designs stay ahead of security threats. Various designs attempt
to combine ML and system characteristics. Yang et al. [102]
leverage the memristor’s obsolescence effect to design a secure
neuromorphic computing system. Shan et al. [260] propose
a machine learning assisted power compensation circuit that
enhances the SCA-resistant capability with a smaller area and
lower power overhead compared to traditional methods.

G. Countermeasures Against DNN Attacks

Most countermeasures against adversarial attacks on DNN
can be dichotomized into proactive and reactive categories.
The former intends to improve model robustness while the
latter aims to detect adversarial inputs.

1) Proactive Measures: Proactive measures are carried out
offline by three methods. Adversarial training retrains the
model with off-the-shelf adversarial examples added into the
original training dataset. Apart from the cost of crafting
malicious images from known techniques, it is also limited
by the assumption that the attacker is restricted to techniques
that are known to the defender. Gradient Masking hides the
gradient information from the adversaries. One example is
to extract the probability vectors of a pre-trained model as

soft labels to build a distilled model with the same archi-
tecture [261]. Input Transformation inhibits the adversarial
effect by linear dimensionality reduction. In [262], principal
component analysis is used to project the original data to the
training data. Instead of building a fresh model specialized
for the projected inputs, MagNet [263] reconstructs the inputs
using autoencoders before is it trained with sufficient clean
examples to move the tampered images towards the legit-
imate distribution. Hardware-oriented countermeasures have
also been proposed to increase the robustness of DNN model.
Defensive Quantization protects neural networks against ad-
versarial attacks by controlling the Lipschitz constant of the
network during quantization [264]. The hardware efficiency
for small bitwidth data is still preserved.

2) Reactive Measures: Instead of passively regularizing
model parameters in black box setting, reactive methods
detect the adversarial inputs for follow-up actions. These
methods can be divided into three main types: sample statis-
tics, detector training and prediction inconsistency. Sample
Statistics use features, such as density estimates calculated
from the activations of the last hidden layer and Bayesian
uncertainty extracted directly from the dropout layer, to detect
illegitimate points lying far from and nearby the natural data
manifold [265]. Nixon et al. [266] utilizes the sensor pattern
noise (SPN) of the device for adversarial examples detection.
The SPN Dash system, shown in Fig. 5, is introduced before
the classification phase to detect adversarial perturbations
after the image compression and submission stage. In Fig. 5,
Iene, SPNey, and SPNye, denote an input image after the
image compression stage, the SPN of the current submitted
I and a reference SPN for a specific device, respectively.
The main constraints for the generalization of this method
are the susceptibility of SPN detector and device-dependent
estimation accuracy. Detector Training augments the DNN
subnetworks as adversarial input detector [267]. The additional
module is trained by freezing the parameters of the original
model to perform binary classification between the clean and
adversarial inputs. This defense requires massive adversarial
examples for training, and is prone to over-generalization of
adversarial attacks. Prediction Inconsistency uses the degree
of consensus among multiple models for the prediction of
adversarial attacks. Wang et al. [268] integrates mutation and
statistic hypothesis testing into the detection algorithm. As
adversarial images are more sensitive to the model mutants
than clean images, label change rate (LCR) is defined to assess
the mutation sensitivity of DNN mutants. Statistic hypothesis
testing is then applied to determine the cleanliness of the
input based on its LCR. Cognizant of the greater freedom
to adversarial abuse offered by the unnecessarily large feature
space, Xu et al. [269] determines if an input is benign or
adversarial by comparing the classification results of the initial
and squeezed inputs against a predetermined threshold.

3) Other Hardware-oriented Measures: DNN models are
typically implemented on GPU and application-specific ac-
celerator platforms. The former has greater agility while the
latter is more energy efficient. It is common to have the model
training performed on GPUs with the inference executed in
dedicated DNN accelerators. Thus, it is important to port
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Fig. 5. SPN Dash framework [266].

defense algorithms into DNN accelerators to secure embedded
intelligence. Most of the aforementioned countermeasures that
target single precision floating-point arithmetic DNN imple-
mentation on GPU platform may not have considered the
effects of fixed-point arithmetic and quantization on hardware
accelerated DNN. Although truncated models have been used
for the evaluation of the countermeasures proposed in [270]
and [271], they are simulated under the GPU environment
without physically integrated into the accelerator. Rouhani et
al. [272] proposed the first end-to-end hardware accelerated
detection framework that falls under the category of sam-
ple statistics. It exploits the possible adversarial sub-spaces
spanned by the intermediate output feature maps through the
Modular Robust Redundancy that architecturally mirrors the
victim DNN model. An automated customization tool has also
been developed for different resource-constrained platforms
while maximizing the effectiveness of the defense. However,
this defense was only tested on small scale classification.
The complexity of the detection algorithm may increase sub-
stantially with more complex DNN models for large scale
classification. To address this cost and performance trade-off,
DNNGuard [273] is proposed. It is an elastic heterogeneous
DNN accelerator architecture that enables simultaneous execu-
tion of the victim network and the detection network. It is also
scalable to the implementation of various existing detection
algorithms. Unfortunately, DNNGuard was also evaluated by
simulation instead of physical implementation.

V. HARDWARE SECURITY TOOLS
A. Security Verification Tools

Security verification tools for hardware/software systems
have been surveyed in [30]. We summarize a few projects from
the hardware side and also present some recent advances.

1) Academia Tools: One of the earliest hardware security
verification tools was developed by the gate level information
flow tracking (GLIFT) [274] project. It establishes the funda-
mental theories of hardware information flow tracking (IFT)
by providing tracking logic formalization [275], [276] and
complexity theories [277]. GLIFT has been employed to prove
strong isolation in computer architecture [278], identify timing

channel [47] and detect HTs [224]. The GLIFT project has
evolved to higher level IFT methods such as register-transfer
level IFT (RTLIFT) [279] due the verification performance
bottlenecks at the gate level.

Similar to GLIFT, RTLIFT [279], Clepsydra [280] and
VeriSketch [152] are a set of secure hardware design tools that
employ fine-granularity security labels and label propagation
policies to measure the flow of information but target RTL
Verilog designs. RTLIFT has observed ~5X improvement in
verification performance as compared to GLIFT. Clepsydra
provides a formal model for timing-only information flow
and allows proving constant time properties in order to detect
timing channels in caches and cryptographic cores. VeriSketch
employs the sketch technique to automatically synthesize
hardware designs that satisfy desired security properties such
as confidentiality, integrity and constant time. Like GLIFT, the
information flow security models developed by these projects
are described in standard HDL while the security assertions are
written in standard property specification languages, e.g., SVA.
This allows hardware security verification to be performed
under standard EDA verification environments.

The PCH-IP and VeriCoq projects provide several tools for
verifying IP security and trust [245]-[247]. These tools define
rules for converting RTL Verilog design to Coq! semantic
circuit models. They use the Coq theorem prover to formally
verify confidentiality properties on the Coq circuit models in
order to detect malicious design modifications. VeriCoq [245]
has recently been extended to the transistor level to verify
the security of analog/mix-signal designs and detect analog
HTs [281]. However, these projects tend to employ conserva-
tive rules to model information flow security behaviors, which
can lead to false alarms in security verification.

SecVerilog [282] is an open source hardware security tool
for proving timing non-interference [283] and eliminating
timing channels in RTL designs. It incorporates a type system
into Verilog and a timing label to verify information flow
security at compile time. Timing non-interference is enforced
by checking type rules. The SecVerilog tool has been extended
to support mutable dependent types to solve the implicit down-
grading problem [284] and the chisel HDL. SecChisel [285]
can be used to create secure architectures, synthesize se-
cure cryptographic accelerators and capture information leaks
caused by hardware security flaws, timing channels and HTs
through type checking.

2) Commercial Tools: EDA and hardware security compa-
nies have also released several secure hardware design tools.

Mentor Graphics SecureCheck is a security path verification
tool running on top of the Questa Formal verification en-
gine [286]. It uses assertion based formal verification to prove
confidentiality and integrity properties in order to identify risky
paths that will lead to security property violations.

JasperGold Security Path Verification [287] is a hardware
security formal verification tool from Cadence. The tool runs
on top of the JasperGold Formal Verification Platform. It
employs sensitivity analysis to model the flow of information

!An iterative theorem prover named after its principal developer, Thierry
Coquand.
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in SoC designs and identify insecure design paths that can
lead to tampering or leakage of critical information [288].

Prospect is a hardware security formal verification tool from
Tortuga Logic. It uses GLIFT [274] to generate logic that
tracks information flow through the circuit. That logic can
then be analyzed by any functional verification tool to prove
security properties [277]. The IFT logic is used solely for
design time verification; no additional logic is added to the
final circuit. Radix-S [289] and Radix-M [290] are another
two hardware security tools from Tortuga Logic. Radix-S
performs IFT based hardware security simulation while Radix-
M performs hardware security emulation. Emulation allows for
the verification of system properties across the entire SoC.
Furthermore, it enables verification of properties that span
across software, firmware, and hardware interactions, i.e., the
“HardFails” [291].

Synopsys focuses more on reliability and functional safety
verification. The CustomSim [292] is a tool set for device-
level and interconnect reliability analysis, including infrared
radiation drop, current density and electromigration, and de-
vice aging. The VC Functional Safety Manager [293] performs
failure modes and effect analysis, unified fault campaigns
management, annotation and calculation of metrics for the
failure modes, effects and diagnostic analysis.

B. Security Driven Hardware Design Tools

There is a recent move towards developing security driven
hardware design tools. DARPA has recently launched the
SSITH and AISS projects. Both aim to develop secure hardware
design tools that allow security to be evaluated along with
traditional design parameters.

Urdahl et al. [294] propose a property-driven design flow.
Abstract properties are specified from the system-level and
refined along the design process in order to provide a formal
relationship between an abstract system model and its concrete
implementation at the RTL. In a property driven solution
to hardware security [20], high-level security specification is
translated to lower level security policy, property, assertion
and constraints in order to allow security to be formally
verified on more concrete design models. This is demonstrated
by a property specific approach to information flow security
verification [295]. Ma et al. [296] present a security-driven
placement tool for EM side channel protection. The idea is to
create an EM leakage model and use this model to guide data-
dependent register reallocation. Takarabt et al. [297] propose
a pre-silicon evaluation methodology and tool that allow
security verification to be run side by side with functional
verification. The tool identifies vulnerabilities and the precise
line of code where the vulnerability lies with additional
characterization such as severity. Recent advances are also
witnessed in security-driven metrics, models and computer-
aided design (CAD) flows that integrate logic encryption, split
manufacturing and camouflaging for secure hardware design
[298], [299].

In [21], it is argued that security should be taken as an
architectural design constraint in addition to time, space and
power. This motivates a security-aware design flow starting

from the choice of security primitives, protocols and architec-
ture. Knechtel et al. [22] provide a comprehensive analysis
about the role of EDA on hardware security. They identify
the challenges yet to be resolved in effective compilation of
security assumptions and constraints across different levels
of abstraction, modeling and evaluation of hardware security
metrics and holistic synthesis of security countermeasures
without causing side-effects.

VI. POTENTIAL RESEARCH DIRECTIONS
A. System and Architecture Security

System designers are constantly trying to balance the del-
icate tradeoff between performance, power, and area. They
must now add security as another optimization criteria! Un-
fortunately, measuring “security” is a challenging but crucial
aspect of hardware design. Security metrics are essential for
any sort of vulnerability analysis, threat mitigation, and secu-
rity verification. An ideal metric provides a precise measure of
the severity of the threat. Security is a multifaceted notion cov-
ering a wide range of threat models. Therefore, it is unlikely
that one metric can cover all threat models. Thus, we need
different metrics to understand the various threats. Metrics that
can combine multiple different threat models and can model
a high dimension space are valuable. Metrics that provide
relative comparisons between different design options are also
extremely useful in making architectural design decisions [41].
IFT is a powerful and one of the most popular metrics for
hardware security verification, but it enforces binary properties
(flow or no flow); Quantitative IFT helps provide some finer
resolution for security threat modeling [300].

Debugging is another important but overlooked aspect of
hardware security. This is particularly challenging at the
system and architectural level due to the complexity of the
design and the interactions with many disparate software and
hardware components. When verification uncovers a security
vulnerability, as it inevitably will do, designers require tech-
niques to help localize the source of this vulnerability and
suggestions on how to redesign the system to mitigate the
vulnerability. This is particularly important for vulnerabilities
that involve both hardware and software.

B. IoT and Cyber-physical (CPS) Security

Security of IoT and CPS are becoming increasingly im-
portant. This is due to: (1) these systems interact with the
physical world, and hence security issues in these systems
may lead to major safety concerns; and (2) these systems
are designed and manufactured under tight cost and time
constraints, which typically do not allow them to go through
rigorous security design and verification process. Generally,
these systems include a hardware layer that consists of sen-
sors and actuators, electronic components for communication,
control and information processing, and a software stack.
The hardware layer serves as the root of trust for the entire
system. Manufacturers of these systems often use commercial
off-the-shelf (COTS) components for the hardware layer and
many open-source software modules in the software stack
due to the cost/time constraints. Moreover, these systems tend
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to incorporate ‘smartness’ through integration of various Al
techniques that enable them to act autonomously as well as
adapt to an operating environment.

Due to their distinctive properties, these systems will re-
quire significant re-thinking in how security solutions — both
design and verification — can be effectively integrated into
them. Specific research directions will include, (1) system-
atic integration of security in IoT/CPS that considers the
varying requirements of the target applications (e.g., power,
performance, cost) with focus on automatic design/verification
tools that enables tradeoff between security and other design
parameters; (2) security of the sensor/actuator subsystem; (3)
security of the COTS components, since they come through
an untrusted supply chain, thus being subject to counterfeiting
and various tampering attacks; and (4) security of the Al and
ML techniques employed in these systems. Additionally, there
will be increasing need for quantifying the security of these
systems through development of appropriate, easy-to-use and
easy-to-understand metrics.

C. ML for Hardware Security and Security of ML

ML models can be used to launch or defend attacks against
hardware entities. Current ML-assisted countermeasures rely
mostly on preliminary models such as SVMs, possibly due
to the scale of the problem and limited training data. As the
attacks are continuously being developed, more complex ML
models such as DNNs may emerge for the prowess in data
processing, which in turn requires a large amount of training
data. Therefore, unsupervised learning can be a potential key
to the problem as labeled data are usually much more valuable
than unlabeled raw data. Furthermore, more effort is needed to
direct ML-assisted methodologies towards robust architecture
design than anomaly detection, since the damage has already
been done in the latter case.

Conversely, Al hardware are themselves vulnerable. Al-
though practical constraints such as limited accessibility and
custom hardware optimization can reduce the success rate of
adversarial attacks, RE and potential exploitation of backdoor
or flaws through deployed hardware accessibility and unre-
liable supply chains of IC design remain the valid threats.
Existing detection-based countermeasures mostly focus on
software-level using off-line analyses, which are often too late
for remedy, especially in real-time safety-critical applications.
More research effort is desired in built-in resilience against
adversarial examples and protection of hardware DNN against
theft of confidential trained model through queries or side
channels without compromising efficiency and accuracy. Mod-
ern primitives for securing hardware, such as PUF, obfuscation
and metering, may be embedded into the deep learning hard-
ware to help monitor or control access to sensitive assets. How-
ever, without considering the intrinsic weaknesses of DNN
implementation, the overhead and performance penalty may
be unacceptable. It boils down to having a hardware-supported
solution that takes unique attributes of DNNs into account
at design time for system-level defense. Another challenge
is the evaluation of the protection measures on large-scale
datasets and complex models. More attention needs to be paid

in the scalability of defense methodologies. Unfortunately, the
opaque nature of deep learning has worsened the defender’s
situation. This calls for a learning paradigm shift from data-
driven to knowledge-driven for explainability enhancement.
Explainability is the ability to provide reasons for a specific
decision derived by the Al It can be evaluated by interpretabil-
ity and completeness. Interpretability aims at describing inner
operations in a simpler way while completeness measures
the level of preciseness for an explanation. The dilemma is
a highly interpretable system is usually weak in prediction
whereas a precise description is often hardly understandable.
The tremendous computations involved in deep learning pro-
cessing have added resistivity to provide explanations for its
decision. The core of processing explainability enhancement
is therefore to reduce the operational complexity of the target
DNN by for instance, constructing a saliency map to underline
the most influential operations.

D. Security-driven EDA

State-of-the-art EDA flow takes functional correctness and
performance budgets as primary design constraints. Incorpo-
rating security as an additional dimension of the hardware
design space and enabling security properties to be evaluated
along with traditional design parameters is a promising yet
challenging research direction for both the hardware security
and EDA communities. We need to develop more standardized
hardware security models to allow security properties to be
mapped and verified across different levels of abstractions.
In addition, we need to derive effective security metrics to
measure security as a quantifiable design variable.

VII. CONCLUSION

Hardware security involves multiple levels of abstraction
in the computing system stack. In view of the enormously
broad focus and attractivity of this field, it is not possible
to comprehensively survey the voluminous publications, mul-
tidisciplinary and vast diversity of problems and solutions
in one paper. In this paper, we surveyed and discussed the
recent advances in selective sub-fields of hardware security.
Specifically, we presented attacks and countermeasures on
secure architectures, IP components and DNN models, as well
as the design and niche applications of two popular hardware-
intrinsic security primitives. We also outlined recent efforts in
developing security-driven hardware design tools. Hardware
attacks and countermeasures are rapidly evolving. It is not
surprising that a different shortest bar of the wooden barrel can
be identified with each major change in processor architectures
and computing technologies. We believe that the rally between
hardware attack and defense will remain a vibrant presence
for a long time. It is therefore our aim that this review
will alert the hardware designers and tool developers to pay
additional attention to significant security gaps not addressable
by traditional hardware design and verification methodologies.
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